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Abstract

Bitcoin is a decentralized cryptocurrency payment system, working without a single administrator
or a third party bank. A bitcoin is created by miners, using complex mathematical “proof of
work” procedure by computing hashes. For each successful attempt, miners get rewards in terms
of bitcoin and transaction fees. Miners participate in mining to get this reward as income. Mining
of cryptocurrency such as bitcoin becomes a common interest among the miners as the bitcoin
market value is very high. Bitcoin is a non-renewable resource, since the reward of mining a bitcoin
decreases over time, obvious questions that arise are what will be the incentive for miners in bitcoin
mining over time? Moreover, how will balance be maintained in the bitcoin mining market as time
goes on ? From the fact that at any time only one miner will be rewarded (the one who will win
the mining game by first creating and updating the blocks and the remaining miners effort will be
wasted at that time), it is better for them to mine strategically. However, this strategy could be a
plan of action designed to achieve a long-term goal, either Cooperative— where miners can benefit
by cooperating and binding agreements or Non-Cooperative– where miners do not make binding
agreements and compete against each other. In this paper we create a game theoretic model where
we consider bitcoin mining as a continuous time dynamic game which is played an infinite number
of times. We propose two different types of game theory solutions: Social optimum: (Cooperative)
when the miners altogether maximize their total profit and Nash equilibrium: (Non-Cooperative)
when each miner behaves selfishly and individually wants to maximize his/her total profit. Note
that in our game theory model, a player represents a single “miner” or a single “mining pool”
who is responsible to create a block in the blockchain. Our work here found that the bitcoin is
never sustainable and depleted very fast for the Nash equilibrium even if it is sustainable for the
Social optimum. Our result is quite intuitive to the common belief that mining in cooperation
will give the higher payoff or profit to each miner than mining individually. Finally, to retain the
bitcoin market at equilibrium we also propose a linear tax system which is of Pigovian type in
order to enforce social optimality in our bitcoin dynamic game model.

1 Introduction

Bitcoin [25] is a digital currency which was introduced in 2009. Its security is based on a proof
of work and a transaction is only considered valid once the system obtains proof that a sufficient
amount of computational work has been exerted by authorizing nodes. The miners (responsible for
creating blocks) constantly try to solve cryptographic puzzles in the form of a hash computation.
The process of adding a new block to the blockchain is called mining and these blocks contain a set
of transactions. The average time to create a new block in blockchain is ten minutes. Two types of
agents participate in the Bitcoin network: miners, who validate transactions and clients, who trade
in currency. Blockchain is a shared data structure responsible for storing all transaction history.
The blocks are connected with each other in the form of a chain. The first block of the chain is
known as Genesis. Each block consists of a Block Header, Transaction Counter and Transaction.
The structure of blockchain is as follows:

Each block in the chain is identified by a hash in the header. The hash is unique and generated
by the Secure Hash Algorithm (SHA-256). SHA takes any size plaintext and calculates a fixed size



Table 1. Structure of the Blockchain

Field Size

Block Header 80 bytes

Block Size 4 bytes

Transaction Counter 1 to 9 bytes

Transaction Depends on the transaction size

256-bit cryptographic hash. Each header contains the address of the previous block in the chain.
The process of adding blocks in the blockchain is called “mining of blocks”. If miners mine a valid
block, it publishes the block in the blockchain and extend the blockchain by a new block. The
creator of the block is rewarded with the bitcoin. We assume that miners are honest and follow
the protocol.

Exploitation of a common resource is one of the biggest problems in society especially if the
resource is non-renewable because then the problem is even more complex as it will lead to a fast
depletion of the resource. Since bitcoin is a non-renewable resource, we have seen an unexpected
growth of mining bitcoin. This has brought many miners to despair because the reward of mining
a bitcoin decreases every four years by half. Therefore, miners need to mine bitcoin strategically
to make bitcoin mining long lasting. In this paper we use tools of dynamic game theory to solve
our bitcoin mining model where every miner’s objective is to maximize the net profit gain from
mining a bitcoin. We propose two ways to maximize the profit of miners: cooperative– all miners
cooperate and jointly maximize their profit and the reward is equally shared among them and
non-cooperative— each miner behaves selfishly and individually mines bitcoin.

Here in the cooperative approach we are not taking a mining pool as a group of miners but we
assume a mining pool as a single miner (A mining pool is a way of sharing processing power or
resources over a network by miners. Miners share the reward equally according to the work they
contributed to create a block in a pool.) .

2 Related Work

Since the early days of bitcoin in 2009 given in [25], blockchain technology and cryptocurrencies
have caught the attention of both researchers and investors alike. The original paper on bitcoin
was improved in [31], mostly focussing on the security analysis. In [3], the authors examined a
common scenario in which only participants that are aware of the information can compete for
some reward focussing on incentive issues within Bitcoin. Showing an attack in which large pools
can gain more than their fair share, Eyal et al. showed Bitcoin mining protocol is not incentive
compatible [19], which was a very important work.

Ron and Shamir [30] analyzed transaction graphs, and made attempts to identify which accounts
belong to the same entity. Zohar at el. [21] examined dynamics of pooled mining and the rewards
that pools manage to collect, and use cooperative game theoretic tools to analyze how pool members
may share these rewards. They showed that for some network parameters, especially under high
transaction loads, it is difficult or even impossible to distribute rewards in a stable way: some
participants are always incentivized to switch between pools. Furtheremore, Lewenberg et al. [22]
also suggested a modifcation to Bitcoin’s data structure, in the form of directed acyclic graphs
know as DAGs, and have analyzed the game theoretic aspects quite well of their proposal. In our
opinion one of the closest connected works to this paper is the work of Niyato, Vasilakos and
Kun [26], which shows how to model blockchain technology as a cooperative game, in which cloud
providers can cooperate. They show a novel solution of the core issues can be found using linear
programming.

Cooperation among agents has been widely studied in the ever growing artificial intelligence
literature. In some relatively early work like the paper by Sandholm and Lesser [32], the authors
analyzed coalitions among self-interested agents that need to solve combinatorial optimization
problems to operate effciently in the world. Further to this, Shehory and Kraus [35] considered
task allocations via agent coalition formation. We propose a cooperative game model for ana-
lyzing Bitcoin mining pools here. Cooperative game models have been used for many real world
applications, including



1. network analysis [11, 9, 24, 29]
2. voting [12, 7, 16, 17, 37, 38, 34]
3. team formation [10, 8, 35, 2]
4. negotiation [5]
5. pricing cloud services [14]
6. auctions [4]

We have also seen the computational aspects of cooperative games being the focus of other
works, most notably the work of Elkind et al. [16] who showed that many stability-related solution
concepts in weighted voting games are hard to compute. Moreover, in the work of Aziz and De
Keijzer [2] where an algorithm for finding an optimal coalition structure for games with few player
types was proposed.

Cooperative games with coalition structures were introduced by Aumann and Dreze [1] quite
early. In the common practice of cooperative games with coalition structures, also known as char-
acteristic function games, the value of each coalition is independent of nonmembers’ actions [6, 15,
23, 27, 33]. Our model shows similarities to one proposed by Ray and Vohra in [28], in which the
value of a coalition depends on the coalition structure.

Eyal also presented a paper [18] which explored a block withholding attack among Bitcoin
mining pools — an attack that is possible in any similar system that rewards for proof of work.
Such systems are gaining popularity, running most digital currencies and related services. He
observe that no-pool-attacks is not a Nash equilibrium: If none of the other pools attack, a pool
can increase its revenue by attacking the others.

2.1 Formulation of the model

We consider a continuous time dynamic game model of exploitation of a non-renewable resource
— bitcoin. Our dynamic game Ĝ consists of:

1. The set of finite players: I = {1, 2, · · · , n}. Players can be either individual miners or individual
mining pools.

2. The state of resource x is the number of bitcoin available to mine at that time. Since one cannot
mine a negative number of bitcoin, we assume that x ∈ (0,+∞) with initial state X(0) = x0
representing the number of bitcoin available at the beginning of mining game.

3. At each time instant miner i mines si number of bitcoin. These si in common constitute a
profile of strategies and is defined as s = (s1, · · · , sn).
Notational convention: For simplicity, we introduce the notion for a profile of decisions s =
[si, s∼i] where, si is the decision of miner i and s∼i is the decision of the remaining miners.
Si(X(t)) is any function defined by Si(X(t)) = si, and X(t) is any function defined as X(t) = x.

4. We are interested in calculating feedback strategies Si : (0,+∞) → R. It means that the
number of bitcoin a miner decides to mine (decision of miner) at every time will depend on
how much bitcoin is left to mine at that time.

5. We denote the set of available decisions of miner i by U = (0,Mx] for some positive constant
M representing the maximum mining rate. So, for every miner i, mining strategy si ∈ (0,Mx].
This represents a real situation where a miner cannot mine more than the available bitcoin for
mining, or a negative number of bitcoin. We denote the set of decision profiles by Un.

6. The current or instantaneous payoff gi of miner i is the net revenue which equals the reward R
earned by him/her for successfully mining the bitcoin minus the quadratic cost of mining. We
assume that the cost of mining is identical for each miner. In our infinite time horizon dynamic
game model, the profit does not directly depend on time t. Therefore, the current payoff is
given by

gi(x, si) =

(
Rsi −

Cs2i
2

)
, (1)

for positive constants R regarded as reward of bitcoin mining and C being the cost of bitcoin
mining with R >> C.

7. A function X : (0,+∞)→ R+ is called a trajectory of the state of the system and it is defined
as

Ẋ(t) = ψ (X(t), S(X(t))) , with the initial condition X(0) = x0, (2)



for a function ψ describing the behaviour of the system dynamics given by

ψ(x, s) =

x− n∑
j=1

sj

 . (3)

8. The total payoffs or total profits of the miner i in the game are discounted by a discount factor
r ∈ (0, 1). It means that after each time interval the payoff or profit of the miner in bitcoin
mining decreases by a factor r which we call the discount rate.

9. The total payoff function or total profit of the miner after the termination of the game is

Ji (x0, [Si, S∼i]) =

∫ ∞
t=0

e−rtgi(X(t), Si(X(t)))dt for i = 1, 2, · · ·n. (4)

for X given by Eq. (2). Analogously, we can define Ji (x̄, [Si, S∼i]) for arbitrary initial x̄ ≥ 0.

3 Solution concept of bitcoin mining model

Here we discuss the definitions of solution types for our bitcoin mining game.

Social Optimum mining profile: A social optimum mining profile is a solution of our mining
game where all miners cooperate with each other. In other words, it is a profile at which all miners
jointly maximize their current payoffs or profits. Social optimum mining profile can be the result
of decision making by a single miner regarded as a social planner or just full cooperation of all
miners.

Definition 1. A mining profile s̄ is called a social optimum mining profile in our n miner bitcoin

mining game iff s̄ maximizes
n∑
i=1

Ji(x0, s).

Nash equilibrium mining profile: A Nash equilibrium mining profile is a solution of our mining
game where all miners behave selfishly and do not cooperate with each other. A mining profile s̄
is called in Nash equilibrium if no miner can benefit from unilateral deviation from it. Formally it
can be defined as follows,

Definition 2. A mining profile s̄ is called a Nash equilibrium iff for every miner i ∈ I and for
every mining strategy si of miner i,

Ji ([si, s̄∼i]) ≤ Ji ([s̄i, s̄∼i]) .

3.1 Calculation of social optimum

First, we are interested in calculating the social optimum mining profile — a solution of the
cooperative mining game.

Consider the total profit J (x, S) =
n∑
i=1

Ji (x, [Si, S∼i]), then the dynamic optimization problem

of finding social optimum mining profile is defined by

max
S∈[0,Mx]n

J (x0, S), for X given by (5a)

Ẋ(t) =

(
X(t)−

n∑
i=1

Si(X(t))

)
, (5b)

X(0) = x0. (5c)

Theorem 1. a) The optimal solution in the case of cooperation of all miners is

SSO(x) :=

{
(2−r)Cx+nR(r−1)

nC x < x̂,
R
C x ≥ x̂.

(6)



for the constant x̂ = R
MC We called this optimal solution “a social optimum mining profile”.

b) The combined total payoff or profit of all miners for this social optimum mining profile is
given by

V SO(x) :=

{
(r−2)(Cx−nR)2

2nC + nR2

2rC , x < x̂,
nR2

2rC x ≥ x̂.
(7)

while the total payoff or payoff of an individual miner i is

V SO
i (x) :=

V SO(x)

n
. (8)

This total payoff is called a “value function” of miner i at social optimum profile.

Proof. The Hamiltonian-Jacobi-Bellman equation (see e.g., Haurie, Krawczyk and Zaccour [20],
Başar and Olsder [13], Zabczyk [36]) for any function V (x) can be written as

rV (x) = sup
si∈[0,Mx]n

n∑
i=1

[(
R− Csi

2

)
si

]
+

(
x−

n∑
i=1

si

)
∂V (x)

∂x
. (9)

To calculate the optimal mining strategy si, differentiate the right hand side of Eq. (9) with respect
to si and equate to 0, we get the optimal value s̄i as

s̄i =
1

C

(
R− ∂V (x)

∂x

)
, i = 1, 2 · · ·n. (10)

Note that the right hand side of Eq. (10) is identical for all i, so, the optimal value s̄i will be the
same for all n miners.

If we take the value of parameter M as sufficiently large, then the optimal value s̄i will be
always less than or equal to Mx.

Now, the social optimum can be found by solving the following differential equation for given
optimal s̄i and a function V (x),

rV (x) = n
(
R− s̄i

2

)
s̄i +

(
x− ns̄i

C

)
· ∂V (x)

∂x
. (11)

The quadratic structure of the social optimum problem suggests that the value function is of
quadratic form. Therefore, we assume that the value function has the form

V (x) = K +Gx+
Hx2

2
, (12)

for the constants H,G and K. Since this equation has to hold for all x, the coefficients of x2, x
and the constant term on the left-hand side and the right-hand side have to be equal in order to
calculate the values of the constants. So, we have the two set of values of the constants: First set

of values are H = 0, G = 0 and K = nR2

2rC , then the optimal solution will be R
C only if R

C ≤Mx.
Second set of values of the constants are

H =
C(r − 2)

n
, G = R(2− r), K =

nR2(r − 1)
2

2rC
,

then the optimal solution will be s∗i = (2−r)Cx+nR(r−1)
nC , only if 0 ≤ s∗i < Mx.

Therefore, the social optimum mining profile is given by Eq. (6) while the total profit of a miner
is given by Eq. (8).

3.2 Calculation of Nash equilibrium

Next, we calculate the Nash equilibrium mining profile — a solution of the non-cooperative mining
game.



Given the mining strategies of the remaining miners S∼i, a dynamic optimization problem of
miner i is defined by

max
Si∈U

Ji (x0, [Si, S∼i]) for X given by (13a)

Ẋ(t) =

X(t)− Si(X(t))−
n∑
j 6=i

Sj(X(t))

 , (13b)

with X(0) = x0. (13c)

Theorem 2. a) The optimal solution in the case of non-cooperation of the miners is

SNE
i (x) =

{
(2−r)Cx+R(nr−1)

(2n−1)C x < x̂
R
C x ≥ x̂.

(14)

for x̂ = R
MC . We call this optimal solution “a Nash equilibrium mining profile”.

b) The total payoff or profit of miner i at this Nash equilibrium mining profile is given by

V NE
i (x) =

{
(r−2)(Cx−nR)2

2(2n−1)C + R2

2rC x < x̂
R2

2rC x ≥ x̂.
(15)

Proof. The Hamiltonian-Jacobi-Bellman equation for any function Vi(x) can be written as

rVi(x) = sup
si∈[0,Mx]

(
R− Csi

2

)
si +

x− si − n∑
j 6=i

sj

 ∂Vi(x)

∂x
. (16)

To calculate the optimal mining strategy si, differentiate the right hand side of Eq. (16) with
respect to si and equate to 0, we get the optimal value s̄i as

s̄i =
1

C

(
R− ∂Vi(x)

∂x

)
, i = 1, 2 · · ·n. (17)

Note that the right hand side of Eq. (17) is identical for all i. Therefore, the optimal value s̄i will
be same for each miner. Moreover, the mining strategy of all miners is symmetric, so, we substitute
sj = si in Eq. (17).

If we take the value of parameter M as sufficiently large, then the optimal value s̄i will be
always less than or equal to Mx.

Now, the Nash equilibrium can be found by solving the following differential equation for given
optimal s̄i and a function Vi(x),

rVi(x) =
(
R− s̄i

2

)
s̄i + (x− ns̄i)

∂Vi(x)

∂x
. (18)

The quadratic structure of the problem suggests that the value function is of quadratic form.
Therefore, we assume that the value function has the form

Vi(x) = Ki +Gix+
Hix

2

2
, (19)

Since we have a symmetric optimal mining strategy which implies that also Hi, Gi and Ki are
equal for all i = 1, · · · , n.

Since the Eq. (18) has to hold for all x, the coefficients of x2, x and the constant term on the
left-hand side and the right-hand side have to be equal.

So, we have two sets of values of the constants: First set of values are Hi = 0, Gi = 0 and

Ki = R2

2rC , then the optimal solution will be R
C only if R

C ≤ Mx. Second set of values of the
constants are

Hi =
C(r − 2)

2n− 1
, Gi =

nR(2− r)
2n− 1

, Ki =
R2(nr − 1)(nr − 2n+ 1)

2(2n− 1)rC
,



then the optimal solution will be s∗i = (2−r)Cx+R(nr−1)
(2n−1)C , only if 0 ≤ s∗i < Mx.

Therefore, the Nash equilibrium mining profile is given by Eq. (14) while the total profit of a
miner is given by Eq. (15).

Theorem 3. The rate of linear tax enforcing the socially optimal behaviour of the miners is given
by

τ(x) =
(r − 2)(n− 1)(Cx−Rn)

n2
(20)

Number of Bitcoin left to mine

Fig. 1. Total profit of a miner at Nash equilibrium and at social optimum for the values of the parameters
are n = 20 and r = 0.02

Figure 1 shows the total profit gained by miner for x < x̃ by mining a bitcoin strategically
depending on which mining strategy: cooperative or non-cooperative he/she chooses. For x ≥ x̃,
miner will get the same profit since the optimal mining strategy is constant in both cooperative
and non-cooperative cases for such x.

4 Enforcing social optimality by a tax-subsidy system

In this section we consider a tax system or penalty system which can be implemented by an external
authority such as government, administration or bitcoin market owner to name a few. Therefore,
in this case if the miner mines bitcoin more than the social optimum or social welfare level then
he/she would have to pay some extra amount to the external authority. This introduction of a tax
system is very important in order to maintain the equilibrium in the bitcoin mining market. If not,
we may see that mining will no longer be interesting from the point of view of the miners.

We are interested in making sure the miners behave in a socially optimal manner which is for
the welfare of society by a tax system or a tax-subsidy system which is linear in miner’s strategy si
i.e., tax(si, x) = τ(x)si. Formally, introduction of a tax or a tax-subsidy system is a modification of
the original non-cooperative game by changing the payoffs. In our mining game model, the current

payoff function of miner i changes to Rsi − Cs2i
2 − tax(si, x).

We are interested in Pigovian type tax where tax is linear in the surplus over the socially
optimum level, so if the miner mines more than the social optimum level he/she will have to pay
an extra amount as a penalty for over-mining the bitcoin.

tax(si, x) = τ(x)

(
si −

(2− r)Cx+ nR(r − 1)

nC

)
. (21)



So, the total payoff function in the mining game becomes

Jτi (x, [Si, S∼i]) =

∞∫
t=0

e−rt
(
Rsi −

Cs2i
2

)
− τ(x)

(
si −

(2− r)Cx+ nR(r − 1)

nC

)
dt. (22)

Definition 3. A tax-subsidy system enforces that the mining profile C̄ if C̄ is a Nash equilibrium
mining strategy in the new mining game with the total payoff defined by Eq. (22).

Theorem 4. The rate of linear tax enforcing the socially optimal behaviour of the miners is given
by

τ(x) =
(r − 2)(n− 1)(Cx−Rn)

n2
(23)

Number of Bitcoin left to mine

Fig. 2. Tax rate τ(x) enforcing the socially optimal profile for the values of the parameters are n = 20 and
r = 0.02

Figure 2 presents the tax rate of the linear tax enforcing the socially optimal profile. We can
see when fewer bitcoin which remain to be mined, larger tax rates are required.

Proof. Consider our mining game with enforcing the social optimum mining profile. If a miner
mines sSOi then there is no tax to be paid or subsidy to be obtained. So, if every miner mines

sSOi , each of them obtains the total profit V SO(x)
n and this is the optimal total profit for such an

appropriate τ(x), if it exists. So, the HJB equation for V SO(x)
n becomes

r

n
V SO(x) = sup

si∈[0,Mx]

(Rsi −
Cs2i

2
)− τ(x)(si − SSO(x)) + (ξx− si −

n∑
j 6=i

sj)
∂V SO(x)

n · ∂x
(24)

The first order condition for the above optimization problem is

s̃i =
(R− τ(x))n2 + (2− r)(Cx− nR)

n2C
(25)

and the optimal solution should be attained at sSOi . The condition s̃i = sSOi yields τ(x) defined by
Eq. (23). Substitute s̃i for this τ(x) into Eq. (24) to see that it is fulfilled.



5 Conclusion

Bitcoin is a non-renewable resource, so it is very important to mine bitcoin strategically in order
to maintain the bitcoin market balance. In this paper, we consider a continuous time dynamic
game model of bitcoin mining with infinite time horizon which belongs to the class of differential
games. We propose two types of solutions to our model which we call optimal mining strategies,
namely cooperative (social optimum ) mining strategy and non-cooperative (Nash equilibrium)
mining strategy. We calculate the total profit of a miner in both cases. We found that it is always
beneficial to mine jointly in cooperation with other miners since it will give the miner a higher total
profit compared to a miner who mines selfishly. Also, if all the miners choose to mine according
to the Nash equilibrium mining strategy, then the bitcoin will deplete much faster than if they
choose to mine according to the social optimum mining strategy. Our result fits quite nicely with
the common belief that mining in cooperation will be better than mining individually in a non-
cooperative game. We also propose a tax system which falls into a Pigovian type. This tax system
is linear in the miner’s mining strategy in order to enforce social optimality in our bitcoin dynamic
game model. This way, miners will be forced to behave or mine in a way that is best for social
welfare of the miners.
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