
Efficiently Processing Complex-Valued Data in Homomorphic

Encryption

Carl Bootland1, Wouter Castryck12, Ilia Iliashenko1, and Frederik Vercauteren1

1imec-COSIC, Dept. Electrical Engineering, KU Leuven
firstname.lastname@esat.kuleuven.be
2Department of Mathematics, KU Leuven

Abstract

We introduce a new homomorphic encryption scheme that is natively capable of computing with
complex numbers. This is done by generalizing recent work of Chen, Laine, Player and Xia, who
modified the Fan–Vercauteren scheme by replacing the integral plaintext modulus t by a linear
polynomial X−b. Our generalization studies plaintext moduli of the form Xm+b. Our construction
significantly reduces the noise growth in comparison to the original FV scheme, so much deeper
arithmetic circuits can be homomorphically executed.

1 Introduction

The goal of homomorphic encryption is to allow for arbitrary arithmetic operations on encrypted
data, such that the decrypted result equals the outcome of the same calculation carried out in the
clear. Since the publication of Gentry’s seminal Ph.D. work [15], this research area has evolved
rapidly and is on the verge of reaching a first degree of maturity, as was recently demonstrated e.g.
by practical implementations of privacy-enhanced electricity load forecasting [3, 2], digital image
processing [1, 10], and medical data management [12, 18, 7]. Most of the current focus lies on
somewhat homomorphic encryption (SHE), where the schemes are capable of homomorphically
evaluating an arithmetic circuit having a certain predetermined computational depth. The leading
proposals for realizing this goal are the Brakerski-Gentry-Vaikunthanathan (BGV) scheme [4] and
the Fan-Vercauteren (FV) scheme [13].

In actual applications, the input to the homomorphic evaluation of an arithmetic circuit C needs
to be preprocessed in two steps. The first step is encoding, where one’s task is to represent the actual
‘real world data’ as elements of the plaintext space of the envisaged SHE scheme. This plaintext
space is a certain commutative ring, and the encoding should be such that real world arithmetic
agrees with the corresponding ring operations, up to the anticipated computational depth.

In the original descriptions of BGV and FV, the plaintext space is a ring of the form Rt =
Z[X]/(t, f(X)) where t ≥ 2 is an integer and f(X) ∈ Z[X] is a monic irreducible polynomial.
Throughout this paper we will stick to the common choice of 2-power cyclotomics f(X) = Xn + 1,
where n = 2k for some integer k ≥ 1. Encoding numerical input is typically done by taking an
integer-digit expansion with respect to some base b, then replacing b by X and finally reducing
the digits modulo t. Decoding then amounts to lifting the coefficients back to Z, for instance by
choosing representatives in (−t/2, t/2], and evaluating the result at X = b. Thanks to the relation
X−1 ≡ −Xn−1 it is possible to allow the expansions to have a fractional part. In this case the
decoding step must be preceded by replacing the monomials Xi of degree i > B by −Xi−n, for
some appropriate point of separation B. All these parameters need to be chosen in such a way
that the evaluation of C on the encoded data decodes to the right outcome. At the same time
one wants t to be as small as possible, because its size highly affects the efficiency of the resulting
SHE computation. Selecting optimal parameters is a tedious application-dependent balancing act to
which a large amount of recent literature has been devoted, see e.g. [20, 12, 8, 6, 18, 11, 2].

Because in practice n is of size at least 1024, the plaintext spaces Rt can a priori host an enormous
range of data, even for very small values of t. Unfortunately this is hindered by their structure,

The first author is supported by a PhD fellowship of the Research Foundation - Flanders (FWO). The third author
has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT.

1

which is not a great match with numerical input data types like integers, rationals or floats. For
example, if t = 2 then it is not even possible to add a non-zero element to itself without incorrect
decoding. Because of such phenomena, values of t are required that typically consist of dozens of
decimal digits, badly affecting the efficiency. An idea to remedy this situation has been around for a
while [17, 4, 14] and uses a polynomial plaintext modulus, rather than just an integer. Recently the
first detailed instantiation of this idea was given by Chen, Laine, Player and Xia [6], who adapted
the FV scheme to plaintext moduli t = X − b for some b ∈ Z≥2. In this case the plaintext space
becomes Rt = Z[X]/(X − b,Xn + 1) = Z[X]/(X − b, bn + 1) ∼= Zbn+1, whose structure is a much
better match with the common numerical input data types. This allows for much smaller plaintext
moduli (norm-wise), with beneficial consequences for the efficiency, or for the depth of the circuits C
that can be handled [6, Section 7.2].

This paper further explores the paradigm that the structure of the plaintext space Rt should
match the input data type as closely as possible. Concretely, we focus on complex-valued data types,
such as cyclotomic integers and floating point complex numbers. We study this setting mainly in its
own right, but note that complex input data has been considered in homomorphic encryption before,
e.g., in the homomorphic evaluation of the Discrete Fourier Transform studied by Costache, Smart
and Vivek [10] in the context of digital image processing, where the input consists of cyclotomic
integers.

Representing complex numbers.

One naive way to encode a complex number z would be to view it as a pair of real numbers, for
instance using Cartesian or polar coordinates. These can be fed separately to the SHE scheme,
which is now used to evaluate two circuits. A more direct way is to use a complex base b. For
instance, one could take b = eπi/n, as was done by Cheon, Kim, Kim and Song [8], albeit in a
somewhat different context. This choice has the additional feature that f(b) = 0, so that wrapping
around modulo f(X) = Xn + 1 does not lead to incorrect decoding. However, finding an integer-
digit base b expansion with small norm which approximates z sufficiently well is an n-dimensional
lattice problem, which is practically infeasible. To get around this Costache, Smart and Vivek [10]
instead use b = ζ := eπi/m for some divisor m | n, which is small enough for finding short base ζ
approximations, while preserving the feature that wrapping around modulo f(X) is unharmful. But
in their approach, a huge portion of plaintext space is left unused. Indeed, the encoding map is

Z[ζ]→ Rt : z =

m−1∑
i=0

zib
i 7→

m−1∑
i=0

ziY
i,

where Y = Xn/m, t ≥ 2 is an integral plaintext modulus and zi is the reduction of zi mod t, so that all
plaintext computations are carried out in the subring Z[Y]/(t, Y m+1), which is of index tn−m in Rt.
Our proposal is to resort to a plaintext modulus of the form t = Xm+b for some small integer b, with
|b| ≥ 2. In this case, for m < n, we have RXm+b = Z[X]/(Xm+b,Xn+1) = Z[X]/(bn/m+1, Xm+b).
An additional assumption (which is discussed in more detail in the next section), is that

there exists an α ∈ Zbn/m+1 such that b = αm, (1)

where b denotes the reduction of b modulo bn/m + 1. Throughout we fix such an α and let β be its
multiplicative inverse, which necessarily exists. This implies that (β̄X)m + 1 = 0, therefore we have
a well-defined ring homomorphism

Z[ζ]→ RXm+b :

m−1∑
i=0

ziζ
i 7→

m−1∑
i=0

ziβ
i
Xi (2)

which is surjective with kernel (bn/m + 1). In other words, while Costache, Smart and Vivek restrict
their computations to an injective copy of Z[ζ]/(t) inside Rt, we can view RXm+b as an isomorphic
copy of Z[ζ]/(bn/m + 1). Essentially, our approach transfers the unused part of the plaintext space
coming from the large dimension n into a larger integral modulus, reflected in the exponent n/m.

In the remainder of this paper, we explain how this observation can be used to efficiently process
complex-valued input data in homomorphic encryption. First, in Section 2 we explain how to encode
and decode elements of the ring Z[ζ] of 2mth cyclotomic integers and discuss the assumption (1),
with special attention to the case m = 2 where Z[ζ] = Z[i] is the ring of Gaussian integers. Next in
Section 4 we explain how this can be used to encode other data types such as cyclotomic rationals
or complex floats, either by resorting to LLL as in [10] or by using Chen et al.’s fractional encoder
from [6]. In Section 5 we discuss how to adapt the FV scheme so that it can cope with plaintext
spaces of the form RXm+b. Finally, in Section 7 we discuss the performance of this adaptation in
comparison with previous approaches. In short we can reach a depth at least 5 times that of the

2

best approach which directly encrypts encodings of complex numbers [10]. We can also reach very
similar depths to the state of the art where one encrypts the real and imaginary parts separately [6].
However, since we natively encrypt complex numbers our ciphertexts are two times smaller and hence
our approach is more efficient by roughly a factor two in both time and space.

2 Encoding and decoding elements of Z[ζ]
Encoding

Encoding an element of Z[ζ] happens in two steps. The first step applies the map (2) yielding a
polynomial of degree less than m which typically has very large coefficients. The second step is
comparable to the hat encoder of Chen et al. [6] and switches to another representant by spreading
this polynomial across the range 1, X, . . . ,Xn−1 while making the coefficients a lot smaller. The
result will then be lifted to R = Z[X]/(Xn + 1) and fed to our adaptation of the FV scheme, where
the smaller coefficients are important to keep the noise growth bounded.

Here is how this second step is carried out in practice: we think of the coefficients ziβ
i

as being
represented by integers between −bbn/m/2c and dbn/m/2e. We then expand these integers to base b
using digits ai,j from the range −bb/2c, . . . , bb/2c to find

ziβ
i

= ai,n/m−1b
n/m−1

+ . . .+ ai,1b+ ai,0.

There is a minor caveat here, namely if b is odd then there are more integers modulo bn/m + 1 than
there are balanced b-ary expansions of length at most n/m. This is easily resolved by allowing the

last digit to be one larger. For even b the situation is opposite: since ziβ
i

is represented by an integer
of size at most bn/m/2 = b/2 · bn/m−1 we have a surplus of base-b expansions. Here it makes sense
to choose an expansion with the shortest Hamming weight (e.g., if b = 2 then we simply pick the
non-adjacent form). We denote the maximal number of non-zero coefficients that can appear in a
fresh encoding by Nb.

Given such base-b expansions of the coefficients, we replace each occurrence of b by −Xm and
then substitute the results in the image of (2). We end up with an expansion

∑n−1
i=0 ciX

i where the
ci are represented by integers of absolute value at most bb/2c, or in fact b(b + 1)/2c if we take into
account the caveat.

Decoding

In order to decode a given expansion
∑n−1
i=0 ciX

i we walk through the same steps in reverse order.
First we pick another representant by reducing the expansion modulo Xm + b, in order to end up
with

m−1∑
i=0

c′iX
i ∈ Z[X]/(bn/m + 1, Xm + b).

This can be rewritten as
∑m−1
i=0 c′iα

iβ
i
Xi so we decode as

∑m−1
i=0 ziζ

i ∈ Z[ζ] where zi is a representant

of c′iα
i taken from the range −bbn/m/2c, . . . , dbn/m/2e.

On the assumption (1)

Usually n and m are determined by security considerations and the concrete application. To apply
our encoding method we want to find a small value of b for which condition (1) is met. This is
easiest if n/m is small or m is small. If no satisfactory value of b can be found then one can try to
enlarge m and view Z[ζ] as a subring of a higher degree cyclotomic ring. Below we give two lemmas
constraining the possible choices for b given m and n; still assuming we are working with 2-power
cyclotomic f .

One choice for b which is always possible is 2m/2, since indeed

αm ≡ 2m/2 mod 2
m
2

n
m + 1,

where α is as in (3) below;this is immediate from α2 ≡ 2 mod 2n/2 +1. If m is small then this results
in a reasonably slow coefficient growth. On the other hand if m is large compared to n then the
modulus bn/m+1 is smaller and it is apparently easier to have condition (1) satisfied, as is confirmed
by experiment.The seemingly hardest case is where m is of medium size; here one possibility is to
embed Z[ζ] in a larger cyclotomic ring and proceed with a slightly larger value of m.

Lemma 1. Let n > m > 1. A necessary condition for (1) is that for every odd prime p | bn/m + 1
we have 2n | p− 1.

3

Proof. First we show that b has multiplicative order 2n/m in Zbn/m+1. Clearly we have bn/m ≡ −1

mod bn/m + 1 so that b2n/m ≡ 1 mod bn/m + 1. This shows that the order of b divides 2n/m so is
a power of 2 and hence it is equal to 2n/m.

Since 2 | n/m and x2 ≡ 1 mod 4 for any odd x we have that if b is odd bn/m + 1 ≡ 2 mod 4
while if b is even bn/m + 1 is odd. Thus that we can write

bn/m + 1 = 2ρpe11 . . . p
ej
j

where the pi, 1 ≤ i ≤ j are distinct odd primes and ρ = b mod 2.
Now we can see via the Chinese Remainder Theorem that there exists an α such that αm ≡ b

mod bn/m + 1 if and only if there exist αi such that αmi ≡ b mod peii for every i. Further we
must have bn/m ≡ −1 mod peii so that b has order 2n/m modulo peii . This implies αi has order
m ·2n/m = 2n modulo peii and since (Z/peii Z)× is cyclic of order pei−1

i (pi−1) we see that 2n | (pi−1)
by Lagrange’s Theorem for each 1 ≤ i ≤ j.

Lemma 2. Let g be an element of order n in Z×4n and let t be an element of order 2 not in 〈g〉
so that Z×4n = 〈t〉 × 〈g〉. If condition (1) is satisfied for odd b > 1 and m > 1 then b mod 4n is an
element of the subgroup 〈t〉 × 〈gm〉. In particular this implies that b ≡ ±1 mod 4m.

In fact, one may always take g = 3 and t = −1 in the above lemma.

Proof. Using Lemma 1 and the notation from its proof we can write each pi as 2nci + 1 for some
natural number ci. This implies that

bn/m + 1 = 2

j∏
i=1

(2nci + 1)ei ≡ 2 mod 4n

and hence bn/m ≡ 1 mod 4n. Therefore the order of b as an element of Z×4n divides n/m.
Now we have Z×4n = 〈t〉 × 〈g〉 so that for b mod 4n to have an order dividing n/m it must be an

element of the subgroup 〈t〉 × 〈gm〉. This is because this subgroup certainly only contains elements
whose order divides n/m. Further, Z×4n has exactly 2n/m such elements but this is the size of the
subgroup so the subgroup is exactly all such elements.

For the final part we note, as stated after the lemma, that g = 3 and t = −1 can be taken and
that 3m ≡ 1 mod 4m which gives the desired result. We remark that for any b ≡ ±1 mod 4m it is
always the case that bn/m ≡ 1 mod 4n so from this condition we cannot determine anything more
about b modulo 4m but the condition given modulo 4n is stronger.

Lemma 3. Suppose b, n and m satisfy (1), then so does −b, n,m.

Proof. Since (−b)n/m + 1 = bn/m + 1 when n is a power of two and m < n, we must show that −1
has an mth root modulo bn/m + 1; we show that αn/m is such an mth root. We have (αn/m)m =
(αm)n/m ≡ bn/m ≡ −1 mod bn/m + 1 as required. Hence we see that (αn/m+1)m = αnαm = −1 · b
as required.

We note that the above proof only required n/m to be even and not equal to a power of two so
applies somewhat more generally.

We give some examples of both odd and even b which satisfy Equation (1) in Appendix B.
However it seems to be more fruitful to consider the case of even b.

Our method is particularly friendly towards Gaussian integers. Indeed if m = 2 then one can
always take b = 2, as one easily verifies that α2 = 2 where

α = 2n/8
(

2n/4 − 1
)
. (3)

The map (2) then defines an isomorphism between RX2+2 and Z[i]/(2n/2 +1). If this ring is not large
enough to ensure correct decoding, then one can move to slightly larger values of b. The next choice
which always works is b = 4, where one can simply take α = 2. Here the ring becomes Z[i]/(2n + 1).

3 Preliminaries

Let K = Q[X]/(f(X)) be a cyclotomic number field where, as usual, f(X) = Xn + 1 is the 2n-
cyclotomic polynomial. We denote the ring of integers of K by R, i.e. R = Z[X]/(f(X)). Let Ra be
the reduction of R modulo an ideal (a). If a is a natural number, we take representatives of Z/aZ
from the half-open interval [−a/2, a/2).

For any a =
∑
i aiX

i ∈ K, the infinity norm ‖a‖ is defined as maxi |ai|. Similarly, the Euclidean

norm of a is ‖a‖2 =
√∑

i a
2
i . We denote by δR the upper bound on ‖a · b‖ / ‖a‖·‖b‖ for any a, b ∈ R.

4

This bound is called the expansion factor of R. For a cyclotomic ring of integers R, the expansion
factor satisfies δR ≤ n. Let ζ is a complex primitive 2n-th root of unity. We define the canonical
norm as

‖a‖can =
∥∥(a(ζ), a(ζ3), . . . , a(ζ2n−1)

)∥∥ .
It is easy to check that the canonical norm satisfies

‖a‖ ≤ ‖a‖can , ‖a+ b‖can ≤ ‖a‖can + ‖b‖can , ‖ab‖can ≤ ‖a‖can · ‖b‖can .

The last inequality implies that the canonical norm leads to tighter bounds than the infinity norm [19].

Canonical norm of random polynomials

Further, we will need to bound the canonical norm of random polynomials generated by discrete
Gaussian and uniform distributions. We follow a heuristic approach given in [16, A.5], which was
already used in [9, 5, 6] for an analysis of the FV scheme.

Let a ∈ R be a polynomial such that its coefficients are chosen independently from some zero-
mean distribution with the standard deviation σ. For this purpose, we use the following distributions

• a discrete Gaussian distribution D(σ2) with probability density 1

σ
√

2π
exp(− |x|2 /2σ2),

• the uniform distribution U3 over the ternary set {−1, 0, 1},
• the uniform distribution Uq over Zq,
• the uniform distribution Urnd over the interval (−1/2, 1/2].

By the definition of the canonical norm, we need to compute a(ζi2n). The evaluation a(ζi2n)

is the inner product between the coefficient vector of a and the fixed vector
(
1, ζi2n, . . . , ζ

i·(n−1)
2n

)
,

which has Euclidean norm
√
n. Hence, the random variable a(ζi2n) has variance V = σ2 · n by the

Cauchy-Schwartz inequality.
When a ← D(σ2) then each coefficient ai has variance ' σ2 and thus the variance of a(ζi2n) is

VG ' σ2 · n. If a ← U3 then each ai has variance 2/3 and thus the total variance is VU3 = 2n/3.
By analogy, VUq . q2 · n/12 as ai has variance roughly q2/12. Finally, the variance of ai such that
a← Urnd is equal to 1/12, so VUrnd = n/12.

Since a(ζi2n) is the sum of independently distributed complex variables, by the law of large
numbers it is distributed similarly to a complex Gaussian random variable of variance V . Therefore,
given that erfc(6) ' 2−55, we can use 6

√
V as a high-probability bound on a(ζi2n). Since in practice

n ≤ 214, this bound is good enough to claim that ‖a‖can ≤ 6
√
V with very high probability. For the

distributions above, we get

‖a‖can ≤ 6σ ·
√
n, a← D(σ2),

‖a‖can ≤ 2
√

6n, a← U3,

‖a‖can ≤ q ·
√

3n, a← Uq,

‖a‖can ≤
√

3n, a← Urnd.

We also need to bound the canonical norm of a product of two random polynomials. This implies
the bound on the product of two random variables whose distributions are close to the discrete
Gaussian, with variances σ2

1 , σ
2
2 , respectively. We fix this bound as 16σ1 · σ2, since erfc(4) ' 2−26,

so both variables exceed their standard deviation by more than a factor of 4 with probability 2−52.
By analogy, the product of three random variables is bounded by 40σ1 · σ2 · σ3.

4 Encoding complex-valued input data

In this section we look at the more general problem of encoding floating point complex numbers.
Our approach will be to approximate these complex numbers by suitable cyclotomic rationals and
then proceed as in Section 2. We have many choices for such approximations including the choice
of m which defines which root of unity we are working with. We also have the choice between using
integer or rational coefficients for the approximation. Perhaps the most obvious and straightforward
approach is to consider our complex number z written in terms of its real and imaginary parts, say
z = x+ yi for some real numbers x and y. We can then approximate x and y by rationals depending
on how much precision we require. This leads us to considering the case m = 2 and the question
then arises of how to encode fractional coefficients.

5

4.1 Fractional encoding

Here we consider how to encode a rational number into the space Z/pZ for some integer p, so that
it can then be expanded using the technique in Section 2. This problem was considered by Chen,
Laine, Player and Xia in [6, Section 6]. Their approach is to define a finite subset P of Q along with
an encoding map Enc : P → Z/pZ and a decoding map Dec : Enc(P)→ P. The maps should satisfy,
firstly, correctness: Dec(Enc(x/y)) = x/y for x/y ∈ P and secondly, Enc should be both additively
and multiplicatively homomorphic so long as it still encodes an element of P. The natural choice for
the map Enc is Enc(x/y) = xy−1 mod p where the inverse of y is computed modulo p. Care thus
needs to be taken to ensure that y has such an inverse, which is ensured with a careful choice of P.

In our setting the coefficient modulus p is of the form bn/2 + 1, thus if one wants roughly the
same precision for the integer and fractional parts one can take for an odd base b

P =

{
c+

d

bn/4
: c, d ∈

[
− b

n/4 − 1

2
,
bn/4 − 1

2

]
∩ Z
}

;

while for even b one can choose

P =

{
c+

d

bn/4−δ
: |c| ≤ (bn/4+δ−1 − 1)b

2(b− 1)
; |d| ≤ (bn/4−δ − 1)b

2(b− 1)
; c, d ∈ Z

}
,

where δ ∈ {0, 1} depending on whether you want one more base-b digit in the fractional (δ = 0) or
integer (δ = 1) part.

The encoding of an element e ∈ P is then computed as −ebn/2 mod bn/2 + 1. The important thing
to note about using this encoding is that for decoding to work the result of the computations must
lie in P. If your input data are complex numbers and you approximate them using n/4 fractional
b-ary digits then it is likely that after one multiplication the result is no longer in P. Thus one must
appropriately choose the precision with which to encode your data, depending primarily on the depth
of the circuit you want to evaluate and the final precision required. The only constraint is that the
precision should be a divisor of bn/4 so that −ebn/2 is an integer.

We note that the fractional encoder need not require m to be 2. However in this case there
appears to be no straightforward way to find a good rational approximation with small numerators
and denominators except when the denominators are all equal, in this case if this denominator is r
then we simply require an approximation of rz in Z[ζ] subject to some constraint on the coefficients.
However, the problem of finding such an approximation to our complex number itself, rather than a
scaling, is interesting in its own right as it avoids the need for encoding fractional values and tracking
the denominator inherently present in such encodings.

4.2 Integer coefficient approximation

The task of finding a cyclotomic integer closely approximating an arbitrary complex number was
considered by Costache, Smart and Vivek in [10]. Here the idea is to solve an instance of the closest
vector problem (CVP) in the (scaled) lattice Z[ζ], where the power basis is scaled and split into real
and complex part, which are approximated by integers. In detail: we choose a scaling constant C > 0,
and define the constants ai and bi for i = 0, . . . ,m − 1, where ai = d<(Cζi)c and bi = d=(Cζi)c.
The lattice we then consider is given by the m rows of the matrix1 0 a0 b0

. . .
...

...
0 1 am−1 bm−1

 .

The target vector in our CVP instance will then be the appropriately scaled real and complex parts of
the complex number z we wish to approximate. Concretely, this vector is (0, . . . , 0, d<(Cz)c, d=(Cz)c).

If (z0, . . . , zm−1, A,B) is a solution to the CVP instance then we must have

d<(Cz)c ≈ A =

m−1∑
i=0

ziai ≈ <

(
C

m−1∑
i=0

ziζ
i

)

and similarly for the imaginary part. We therefore see that
∑m−1
i=0 ziζ

i is a good approximation to z.
Further, C gives some control over the quality of the approximation, larger C gives a finer-grained
lattice but also increases the size of the last two coefficients of the basis vectors which may lead to a
larger distance between the target vector and the closest lattice point, which in turn makes solving
the CVP instance harder and negatively affects the quality of our approximation of Cz.

6

In [10] the authors solve this CVP instance using the embedding technique. Namely they attempt
to solve the shortest vector problem in the lattice spanned by the rows of

1 0 a0 b0 0

. . .
...

...
...

0 1 am−1 bm−1 0
0 · · · 0 d<(Cz)c d=(Cz)c T


for some non-zero constant T . With suitable parameter choices, performing LLL reduction on this
lattice will return a basis of short vectors for this lattice, among which at least one has ±T in the
final coordinate. The remaining coefficients then give plus or minus the target vector minus a close
vector.

One issue with the embedding technique is that each new instance of the CVP problem requires
performing lattice reduction which for large m is rather time-consuming. In typical applications we
want to approximate many different complex numbers, using the same C so only the target vector
changes. A more efficient approach therefore is to perform lattice reduction on the CVP lattice itself
and since this is independent of the target vector it needs only to be done once so we can spend
significantly more time in this step to find a good basis of this lattice. We can then apply a technique
such as Babai’s nearest plane algorithm, or Babai’s rounding algorithm, with this reduced basis to
find an approximate closest vector.

5 Adapting the Fan-Vercauteren SHE scheme

In this section we construct a variant of the FV scheme [13] with plaintext modulus Xm+b following
the blueprint given in [6]. We prove correctness of this scheme (Theorem 1) and analyze the noise
growth induced by homomorphic arithmetic operations (Lemma 6, Theorem 2).

5.1 Basic scheme

Writing R = Z[X]/(Xn + 1), the ciphertext space is defined by Rq = R/(q) for some positive integer
q, while the plaintext space is RXm+b = R/(Xm + b). We will assume that b � q. Recall that in
the original FV scheme the plaintext space is R/(t) for some positive integer t � q. We define the
scaling parameter ∆b as

∆b =

⌊
q

Xm + b
mod (Xn + 1)

⌉
=

− q

bn/m + 1

n/m∑
i=1

(−b)i−1 ·Xn−im

 .
This form of ∆b will be further supported by Lemma 5. Obviously, ∆b is the analogue of the scalar
∆ = bq/tc in the original FV scheme. Other parameters are the error distribution χe = D(σ2) on R
(coefficient-wise with respect to the power basis, with standard deviation σ) and the key distribution
χk = U3 which uniformly generates elements of R with ternary coefficients (with respect to the power
basis). We define also the decomposition base w and denote ` = blogw qc.

The new encryption scheme ComFV is then defined in the same way as FV where t and ∆ are
replaced by Xm + b and ∆b, respectively.

• ComFV.KeyGen(): Let s← χk and e, e0, . . . e` ← χe. Uniformly sample random a, a0, . . . , a` ∈ Rq
and compute bi =

[
−(ai · s+ ei) + wi · s2

]
q
. Output the secret key sk = s, the public key

pk =
(

[−(a · s+ e)]q , a
)

and the evaluation key evk = {(bi, ai)}`i=0.

• ComFV.Encrypt(pk,msg): Sample u ← χk and e0, e1 ← χe. Set p0 = pk[0] and p1 = pk[1], and
compute c0 = [∆b ·msg + p0 · u+ e0]q and c1 = [p1 · u+ e1]q. Output ct = (c0, c1).

• ComFV.Decrypt(sk, ct): Return msg′ =
⌊
Xm+b
q

[c0 + c1 · s]q
⌉

mod (Xm + b).

The security of this scheme is based on the same argument as of the original FV scheme. In
particular, it is hard to distinguish the public key pk and ciphertext pairs from uniform tuples
according to the decision version of the Ring-LWE problem [19]. The evaluation key evk does not
leak any information about the secret key as long as a circular security assumption holds [13].

Recall that for an element a ∈ K the canonical norm of a is defined as

‖a‖can =
∥∥(a(ζ), a(ζ3), . . . , a(ζ2n−1)

)∥∥ .
To check correctness we use the notion of invariant noise introduced in [6]. The invariant noise of a
ciphertext ct = (c0, c1) encrypting a plaintext msg ∈ RXm+b is an element v ∈ K with the smallest
canonical norm such that

7

Xm + b

q
· [c0 + c1 · s]q = msg + v + g · (Xm + b) (4)

for some g ∈ R. Then decryption works correctly when ‖v‖can < 1/2 that is supported by the
following lemma.

Lemma 4 (Decryption noise). Let ct be an encryption of the plaintext element msg ∈ RXm+b such
that its invariant noise v satisfies ‖v‖can < 1/2. Then ComFV.Decrypt(sk, ct) = msg.

Proof. Computing ComFV.Decrypt(sk, ct), we have for some polynomials g, h ∈ R

msg′ =

⌊
Xm + b

q
[ct[0] + ct[1] · s]q

⌉
=

⌊
Xm + b

q
(ct[0] + ct[1] · s+ h · q)

⌉
= bmsg + v + g · (Xm + b)e+ h · (Xm + b)

= msg + bve+ (g + h) · (Xm + b)

Since ‖v‖ ≤ ‖v‖can < 1/2, rounding in the last line removes v. Thus, reduction modulo Xm + b
returns the message msg.

To show that v is small enough, we need an upper bound on the initial invariant noise size
depending on the scheme parameters. To proceed we need the next lemma.

Lemma 5 (Scaling noise). With ∆b defined as above,

∆b · (Xm + b)

q
= 1 +

ρ

q
∈ K,

and ‖ρ‖can ≤ (b+ 1) ·
√

3n.

Proof. For some polynomial g ∈ K with ‖g‖ ≤ 1/2,

∆b · (Xm + b)

q
= − Xm + b

bn/m + 1
· (Xn−m − b ·Xn−2m + · · · − bn/m−1) +

g · (Xm + b)

q

= −X
n − bn/m

bn/m + 1
+
g · (Xm + b)

q

=
bn/m + 1− (Xn + 1)

bn/m + 1
+
g · (Xm + b)

q

= 1 +
g · (Xm + b)

q
− Xn + 1

bn/m + 1
.

Thus, ∆b · (Xm + b)/q = 1 + ρ/q ∈ K and

‖ρ‖can = ‖g · (Xm + b)‖can ≤ (b+ 1) ·
√

3n,

where the last inequality is due to g(X)← Urnd.

Recall that the Hamming weight of a plaintext msg ∈ RXm+b is bounded by Nb. In addition,
‖msg‖ ≤ b/2 for even b and ‖msg‖ ≤ (b + 1)/2 for odd b with at most one coefficient reaching this
bound. Hence, ‖msg‖can ≤ Nb ·b/2. Now, we have all the ingredients to define the scheme parameters
supporting correct decryption.

Theorem 1 (Fresh noise). Let ct be a fresh ciphertext ct = ComFV.Encrypt(pk,msg), then the
invariant noise of ct is bounded by

b+ 1

q

(√
3n

2
bNb + σ

(
32
√

2/3n+ 6
√
n
))

,

where Nb is the number of non-zero coefficients that can appear in a fresh encoding and σ is the
standard deviation of the error distribution χe.

8

Proof. Set c0 = ct[0], c1 = ct[1], and p0 = pk[0], p1 = pk[1]. For some g0, g1, g ∈ R it holds

Xm + b

q
· (c0 + c1 · s) =

Xm + b

q
· (∆b ·msg + p0 · u+ e0 + g0 · q + p1 · u · s+ e1 · s+ g1 · q · s)

Applying Lemma 5, we obtain

msg +
ρ

q
·msg +

Xm + b

q
· (p0 · u+ e0 + p1 · u · s+ e1 · s)

+ (Xm + b) · (g0 + g1 · s)

= msg +
ρ

q
·msg +

Xm + b

q
· ((−a · s− e+ g · q) · u+ a · u · s+ e1 · s)

+ (Xm + b) · (g0 + g1 · s)

= msg +
ρ

q
·msg +

Xm + b

q
· (−e · u+ e1 + e2 · s)

+ (Xm + b) · (g0 + g1 · s+ g · u)

Here, the noisy term is v = (ρ · msg + (Xm + b) · (−e · u + e1 + e2 · s))/q. Given Lemma 5 and
that s and u are sampled from U3, it follows

‖v‖can ≤ 1

q
·
(

(b+ 1) ·
√

3n ·Nb ·
b

2
+ (b+ 1) ·

(
32
√

2/3 · n · σ + 6
√
nσ
))

=
b+ 1

q
·
(√

3n

2
· b ·Nb + σ ·

(
32
√

2/3 · n+ 6
√
n
))

.

5.2 Homomorphic operations

In this section we show how homomorphic addition and multiplication are performed in the new
scheme. We prove correctness of these operations and estimate the invariant noise growth. Throughout
this section, Ct(msg, v) denotes a ciphertext encrypting message msg ∈ RXm+b with invariant noise
v.

Addition is the coordinate-wise sum of corresponding ciphertext components:

• ComFV.Add(ct0, ct1): Return ([ct0[0] + ct1[0]]q , [ct0[1] + ct1[1]]q).

It follows immediately from (4) that the invariant noise grows additively as in the lemma below.

Lemma 6 (Addition noise). Given two ciphertexts ct1 = Ct(msg1, v1) and ct1 = Ct(msg2, v2),
the function ComFV.Add(ct1, ct2) returns a ciphertext ctAdd = Ct(msg1 + msg2, vAdd) with ‖vAdd‖can ≤
‖v1‖can + ‖v2‖can.

Multiplication consists of two steps. The first one, denoted ComFV.BMul, returns the coefficients
of the ciphertext product as of a polynomial in s, namely of (ct0[0] + ct0[1]s)(ct1[0] + ct1[1]s). The
second step then maps this triple back to dimension 2 using the relinearization technique.

• ComFV.BMul(ct0, ct1): Compute c0 =
[⌊

Xm+b
q
· ct0[0] · ct1[0]

⌉]
q
,

c1 =
[⌊

Xm+b
q
· (ct0[0] · ct1[1] + ct0[1] · ct1[0])

⌉]
q

and c2 =
[⌊

Xm+b
q
· ct0[1] · ct1[1]

⌉]
q
.

Return ctBMul = (c0, c1, c2) .

• ComFV.Relin(ctBMul, evk): Writing ctBMul = (c0, c1, c2), expand c2 in base w, namely c2 =
∑`
i=0 c2,iw

i

with c2,i ∈ Rw. Compute

c′0 = c0 +
∑̀
i=0

evk[i][0] · c2,i, c′1 = c1 +
∑̀
i=0

evk[i][1] · c2,i

and output cRelin = (c′0, c
′
1).

• ComFV.Mul(ct0, ct1, evk): Return cMul = (c′0, c
′
1) = ComFV.Relin(ComFV.BMul(ct0, ct1), evk).

To estimate the noise growth of multiplication, we analyze each step above separately. First, we
provide an upper bound on the noise introduced by ComFV.BMul.

9

Lemma 7 (Noise after ComFV.BMul). Given two ciphertexts ct1 = Ct(msg1, v1) and ct1 = Ct(msg2, v2),
the function ComFV.BMul(ct1, ct2) returns a triple ctBMul = (c0, c1, c2) such that

Xm + b

q
· (c0 + c1 · s+ c2 · s2) ≡ msg1 ·msg2 + vBMul + g · (Xm + b)

with g ∈ R and the noise vBMul satisfying

‖vBMul‖can ≤ (b+ 1) ·
(√

3n+
8
√

2

3
n

)
· (‖v1‖can + ‖v2‖can) + 3 · ‖v1‖can · ‖v2‖can

+
b+ 1

q

(√
3n+

8
√

2

3
n+

40

3
√

3
n
√
n

)
Proof. According to the description of ComFV.BMul, every component ci of ctBMul contains a rounding
error ri, ‖ri‖ ≤ 1/2. Thus, decrypting ctBMul leads to

Xm + b

q
· (c0 + c1 · s+ c2 · s2) =

(
Xm + b

q

)2

· ct1(s) · ct2(s) + r,

where r = (Xm + b) · (r0 + r1 · s+ r2 · s2)/q. It follows that

‖r‖can ≤ b+ 1

q

(√
3n+ 16

√
n/12 ·

√
2n/3 + 40

√
n/12 · 2n

3

)
=
b+ 1

q

(√
3n+

8
√

2

3
n+

40

3
√

3
n
√
n

)
Expanding the previous expression results in

Xm + b

q
· (c0 + c1 · s+ c2 · s2) = (msg1 + v1 + g1 · (Xm + b)) · (msg2 + v2 + g2 · (Xm + b)) + r

= msg1 ·msg2 + v2 · (msg1 + g1 · (Xm + b))

+ v1 · (msg2 + g2 · (Xm + b))

+ v1 · v2 + r

+ (msg1 · g2 + msg2 · g1) · (Xm + b)

+ g1 · g2 · (Xm + b)2

= msg1 ·msg2 + vBMul + g · (Xm + b).

Notice that cti[0] and cti[1] should be indistinguishable from samples generated by Uq according to
the decision Ring-LWE problem. Hence, it follows

‖msgi + gi · (Xm + b)‖can =

∥∥∥∥Xm + b

q
· cti(s)− vi

∥∥∥∥can
≤ b+ 1

q
·
(
q ·
√

3n+ 16 · q ·
√
n/12 ·

√
2n/3

)
+ ‖vi‖can

= (b+ 1) ·
(√

3n+
8
√

2

3
n

)
+ ‖vi‖can .

Hence, the noisy term vBMul satisfies

‖vBMul‖can ≤ ‖v2‖can ·
(

(b+ 1) ·
(√

3n+
8
√

2

3
n

)
+ ‖v1‖can

)
+ ‖v1‖can ·

(
(b+ 1) ·

(√
3n+

8
√

2

3
n

)
+ ‖v2‖can

)
+ ‖v1‖can · ‖v2‖can +

b+ 1

q

(√
3n+

8
√

2

3
n+

40

3
√

3
n
√
n

)
= (b+ 1) ·

(√
3n+

8
√

2

3
n

)
· (‖v1‖can + ‖v2‖can) + 3 · ‖v1‖can · ‖v2‖can

+
b+ 1

q

(√
3n+

8
√

2

3
n+

40

3
√

3
n
√
n

)

The next lemma provides an upper bound on the noise introduced after relinearization.

10

Lemma 8 (Noise after ComFV.Relin). Given a triple ct = (c0, c1, c2) encrypting a message msg and
containing noise v, the relinearization function returns a ciphertext ctRelin = Ct(msg, vRelin) with

‖vRelin‖can ≤ ‖v‖can +
8√
3
· b+ 1

q
· (`+ 1) · σ · n · w.

Proof. As in the proof of Lemma 7, we scale down the output of relinearization

Xm + b

q
· ctRelin(s) =

Xm + b

q
· (c′0 + c′1 · s)

=
Xm + b

q
· (c0 +

∑̀
i=0

evk[i][0] · c2,i + c1 · s+
∑̀
i=0

evk[i][1] · c2,i · s)

=
Xm + b

q
·

(
c0 + c1 · s+

∑̀
i=0

(
(−(ai · s+ ei) + wi · s2 + gi · q + s · ai

)
· c2,i)

)

=
Xm + b

q
·

(
c0 + c1 · s−

∑̀
i=0

ei · c2,i + s2 ·
∑̀
i=0

wi · c2,i

)

+
∑̀
i=0

gi · c2,i · (Xm + b)

Recall that by definition
∑
i w

i · c2,i = c2. Thus, replacing
∑
i gi · c2,i by g, we obtain for some h ∈ R

Xm + b

q
· ctRelin(s) =

Xm + b

q
·
(
c0 + c1 · s+ c2 · s2

)
− Xm + b

q
·
∑̀
i=0

ei · c2,i + g · (Xm + b)

= msg + v − Xm + b

q
·
∑̀
i=0

ei · c2,i + (g + h) · (Xm + b)

As a result, vRelin = v − Xm+b
q
·
∑`
i=0 ei · c2,i. Given that c2,i’s look uniformly random in Rw, we

obtain

‖vRelin‖can ≤ ‖v‖can +
b+ 1

q
·
∑̀
i=0

‖ei · c2,i‖can

≤ ‖v‖can +
b+ 1

q
· (`+ 1) · 16 · σ ·

√
n · w ·

√
n/12

= ‖v‖can +
8√
3
· b+ 1

q
· (`+ 1) · σ · n · w

Combining two previous lemmas, we deduce the total noise growth after homomorphic multiplication
in the following lemma.

Theorem 2 (Multiplication noise). Given two ciphertexts ct1 = Ct(msg1, v1) and ct1 = Ct(msg2, v2),
the function ComFV.Mul(ct1, ct2, evk) outputs a ciphertext ctMul = Ct(msg1 ·msg2, vMul) with

‖vMul‖can ≤ (b+ 1)

(√
3n+

8
√

2

3
n

)
(‖v1‖can + ‖v2‖can) + 3 ‖v1‖can ‖v2‖can

+
b+ 1

q

(√
3n+

(
8
√

2

3
+

8√
3

(`+ 1)σw

)
n+

40

3
√

3
n
√
n

)
.

We note that the dominating term here is the first term and not the term containing the product
of the canonical norms of the multiplicands since the canonical norms are smaller than 1/2 when the
ciphertext can be decrypted correctly.

6 Application to Image Processing

In this section we apply the ComFV scheme to the image processing use case [10]. For this application,
as with any other, we need to take into account two constraints regarding computation correctness.
Firstly, coefficients of encrypted encodings can increase in absolute value after arithmetic operations

11

and reach some bound, say, B. To decode these resulting encodings, B must be smaller than
(bn/m + 1)/2 as described in Section 4. Secondly, the invariant noise of encryptions grows as well
according to the heuristic estimates of Section 5. To decrypt the resulting output, this noise should
be smaller than 1/2 as shown in Lemma 4.

Homomorphic Discrete Fourier Transform. We calculate the parameters of the new
scheme which are compatible with the image processing pipeline given in [10].

The circuit takes input images as 8-bit integer vectors a ∈ Zd for some d ≤ m. Then, it performs
the discrete Fourier transform (DFT), F , that maps a = (a0, . . . , ad−1) to a vector a′ ∈ Zd such that
a′[j] =

∑d−1
i=0 aiζ

ij
d , where ζd is a primitive d-th root of unity. The resulting vector is then multiplied

coordinate-wise by some encrypted 8-bit integers and mapped back to Zd via the inverse DFT.
Using the ComFV scheme, decoding is correct as long as bn/m + 1 > 217 · d2, for details see [10].

Notably, scalar multiplication by a root of unity is no longer noise preserving as in [10], where ζim
is encoded by some power of X. According to (2), ζim is mapped to some polynomials z(X) such
that ‖z‖can ≤ b ·n/2m. Therefore, the canonical norm of the invariant noise is increasing after every
multiplication by ζim.

Computing F and F−1, we resort to the mixed Fourier transform (MFT) method that combines
both the fast Fourier transform (FFT) and the naive Fourier transform (NFT). In NFT, the input
vector is multiplied by a matrix F =

(
ζijd
)
i,j

that needsO(d2) multiplications and only one multiplicative

level. The FFT method calls recursively smaller size DFT’s such that the ith coordinate of the DFT
output is then given as

F(a)[i] = F(a0, . . . , ad/2−1) + ζid · F(ad/2, . . . , ad−1).

FFT reduces the number of multiplications to O(d log d) but needs O(log d) multiplicative levels.
Thus, FFT introduces more noise than NFT but it is computationally faster. The MFT approach
consists in computing the FFT recursion up to some dimension d̃ ≤ d and then computing NFT.

We applied the ComFV scheme to 6 DFT dimensions d given in [10]. As shown in Table 1, the
ciphertext size is reduced in all cases. However, only the FFT method was used in [10] while we
resort sometimes to a slower MFT circuit for d ∈ 28, 212, 213.

Table 1: Ciphertext size comparison between our encoding and [10]. All parameters are
taken to be compatible with a d-dimensional DFT circuit and the security level λ.

d d̃ b n log q λ ct size ct size[10]

24 1 30 212 149 119.3 149 kB 300 kB
26 1 30 212 149 119.3 149 kB 300 kB
28 24 30 213 147 438.1 294 kB 300 kB
210 1 132 213 222 205.7 444 kB 768 kB
212 28 472 214 180 1003.5 720 kB 768 kB
213 213 ' 222 214 172 1081.9 688 kB 768 kB

7 Comparison with FV: regular circuits

To estimate the performance of ComFV in a general setting and fairly compare it with the original FV
scheme and the work of [6], we resort to regular circuits as introduced in [11]. These circuits have
already been used in [6] for the same purpose.

A regular circuit consists of D computational levels where each level contains A ∈ {0, 3, 10}
addition levels, requiring 2A inputs, followed by one multiplication. Therefore in total the number of
inputs required is 2D(A+1). Each circuit input is given by a complex number with real and imaginary
parts from (−U,U) for some U ∈ {28, 216, 232, 264}. We will always use a precision of 16 fractional
bits in this paper which in the case of a complex number refers to both the real and complex parts
independently.

Our aim is to compare ComFV to the previously best known scheme allowing native complex inputs
as well as to the state of the art when encoding the real and imaginary parts separately [6]. We will
compare this method with our method where we use the same encoding of the complex number as
a cyclotomic integer. We chose m = 4 as this is the minimal m for which Z[ζ] is dense in C and it
allows us to use b = 4h for some h ∈ N, taking α = 2h/2 if h is even and α = 2(h(n+4)−4)/8(2hn/4− 1)
if h is odd. We also use m = 4 when using FV and one may wonder if taking a larger m is better.

12

However, we found that using larger m in this case gave the same depths and only increased the
time to encode a complex number.

For the current state of the art we use the scheme of Chen et al. [6], which we call CLPX,
and encode the real and imaginary parts of our complex number separately. Thus an encryption
now consists of two ciphertext pairs and addition is performed component-wise while we use the
Karatsuba algorithm to perform multiplication using only three calls to the multiplication algorithm
of the underlying scheme. We use the same values for n and q for comparison so that ciphertexts
will be twice as large compared to our work. The fractional encoder is used to encode the real and
imaginary parts so we use m = 2 in this case. For the optimal value of b we restrict our search space
to powers of 2, since we require a precision of 2−16, the simplest way to ensure correct decoding at
depth D is to require 216D | bn/4 so taking b a power of two looks a good fit. We again compare this
approach with ours, in this case we also use the fractional encoder.

We computed the theoretical and heuristic maximal depth of a regular circuit which can be
reached using FV, the CLPX approach of using plaintext modulus X − b and our ComFV with n, q, σ
given in the SEAL library [5] and the relinearization base w = 232. Our results are presented in
Tables 2 and 3. In the tables we also give a value for b (or t) which allows one to reach this maximal
depth, this b is very often not unique and in this case we give the smallest b for which there is a
decryption error at the next level. To find a heuristic estimate of the maximal depth that can be
reached in each scheme we take a carefully chosen complex number and use this as the complex
number given for all inputs of the circuit. One reason for this can be seen in the table of results,
Table 3, where we see that for A = 10, depths of 14 can be achieved, this requires 214·11 = 2154 inputs,
meaning using different inputs would be completely infeasible in practice. Another good reason for
choosing all inputs to be the same is that during addition there is no cancellation occurring, indeed
the A levels of addition simply become the worst case of scaling by 2A. The precise complex number
we chose depends on the encoding scheme but essentially one finds one with an encoding which has
many large coefficients. If the fractional encoder is used then we take the complex number to be
(U − 2−16)(1 + i) while when using the cyclotomic integer approximation approach it is a matter of
trial and error but this need only be done once for each U and m.

13

Table 2: Maximal theoretical regular circuit depths of FV (DO) with the approximation
encoding, the CLPX approach encrypting the real and imaginary parts separately
(DM), ComFV with the approximation encoding (DA) and the fractional encoding (DF)
depending on input size (U), number of additions per level (A), n and q. Corresponding
b’s are provided.

n 4096 8192 16384 32768
log q 116 226 435 889

A 0 3 10 0 3 10 0 3 10 0 3 10

U
=

2
8

DO 1 0 0 1 1 1 2 2 1 3 3 2
tO 234 − − 234 240 254 268 286 254 2135 2177 2128

DM 4 3 3 9 8 6 12 12 11 15 14 14
bM 2 2 2 23 22 2 29 29 25 233 217 217

DA 4 4 3 8 8 6 11 11 10 14 13 12
bA 22 22 22 24 24 22 210 212 210 234 224 220

DF 4 4 3 9 8 7 11 11 10 14 14 13
bF 2 2 2 25 23 22 29 29 28 233 233 229

U
=

2
1
6

DO 1 0 0 1 1 1 2 2 1 3 3 2
tO 234 − − 234 240 254 267 285 254 2134 2176 2127

DM 4 3 3 9 8 6 12 12 11 14 14 14
bM 2 2 2 23 22 2 29 29 25 218 218 218

DA 4 4 3 8 8 6 11 11 10 14 13 12
bA 22 22 22 24 24 22 210 212 210 234 224 220

DF 4 4 3 9 8 6 11 11 10 14 13 12
bF 2 2 2 25 23 22 29 212 210 234 223 219

U
=

2
3
2

DO 0 0 0 1 1 1 1 1 1 2 2 2
tO − − − 265 271 285 265 271 285 2130 2148 2190

DM 4 3 3 8 8 6 11 11 10 14 14 13
bM 2 2 2 23 23 2 29 29 25 234 234 217

DA 4 4 3 8 7 6 10 10 9 13 12 12
bA 22 22 22 26 24 22 210 210 28 234 220 228

DF 4 4 3 8 8 6 11 10 9 13 13 12
bF 2 2 2 25 25 22 217 210 27 233 239 227

U
=

2
6
4

DO − − − 0 0 0 1 1 1 2 1 1
tO − − − − − − 2129 2135 2149 2258 2135 2149

DM 4 3 3 8 7 6 10 10 10 13 13 12
bM 2 2 2 25 23 22 29 29 29 233 233 217

DA 4 4 3 7 7 6 10 9 9 12 12 11
bA 22 22 22 26 26 24 218 210 212 234 236 222

DF 4 4 3 7 7 6 10 9 9 12 12 11
bF 22 22 2 25 25 23 217 29 211 233 236 222

14

Table 3: Maximal heuristic regular circuit depths of the original FV scheme with native
complex inputs (DO), the CLPX approach encrypting the real and imaginary parts
separately (DM), ComFV with the approximation encoding (DA) and the fractional
encoding (DF) depending on input size (U), number of additions per level (A), n and
q. A corresponding t or b is provided.

n 4096 8192 16384 32768
log q 116 226 435 889

A 0 3 10 0 3 10 0 3 10 0 3 10

U
=

2
8

DO 1 1 0 1 1 1 2 2 2 3 3 2
tO 235 241 218 235 241 255 270 288 2130 2164 2182 2202

DM 6 5 4 10 9 8 13 12 11 15 15 14
bM 2 2 2 25 24 22 216 214 210 237 234 231

DA 6 5 4 9 9 7 12 11 10 14 13 13
bA 22 22 22 26 26 26 218 218 210 240 240 238

DF 6 5 4 9 9 7 12 12 10 14 14 13
bF 2 2 2 24 24 22 216 215 28 232 233 233

U
=

2
1
6

DO 1 1 0 1 1 1 2 2 2 3 3 2
tO 235 241 218 235 241 255 270 288 2130 2164 2173 2201

DM 6 5 4 10 9 7 12 12 11 15 14 13
bM 2 2 2 25 24 22 217 214 210 237 238 235

DA 6 5 4 9 9 7 12 11 10 14 13 13
bA 22 22 22 26 26 26 218 218 210 240 240 238

DF 6 5 4 9 9 7 12 11 10 14 13 13
bF 22 2 2 25 26 23 217 215 210 233 241 237

U
=

2
3
2

DO 0 0 0 1 1 1 1 1 1 2 2 2
tO 233 233 233 265 271 284 265 271 285 2206 2205 2198

DM 5 5 4 9 9 7 12 11 10 14 14 13
bM 22 2 2 27 25 22 217 216 213 240 239 235

DA 5 5 4 8 8 7 11 10 10 13 13 12
bA 22 22 22 26 26 26 218 218 214 240 240 240

DF 5 5 4 9 8 7 11 10 10 13 13 12
bF 22 22 2 29 26 24 217 215 214 233 241 238

U
=

2
6
4

DO — — — 0 0 0 1 1 1 2 1 1
tO — — — 265 265 265 2129 2135 2149 2258 2266 2262

DM 5 5 4 8 8 7 11 11 10 13 13 12
bM 22 22 2 29 26 23 219 218 213 244 241 239

DA 5 4 4 8 7 7 10 10 9 12 12 12
bA 24 24 22 210 26 26 218 218 214 240 240 244

DF 5 5 4 8 8 7 10 10 9 12 12 12
bF 23 23 22 29 29 26 217 218 214 233 241 243

From Table 3 we see that in all cases our methods greatly outperform the best scheme natively
encrypting complex numbers. At a minimum we can achieve 5 times the depth and for larger n
our method becomes even more efficient as the amount of plaintext space not being efficiently used
only grows in the current solution. The CLPX method on the other hand is able to achieve slightly
larger depths than our scheme, at most one more for the largest n we consider. Where our method
improves is on efficiency, we effectively halve the ciphertext size and are expected to be roughly three
times faster due to the fact that we can use one multiplication operation per level whereas the CLPX
approach requires three.

8 Conclusion

We constructed a new encoding algorithm for complex data values and a corresponding somewhat
homomorphic encryption scheme by utilizing a polynomial plaintext modulus of the form Xm + b.
This choice allows for a much better use of the available plaintext space and much slower noise growth
compared to existing solutions encrypting complex numbers. As a result, for the same ciphertext
modulus q and degree n, we can homomorphically evaluate between 5 and 12 times deeper circuits
compared to existing solutions based on FV and natively encoding complex numbers. In comparison
to the state of the art, which encrypts the real and imaginary parts of the complex numbers separately,
our method reduces the size of ciphertexts by a factor of 2 making our scheme at least twice as efficient
in both time and space.

References

[1] Barnett, A., Santokhi, J., Simpson, M., Smart, N.P., Stainton-Bygrave, C., Vivek, S., Waller,
A.: Image classification using non-linear support vector machines on encrypted data (2017),
cryptology ePrint Archive: Report 2017/857

15

[2] Bonte, C., Bootland, C., Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F.: Faster
homomorphic function evaluation using non-integral base encoding. In: CHES 2017. LNCS,
vol. 10529, pp. 579–600. Springer, Heidelberg (Sep 2017)

[3] Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F.: Privacy-friendly forecasting for
the smart grid using homomorphic encryption and the group method of data handling. In:
AFRICACRYPT 17. LNCS, vol. 10239, pp. 184–201. Springer, Heidelberg (May 2017)

[4] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without
bootstrapping. In: ITCS 2012. pp. 309–325. ACM (Jan 2012)

[5] Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1. In: FC 2017.
vol. 10323, pp. 3–18. Springer, Heidelberg (2017)

[6] Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomorphic encryption.
In: CT-RSA 2018. LNCS, vol. 10808. Springer, Heidelberg (2018), to appear

[7] Cheon, J.H., Jeong, J., Lee, J., Lee, K.: Privacy-preserving computations of predictive medical
models with minimax approximation and non-adjacent form. In: FC 2017. vol. 10323, pp. 53–74.
Springer, Heidelberg (2017)

[8] Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arithmetic of
approximate numbers. In: ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 409–437. Springer,
Heidelberg (Dec 2017)

[9] Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is
best? In: CT-RSA 2016. LNCS, vol. 9610, pp. 325–340. Springer, Heidelberg (Feb / Mar 2016)

[10] Costache, A., Smart, N.P., Vivek, S.: Faster homomorphic evaluation of discrete Fourier
transforms. In: FC 2017. LNCS, vol. 10322, pp. 517–529 (2017)

[11] Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed-point arithmetic in SHE schemes. In:
SAC 2016. LNCS, vol. 10532, pp. 401–422. Springer, Heidelberg (Aug 2016)

[12] Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Manual
for using homomorphic encryption for bioinformatics. Tech. rep., MSR-TR-2015-87, Microsoft
Research (2015)

[13] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint
Archive, Report 2012/144 (2012), http://eprint.iacr.org/2012/144

[14] Geihs, M., Cabarcas, D.: Efficient integer encoding for homomorphic encryption via ring
isomorphisms. In: LATINCRYPT 2014. LNCS, vol. 8895, pp. 48–63. Springer, Heidelberg (Sep
2015)

[15] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM STOC. pp. 169–
178. ACM Press (May / Jun 2009)

[16] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (Aug 2012)

[17] Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryptosystem. In:
Algorithmic Number Theory, Third International Symposium, ANTS-III. pp. 267–288. Springer,
Heidelberg (1998)

[18] Lauter, K., López-Alt, A., Naehrig, M.: Private computation on encrypted genomic data. In:
LATINCRYPT 2014. LNCS, vol. 8895, pp. 3–27 (Sep 2015)

[19] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings.
In: EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (May 2010)

[20] Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical? In:
ACM Cloud Computing Security Workshop – CCSW. pp. 113–124. ACM (2011)

A Strict Bounds on the Invariant Noise

In this section we provide analogues of the lemmas in Section 5 with relation to the infinity norm.

Lemma 9 (Decryption noise). Let ct be an encryption of a plaintext msg ∈ RXm+b such that its
invariant noise v satisfies ‖v‖ < 1/2. Then ComFV.Decrypt(sk, ct) = msg.

16

Proof. Computing ComFV.Decrypt(sk, ct), we have for some polynomials g, h ∈ R

msg′ =

⌊
Xm + b

q
[ct[0] + ct[1] · s]q

⌉
=

⌊
Xm + b

q
(ct[0] + ct[1] · s+ h · q)

⌉
= bmsg + v + g · (Xm + b)e+ h · (Xm + b)

= msg + bve+ (g + h) · (Xm + b)

= msg ∈ RXm+b

Lemma 10 (Scaling noise). With ∆b defined as above,

∆b · (Xm + b)

q
= 1 +

ρ

q
∈ K,

and ‖ρ‖ ≤ (b+ 1)/2.

Proof. For some polynomial g ∈ K with ‖g‖ ≤ 1/2,

∆b · (Xm + b)

q
= − Xm + b

bn/m + 1
· (Xn−m − b ·Xn−2m + · · · − bn/m−1) +

g · (Xm + b)

q

= −X
n − bn/m

bn/m + 1
+
g · (Xm + b)

q

=
bn/m + 1− (Xn + 1)

bn/m + 1
+
g · (Xm + b)

q

= 1 +
g · (Xm + b)

q
− Xn + 1

bn/m + 1
.

Thus, ∆b · (Xm + b)/q = 1 + ρ/q ∈ K and ‖ρ‖ = ‖g · (Xm + b)‖ ≤ (b+ 1)/2.

Theorem 3 (Fresh noise). Let ct be a fresh ciphertext ct = ComFV.Encrypt(pk,msg). Let ‖e‖ < Be
for any e← χe with very high probability. Then decryption works correctly if the parameters of ComFV
satisfy

b+ 1

q
·
(
Nb · (b+ 1)

4
+Be · (2n+ 1)

)
<

1

2

Proof. Set c0 = ct[0], c1 = ct[1], and p0 = pk[0], p1 = pk[1]. For some g0, g1, g ∈ R it holds

Xm + b

q
· (c0 + c1 · s) =

Xm + b

q
· (∆b ·msg + p0 · u+ e0 + g0 · q + p1 · u · s+ e1 · s+ g1 · q · s)

= msg +
ρ

q
·msg +

Xm + b

q
· (p0 · u+ e0 + p1 · u · s+ e1 · s)

+ (Xm + b) · (g0 + g1 · s)

= msg +
ρ

q
·msg +

Xm + b

q
· ((−a · s− e+ g · q) · u+ a · u · s+ e1 · s)

+ (Xm + b) · (g0 + g1 · s)

= msg +
ρ

q
·msg +

Xm + b

q
· (−e · u+ e1 + e2 · s)

+ (Xm + b) · (g0 + g1 · s+ g · u)

Here, the noisy term is v = (ρ · m + (Xm + b) · (−e · u + e1 + e2 · s))/q. Using Lemma 10,
‖s‖ = ‖u‖ = 1, it follows

‖v‖ ≤ b+ 1

q
·
(
Nb · (b+ 1)

4
+Be · (2δR + 1)

)
.

Using δR ≤ n and Lemma 9, the result follows.

17

A.1 Homomorphic operations

Lemma 11 (Addition noise). Given two ciphertexts ct1 = Ct(msg1, v1) and ct1 = Ct(msg2, v2),
the function ComFV.Add(ct1, ct2) returns a ciphertext ctAdd = Ct(msg1 + msg2, vAdd) with ‖vAdd‖ ≤
‖v1‖+ ‖v2‖.
Lemma 12 (Noise after ComFV.BMul). Given two ciphertexts ct1 = Ct(msg1, v1) and ct1 = Ct(msg2, v2),
the function ComFV.BMul(ct1, ct2) returns a triple ctBMul = (c0, c1, c2) such that

Xm + b

q
· (c0 + c1 · s+ c2 · s2) ≡ msg1 ·msg2 + vBMul + g · (Xm + b)

with g ∈ R and the noise vBMul satisfying

‖vBMul‖ ≤
b+ 1

2
· (n+ n2) (‖v1‖+ ‖v2‖) + 3n · ‖v1‖ · ‖v2‖+

(b+ 1) · (1 + n+ n2)

2q
.

Proof. According to the description of ComFV.BMul, every component ci of ctBMul contains a rounding
error ri, ‖ri‖ ≤ 1/2. Thus, decrypting ctBMul leads to

Xm + b

q
· (c0 + c1 · s+ c2 · s2) =

(
Xm + b

q

)2

· ct1(s) · ct2(s) + r,

where r = (Xm + b) · (r0 + r1 · s + r2 · s)/q. Since ‖s‖ = 1 and δR ≤ n, it follows that ‖r‖ ≤
(b+ 1)(1 + n+ n2)/2q. Expanding the previous expression results in

Xm + b

q
· (c0 + c1 · s+ c2 · s2) = (msg1 + v1 + g1 · (Xm + b)) · (msg2 + v2 + g2 · (Xm + b)) + r

= msg1 ·m2 + v2 · (msg1 + g1 · (Xm + b))

+ v1 · (msg2 + g2 · (Xm + b))

+ v1 · v2 + r

+ (msg1 · g2 + msg2 · g1) · (Xm + b)

+ g1 · g2 · (Xm + b)2.

= msg1 ·msg2 + vBMul + g · (Xm + b)

Notice that

‖msgi + gi · (Xm + b)‖ =

∥∥∥∥Xm + b

q
· cti(s)− vi

∥∥∥∥
≤ b+ 1

q
·
(q

2
+ δR ·

q

2
· ‖s‖

)
+ ‖vi‖

≤ b+ 1

2
· (1 + n) + ‖vi‖ .

Hence, the noisy term vBMul satisfies

‖vBMul‖ ≤ δR · ‖v2‖ ·
(
b+ 1

2
· (1 + n) + ‖v1‖

)
+ δR · ‖v1‖ ·

(
b+ 1

2
· (1 + n) + ‖v2‖

)
+ δR · ‖v1‖ · ‖v2‖+

(b+ 1)(1 + n+ n2)

2q

≤ b+ 1

2
· (n+ n2) (‖v1‖+ ‖v2‖) + 3n · ‖v1‖ · ‖v2‖+

(b+ 1) · (1 + n+ n2)

2q

Lemma 13 (Noise after ComFV.Relin). Given a triple ct = (c0, c1, c2) encrypting a message m and
containing noise v, the relinearization function return a ciphertext ctRelin = Ct(msg, vRelin) with

‖vRelin‖ ≤ ‖v‖+
b+ 1

q
·B · (`+ 1) · w · n.

18

Proof. As in the proof of Lemma 12, we scale down the output of reliniarization

Xm + b

q
· ctRelin(s) =

Xm + b

q
· (c′0 + c′1 · s)

=
Xm + b

q
· (c0 +

∑̀
i=0

evk[i][0] · c2,i + c1 · s+
∑̀
i=0

evk[i][1] · c2,i · s)

=
Xm + b

q
·

(
c0 + c1 · s+

∑̀
i=0

(
(−(ai · s+ ei) + wi · s2 + gi · q + s · ai

)
· c2,i)

)

=
Xm + b

q
·

(
c0 + c1 · s−

∑̀
i=0

ei · c2,i + s2 ·
∑̀
i=0

wi · c2,i

)

+
∑̀
i=0

gi · c2,i · (Xm + b)

Recall that by definition
∑
i w

i · c2,i = c2. Thus, replacing
∑
i gi · c2,i by g, we obtain for some h ∈ R

Xm + b

q
· ctRelin(s) =

Xm + b

q
·
(
c0 + c1 · s+ c2 · s2

)
− Xm + b

q
·
∑̀
i=0

ei · c2,i + g · (Xm + b)

= msg + v − Xm + b

q
·
∑̀
i=0

ei · c2,i + (g + h) · (Xm + b)

As a result, vRelin = v − Xm+b
q
·
∑`
i=0 ei · c2,i and

‖vRelin‖ ≤ ‖v‖+
b+ 1

q
·
∑̀
i=0

‖ei · c2,i‖

≤ ‖v‖+
b+ 1

q
·B · (`+ 1) · w · δR

≤ ‖v‖+
b+ 1

q
·B · (`+ 1) · w · n

Theorem 4 (Multiplication noise). Given two ciphertexts ct1 = Ct(msg1, v1) and ct1 = Ct(msg2, v2),
the function ComFV.Mul(ct1, ct2, evk) outputs a ciphertext ctMul = Ct(msg1 ·msg2, vMul) with

vMul ≤
b+ 1

2
· (n+ n2) (‖v1‖+ ‖v2‖) + 3n · ‖v1‖ · ‖v2‖

+
b+ 1

q
·
(

1 + n+ n2

2
+B · (`+ 1) · w · n

)

B Examples of b

Some examples of b are as follows, we give the tuples (b, α, n,m) for a suitable α for the maximal
possible m2, further we only give examples of positive b since Lemma 3 shows that (−b, αn/m+1, n,m)

is another solution. Also if (b, α, 2k, 2`) is a solution then (b2
i

, α, 2k, 2`+i) for 0 < i < k − ` so we
don’t include these.

• (2, 2n/8(2n/4 − 1), n ≥ 8, 2)

• (23 − 1, 1305, 23, 2),

• (23 + 1, 3, n, 2),

• (24 − 1, 161, 23, 22),

• (24 + 1, 21925, 24, 22),

• (24 · 3− 1, 1192247, 24, 22),

• (24 · 3− 1, 13952916415877, 25, 22),

• (24 − 1, 670057792217205189, 26, 22),

2If m > 2 we can always square α and half both n and m, e.g. (24 − 1, 157, 22, 2)

19

• (24 + 1, 40109251067043089817, 26, 22),

• (24 · 7− 1, 492334628188866603829210839163531, 26, 22),

• (24 · 5 + 1, 3, n, 22),

• (25 + 1, 1357106403261, 26, 23),

• (25 · 7 + 1, 1951030627102046421, 26, 23),

• (25 · 27− 1, 81861551621300927287883985052453588550976244704008614896478...
...573283477155845279158929222777121063464606442740263539758870436480...
...5087894724566151349941395918518896591474756341369423870913209, 29, 23),

• (23 · 3, 83, 25, 24),

• (23 · 5, 1005, 25, 24),

• (26 + 1, 4125, 25, 24),

• (26 + 1, 15067713, 26, 24),

• (26 · 3 + 1, 367191773, 26, 24),

• (28 − 1, 4076553601503834369, 27, 24),

• (215 − 1, 1305849191305058170433748791731099681, 27, 24),

• (26 · 9− 1, 102150256234925542614888940818189822931883329, 28, 24),

• (26 + 1, 4890335401708147234437895679480820720691981174700991498771, 29, 24),

• (26·3−1, 3136684107788220213874314727101788707639042983803606780072460636079177641, 29, 24),

• (26 · 13− 1, 22029262429565663716872854632057823289957335566141293971...
...74424094780526975445632875601231789781, 29, 24),

• (22, 27, 27, 25),

• (22 · 5, 149420, 27, 25),

• (22 · 7, 468695, 27, 25),

• (23 · 5, 1349388, 27, 25),

• (27 + 1, 179772995, 27, 25),

• (215 + 1, 117398271799548037, 27, 25),

• (27 · 11− 1, 179072650966351999178236868086610374857136881772759, 29, 25),

• (27 · 7− 1, 218399122602169651805944333600906642920500083377506356091...
...22675913414209364499958705322213763067, 210, 25),

• (29 · 29 + 1, 51528421162156580444547012384067564832979215323284314565...
...4490925323984427260645441562607891288448674166539581494763, 210, 25),

• (28 · 3 + 1, 345817922761, 28, 26),

• (29 + 1, 15992636601, 29, 27),

• (29 · 3− 1, 330794577237272560958373703409091713967733596210169, 211, 27),

• (210 + 1, 862385, 29, 28),

• (210 − 1, 845637525677984310942875496808124763252554165417, 212, 28),

• (23 · 3, 19096, 211, 29),

• (23 · 7, 3712008, 211, 29),

• (213 − 1, 2537151854322151, 213, 211),

• (2, 3491, 215, 211),

• (2 · 37, 26999681517402847430173666849, 215, 211),

• (2 · 47, 8404740453933511435498856372936, 215, 211),

• (2 · 79, 64495964738089494944719898338191975, 215, 211),

• (2 · 32 · 11, 2438828540991546530463383893320747452, 215, 211),

• (216 − 1, 1028221467285133356346571632375731123096023740142252...
...59970958132123800490072577, 215, 211),

• (22 · 3 · 11, 4264813421357017, 215, 212),

• (22 · 5 · 7, 6959654309047668, 215, 212),

• (215 + 1, 130335973, 214, 213),

20

• (24 · 3, 1409303, 215, 213),

• (24 · 5, 8612044, 215, 213),

• (24 · 17, 2274940875, 215, 213),

• (215 − 1, 549606725566929717133919781744215068466773020848769923561340663155062032...
...808055360366091454103280808369679209866346414380380566181386439660516111, 218, 213),

• (217 + 1, 3208567419545425728018643827980766511088547260...
...164175328907770340153844109787187007, 219, 215),

• (218 − 1, 517533720683299609693, 218, 216),

• (25 · 5, 503433608, 219, 217),

• (25 · 32, 3600536838, 219, 217),

• (23 · 19, 210596780023513335, 223, 220),

• (224 − 1, 237044845244987, 223, 222),

• (226 + 1, 16173664411859877126717241650583, 226, 224),

• (2 · 3 · 5, 145565367881604411072201750323181047189694063692, 231, 226),

• (2 · 33, 8160183542677174980485318012726036919955439029827308377, 231, 226),

• (2 ·3 ·19, 298568402186947020152810382591259909935750970014587413909981753542, 231, 226),

• (22 · 11, 143269503266379031157982024, 231, 227),

• (22 · 19, 330371930052442764283575319603, 231, 227),

• (22 · 3 · 13, 75095270775299616391014767547149601, 231, 227),

• (22 · 47, 2380546151292309076267000353823982089, 231, 227),

• (24 · 13, 514670865990816599, 231, 228),

• (24 · 3 · 5, 8553167826770850696, 231, 228),

• (231 + 1, 8569585228890123581464659380854387395, 231, 229),

• (237 + 1, 8180553408117753908189, 236, 235),

• (238 + 1, 4892574298585376057069861292767231278348528315, 238, 236),

• (25 · 32, 14001064802696942053, 239, 236),

• (240 − 1, 760390657943105742292629, 239, 238),

• (23 · 31, 69536870482939526308010624918363146880, 247, 243)

• (246 − 1, 23643656629371598530668773732524513809832191168903729467, 246, 244),

• (257 − 1, 6427104488032041957062426308771937, 256, 255),

• (22·3·11, 61700650621744563351124846935871636780353324558929195964578706034019, 263, 258),

• (22·3·13, 4453903261384214457767312441011084996737102510895399253112309072380355, 263, 258),

• (24 · 11, 763378576052460129712471388471884862, 263, 259),

• (266 + 1, 33537299896442545377622466642492979679598888...
...20135032512713349179883348738201407, 266, 264),

• (273 − 1, 739579511781101415691449252152349267727821844037793598787466...
...0618092975495860728706827967, 273, 271),

• (276 − 1, 350466651711459565445657748835499120007809427, 275, 274),

• (25 · 32, 2057361364145264522481201563913189656808, 279, 275)

• (279 + 1, 164008350577248359715747136876205067452022105985, 278, 277),

• (282 + 1, 13599998970079976983921387365277142001230922613669, 281, 280),

• (284 − 1, 317768706221195978689347847754792755208231308216503, 283, 282),

• (286 + 1, 1855479923628594531962281322547770380749769967346221586248393...
...7668532326668120990721699706662038986359335, 286, 284),

• (24 · 7, 194778994245453605128449873576264828069881193352804093417576743747, 2127, 2122),

• (25 · 3, 440703411657899315233781398253915362903567433318206051268801810, 2159, 2154),

21

