Finding Ordinary Cube Variables for
Keccak-MAC with Greedy Algorithm

Fukang Liu

Shanghai Key Laboratory of Trustworthy Computing, School of Computer Science
and Software Engineering, East China Normal University, Shanghai, China
liufukangs@163.com

Abstract. In this paper, we present an alternative method to choose
ordinary cube variables for Keccak-MAC. Firstly, we choose some good
candidates for ordinary cube variables with key-independent conditions.
Then, we construct inequalities of these candidates by considering their
relations after one round. In this way, we can greatly reduce the number
of inequalities and therefore can solve them without a solver. Moreover,
based on our method, the property of the constructed inequalities can
be considered, while it is not clear by using a solver in previous work.
As a straight result, we can prove why only 30 ordinary cube variables
without key-dependent bit conditions can be found by a solver in Ling
Song et al’s work. Besides, we can find more than 63 ordinary cube vari-
ables without key-dependent bit conditions for Keccak-MAC-384 as well.
Based on our new way to recover the 128-bit key, the key-recovery attack
on 7-round Keccak-MAC-128/256/384 is improved to 2"

Keywords: Keccak, Keccak-MAC, ordinary cube variables

1 Introduction

At Eurocrypt 2017, [4] presented the conditional cube attack on round-reduced
Keccak keyed modes based on [3/T]. More specifically, they defined two types of
cube variables as conditional cube variables and ordinary cube variables based
on their relations in the first two rounds. Specifically, the relations are explained
as follows.

1. Conditional cube variables can not multiply with each other in the first two
rounds.

2. Ordinary cube variables can not multiply with each other in the first round.

3. Ordinary cube variables can not multiply with conditional cube variables in
the first two rounds.

Then, they proposed a theorem to help confirm the number of each type of
the cube variables in order to mount attack on Keccak keyed modes. The proof
of the theorem is much based on the relations of the variables in the first two
rounds. The theorem is specified as follows.

Theorem 1. [4] For (n+2)-round Keccak sponge function (n > 0), if there
are p conditional cube variables vg, v1, ..., vp—1 and ¢ = 2"T* — 2p + 1 ordinary
cube variables vy, Vpt1, ..., Vptq—1, then the term vov;...vp14—1 Will not appear
in the output polynomials of (n + 2)-round Keccak sponge function.

Based on the new discovery, they successfully mount key-recovery attack
5/6/7-round Keccak-MAC-512/384/256 by setting p = 1. The reason why they
can not reach more rounds for Keccak-MAC-512/384 is that they can not find
enough ordinary cube variables. Later, an MILP-based method is proposed at
Asiacrypt 2017 to find more ordinary cube variables for Keccak-MAC-512/384
[5]. However, there are too many key-dependent conditions used to slow down
the propagation of the ordinary cube variables in [5], thus making the time
complexity of the key-recovery attack not optimal. In order to reduce the key-
dependent conditions, [6] developed a new MILP method to find enough cube
variables with as few key-dependent conditions as possible. The modelling in [6]
seems sophisticated at the first glance. However, it is quite general and powerful
to mount new or improved attack on many Keccak-based constructions.

In a word, the original method to find enough ordinary cube variables with
greedy algorithm in [4] is developed as an MILP problem by Li et al. [5] and Song
et al. [6] so as to find more cube variables, which is much based on the modelling
and some mathematical tools. In this paper, we present a straightforward and
simple method to find comparably enough ordinary cube variables for Keccak-
MAC-512/384.

1.1 Owur Contributions

In this paper, we present an alternatively simple method to find ordinary cube
variables for Keccak-MAC-512/384. Firstly, we observe that there are many
potentially useful key-independent conditions to slow down the propagation of
ordinary cube variables, which will help determine the candidates for ordinary
cube variables. Then, we construct inequalities of the candidates and solve them
based on some observation rather than a solver since their scale is small. Of
course, they can be solved using a solver as well.

As a straight result, we can prove why only 30 ordinary cube variables can be
found without key-dependent bit conditions using a solver in Ling Song et al’s
work. Besides, since we can find more than 63 ordinary cube variables without
key-dependent bit conditions, key-recovery attack on 7-round Keccak-MAC-384
can be mounted with slight improvement.

Moreover, we observe that there are many redundant iterations in z-axis
of the conditional cube tester in [4]. Then, we give an optimal way to recover
the key for Keccak-MAC-256, which is twice faster than [4]. Combining this
observation with the discovered 63 ordinary cube variables for Keccak-MAC-384,
the time complexity to mount key-recovery attack on 7-round Keccak-MAC-384
is improved to 27! from 27°. We summarize some related results in Table

Table 1. Related Results of Keccak-MAC

Capacity |Rounds|Complexity | Ref
256/512 7 27 4]
768 7 27 Bl

256/512/768| 7 27 new
1024 6 270 [6]
1024 7 21251

2 Description of Keccak-MAC

The Keccak-p permutations denoted by Keccak-p[b, n,| are specified by two pa-
rameters, which are the width of permutation in bits b and the number of rounds
n,. There are many choices for b, i.e. b = 25 x 2! with [€ {0,1,2,3,4,5,6}.
Keccak-p[b, n,.] works on a b-bit state A and iterates an identical round function
R n, times. The state A can be seen as a three-dimensional array of bits, namely
A[5][5][w] with w = 2'. The expression A[z][y][z] represents the bit with (z,y, 2)
coordinate. At lane level, A[x][y] represents the w-bit word located at the 2*”
column and the y** row. In this paper, the coordinates are considered within
modulo 5 for x and y and within modulo w for z. The round function R consists
of five operations R =10 x om o po @ as follows.

22 4 3y] = Alz][y]
x : Alz]ly] = Ale]ly) © (Afz + 1][y] \ Az + 2][y)).
v: Alally] = Alz]y] ® RC.

The construction of Keccak-MAC-n is illustrated in Figure [I| In this paper,
we also only consider a single block like [34I56].

128-bit key || message

] —> 128-bit tag
(1600—2n)-bit —— bitrate

L

Keccak internal
permutation

2n-bit —— capacity

Fig. 1. Construction of Keccak-MAC-n

Moreover, we denote the state A after 6, p, and 7 in round i (i > 0) by Aj,
A}, and A7 respectively. The input state of round i is denoted by A".

3 Finding Ordinary Cube Variables for Keccak-MAC-384

For Keccak-MAC-n, n € {128,256, 384, 512}, the 128-bit key is placed at A°[0][0]
and A°[1][0] as marked in red in Figure

Fig. 2. Position of key

Observation 1. Based on the definition of § operation, AY[3][i] = A°[3][i] ®
@3=0 A°2][y] @ @3=0(A0[4][y] < 1) for 0 < i < 4. Therefore, the value of
AY[3][¢] is independent of the 128-bit key. In other words, if we add bit conditions
on AY[3][i] , all of them are key-independent.

Then, we consider the influence of 7 o p operation as shown in Figure

Fig. 3. 7 o p operation

Observation 2. After 7 o p operation, AY[2][i] and AY[4][k] are next to
AY[3][4] in each row.

The above two observations are quite important to determine good candi-
dates for ordinary cube variables. In next section, we will expand on how to
determine them.

3.1 Determining Candidates for Keccak-MAC-384

The initial state of Keccak-MAC-384 is shown in Figure [4] with 12 lanes set to 0.
In the same way as [4I56], A[2][0][0] = A[2][1][0] = wvo is chosen as the conditional
cube variable with four bit conditions. Then, the ordinary cube variables are set
in the CP kernel.

Fig. 4. Keccak-MAC-384

For the first column, we exhaust all 64 possible variables A[0][1][¢] = A[0][2][¢]
(0 <14 < 63). Based on Observation 1,2, if we add bit conditions to slow down
the propagation of the variables in this case, all of them are key-dependent
bit conditions. Therefore, we don’t impose bit conditions. For these 64 possible
variables, only those are selected as candidates that they do not multiply with
v in the first two rounds.

For the second column, we exhaust all 64 possible variables A[1][1][i] =
A[1][2]]¢] (0 < i < 63) and process in the same way as the first column.

For the third column, we exhaust 633 possible variables A[2][0][:] = A[2][1][],
A[2][0][¢] = A[2][2][z] and A[2][1][i] = A[2][2][i] (1 < i < 63). Based on Obser-
vation 1,2, we can add key-independent bit conditions on AJ[3][k] (0 < k < 4)
to slow down the propagation of the variables. To remove the redundant condi-
tions, we impose a condition only when it is necessary. In other words, if such
a condition is not added and the variable satisfies the required relation with v,
this condition is not necessary and redundant. Moreover, if such a condition is
added, the variable still does not satisfy the requirement, we filter this variable.

For the forth column, we exhaust all 64 possible variables A[3][0][¢] = A[3][1][7]
(0 <14 < 63) and process in the same way as the first column since there are no
key-independent bit conditions to slow the propagation of variables.

For the fifth column, we exhaust 64 possible variables A[4][0][:] = A[4][1][¢]
(0 < i < 63). Based on Observation 1,2, we can add key-independent bit
conditions to slow down the propagation of variables as the third column.

The candidates found based on our method are presented in table

3.2 Discussion

Imposing some bit conditions on AY[3][k] (0 < k < 4) as described above will
cause the following bad cases.

Table 2. Candidates for Keccak-MAC-384, where ¢ is an adjustable constant
over GF(2) for each variable.

A1) = AQOJ2I[i + ¢

i 15(22(28(34|37|46|47[58(59
Variable|v |ve |v3|vg |5 | V6 | V7 |Us | V9

Al = AQ][2)[5] + ¢

i 7 115(20(26[30(38(39|40|52|54 |57

Variable|vio|v1i1|vi2|v13|v14|V15|v16|V17|V18|V19 | V20
A12][0)l)] = A2JG) + ¢

i 1|8 (12|14(15(|20(23(25|28|41|42|43|45|50|52|53|61|62|63
Variable |va21|v22|v23|v24|v25 |V26 | V27| V28 | V20 |30 |V31 | V32| V33| V34 |Us5 | V36 | V37 | V38 | U390
Condition i=1: AY[3][2][46] =0 i=14: AJ[3][1][21] =0

i=15: AJ[3][1][22]
i=25: AJ[3][1][32]
i=50: A9[3][2][31]

0
0
0

i=63: A9[3][1)[6] = 0, AQ[3][2)[44] =

i=23: AJ[3][2][4] = 0
i=42: AJ[3][1][49] =0
i=52: AJ[3][1][59] = 0
0

ARJ[O][i] = ABJ[1][F] + ¢

i

9 113]15(23|30(35|3940

46

56 | 57

Variable

V42 V43 [V44| V45 | V46 | V47| V48 | V49

V50

V51 (V52

A[4][0][1]

A1) + ¢

i

8 110(12]14(20(22|25|30

3135|3841 47|57 |58|62| 63

Variable

Us5 | Us6 | U57 | Us8 | U59 | V60 | V61 | V62

V63 | V64 | V65 | V66 | V67 | V68 | V69 | V70| VTl

Condition

i=3: AJ[3][0][59] = 1
i=20: AJ[3][0][12] = 1
i=25: AJ[3][0][17] = 1
i=35: A9[3][4][6] = 1, A§[3][0][27] = 1
i=41: AJ[3][0][33] =1

7
i=8: A9[3][0][0] = 1
i=22: AJ[3][0][14] = 1
i=30: AJ[3][4][1] = 1, AJ[3][0][22] = 1
i=38: AY[3][4][9] = 1
i=57: A9[3][0][49] = 1

A2][0][s] = A[2)[2][i] + ¢

i=18: AJ[3][2][63] = 0
i=56: AJ[3][3][14] = 0

i=20: A9[3][3][42] =0
i=62: A9[3][3][20] = 0

i 1[5]6[14[15[16]20[21[27[30[33]38]39[40[41[46[51[52[57[61[62
Variable V72 |V73| V74| V75| V76 V77 |U78 | V79 | V80 | V81 |U82 | V83 | V84 | U85 |Use | V8T | V88 | U89 V90 | V91 | V92
Condition i=1: AJ[3][3][23] =0 i=14: AY[3][1][21] = 0, AJ[3][3][36] = O
i=15: AJ[3][1][22] =0 i=20: A9[3][3][42] =0
i=30: AJ[3][1][37] = 0 i=33: AJ[3][3][55] = 0
i=38: AJ[3][1][45] = 0 i=40: AJ[3][1][47] =0
i=46: AJ[3][1][53] =0 i=52: AJ[3][1][59] = 0
i=57: AJ[3][1][0] = O i=62: AJ[3][3][20] =0
ARIAN] = ARIRI6 + c
i 1[11]14[15[18[19]20| 24 | 41 |52 |56 | 58 | 61 | 62
Variable |vo3|v94|v95|v96|v97 |Vog |Ve9g |V100| V101 |V102|V103|V104 |V105 |V106
Condition|i=1: AY[3][2][46] = 0, A}[3][3][23] = O] i=14: AY[3][3][36] = O

Case 1: Contradiction of conditions will occur. Specifically, for the third colum-
n, the bit condition on a certain bit i of AY[3][ko] is AY[3][ko][i] = 0.
However, for the fifth column, the bit condition on a certain bit j of
AY[3][k1] is AJ[3][k1][j] = 1. If i = j and ko = ki, the contradiction of
conditions is detected. In other words, we can not choose both of their
corresponding variables as the final ordinary cube variables. Moreover,
if AJ[3][yo][z0] and AY[3][y1][z0] are imposed different bit conditions for
Yo > 1,y1 > 1, this is also a contradiction since A[3][y][zo] is set to a
constant 0 for Keccak-MAC-384 for y > 1.

Case 2: Contradiction between conditions and ordinary cube variables will oc-
cur. Specifically, for the forth column, some of A[3][0][i] = A[3][1][{] (0 <
i < 63) will be chosen as candidates. The bad case is that A[3][0][t] =
A[3][1][t] is chosen as a candidate and AY[3][0][¢] or AY[3][1][¢] is imposed
a condition.

However, in fact, the second case can be processed in a simple way. After
the candidates are determined, if a contradiction in the second case is detected,
it implies that two ordinary variables multiplies with each other in the first
round. For example, supposing A9[3][0][¢] is imposed a condition and A[3][0][t] =
A[3][1][¢] is chosen as a candidate, it implies a variables set in A[2][4] or A[4][1]
is chosen as a candidate, which will multiply with the variable set in A[3][0][¢] in
the first round. Please refer to 7 o p operation in Figure 3] Therefore, the second
case is equivalent to the case that two ordinary cube variables multiply with
each other in the first round. Actually, we can also derive it from Observation
1,2. Thus, we don’t have to process the second bad case and we only need focus
on the relation of the candidates in the first round as well as the contradiction
caused by conditions.

3.3 Constructing Inequalities

The inequalities of candidates are constructed based on two cases. The first
case is that variables multiply with each other in the first round. The second
case is that there is contradiction of conditions. The inequalities obtained are
presented in Table 3| In this table, v;{vj,, ..., v;, } means v; can not be chosen
with any of {vj,,...,v;, } as the final candidates at the same time. We count the
times that each variable appears in the inequalities and do not choose the one
which appears more than one time as marked in red and blue. However, although
some variables appear two times as marked in green in this table, we can still
choose them. Therefore, for the obtained inequalities, we can obtain at most 28
variables. Moreover, there are 56 fully free variables, i.e. there are no inequalities
on them. We have to stress that this is not the unique way to determine the final
candidates and obviously our method is much inspired from greedy algorithm.
Of course, these inequalities can be solved with a solver as well. However, it can
not help derive the properties implied in these inequalities.

Observe that we consider the third column under three cases, which will cause
two problems. Specifically, if A[2][0][t] = A[2][1][t] + ¢, A[2][0][t] = A[2][2][t] + ¢

Table 3. Inequalities of Candidates

vi{vro} va{vss, vss} |vs{vie} |vs{vse} vr{ve2}
vs{v12, Us3, vee }|v11{vr7 } vio{vre} |viz{vso} v15{vs4 }
U16{U85} 7117{U86,U101} Uzo{v1o4} U22{1144} 1127{1)46}
vag{var} v3a{vs2} v3r{va1} |va1{vs7,vo1}|vaz{v74}
vas{ves,vrr} |vac{ves } vag{ver} |vao{vs2} vs0{vs4}

and A[2][1][t] = A[2][2][t]+ ¢ are chosen simultaneously, only two variables rather
than three variables can be obtained. And we should change the variables as
A2)[0][t] = v, A[2][1][t] = vay, A[2][2][t] = Vg + Vs, + ¢ This is due to that the
ordinary cube variables are set in the CP kernel. According to Table[2] there are
8 possible values for ¢ and they are {1,14,15,20,41,52,61,62}. Therefore, for
the worst case, we can finally obtain 28456-8=76 ordinary cube variables, which
is much larger than the required number (63) to mount key-recovery attack on
7-round Keccak-MAC-384.

On the other hand, if two of A[2][0][t] = A[2][1][t] + ¢, A[2][0][t] = A[2][2][¢] +
¢, A[2][1][t] = A[2][]2][t] + ¢ are chosen simultaneously, we should change the
variables as A[2][0][t] = va,, A[2][1][t] = vay, A[2][2][t] = Ve + vay +

One choice of 63 ordinary cube variables are shown in Table [4]

Table 4. One Choice of Ordinary Cube Variables

Free ordinary cube variables V4, Vg, Vg, V10, V14, V18, V21, V23, V24, V25,

(56-6=50 in total) V26, V28, V30, V31, U32, U33, U35, V36, U3s, U39,

V40, V42, Usl, Us5, Us6, U58, V60, V61, V64, V68,

V69, V71, V72, V73, V75, V76, V78, US1, US3, VST,

V88, V89, V90, V92, V93, V94, V95, V96, V97, V98,

V99, V100, V102, V103, V105, V106-

{va1, v72, vo3}, {va4, V75, Vos}, {v2s5, V76, Vo6 }

{v26, v7s, Voo }, {vss, vsg, vio2} and {vss, vo2, vios}
provide two variables respectively.

Ordinary cube variables V1, Us4, V63, U3, Us, U7, Us3, V66, V1l, UT9,
derived from inequalities V13, V15, V16

(13 in total)

Conditional cube variable Vo

Key-dependent conditions AD[1][4][60] = 1, AJ[1][0][5] = 1.

Key-independent conditions for vo|AJ[3][1][7] = 0, AJ[3][2][45] = 0.

Other key-independent conditions |Refer to Table |3|according to the chosen variables.
for ordinary cube variables

4 Finding Ordinary Cube Variables for Keccak-MAC-512

In the same as we deal with Keccak-MAC-384, we found 32 candidates for ordi-
nary cube variables as displayed in Table

Table 5. Candidates for Keccak-MAC-512, where c is an adjustable constant
over GF(2) for each variable.

ARJ[O][] = ARJI][] +

i 1[8]12][14]15[20]23]25[28] 4142 [43[45[50[52[53[61[62] 63

Variable V1|V2|V3|V4|V5|V6 |V7|VU8|V9 |V10|V11|V12|V13|V14|V15|V16|V17|V18 V19
Condition i=1: AJ[3][2][46] =0 i=14: AJ[3][1][21] =0
i=15: A9[3][1][22] = 0 i=23: AJ[3][2][4] =0
i=25: AJ[3][1][32] =0 i=42: AJ[3][1][49] =0
i=50: AJ[3][2][31] =0 i=52: AY[3][1][59] = 0

i=63: A9[3][1][6] = 0, A§[3][2][44] = 0

ARBJ[0][F] = A[3]1][4] + ¢
i [3]4]9[13][15][23]30]35][39[40[46]56]57

Variable V20 |V21 |V22 |V23 | V24 | V25 | V26 | V27 | V28 | V29 | V30 | V31 | V32

The inequalities obtained are as follows:

U2{7124}, U?{Uzﬁ}, U9{027}, v14{v32}, U17{U21}~

Therefore, there will be 32-5=27 possible ordinary cube variables in total if
the ordinary cube variables are set only in the CP kernel. As a result, we can
not mount key-recovery attack on 6-round Keccak-MAC-512, which requires 31
ordinary cube variables if only vy is chosen to be the conditional cube variable.

Based on [6], the variables which multiply with v in the second round can be
leveraged as well. For an intuitive example, suppose one variable v, multiplies
with vy only in the second round and the multiplying bit position is pg. If another
variable v,, multiplies with vy only in the second round and the multiplying bit
position is pg as well, then setting v,, = v, will cause the already filtered two
variables become one possible variable. Then, the goal becomes how to find these
possible variables.

Suppose AJi][j][k] contains a variable, then after x operation, three bits will
contain this variable. Based on the definition of y operation, among the three
bits, one bit will always contain this variable and the other two bits contains
this variable depending on the conditions. We classify the three bits into three

types.
Type-1: It always contains this variable.

Type-2: It contains this variable depending on a key-independent bit condition.
Type-3: It contains this variable depending on a key-dependent bit condition.

Then, we trace how the three bits propagates to the second round. Specifically,
we trace the Type-1 bit and record the influenced bits of AL multiplying with

vo in the second round. For the Type-2 and Type-3 bits, we process in the
same way. The recorded bits for Type-1, Type-2 and Type-3 are defined as
core bits, independent-key bits and key-dependent bits. Since our focus is the
minimal independent-key conditions, once the key-dependent bits are detected,
the corresponding variable should not be chosen as a candidate.

Based on the above method by tracing the influenced bits in the first two
round, we reconsider the filtered ordinary cube variables set in the CP kernel.
Besides, the variables set to a single bit are also considered. The final result
obtained is displayed in Table [6]

For a better understanding of this table, we take the variable A[3][1][8] as
instance. For the first column, it means A[3][1][8] is set to be a variable. For
the second column, it means the 5 bits of A} will multiply with vy in the sec-
ond round. For the third column, {656,1003} means the two bits of A}, i.e.
AL[0][2][16] and AL A[0][3][43], will multiply with vy depending on the same key-
independent bit condition. The last column means A[3][1][8] can not be chosen
as a variable with any of v; and w31 in Table [5| simultaneously.

Based on this table, we can find at most three ordinary cube variables as
follows:

A[3][0][58] = A[3][1][58] = A[2][0][24] = A[2][1][24] = ve,
A[3][0][61] = ve, , A[3][1][61] = ve,,

A[2][0][26] = A[2][1][26] = vey, ve; = Ve, + v,

A[2][0][46] = A[2)[1][46] = ve,, v, = Ve, -

Condition : AJ[3][3][20] = 1, AY[3][4][21] = 1.

In fact, there are many interesting cases. For example, if A[3][0][60] = A[3][1][60]
does not multiply with vy in the first round, we can obtain one more candidate.
For the third row, if {652,1109} does not depend on the same condition, then
we can add one key-independent bit condition to prevent the propagation to the
652-th bit and another key-independent bit condition to allow the propagation
to the 1109-th bit of AL.

Then we test whether v., (0 < i < 4) multiplies with each other in the first
round and check whether the two bit conditions to slow down the propagation
of ve, and v., are contradict with the conditions in Table [5| It is shown that
the three variables are all valid. Therefore, we can obtain 274+3=30 ordinary
cube variables without key-dependent bit conditions, thus proving why [6] can
only discover the same number of such ordinary variables by a solver. However,
to mount key-recovery attack on 6-round Keccak-MAC-512, 31 ordinary cube
variables are needed. Thus, we try to search ordinary cube variables set in the
CP kernel with only one key-dependent bit condition, which satisfy the required
relation with vg and the chosen 32+4=36 candidates for ordinary cube variables.
Our searching result is displayed in Table [7] Thus, there are many possible
choices for 31 ordinary cube variables, i.e. at least 2° x 12.

Table 6. Possible Candidates for Keccak-MAC-512

Possible Variables Core Bits Key-independent Contradictions
Bits
A[2][0][4] = A[2][1][4 1540,
A[2][0][5] = A[2][1][5 1109 {652,1109}
A[2]]0][9] = A[2][1][9] 848,467 {656,1003}
A[2][0][13] = A[2][1][13 652,1109
A[2][0][16] = A[2][1][16 1472, 515 V25
A[2]]0][24] = A[2][1][24] 515
A[2][0][26] = A[2][1][26] 665
A[2][0][29] = A[2][1][29] 71,1032 241
A[2][0][33] = A[2)[1][33] 491 29
A[2][0][35] = A[2][1][35] 1131,42 1242
A[2][0][37] = A[2][1][37] 1040
A[2]]0][46] = A[2][1][46] 903 1040
A[2][0][51] = A[2][1][51] 767,1160
A[2][0][54] = A[2][1][54] 1510
A[2]]0][57] = A[2][1][57] 170 205
A[2][0][60] = A[2][1][60] 1280 1540 V20
A[3][0][41] = A[3][1][41] 113
A[3]]0][43] = A[3][1][43] 848
A[3][0][50] = A[3][1][50] 42 V19
A[3][0][58] = A[3][1][58] 515
A[3]]0][60] = A[3][1][60] 665 V16
A[3][0][61] = A[3][1][61] 903
A[3][1][8] 170,848,467,1382,1003|{656,1003},{903},{1237} V1, V31
A[3][0][32] 491,903,1382 {13},{848} {775} V29
A[3]]0][61] 665 {42},{1348}
A[3][1][61] 903,665 {42},{1348}

Table 7. Candidates for Keccak-MAC-512 with One Key-dependent Bit Con-

dition

Variable Conditions

AR][0][11] = ARJ[[11]] Ap[1][4][7] = 1

A[2][0][19] = A[2][1][19]| AJ[1][4][15] = 1

A[2][0][21] = A[2][1][21][AJ[1][0][26] = 1, AY[3][2][2] = O
A[2][0][22] = A[2][1][22]] Ap[1][0][27] = 1

A[2][0][30] = A[2][1][30]] AJ[3][1][37] = 0, AJ[1][0][35] =1
A[2][0][34] = A[2][1][34][AJ[1][0][39] = 1, AY[3][2][15] =0
A[2][0][44] = A[2][1][44][A5[3][1][51] = O, AQ[1][0][49] = 1
A[2][0][56] = A[2][1][56]| AG[1][4][52] = 1, AJ[3][1][63] = O
A[3][0][12] = A[3][1][12]| AY[4][1][20] = O

A[3][0][20] = A[3][1][20]| A5[4][2][36] = O

A[3][0][29] = A[3][1][29]] Ap[2][4][60] = 1

A[3J[0][34] = A[B][A][34][AG[2][4][1] = 1

5 Recovering the Key

In this section, we will introduce a new slightly improved way to recover 128-bit
key for Keccak-MAC-384 and Keccak-MAC-256. In [4], 64 iterations in z-axis of
the conditional cube tester are used to recover 128-bit key. For each iteration,
it costs 26412 = 266 {0 recover 2-bit key. Observe that once there are only a few
key bits to be recovered, there is no need to iterate the conditional cube tester
since each iteration is costly and only 2 bits are recovered.

Taking Keccak-MAC-256 for instance, after 31 iterations in z-axis, 62-bit
key can be recovered. Then, the remaining 66-bit key can be recovered by brute
force. Therefore, the time complexity is improved to 266 x 31 4+ 266 = 27! from
272,

Since 63 ordinary cube variables has been found for Keccak-MAC-384 as
displayed in Table [l which satisfies the required relation with v in the first two
rounds, we can recover the 128-bit key for Keccak-MAC-384 as Keccak-MAC-
256, whose time complexity is 271

6 Comparison with Previous Work

Our work is much based on [4]. However, [4] did not consider the potentially
useful key-independent bit conditions to slow down the propagation of ordinary
cube variables.

As for [5], it seems that the key-independent bit conditions have been con-
sidered. However, it is strange that [5] found 63 ordinary cube variables with 6
key-dependent bit conditions, while we can find much more ordinary cube vari-
ables without key-dependent bit conditions, i.e. at least 76 variables. Besides,
[5] only found 25 ordinary cube variables set in the CP kernel, while we can find
32-5=27 ordinary cube variables set in the CP kernel. Therefore, we guess that
[5] did not make full use of the key-independent bit conditions.

As for [6], minimum key-dependent bit conditions is considered in the model.
In that paper, one instance of 31 ordinary cube variables for Keccak-MAC-512
is presented, which is almost the same with what we find. However, it is strange
that there are 18 key-independent bit conditions to slow down the propagation
of the ordinary cube variables. According to our method, there are at most
10+1=11 key-independent bit conditions for ordinary cube variables. Thus, we
guess that [5] did not observe the redundancy in key-independent bit conditions.

Moreover, our method dose not rely on any mathematic tool nor the sophisti-
cated modelling used in [56]. Although our method shares many similarities with
the core idea in [5l6], we find ordinary cube variables with a different method,
which is much inspired from greedy algorithm.

At last, we present a new way to recover the 128-bit key by observing that
many iterations of the conditional cube tester are redundant, thus slightly im-
proving the time complexity to recover 128-bit key for Keccak-MAC-128/256/384.

7 Conclusion

In this paper, we present a new method to find ordinary cube variables by mak-
ing full use of key-independent bit conditions. Our method is simple and much
inspired from greedy algorithm, which does not require sophisticated modelling
nor usage of mathematical tools. Moreover, based on our method, the property
of the constructed inequalities can be considered, while it is not clear in previous
work by using a solver. As a straight result, we can prove why only 30 ordinary
cube variables can be found without key-dependent bit conditions in [6] using a
solver. Besides, we can find more than 63 ordinary cube variables without key-
dependent bit conditions. Combining with our new method to recover the key,
the key-recovery attack on 7-round Keccak-MAC-384 and Keccak-MAC-256 is
improved to 27! from 27 and 272 respectively.

References

1. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers
and key recovery attacks on reduced-round MD6 and trivium. In Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, February
22-25, 2009, Revised Selected Papers, pages 1-22, 2009.

2. Wenquan Bi, Xiaoyang Dong, Zheng Li, Rui Zong, and Xiaoyun Wang. Milp-aided
cube-attack-like cryptanalysis on keccak keyed modes. Cryptology ePrint Archive,
Report 2018/075, 2018. https://eprint.iacr.org/2018/075!

3. Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal S-
traus. Cube attacks and cube-attack-like cryptanalysis on the round-reduced keccak
sponge function. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 733-761, 2015.

4. Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meigin Wang, and Jingyuan Zhao.
Conditional cube attack on reduced-round keccak sponge function. In Advances in
Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part 11, pages 259-288, 2017.

5. Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved conditional
cube attacks on keccak keyed modes with MILP method. In Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I, pages 99-127, 2017.

6. Ling Song, Jian Guo, Danping Shi, and San Ling. New milp modeling: Improved
conditional cube attacks to keccak-based constructions. Cryptology ePrint Archive,
Report 2017/1030, 2017. https://eprint.iacr.org/2017/1030.

A Tracing the Influenced Positions of One Variable

Since 0, p, m are all linear transformations, we can use a linear transformation
matrix M, to express the three consecutive operations m o p o §. Based on the
definitions of the three operations, we can know that for each row of My, there

https://eprint.iacr.org/2018/075
https://eprint.iacr.org/2017/1030

Algorithm 1 Tracing the influenced bit positions after 7 o p o # operation
Input: EP, SMy. Output: finalPosition

1: for row in (0...1599) do

2: for col in (0...10) do

3 if SMo[row][col] == EPJi] then
4: final Position.push_back(row)
5 break

are only 11 non-zero elements, whose values are all 1. Besides, since the two
consecutive operations 7 o p is equivalent to a permutation of bit positions, we
also use an array M; to express it. In this paper, we only focus on Keccak-
MAC-512/384 and therefore the size of My is 1600 x 1600 and M; is 1600. As
explained above, there are only 11 non-zero elements in each row of M. Thus, we
use another smaller matrix SMj to record My with size 1600 x 11. Specifically,
the positions of the non-zero elements in each row of Mj is recorded in the same
row of SMj. Besides, we also introduce a bit vector X to represent the 1600-bit
state A with A[x][y][z] = X[(bz + y) x 64 + z].

After a variable is set to A[z][y][z], we firstly consider how it propagates
through 6 operation. If this variable is set in the CP kernel, then only AY[z][y][2]
contains this variable after 6 operation. Otherwise, 11 bits of A) will contain this
variable, which are A9z — 1][i][z + 1], AY[z + 1][i][2](0 < i < 4) and AJ[z][y][2].
Then, we calculate the corresponding positions of the influenced bits in X, i.e.
Alx][y][z] = X[(5x +y) x 64+ z]. Suppose the influenced bit positions of X after
f operation are stored in an array X P.

For each element X P[i] in X P, we calculate how it propagates through mop
operation with Mj, which is M;[X P[i]]. For each M;[X P[i]], three bits will be
influenced through x operation if without bit conditions to slow down the prop-
agation. If some proper bit conditions are added, then the propagation through
x will be slowed down and we only record the influenced bit positions.

After knowing the influenced bit positions of X P[i] through x o 7 o p, which
will be stored in an array EP, we show how to trace its propagation in the
second round. For each element EP[i| in EP, we calculate how it propagates
through 7 o p o 6 in the second round with SMy based on Algorithm [1} The
output finalPosition will record the influenced bit positions.

Once knowing how a variable propagates in the first tow rounds with or
without bit conditions to slow down this propagation according to the above
statement, it is quite easy to determine the relation, i.e., multiply or not, of
different variables in the first two rounds. Thus, we omit it.

	Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm
	Fukang Liu

