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Abstract

In the present paper we introduce some sufficient conditions and a procedure for checking whether,
for a given function, CCZ-equivalence is more general than EA-equivalence together with taking
inverses of permutations. It is known from [7, 5] that for quadratic APN functions (both monomial
and polynomial cases) CCZ-equivalence is more general. We prove hereby that for non-quadratic
APN functions CCZ-equivalence can be more general (by studying the only known APN function
which is CCZ-inequivalent to both power functions and quadratics). On the contrary, we prove that
for pawer no-Gold APN functions, CCZ equivalence coincides with EA-equivalence and inverse
transformation for n≤ 8. We conjecture that this is true for any n.
Keywords: CCZ-equivalence, EA-equivalence, APN, Boolean functions
MSC: 94A60, 06E30, 11T71

1. Introduction

Given n and m two positive integers, a function F from the finite field with 2n elements to the
finite field with 2m elements is called a vectorial Boolean function, or an (n,m)-function and it is
simply called Boolean function when m = 1. Boolean functions and Vectorial Boolean functions
are useful objects since they have many applications in mathematics and information theory; in
particular they are one of the fundamental entities investigated in cryptography. Nowadays it is
of fundamental importance to exchange and store information in an efficient, secure and reliable
manner and cryptographic primitives are indeed used to protect informations against eavesdrop-
ping, unauthorized changes and other misuses. In symmetric cryptography the design of ciphers
is based on an appropriate composition of nonlinear Boolean functions. For example, in block
ciphers the security depends on S-boxes which are (n,m)-functions. Among the attacks that can be
performed on a block cipher, one of the most efficient is the differential attack, introduced by Bi-
ham and Shamir [1]. It is based on the study of how differences in an input can affect the resulting
difference at the output. To minimize the success probability of this attack, the theory of vectorial
Boolean functions has identified an ideal property for the S-box when n = m, that is, to be Almost
Perfect Non-linear (APN).
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The role of APN functions is not just related to cryptography. There are indeed applications of
APN functions in coding theory, projective geometry and theory of commutative semifields. For
these reasons many different works have been focused on finding and constructing new families of
APN functions.

The APN property is preserved by some transformations of functions, which define equiva-
lence relations between vectorial Boolean functions. There are mainly two such equivalence no-
tions, called extended affine equivalence (EA-equivalence) and Carlet-Charpin-Zinoviev equiva-
lence (CCZ-equivalence). EA-equivalence is a particular case of CCZ-equivalence and any permu-
tation is CCZ-equivalent to its inverse.

It is investigated in [4, 7] when the CCZ-equivalence could produce more functions than ap-
plying only the EA-equivalence and the inverse transformation. In particular, in [4], Budaghyan
proves that for the Gold functions it is possible to construct, using the EA-equivalence and the
inverse transformation, a function which is not EA-equivalent to the starting function and its in-
verse. In [7, 5], the authors show that for quadratic APN functions (in particular Gold functions
and x3 +Tr(x9))) the CCZ-equivalence is more general than the EA-equivalence with the inverse
transformation.

In this work, we focus on investigating this problem for the case of non-quadratic functions.
In particular, we characterize some linear permutations on (F2n)2 which imply that the CCZ-
equivalence between two functions, F and F ′ can be obtained via EA-equivalence and inverse
transformation. We also introduce a procedure that, at least in small dimensions, permits to verify
whether a sufficient condition for CCZ-equivalence to be restricted to EA-equivalence and inverse
transformation holds. Using this procedure we are able to verify that also for APN function CCZ-
inequivalent to a quadratic function the CCZ-equivalence is more general than the EA-equivalence
together with the inverse. With the same procedure we verify that, for contrary, up to dimension 8
for all non-Gold power APN functions CCZ-equivalence coincides with EA-equivalence together
with the inverse transformation. This leads to a conjecture that for all non-Gold power APN func-
tions and the inverse function the CCZ-equivalence coincides with the EA-equivalence together
the inverse transformation. We conclude the paper with some observations on CCZ-equivalence
classes for functions with linear structures.

2. Preliminaries

Let n ≥ 2, we denote by F2n the finite field with 2n elements, by F∗2n its multiplicative group
and by F2n [x] the polynomial ring defined over F2n . Any function F : F2n → F2n can be represented
as a univariate polynomial of degree at most 2n−1 in F2n [x], that is

F(x) =
2n−1

∑
i=0

cixi, ci ∈ F2n .

For any i, 0 ≤ i ≤ 2n− 1, the 2-weight of i is the (Hamming) weight of its binary representation.
It is well known that the algebraic degree of a function F is equal to the maximum 2-weight of
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the exponent i such that ci 6= 0. Functions of algebraic degree 1 are called affine and of degree 2
quadratic. Linear functions are affine functions without the constant term and they can be repre-
sented as L(x) = ∑

n−1
i=0 cix2i

. A well known example of a linear function is the trace function

Tr(x) = x+ x2 + · · ·+ x2n−1
,

in particular, the trace is a Boolean function, i.e Tr : F2n → F2. Besides, for any m ≥ 1 such that
m|n we can define the linear function from F2n to F2m

Trm
n (x) =

n/m−1

∑
i=0

x2im
.

Let λ ∈ F∗2n and F be a function from F2n to itself, we define the λ -component of F as the
Boolean function Fλ : F2n → F2 with Fλ (x) = Tr(λF(x)).

For any function F : F2n → F2n we denote the Walsh transform in a,b ∈ F2n by

WF(a,b) = ∑
x∈F2n

(−1)Tr(ax+bF(x)).

For any Boolean function f : F2n → F2 the Walsh transform in a ∈ F2n is given by

W f (a) = ∑
x∈F2n

(−1)Tr(ax)+ f (x).

With Walsh spectrum we refer to the set of all possible values of the Walsh transform. A Boolean
function f is called bent if its Walsh spectrum corresponds to the set {±2n/2}. Since W f (a) is an
integer bent functions can exist only for even n.
If W f (0) = 0 then the Boolean function is called balanced. Note that a bent function cannot be
balanced. For any function F : F2n → F2n it is well know that F is a permutation if and only if all
its component functions are balanced.

We denote the derivative of F in the direction of a ∈ F∗2n by DaF(x) = F(x+a)+F(x) and the
image of F by Im(F) = {F(x) |x ∈ F2n}.
The function F is called almost perfect nonlinear (APN) if for every a 6= 0 and every b in F2n , the
equation DaF(x) = b admits at most 2 solutions, or equivalently |Im(DaF)|= 2n−1.

There are several equivalence relations of functions for which the APN property is preserved.
Two functions F and F ′ from F2n to itself are called:

• affine equivalence if F ′ = A1 ◦F ◦A2 where the mappings A1,A2 : F2n → F2n are affine per-
mutations;

• extended affine equivalent (EA-equivalent) if F ′=F ′′+A, where the mappings A : F2n→F2n

is affine and F ′′ is affine equivalent to F ;
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• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation L of
F2n × F2n the image of the graph of F is the graph of F ′, that is, L (GF) = GF ′ , where
GF = {(x,F(x)) : x ∈ F2n} and GF ′ = {(x,F ′(x)) : x ∈ F2n}.

Obviously, affine equivalence is included in the EA-equivalence, and it is also well known that
EA-equivalence is a particular case of CCZ-equivalence and every permutation is CCZ-equivalent
to its inverse [10]. The algebraic degree of a function (if it is not affine) is invariant under EA-
equivalence but, in general, it is not preserved by CCZ-equivalence. In general, neither EA-
equivalence nor CCZ-equivalence preserves the permutation property.

There are six known infinite families of power APN functions. They are presented in Table 1.
Since these power functions have different algebraic degree they are EA-inequivalent. Instead the

Table 1: Known APN power functions xd over F2n

Functions Exponents d Conditions Degree Proven

Golden 2i +1 gcd(i,n)=1 2 [17, 21]

Kasami 22i−2i +1 gcd(i,n)=1 i+1 [18, 19]

Welch 2t +3 n = 2t +1 3 [13]

Niho 2t +2
t
2 −1, t even n = 2t +1 t+2

2 [14]
2t +2

3t+1
2 −1, t odd t+1

Inverse 22t −1 n = 2t +1 n−1 [2, 21]

Dobbertin 24i +23i +22i +2i−1 n = 5i i+3 [15]

CCZ-inequivalence is not so straightforward, but also for this case it was possible to prove some
inequalities. In both [22] and [12] Yoshiara and Dempwolff show that two APN power functions
are CCZ-equivalent if and only if they are cyclotomic-equivalent, i.e. they are EA-equivalent or
one is EA-equivalent to the inverse of the second one. To be more precise if we consider xk and xl

defined over F2n the functions are cyclotomic-equivalent if there exists an integer 0 ≤ a < n such
that l ≡ k2a mod (2n− 1) or kl ≡ 2a mod (2n− 1), when k is coprime with 2n− 1. Earlier, some
results on CCZ-inequivalence between the functions in Table 1 were proven in [6].

Among these power functions, for the Gold power function x2i+1, in [7] it was shown that the
CCZ-equivalence is more general than applying the EA-equivalence and the inverse transformation.
For the other power functions it is an open problem.

3. Remarks on CCZ-equivalence

In this section we will report some remarks regarding the CCZ-equivalence that will be useful
in the investigation of the relation between EA-equivalence and CCZ-equivalence. Without loss of
generality, we assume that the affine permutation in the definition of CCZ-equivalence is linear. It
means that using affine permutations instead of linear one we simply make a shift by a constant in
the input and output of the resulting function.
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Lemma 3.1. Let L1, L2 : (F2n)2→F2n be linear maps and a, b∈F2n , such that L (x,y)= (L1(x,y)+
a,L2(x,y)+b) is a permutation. Let F and F ′ be CCZ-equivalent functions such that L maps the
graph of F to the graph of F ′. Then the linear part L ′ of L maps the graph of F to the graph of
F ′′(x) = F ′(x+a)+b.

Proof. Indeed, if for an affine permutation L (x,y) = (L1(x,y) + a,L2(x,y) + b), where L1, L2 :
(F2n)2 → F2n are linear and a, b ∈ F2n , the image of the graph of a function F is the graph of
a function F ′, then by denoting F1(x) = L1(x,F(x)) and F2(x) = L2(x,F(x)) we get F ′ = F2 ◦
F−1

1 (x+a)+b (since F1 must be a permutation [7]). Hence, neglecting a and b we get a function
F ′′ affine equivalent to F ′, that is, F ′′(x) = F ′(x+a)+b.

We can describe a linear map L as a formal matrix

L =

[
A1 A2
A3 A4

]
where Ai are linear maps over F2n for 1≤ i≤ 4, and

L (x,y) =
[

A1 A2
A3 A4

]
·
[

x
y

]
= (A1(x)+A2(y),A3(x)+A4(y)).

In particular,
F1(x) = L1(x,F(x)) = A1(x)+A2 ◦F(x) (1)

and
F2(x) = L2(x,F(x)) = A3(x)+A4 ◦F(x). (2)

We can make the following straightforward but important observations about F1.

Observation 3.2. The function F1 in (1) is a permutation if and only if any of its component is
balanced. In terms of Walsh transforma we have that F1 is a permutation if and only if

WF1(0,λ ) = ∑
x∈F2n

(−1)Tr(λA1(x)+λA2◦F(x)) = 0, for all λ ∈ F∗2n .

Denoting by L∗ the adjoint operator of the a linear map L (i.e. Tr(yL(x)) = Tr(xL∗(y)) for all
x,y ∈ F2n), we have

WF1(0,λ ) = ∑
x∈F2n

(−1)Tr(A∗1(λ )x+A∗2(λ )F(x)) = WF(A∗1(λ ),A
∗
2(λ )) = WFA∗2(λ )

(A∗1(λ )) = 0. (3)

In particular, we have that Ker(A∗1)∩Ker(A∗2) = {0} and for all λ ∈ Ker(A∗1) \ {0}, the A∗2(λ )-
component of F, FA∗2(λ ), has to be balanced. Moreover, if F has no balanced components then A1
has to be a linear permutation on F2n .
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4. CCZ-equivalence and EA-equivalence

In [7], it has been proved that for quadratic APN functions the CCZ-equivalence is strictly more
general than the EA-equivalence and inverse transformation (when it is possible). Such a result
has been obtained by exhibiting APN functions which are CCZ-equivalent to the Gold functions
F(x) = x2i+1.

In this section we provide a procedure which allows, at least in small dimension, to investigate
if the CCZ-equivalence leads to more functions than applying EA-equivalence and inverse trans-
formation.

Given a function F : F2n → F2n we want to construct a possible linear permutation

L =

[
A1 A2
A3 A4

]
mapping the graph of F onto the graph of a function F ′. In particular, we want to construct the
linear functions A1 and A2 on F2n so that F1(x) = L1(x,F(x)) = A1(x)+A2 ◦F(x) is a permutation.

For any λ ∈ F2n we define the set

ZW(λ ) = {a ∈ F2n : WFλ
(a) = 0}.

Then we can define the following set

SF = {λ ∈ F∗2n : ZW(λ ) 6= /0}∪{0}. (4)

Remark 4.1. It is easy to see that the set Im(A∗2), for a A∗2 defined as in Observation 3.2, has to be
contained in SF (see (3)).

Along this section we will denote the vector (sub)space over F2 generated by the elements
v1, . . . ,vm ∈ F2n by Span(v1, . . . ,vm).

Now, to construct the possible functions F1 we should consider all the vector subspace of SF .
Let U be a fixed subspace contained in SF , this will be a possible candidate for Im(A∗2).

Observation 4.2. Without loss of generality, fixed any basis {u1, . . . ,uk} of U (where k is the
dimension of U) and fixed a basis {β1, ...,βn} of F2n (as vector space over F2), we can suppose that
A∗2(βi) = ui for i = 1, ...,k and Ker(A∗2) = Span(βk+1, ...,βn).
Indeed, suppose A∗2 is such that A∗2(wi) = ui for i = 1, ...,k and Ker(A∗2) = Span(wk+1, ...,wn) for
some w1, ...,wn linearly independent. Then, we can consider any L̄, linear permutation, such that
L̄∗(βi) = wi for all i. Now, if F1(x) = A1(x)+A2(F(x)) is a permutation, we can consider F ′1 =
L̄ ◦F1, which is again a permutation, and Ā2

∗
= (L̄ ◦A2)

∗ is s.t. Ā2
∗
(βi) = ui for i = 1, ...,k and

Ker(Ā2
∗
) = Span(βk+1, ...,βn).
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Remark 4.3. As stated in [20, Theorem 2.3] for any linear polynomial L(x) we have that, given a
basis {β1, ...,βn} of F2n , there exist unique θ1, ...,θn in F2n such that L(x) = ∑

n
i=1 Tr(βix)θi. Then,

we can construct the linear polynomial A∗2 from the image of the basis {β1, ...,βn} by solving the
linear system

∑
n
i=1 Tr(β1βi)θi = A∗2(β1)

...
∑

n
i=1 Tr(βnβi)θi = A∗2(βn).

Now, we have fixed U and our function A∗2 (using Observation 4.2 and Remark 4.3) and we want
to construct all possible A∗1 such that F1(x) = A1(x)+A2 ◦F(x) is a permutation. In the following
we report the procedure to construct the matrices A∗1 (for fixed A∗2). The steps of this procedure will
be explained in the proof of Proposition 4.5.

Procedure 4.4.
For any u ∈ U \ {0} we consider the set ZW(u), as defined before. To construct A1 we need to
determine the images of the vectors βi’s. In order to do that, we need to select any possible k-tuple
a1 ∈ ZW(u1), ...,ak ∈ ZW(uk) such that

(P1) ∑
k
i=1 λiai ∈ ZW(∑k

i=1 λiui) for any λ1, ...,λk ∈ F2, not all zero.

These a1, ...,ak will be the images by A∗1 of β1, ...,βk, respectively.
After that, for any of these k-tuples, we need to determine all possible (n− k)-tuples of elements
ak+1, ...,an satisfying:

(P2) ak+1, ...,an are linearly independent;

(P3) for any a ∈ Span(ak+1, ...,an), a+∑
k
i=1 λiai ∈ ZW(∑k

i=1 λiui), for any λ1, . . . ,λk ∈ F2.

Condition (P3) is equivalent to have

Span(ak+1, ...,an)⊆
k

∑
i=1

λiai +ZW

(
k

∑
i=1

λiui

)
,

for any λ1, . . . ,λk ∈ F2, where a+ZW(u) = {a+ v : v ∈ ZW(u)}.

Proposition 4.5. Let U be a subspace contained in SF , where F is a function from F2n to itself and
SF defined as in (4). Then, there exists a permutation of F2n F1(x) = A1(x)+A2 ◦F(x), with A1 and
A2 linear and Im(A∗2) =U, if and only if Procedure 4.4 applied to the space U is successful.

Proof. Let us suppose that F1(x) = A1(x) +A2 ◦F(x) is a permutation and Im(A∗2) = U . From
the Observation 4.2 without loss of generality we can suppose that A∗2(βi) = ui for i = 1, ...,k and
Ker(A∗2) = Span(βk+1, ...,βn), where {u1, . . . ,uk} is a basis of U fixed for the procedure. Then, we
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need to show that A∗1 is generated by the procedure. That is, we need to show that (P1), (P2) and
(P3) are satisfied.

Let ai = A∗1(βi) for 1≤ i≤ n. Suppose that (P1) is not satisfied, then there exist λ1, . . . ,λk in F2,
not all zero, such that ∑

k
i=1 λiai /∈ ZW(∑k

i=1 λiui), which means that WF(∑
k
i=1 λiai,∑

k
i=1 λiui) 6= 0.

Since

WF(
k

∑
i=1

λiai,
k

∑
i=1

λiui) = WF(A∗1(
k

∑
i=1

λiβi),A∗2(
k

∑
i=1

λiβi)) = WF1(0,
k

∑
i=1

λiβi)

(see Observation 3.2) and F1 is a permutation, this is not possible.
If (P2) is not satisfied we have that there exist λk+1, . . . ,λn in F2, not all zero, such that ∑

n
i=k+1 λiai =

0. Then, ∑
n
i=k+1 λiβi ∈ Ker(A∗1)∩Ker(A∗2) and from Observation 3.2 this is not possible.

The last condition (P3) is similar to (P1). Indeed, suppose that there exist λ1, . . . ,λn in F2 such that
∑

k
i=1 λiai +∑

n
i=k+1 λiai /∈ ZW(∑k

i=1 λiui). Then, we have

WF1(0,
n

∑
i=1

λiβi) = WF(A∗1(
n

∑
i=1

λiβi),A∗2(
n

∑
i=1

λiβi))

= WF(A∗1(
n

∑
i=1

λiβi),A∗2(
k

∑
i=1

λiβi)) 6= 0,

A∗2(∑
k
i=1 λiβi) = A∗2(∑

n
i=1 λiβi) since Ker(A∗2) = Span(βk+1, ...,βn)).

Vice versa, if we are successful on generating, at least, one matrix A∗1 with Procedure 4.4, then
from conditions (P1), (P2) and (P3) it is easy to verify that for any λ1, . . . ,λn in F2, not all zero,

WF1(0,
n

∑
i=1

λiβi) = WF(A∗1(
n

∑
i=1

λiβi),A∗2(
n

∑
i=1

λiβi)) = WF(
n

∑
i=1

λiai,
n

∑
i=1

λiui) = 0.

Indeed, from condition (P1) we have WF1(0,∑
n
i=1 λiβi) = 0, for all possible λ1, . . . ,λk not all zero

and λk+1 = · · · = λn = 0. From condition (P2) we have that for all possible λk+1, . . . ,λn not
all zero and λ1 = · · · = λk = 0, WF1(0,∑

n
i=1 λiβi) = 0. The last condition (P3) guarantees that

WF1(0,∑
n
i=1 λiβi) = 0 when both λ1, . . . ,λk are not all zero and λk+1, . . . ,λn are not all zero.

On the other hand, if we cannot construct a matrix A1 for all spaces U ⊆ SF , we have that all the
CCZ-transformations that we can apply to F are composition of EA-transformations and inverse
transformations. Before proving it, we recall the following remark from [7]. Further, in Lemma
4.7 we extend Proposition 3 of [7].

Remark 4.6 (Remark 2 in [7]). For a function F : F2n → F2n , if L = (L1,L2) and L ′ = (L1,L′2)
are permutations such that the function L1(x,F(x)) is a permutation, then the functions defined by
the graphs L (GF) and L ′(GF) are EA-equivalent.

In Proposition 3 of [7], the authors characterized which type of linear maps L , admissible for
a CCZ-transformation, give us the EA-equivalence of a function F ′ to a function F or to its inverse
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(if it exists). That is, they studied the linear maps, L , that applied to the graph of F permit to
obtain the graph of F ′ in the following cases

F ′ ∼EA F and F ′ ∼EA F−1 inv→ F.

In the following lemma we extend this characterization to the case when we apply, again, an
EA-transformation and the inverse transformation (if it is possible). That is, we study the maps,
L , that maps the graph of F onto the graph F ′ when

F ′ ∼EA G inv→ G−1 ∼EA F and F ′ ∼EA G inv→ G−1 ∼EA F−1 inv→ F,

for some permutation G.

Lemma 4.7. Let F,F ′ : F2n → F2n . The function F ′ is EA-equivalent to the function F or to the
inverse of F (if it exists) if and only if there exists a linear map L =(L1,L2) such that L (GF)=GF ′

and L1 depends only in one variable, i.e. L1(x,y) = A1(x) and A1, A4 are permutations if F ′ is EA-
equivalent to F and L1(x,y) = A2(y) and A2, A3 are permutation if F ′ is EA-equivalent to F−1.
While, we have

F ′ ∼EA G inv→ G−1 ∼EA F,

for some permutation G if and only if there exists a linear permutation L = (L1,L2) such that
L (GF) = GF ′ and L1(x,y) = A1(x)+A2(y) with A2 a permutation of F2n .
Moreover, if F−1 exists, then we have

F ′ ∼EA G inv→ G−1 ∼EA F−1 inv→ F,

for some permutation G if and only if there exists a linear permutation L = (L1,L2) such that
L (GF) = GF ′ and L1(x,y) = A1(x)+A2(y) with A1 a permutation of F2n

Proof. The first part is Proposition 3 in [7]. Note that the condition A1, A4 permutations (and
similarly A2, A3 permutations) is equivalent to L = (L1,L2) be a permutation.

We will show the last two claims. Suppose F ′ is EA-equivalent to the function G which inverse
is EA-equivalent to F , that is

F ′ ∼EA G inv→ G−1 ∼EA F.

Recalling that in the inverse transformation we are applying the linear permutation over (F2n)2

given by Inv(x,y) = (y,x), from the first part of the lemma we can construct the permutation L
given by

(A′1(x),A
′
3(x)+A′4(y))◦ (A3(x)+A4(y),A1(x)) =

= (A′1 ◦A3(x)+A′1 ◦A4(y),A′3 ◦A3(x)+A′3 ◦A4(y)+A′4 ◦A1(x)),

where (A′1(x),A
′
3(x) +A′4(y)) maps GG onto GF ′ and (A3(x) +A4(y),A1(x)) maps GF onto GG.

Since A′1 and A4(x) are permutations also A′1 ◦A4 is a permutation.
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Vice versa, let L (x,y) = (A1(x)+A2(y),A3(x)+A4(y)) be a linear permutation of (F2n)2 such
that L (GF) = GF ′ and A2 is permutation of F2n . Consider the linear map L ′(x,y) = (A1(x)+
A2(y),x). L ′ is a linear permutation of (F2n)2 since A2(x) and x are permutations. Moreover
F1(x) = A1(x)+A2(F(x)) is a permutation since L (GF) = GF ′ . Then, F1 is a permutation EA-
equivalent to F and the function G defined by the graph L ′(GF), that is F−1

1 , is such that G−1 is
EA-equivalent to F . From Remark 4.6 we obtain that F ′ and G are also EA-equivalent.

The case when G−1 is equivalent to F−1 is similar. Indeed, suppose

F ′ ∼EA G inv→ G−1 ∼EA F−1 inv→ F,

using the first part of the lemma we can construct the permutation L given by

(A′1(x),A
′
3(x)+A′4(y))◦ (A3(x)+A4(y),A2(y)) =

(A′1 ◦A3(x)+A′1 ◦A4(y),A′3 ◦A3(x)+A′3 ◦A4(y)+A′4 ◦A2(y)),

where (A′1(x),A
′
3(x) +A′4(y)) maps GG onto GF ′ and (A3(x) +A4(y),A2(y)) maps GF onto GG.

Since A′1 and A3(x) are permutations also A′1 ◦A3 is a permutation.
On the other hand, suppose L (x,y) = (A1(x)+A2(y),A3(x)+A4(y)) is a linear permutation of

(F2n)2 such that L (GF) = GF ′ with A1 a permutation of F2n .
As before, we can consider L ′(x,y) = (A1(x)+A2(y),y), which is a permutation of (F2n)2. Let G
be defined by the graph L ′(GF), that is G(x) = F ◦F−1

1 (x) with F1(x) = A1(x)+A2 ◦F(x). Since
F is a permutation also G is a permutation and we obtain that GG−1 = Inv ◦L ′(GF). From the
first part of the lemma we have that G−1 is EA-equivalent to F−1 since Inv◦L ′(x,y) = (y,A1(x)+
A2(y)).

Theorem 4.8. Let F be a function from F2n to itself. If for any nonzero vector subspace U in SF

different from F2n it is not possible to construct any matrix A∗1 6= 0 with Procedure 4.4, then any
function F ′ CCZ-equivalent to F can be obtained from F applying only the EA-equivalence and
inverse transformation iteratively.

Proof. Using Procedure 4.4 we can obtain only functions L1(x,y) = A1(x)+A2(y) such that A2
is either the zero function, when U = {0}, or a permutation, when U = F2n . Otherwise, from
Proposition 4.5 we cannot obtain L1 such that L1(x,F(x)) is a permutation of F2n . Then, for any
CCZ-transformation L such that L (GF) = GF ′ the function L1 needs to satisfies one of the con-
ditions in Lemma 4.7, implying that F ′ can be obtained from F applying only the EA-equivalence
and inverse transformation iteratively.

When F is also a permutation we have the following.

Theorem 4.9. Let F be a permutation over F2n . If for any nonzero vector subspace U in SF different
from F2n it is not possible to construct a matrix A∗1 6= 0 of rank(A∗1) < n with Procedure 4.4, then
any function F ′ CCZ-equivalent to F can be obtained from F applying only the EA-equivalence
and inverse transformation iteratively.
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Proof. In this case, from Procedure 4.4 we could obtain a function L1(x,y) = A1(x)+A2(y) for
some space U 6= {0},F2n in SF . However, A1 would be a permutation, and from the last part of
Lemma 4.7 we have our claim.

Applying the Procedure 4.4, using the software MAGMA, from Theorem 4.8 we obtain the
following corollary.

Corollary 4.10. Let n ≤ 8 and F(x) = xd be an APN power function defined over F2n , which is
inequivalent to a Gold function. Then, for the function F the CCZ-equivalence coincide with the
EA-equivalence together with the inverse transformation.

Corollary 4.11. Let n≤ 6 be even. Then, for the inverse function F(x)= x2n−2 the CCZ-equivalence
coincide with the EA-equivalence together with the inverse transformation.

From these two results we conjecture the following.

Conjecture 4.12. Let F(x) = xd be a non-Gold APN power function or the inverse function over
F2n . Then, for F the CCZ-equivalence coincide with the EA-equivalence together with the inverse
transformation.

5. On functions not equivalent to quadratic functions

For quadratic APN functions it is known that applying the CCZ-equivalence it is possible to ob-
tain functions which cannot be obtained using the EA-equivalence and the inverse transformation
only, see for instance [7], for the case of Gold functions, or also the APN permutation in dimension
six introduced by Dillon et al. in [3] which was constructed by applying the CCZ-equivalence to
the so-called Kim function, that is quadratic (and inequivalent to a Gold function). In the following
we provide an example which shows for the first time that CCZ-equivalence is more general than
EA-equivalence together with inverse transformation also for non quadratic APN functions.

Let n = 6, and F : F2n → F2n be

F(x) =x3 +u17(x17 + x18 + x20 + x24)+u14((u52x3 +u6x5 +u19x7 +u28x11 +u2x13)+

(u52x3 +u6x5 +u19x7 +u28x11 +u2x13)2 +(u52x3 +u6x5 +u19x7 +u28x11 +u2x13)4+

(u52x3 +u6x5 +u19x7 +u28x11 +u2x13)8 +(u52x3 +u6x5 +u19x7 +u28x11 +u2x13)16+

(u52x3 +u6x5 +u19x7 +u28x11 +u2x13)32 +(u2x)9 +(u2x)18 +(u2x)36 + x21 + x42),

where u is a primitive element of F2n . The function F is the first (and only currently known)
example of APN functions which is not CCZ-equivalent to a quadratic function and to power
functions (see [16]). Using the procedure described in the previous section it is possible to construct
the functions A1 and A2 given by

A1(x) = u50x32 +u51x16 +u43x8 +ux4 +u26x2 +u26x
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and
A2(x) = u26x32 +u17x16 +u56x8 +u9x4 +u54x2 +u46x,

so that F1(x) = L1(x,F(x)) = A1(x) + A2 ◦ F(x) is a permutation of F2n . Now considering the
function F2(x) = L2(x,F(x)) = F(x) we have that F is CCZ-equivalente to F ′ = F2 ◦F−1

1 having
univariate polynomial representation

F ′(x) =u41x60 +u29x58 +u46x57 +u3x56 +u39x54 +u47x53 +u3x52 +u62x51 +u54x50+

u62x49 +u53x48 +u14x46 +u39x45 +u20x44 +u26x43 +u11x42 +u31x41 +u53x40+

u59x39 +u53x38 +u41x37 +u19x36 +u58x35 +u2x34 +u7x33 +u39x32 +u15x30+

u17x29 +u45x28 +u39x27 +u57x26 +u33x25 +u61x24 +u41x23 +u50x22 +u58x21+

u55x20 +u26x19 +u17x18 +u37x17 +u30x16 +ux15 +u46x14 +u21x13 +u13x12+

u61x11 +u20x10 + x9 +u61x8 +u32x7 +u44x6 +u62x5 +u16x4 +u48x3 +u58x2 +u37x.

The function F ′ cannot be constructed from F via EA-equivalence and inverse transformation.
Indeed F �EA F ′ since F has algebraic degree 3 and F ′ algebraic degree 4. Moreover, to apply
the inverse transformation, at least once, we need F ∼EA G with G a permutation, but since F has
quadratic components, as for example

Tr(F(x)) =u15x48 +u60x40 +u36x36 +u51x34 +u30x33 +u39x24 +u30x20+

u18x18 +u57x17 +u51x12 +u15x10 +u9x9 +u57x6 +u39x5 +u60x3,

this cannot be possible (see [8, Corollary 3.8]).

6. Some remarks on functions with linear structures

In the previous section we showed that also for functions CCZ-inequivalent to a quadratic func-
tion the CCZ-equivalence is more general than the EA-equivalence with the inverse transformation.
It is worth to note that the function studied in Section 5 has some quadratic components. In this sec-
tion we will report some considerations that can explain why for functions with components having
some linear structures it is more likely that CCZ-equivalence is more general than EA-equivalence
with inverse transformation.

We recall that α ∈ F2n is a c-linear structure, with c ∈ F2, of a Boolean function f : F2n → F2
if f (x+α)+ f (x) = c for all x ∈ F2n . For a vectorial Boolean function F : F2n → F2n we say that
F has a linear structure if there exists a component Tr(γF), with γ 6= 0, of F which has a linear
structure.
In [11], the authors study permutation polynomials (PP) of type G(x)+ γTr(F(x)). In particular
when G(x) is a linearized polynomial from the results in [11] we have directly the following.

Lemma 6.1 ( [11]). Let L,F : F2n → F2n with L a linear polynomial. Then we have the following
properties:
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i) if L(x)+ γTr(F(x)) is PP then L is a PP or is a 2-to-1 map.

ii) If L is a PP, then L(x)+γTr(F(x)) is a PP if and only if F(x) = R(L(x)) for some polynomial
R and γ is a 0-linear structure of Tr(R(x)) (and in particular L(γ) is a 0-linear structure of
Tr(F(x))).

iii) If L is a 2-to-1 map with kernel {0,α}, then L(x)+ γTr(F(x)) is a PP if and only if γ is not
in the image of L and α is a 1-linear structure of Tr(F(x)).

Corollary 6.2. If L(x)+ γTr(F(x)) is a PP then F has a linear structure.

So, given a function F defined over F2n with a component having some linear structure, from
Lemma 6.1 we can obtain some linear functions L1 : (F2n)2→ F2n such that F1(x) = L1(x,F(x)) is
a permutation. Indeed, another direct consequence of Lemma 6.1 is the following.

Proposition 6.3. Let F : F2n → F2n . Then there exists a linear function L1(x,y) = A1(x)+A2(y)
such that L1(x,F(x)) is a permutation and A2 has rank 1 if and only if F has at least one component
with a linear structure.

Proof. Since A2 has rank 1, then Im(A2) = γF2 for some γ ∈ F2n . Moreover, any linear transfor-
mations from F2n to F2 is of the type Tr(λx) with λ ∈ F2n . Thus, we can suppose that L1(x,y) =
A1(x)+ γTr(λy) for some γ,λ ∈ F2n and from Corollary 6.2 we have that if F1(x) = L1(x,F(x)) is
a permutation, then F has a linear structure.

Viceversa, suppose that γ is a 0-linear structure of the component Tr(λF(x)). Then

x+ γTr(λF(x))

is a PP for ii) of Lemma 6.1. Let now γ be a 1-linear structure of the component Tr(λF(x)). Then,
if Tr(γ) = 1 we have

x+ γTr(λF(x)+ x)

is a PP for iii) of Lemma 6.1 (note that γ /∈ Im(x+ γTr(x))). If Tr(γ) = 0, then we can consider
any element θ such that Tr(γθ) = 1. Then, always for iii) of Lemma 6.1,

x+ γTr(θx)+ γTr(λF(x))

is a PP.

This result has been obtained, independently, in [9] Corollary 2 in terms of function twisting
(introduced always in [9]).

From Proposition 6.3 we obtained a possible function L1(x,y)=A1(x)+A2(y) such that F1(x)=
L1(x,F(x)) is a permutation, when F has a linear structure. In the following, we will construct a
function F ′ CCZ-equivalent to F , using this type of linear function L1(x,y).
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First of all, note that the functions constructed in Proposition 6.3

F1(x) = x+ γTr(λF(x))

when γ is a 0-linear structure of the component Tr(λF(x)), and

F ′1(x) = x+ γTr(λF(x)+θx),

with θ as in Proposition 6.3, when γ is a 1-linear structure, are involutions. Indeed,

F1 ◦F1(x) =x+ γ Tr(λF(x))+ γ Tr(λF(x+ γ tr(λF(x))))

=

{
x if Tr(λF(x)) = 0

x+ γ Tr(λF(x)+λF(x+ γ)) = x if Tr(λF(x)) = 1
.

It is similar for F ′1, we just need to verify the cases (Tr(θx),Tr(λF(x))) = (0,0),(1,0),(0,1) and
(1,1).

Now, for the case F1(x) = x+γTr(λF(x)), we have L1(x,y) = x+γTr(λy) and, considering the
linear function L2(x,y) = y, we get the linear permutation L (x,y) = (L1(x,y),L2(x,y)). Denoting
F2(x) = L2(x,F(x)) = F(x), this permutation permits to obtain the equivalent function

F ′(x) = F2 ◦F1(x) = F(x+ γTr(λF(x)) = F(x)+Tr(λF(x))(F(x)+F(x+ γ)). (5)

Similarly, for F ′1(x) = x+γTr(λF(x)+θx) we can consider L2(x,y) = y+γTr(θx), that is F2(x) =
F(x)+ γTr(θx) and

F ′(x) = F2 ◦F ′1(x) =F(x+ γTr(λF(x)+θx))+ γTr(x+ γTr(λF(x)+θx))

=F(x)+Tr(λF(x)+θx)(F(x)+F(x+ γ)+ γTr(1))+ γTr(θx).
(6)

We can note that in both cases we are multiplying the component Tr(λF(x)) with the derivative
F(x)+F(x+γ), such a multiplication could change the degree of the resulting function. In the case
of quadratic functions such a transformation could lead to a function of degree 3.
For the particular case of quadratic function, this has been also observed in [9] in terms of function
twisting (see Section 6.3 in [9]).

In [7], the authors constructed some permutation polynomials as those described in Proposition
6.3. Applying these polynomials to the Gold power functions x2i+1, they obtained, in the same way
described for (5) and (6), functions EA-inequivalent to any power functions.

7. Conclusions

We have investigated the problem if for a given generic (APN) function F the class of CCZ-
equivalent functions can be obtained by the EA-equivalence and the inverse transformation. Such
a problem was investigated also in [4, 5, 7] for the case of quadratic APN functions, in particular
for the Gold functions. We characterized some linear permutations on (F2n)2 which imply that
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the equivalence between two functions F and F ′ can be obtained via EA-equivalence and inverse
transformation. We also gave a procedure to verify if a sufficient condition (Theorem 4.8), implying
that the CCZ-equivalence coincides with EA-equivalence and inverse transformation, holds. Using
this procedure we prove that also for APN functions CCZ-inequivalent to a quadratic the CCZ-
equivalence can be more general than the EA-equivalence and inverse. With the same procedure
we could verify, on the contrary, in dimensions up to 8 for the non-Gold APN power functions the
class of CCZ-equivalent functions can be obtained using only the EA-equivalence and the inverse
transformation. This leads to a conjecture that for all non-Gold APN power functions and the
inverse function the CCZ-equivalence coincides with the EA-equivalence together with the inverse
transformation.

References

[1] E. Biham, A. Shamir: Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology
4(1), 3-72 (1991)

[2] T. Beth, and C. Ding, On almost perfect nonlinear permutations, Advances in Cryptology-
EUROCRYPT’93, Lecture Notes in Computer Science, 765, Springer-Verlag, New York,
1993, pp. 65-76.

[3] K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J. Wolfe. An APN permutation in
dimension six. Finite Fields: theory and applications, 518:33-42, 2010

[4] L. Budaghyan: The simplest method for constructing APN polynomials EA-inequivalent to
power functions. In: C. Carlet, B. Sunar (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 177-188.
Springer, Heidelberg (2007)

[5] L. Budaghyan, C. Carlet, and G. Leander, Constructing new APN functions from known ones,
Finite Fields and Their Applications, vol.15, issue 2, Apr. 2009, pp. 150-159.

[6] L. Budaghyan, C. Carlet, G.Leander, On inequivalence between known power APN functions.
In: Masnyk-Hansen, O., Michon, J.-F., Valarcher, P., J.-B.Yunes (Eds.) Proceedings of the
conference BFCA’08, Copenhagen.

[7] L. Budaghyan, C. Carlet, and A. Pott, New classes of almost bent and almost perfect nonlinear
polynomials. IEEE Transactions on Information Theory 52.3 (2006): 1141-1152.

[8] M. Calderini, M. Sala, and I. Villa, A note on APN permutations in even dimension. Finite
Fields and Their Applications 46 (2017): 1-16.

[9] A. Canteaut and L. Perrin, On CCZ-Equivalence, Extended-Affine Equivalence, and Function
Twisting, Cryptology ePrint Archive, Report 2018/713, https://eprint.iacr.org/
2018/713, 2018.

15



[10] C. Carlet, P. Charpin, and V. Zinoviev, Codes, bent functions and permutations suitable for
DES-like cryptosystems. Designs, Codes and Cryptography 15.2 (1998): 125-156.

[11] P. Charpin, G. Kyureghyan, On a class of permutation polynomials over F2n , in: SETA 2008,
in: Lecture Notes in Comput. Sci., vol. 5203, Springer-Verlag, Berlin, 2008, pp. 368–376.

[12] U. Dempwolff, CCZ equivalence of power functions, submitted to Designs, Codes and Cryp-
tography Mar. 2017

[13] H. Dobbertin, Almost perfect nonlinear power functions over GF(2n): the Welch case, IEEE
Trans. Inform. Theory, 45, 1999, pp. 1271-1275.

[14] H. Dobbertin, Almost perfect nonlinear power functions over GF(2n): the Niho case, Inform.
and Comput., 151, 1999, pp. 57-72.

[15] H. Dobbertin, Almost perfect nonlinear power functions over GF(2n): a new case for n di-
visible by 5, Proceedings of Finite Fields and Applications FQ5, 2000, pp. 113-121.

[16] Y. Edel, and A. Pott, A new almost perfect nonlinear function which is not quadratic. Adv. in
Math. of Comm. 3.1 (2009): 59-81.

[17] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions,
IEEE Trans. Inform. Theory, 14, 1968, pp. 154-156.

[18] H. Janwa, and R. Wilson, Hyperplane sections of Fermat varieties in P3 in char. 2 and some
applications to cycle codes, Proceedings of AAECC-10, LNCS, vol. 673, Berlin, Springer-
Verlag, 1993, pp. 180-194.

[19] T. Kasami, The weight enumerators for several classes of subcodes of the second order binary
Reed-Muller codes, Inform. and Control, 18, 1971, pp. 369-394.

[20] S. Ling, L.J. Qu, A note on linearized polynomials and the dimension of their kernels, Finite
Fields Appl. 18 (2012) 56–62.

[21] K. Nyberg, Differentially uniform mappings for cryptography, Advances in Cryptography,
EUROCRYPT’93, Lecture Notes in Computer Science 765, 1994, pp. 55-64.

[22] S. Yoshiara, Equivalences of power APN functions with power or quadratic APN functions,
Journal of Algebraic Combinatorics, vol. 44, N. 3. Nov. 2016, pp. 561-585.

16


