
Faster PCA and Linear Regression through Hypercubes in HElib ?

Deevashwer Rathee1, Pradeep Kumar Mishra2, and Masaya Yasuda3

1 Department of Computer Science and Engineering,
Indian Institute of Techonology (BHU) Varanasi 221005, India.

deevashwer.student.cse15@iitbhu.ac.in
2 Graduate School of Mathematics, Kyushu University,

744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
p-mishra@math.kyushu-u.ac.jp

3 Institute of Mathematics for Industry, Kyushu University,
744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.

yasuda@imi.kyushu-u.ac.jp

Abstract. The significant advancements in the field of homomorphic encryption have led to a grown interest in
securely outsourcing data and computation for privacy critical applications. In this paper, we focus on the prob-
lem of performing secure predictive analysis, such as principal component analysis (PCA) and linear regression,
through exact arithmetic over encrypted data. We improve the plaintext structure of Lu et al.’s protocols (from
NDSS 2017), by switching over from linear array arrangement to a two-dimensional hypercube. This enables us to
utilize the SIMD (Single Instruction Multiple Data) operations to a larger extent, which results in improving the
space and time complexity by a factor of matrix dimension. We implement both Lu et al.’s method and ours for
PCA and linear regression over HElib, a software library that implements the Brakerski-Gentry-Vaikuntanathan
(BGV) homomorphic encryption scheme. In particular, we show how to choose optimal parameters of the BGV
scheme for both methods. For example, our experiments show that our method takes 45 seconds to train a linear
regression model over a dataset with 32k records and 6 numerical attributes, while Lu et al.’s method takes 206
seconds.

Keywords: Leveled homomorphic encryption · PCA · Linear regression · Hypercube arrangement.

1 Introduction

In the recent years, the cloud computing paradigm has grown in popularity as an economical solution for outsourcing
data and computation. It enables ubiquitous access to shared storage and computational resources over the internet,
and hence it is being adopted by many organizations. However, storing data on the cloud raises security and privacy
concerns, since the cloud service provider can not only access the data but also share it with other parties. This makes
it difficult to keep control of the data for applications that have privacy as a principal concern. A great solution to
address these concerns is homomorphic encryption that enables computation on encrypted data. Using homomorphic
encryption, a client can upload its sensitive data on the cloud in encrypted format, and the cloud can operate on that
data without ever decrypting the data.

The concept of homomorphic encryption was first proposed by Rivest et al. in 1978 [19]. But the first construction
of a fully homomorphic encryption (FHE) scheme, that allows arbitrary computation on ciphertexts, came around 30
years later through the ground-breaking work of Gentry [10]. Gentry’s work showed that it is theoretically plausible to
do any number of operations on ciphertexts, but the scheme was too inefficient to be practical yet for any application.
Since then, a lot of work (e.g., [20,4,17,3,21]) has been done that saw major improvements in both theory and practice.
However, the currently known FHE schemes are still regarded as impractical for real applications. On the other hand,
there are some partially homomorphic schemes ([18,1]) available that are practical, but they offer limited functionality.
At present, somewhat homomorphic encryption (SwHE) and its leveled improvement (called leveled -FHE), that allow a
limited number of operations, have attracted a lot of attention from various communities. Despite this limitation, they
are applicable in various scenarios and provide reasonable performance (e.g., see [17,11,23,24,5]). Since the complexity
of algorithms grows linearly with circuit depth in leveled -FHE, as opposed to exponential growth in SwHE, it is more
suitable for applications requiring larger circuit depth.

In this paper, we use leveled-FHE for performing predictive statistics such as PCA and linear regression, through
exact arithmetic over encrypted data (cf., approximate arithmetic). We choose a variant [11] of the leveled BGV

? This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
of record was published in 2018 Workshop on Privacy in the Electronic Society (WPES’18), October 15, 2018, Toronto, ON,
Canada, https://doi.org/10.1145/3267323.3268952.



2 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

scheme [3] as our cryptosystem, and leverage the software library HElib [14] for its implementation. Many works have
been proposed to address the problem of performing statistical analysis over encrypted data (see [12,22,2,16]). The
solution of [2] only addresses model evaluation, while the methods of [12,22] can only perform statistics on data with
very low dimension. Recently, Lu et al. [16] proposed a solution to perform PCA and linear regression on data with
up to 20 numerical attributes. Their solution achieves much better results than any previous work by utilizing the
linear array structure of the plaintext slots. Our main aim is to improve Lu et al.’s method for further efficiency. Our
contribution in this paper is two-fold:

1. Firstly, we improve upon the plaintext structure used in Lu et al.’s method [16] by utilizing a two-dimensional
hypercube structure. This gives us benefits in terms of both space and time complexity. As a result, we reduce the
complexity of their methods by a factor of data dimension. In the process, we also develop some general-purpose
procedures for matrix operations that are significantly faster than the previously known solutions in HElib.

2. Secondly, we address the problem of optimal parameter selection in HElib, which is non-trivial for our application
and was not discussed in [16] carefully. In this paper, we describe how to choose optimal parameters for our method
as well as Lu et al.’s. We also compare the performance of our method with Lu et al.’s method for performing
PCA and linear regression over HElib.

Notation We use the notation ordG(g) to denote the order of an element g in the group G. We switch to ord(g) for
concise representation whenever there’s no confusion. We also use [·]q to denote reduction modulo q in the interval
(−q/2, q/2]. We denote by χ a discrete Gaussian distribution with zero mean and variance σ2. We use [n] to denote
the set {0, . . . , n − 1}. The row vectors of a matrix X are represented by xT

i . The matrix entries are represented by
non-bold lowercase roman letter with subscripts e.g. xi,j . We denote the set of primes by P.

2 Preliminaries

2.1 The BGV Cryptosystem

In this work, we use the Ring-LWE variant of the BGV scheme [11], which is defined over the polynomial ring
A = Z[X]/Φm(X), where Φm(X) is the m-th cyclotomic polynomial.

Plaintext Space The plaintext space is defined by the ring At = A/tA, where t is a prime. Under modulo t, the
polynomial Φm(X) factors into ` irreducible polynomials, each of degree s = φ(m)/` such that Φm(X) = F1(X) ·
F2(X) · · ·F`(X) (mod t). Each factor Fi(X) corresponds to a plaintext slot (each slot is isomorphic to the finite field
Fts) and the following isomorphism holds:

At ' Zt[X]/F1(X)× · · · × Zt[X]/F`(X) ' Fts × · · · × Fts

Therefore, a polynomial a(X) ∈ At can be represented as the vector (a mod Fi)
`
i=1. HElib provides high level interfaces

that allow conversion between a vector of plaintext values (a(i))`i=1 ∈ (Fts)` and a polynomial a(X) ∈ At (native
plaintext space of the BGV scheme) through encoding and decoding routines. Hence, given two polynomial encodings
a(X) = Encode

(
(ai)

`
i=1

)
and b(X) = Encode

(
(bi)

`
i=1

)
, we have:{

Decode(a+ b mod (t, Φm)) = (ai + bi mod (t, Fi))
`
i=1

Decode(a · b mod (t, Φm)) = (ai · bi mod (t, Fi))
`
i=1

Each slot in the vector representation corresponds to a unique conjugacy class of Z∗m/〈t〉. An isomorphism exists
between the polynomial ring and the vector of plaintext slots, and the plaintext slots are isomorphic to one another.
This imparts automorphic mappings of the form κ : a(X) → a(Xk), where k ∈ Z∗m/〈t〉, that allow data movement
among the slots.

The structure of Z∗m/〈t〉 can be represented by a set of generators {f1, . . . , fn}, where the order of fi in Z∗m/〈t, f1, . . . , fi−1〉
is mi. Each slot has a unique representative in the slot-index representative set T =

{∏n
i=1 f

ei
i , 0 ≤ ei ≤ mi − 1

}
which can be indexed by the vector of exponents (e1, . . . , en). Therefore, the plaintext slots can be mapped to an
n-dimensional hypercube, whose i-th dimension is of size mi. The i-th dimension is labelled as a good dimension if
mi = ordZ∗m(fi), otherwise it is labelled as a bad dimension. Good dimensions lead to more efficient data movement
(see [14, Section 4] for more details).



Faster PCA and Linear Regression through Hypercubes in HElib 3

Data Movement The basic data movement operation is rotation and all other operations that move data depend
on it (See [15, Section 4] for more details). Rotation comes in two flavours depending on the arrangement of plaintext
slots. There are two ways to arrange the plaintext slots:

– Hypercube arrangement: As described before, the plaintext slots natively assume the structure of an n-dimensional
hypercube V and each slot is indexed by some e = (e1, . . . , en), where ei ranges over [mi]. The dimensions of this
hypercube can be rotated independently through the rotate1D procedure. A call to “rotate1D(V, i, k)” will move
the content of slot (e1, . . . , ei, . . . , en) to the slot (e1, . . . , ei + k, . . . , en) of V, where addition is done modulo mi.

– Linear Array arrangement: In this arrangement, the plaintext slots are presented to the application in the form
of a linear array. The number of elements in the array is ` = |Z∗m/〈t〉|. It is made possible by ordering the
slots lexicographically over the vector of indices of hypercube. The position k of this linear array is identified by

e(k) = (e
(k)
1 , . . . , e

(k)
n ), where k ∈ [`]. A call to “rotate(v, k)” will move the content of slot j (resp., e(j)) to the

slot j + k (resp., e(j+k)) of v, where addition is done modulo `, thereby rotating the array by k positions. The
addition over the respective index vectors can be seen as addition with carry over n-digit numbers, where i-th
digit has base mi and n-th digit is least significant.

We have other high level data movement operations such as total-sum and replicate. As mentioned before, these
operations depend on rotation. Hence, they have different impact depending on the type of slot arrangement. They
are defined as follows:

– For hypercube arrangement: Given an n-dimensional hypercube V = (V[e1, . . . , en]), where ej ranges over [mj ],
the function “TS1D(V, j)” outputs:

WTS[e1, . . . , ej , . . . , en] =
∑mj−1
k=0 V[e1, . . . , k, . . . , en].

Let e(i) be a vector of indices excluding the index for j-th dimension i.e. e(i) = (e
(i)
1 , . . . , e

(i)
j−1, e

(i)
j+1, . . . , e

(i)
n ),

where i ranges over [`/mj ]. Given a set {ki}
`j−1
i=0 with `j = `/mj indices, the function “replicate1D

(
V, j, {ki}

`j−1
i=0

)
”

outputs:

Wreplicate[e
(i)
1 , . . . , ej , . . . , e

(i)
n ] = V[e

(i)
1 , . . . , ki, . . . , e

(i)
n ],

where ej ranges over [mj ]. Both “TS1D” and “replicate1D” have a running time of O(logmj) rotations and
additions.

– For linear array arrangement: Given a vector v = (v[i])`−1i=0 , the functions “TS(v)” and “replicate(v, k)” respectively
output:

wTS[j] =
∑`−1
k=0 v[k] and wreplicate[j] = v[k].

These functions have a running time of O(log `) rotations and additions.

For details on underlying algorithms, see [15, Section 4].

Ciphertext Space The ciphertext space is defined by vectors over the ring Aq = A/qA, where q is an odd modulus
that changes over homomorphic evaluation. The scheme with level parameter L is parametrized by a chain of moduli
q0 < q1 < · · · < qL−1 and freshly encrypted ciphertexts are defined over AqL−1

. Ciphertexts defined over Aql are called
level-l ciphertexts.

The modulus ql (also called level-l modulus) is defined as the product of l+ 1 small primes pi of same size chosen
such that m ≡ 1 mod pi (HElib provides an additional half-prime optimization. See [11, Section 3] for details). This
is done so that for all i, Φm(X) factors linearly under modulo pi.

For efficient arithmetic over ciphertexts, a polynomial a(X) ∈ Aql (in coefficient representation) is represented as a

(l+ 1)× φ(m) matrix DoubleCRTl(a) (in evaluation representation), whose (i, j)-th entry is the evaluation of a(X) at
j-th root of Φm(X) modulo pi. Addition and multiplication in Aql is done entry-wise modulo the appropriate primes
pi. For ease of representation, in the rest of description we ignore the double CRT representation of polynomials lying
in ciphertext space and describe the scheme as if we were operating on polynomials directly.

Key Generation Given a parameter w, a random low norm polynomial s ∈ AqL−1
having coefficients in {−1, 0, 1} is

chosen such that its Hamming weight is exactly w. Secret key is set as sk = (1,−s). To generate public key, a uniformly
random polynomial a ∈ AqL−1

is chosen and a low-norm error polynomial e ∈ AqL−1
is sampled from χ. The public

key is set as pk = (a, b), where b = [a · s + t · e]qL−1
.

In addition to this, the public key also has key switching matrices of the form W [s′ → s] that transform a
ciphertext decryptable by s′ into a ciphertext decryptable by s. Specifically, we have W [s2 → s] and W [s(Xk) → s],
where k ∈ Z∗m/〈t〉, which are used in multiplication and data movement respectively to get “canonical” ciphertexts of
the form c = (c0, c1) ∈ (Aql)2, that are decryptable by a secret key of the form sk = (1,−s).



4 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

Encryption To encrypt a polynomial m ∈ At, a random low norm polynomial r ∈ AqL−1
having coefficients in

{−1, 0, 1} is chosen and two low-norm error polynomials e0, e1 ∈ AqL−1
are sampled from χ. The ciphertext is computed

as: c = (c0, c1) = Enc(m, pk) = (b · r + t · e0 +m, a · r + t · e1) ∈ (AqL−1
)2.

Decryption To decrypt a level-l ciphertext, we first compute the noise polynomial m′ = [〈c, sk〉]ql = [c0 − c1 · s]ql .
Then, the message m ∈ At is recovered by computing m′ mod t = Dec(c, sk). For the decryption procedure to work,
the norm of noise polynomial m′ should be sufficiently smaller than ql.

Homomorphic Operations and Noise Control The noise associated with a ciphertext should be considerably
small compared to the ciphertext modulus to successfully recover the message. But, homomorphically operating on
ciphertexts leads to an increase in the noise term. The freshly encrypted ciphertext is valid w.r.t. the largest modulus
qL−1. When the noise term grows too much, we modulus-switch to a ciphertext that is valid w.r.t. smaller moduli to
decrease the noise magnitude. As we operate on a ciphertext, we need to switch to smaller moduli until the ciphertext
is defined over Aq0 . Beyond this point, we can not modulus-switch any further, and if the noise grows too much now,
the ciphertext will be rendered useless.

In HElib, every l-th level ciphertext is represented as the tuple c = ((c0, c1), l, ν), where ν is an estimate of noise
magnitude of the ciphertext. This estimate helps the library in automatically switching to lower levels when needed
(for details on noise estimate, see [14, Section 3.1.4]). The homomorphic operations are defined as follows:

– Addition: Before adding ciphertexts c = ((c0, c1), l, ν), c′ = ((c′0, c
′
1), l′, ν′) encrypting messages m,m′ ∈ At respec-

tively, we bring them to the same level l′′ (if l 6= l′) by reducing the larger one modulo the smaller of the two
moduli if the noise doesn’t overflow, otherwise we modulus-switch the larger one to the smaller level. Then, we
add the ciphertexts to get:

cadd = (([c0 + c′0]ql′′ , [c1 + c′1]ql′′ ), l
′′, ν + ν′).

– Multiplication: Given two ciphertexts c = ((c0, c1), l, ν), c′ = ((c′0, c
′
1), l′, ν′) encrypting m,m′ ∈ At, we first

perform modulus switching on them to bring their noise magnitude below a preset constant (refer [11, Appendix
C.2] for details). Then, we reduce the larger one modulo the smaller of the two moduli to bring them to the same
level l′′. Having brought the ciphertexts to the same level, we perform their tensor product to get:

c′mult = ((c0c
′
0, c0c

′
1 + c′0c1, c1c

′
1), l′′, νν′).

c′mult is a ciphertext decryptable by sk′ = (1,−s, s2). We perform key-switching on c′mult using W [s2 → s] to get a
canonical ciphertext cmult = ((c′′0 , c

′′
1), l′′, ν′′) with noise magnitude ν′′.

We can also multiply the ciphertext with a scalar. So, given a scalar α ∈ At and a ciphertext c = ((c0, c1), l, ν)
encrypting m ∈ At, we can multiply them to get the ciphertext cscalar−mult = ((α · c0, α · c1), l, ν′) encrypting
α ·m ∈ At. The noise estimate ν′ is computed as ν′ = ν ·να, where να is the maximum norm possible for the scalar
α.

– Automorphism: As mentioned in Section 2.1, data movement is made possible by automorphic mappings of the
form κ : a(X)→ a(Xk), where k ∈ Z∗m/〈t〉. Given a ciphertext c = ((c0, c1), l, ν) encrypting m ∈ At, by applying
automorphism (note that the noise doesn’t change), we get:

c′auto = ((κ(c0), 0, κ(c1)), l, ν).

c′auto is a ciphertext decryptable by sk′ = (1,−s,−κ(s)). We perform key-switching on c′auto using W [s(Xk) → s]
to get a canonical ciphertext cauto = ((c′0, c

′
1), l, ν′) with noise magnitude ν′.

The BGV scheme has a ring homomorphism between the plaintext and ciphertext space. Therefore, we have:

Dec(cadd, sk) = m+m′

Dec(cmult, sk) = m ·m′
Dec(cauto, sk) = κ(m)

 ∈ At.

2.2 Principal Component Analysis (PCA)

PCA is a dimensionality-reduction tool, that takes a number of possibly correlated variables and transforms them into
a smaller number of uncorrelated variables, while retaining most of the information. These uncorrelated variables are



Faster PCA and Linear Regression through Hypercubes in HElib 5

called principal components, and they do not necessarily have a physical interpretation. PCA can be seen as a rotation
of the original axes to a new set of orthogonal axes, that are aligned in the direction of maximum variation.

Let X be a data matrix, with N records and d numerical attributes, which is defined as:

X =

︸ ︷︷ ︸
d attributes

 xT
0
...

xT
N−1


N records

The problem of finding the principal components of X is the same as finding the eigen vectors of its covariance matrix
Σ, which is defined as:

Σ =
1

N
XTX− µµT, where µT =

1

N

N−1∑
i=0

xT
i .

To find the eigen vectors of Σ, a technique called the Power Method is used. PowerMethod is an iterative technique
that is used to find the dominant eigen-vector of a matrix, and is described in Algorithm 1. The intuition behind the

Algorithm 1 PowerMethod(Σ, T )

Input:
– Σ : covariance matrix of X
– T : number of iterations

Output:
– u1, λ1 : dominant eigen-vector of Σ and its eigen-value

1: Choose a random vector v(0) of size d
2: for i = 1 to T do
3: v(i) = Σv(i−1)

4: end for
5: return u1 = v(T )/‖v(T )‖ and λ1 = ‖v(T )‖/‖v(T−1)‖

Power Method is that by multiplying the initial vector v repeatedly by Σ, v is stretched in the direction of the Σ’s
dominant eigen-vector u1, to the point where the vector lies almost entirely in the direction of u1. Power Method
can also be used to find the k-th dominant eigen-vector of Σ by using the EigenShift procedure, which is described
in Algorithm 2. For input k, the Eigen Shift procedure outputs a matrix Σk whose most dominant eigen-vector is

Algorithm 2 EigenShift(Σ, {ui, λi}k−1i=1 )

Input:
– Σ : covariance matrix of X
– {ui, λi}: i-th dominant eigen-vector of Σ and its eigen-value

Output:
– Σk : k-shifted covariance matrix of X

1: Σ1 = Σ
2: for i = 1 to k − 1 do
3: Σi+1 = Σi − λiuiu

T
i

4: end for
5: return Σk

uk, where uk is the k-th most dominant eigen-vector of Σ and λk is its associated eigen-value. Therefore, combining
these two methods, the K dominant eigen-vectors (and their associated eigen-values) of the covariance matrix Σ can
be found to get the K principal components of X.

2.3 Linear Regression (LR)

Linear Regression is a statistical procedure that models a relationship between the target (dependent) variable y and
one or more input (independent) variables x using a linear equation. Given a dataset (X,y) = {(xT

i , yi)}
N−1
i=0 ∈ ZN×d,



6 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

where xT
i are the input variables and yi is the target variable, the aim is to find a vector of weights w such that

y ≈ Xw. We obtain w by minimizing the least-squares error defined by:

w = arg min
w∗

1

N

N∑
i=1

‖yi − xT
i w
∗‖2.

The most popular solution is an iterative technique called Gradient Descent. Gradient Descent is useful when we are
operating on data with very large dimension d. For smaller dimensions, there is a one-step analytical solution called
Normal Equation method, which computes w as:

w = (XTX)−1XTy.

We leverage an iterative division-free technique from [13] for matrix inversion, which only involves matrix multipli-
cations and additions. This technique, described in Algorithm 3, allows us to compute inverse of encrypted matrices.
There can be different choices for the input α to the function InvertMatrix, but taking α close to the largest eigen value

Algorithm 3 InvertMatrix(M, α, T )

Input:
– M : given matrix
– α: a constant close to the dominant eigen-value of M
– T : number of iterations

Output:
– M−1 : inverse of matrix M

1: A(0) = M,R(0) = I . I is the identity matrix
2: α(0) = α
3: for i = 1 to T do
4: R(i) = 2α(i−1)R(i−1) −R(i−1)A(i−1)

5: A(i) = 2α(i−1)A(i−1) −A(i−1)A(i−1)

6: α(i) = α(i−1)α(i−1)

7: end for
8: return M−1 = R(T )/α(T )

of matrix M ensures a stable quadratic convergence to M−1.

3 Matrix Operations

In the previous section, we described statistical procedures that we will compute securely in the cloud. It is evident
that these procedures require matrix operations. In this section, we describe the method used in [16] and propose a
new method for matrix operations over encrypted matrices. We also draw a complexity comparison between the two
methods in terms of homomorphic operations.

3.1 Lu et al.’s Method (Linear Array Arrangement)

Lu et al. proposed a matrix multiplication method in [16] that assumes a linear array arrangement of plaintext slots,
and works along the lines of column-order matrix-vector multiplication method described in [15, Section 4.3]. Given
the one-dimensional array arrangement, a vector can be packed directly in the plaintext slots (followed by zeros if the
length of vector is less than `) and encrypted. Their proposed techniques work on matrices encrypted in row-order i.e.
each row vector is encrypted separately. The encryption of a vector u ∈ Zdt and a matrix X ∈ Zd×dt are represented as
ct(u) and CT(X) = {ct(xT

i )}d−1i=0 respectively.

Outer Product of Vectors Given ciphertexts of vectors u and v, to compute their outer product homomorphically,
the function described in Algorithm 4 is used.

Matrix-Vector Multiplication Lu et al. have used the column-order matrix vector multiplication method of [15]
for matrix-vector multiplication. They took advantage of the fact that their application only requires dealing with
symmetric matrices. Therefore, they could use this method, described in Algorithm 5, even on matrices encrypted in
row-order.



Faster PCA and Linear Regression through Hypercubes in HElib 7

Algorithm 4 OuterProduct(ct(u), ct(v))

Input:
– ct(u), ct(v) : ciphertexts of vectors u,v ∈ Zd

t

Output:
– CT(uv) : ciphertexts for rows of matrix uv ∈ Zd×d

t

1: for i = 0 to d− 1 do
2: ct(uvT

i ) = replicate(ct(u), i) · ct(v)
3: end for
4: return CT(uv) . CT(uv) = {ct(uvi)}d−1

i=0

Algorithm 5 MatVecMul(CT(X), ct(u))

Input:
– CT(X) : ciphertexts for rows of a symmetric matrix X ∈ Zd×d

t

– ct(u) : ciphertext of vector u ∈ Zd
t

Output:
– ct(Xu) : ciphertext of vector Xu ∈ Zd

t

1: for i = 0 to d− 1 do
2: ct(Xu) += ct(xT

i ) · replicate(ct(u), i)
3: end for
4: return ct(Xu)

Matrix Addition & Multiplication Matrix addition and multiplication are computed in such a way that the layout
is preserved i.e. output matrix is also encrypted in row order. Matrix addition is fairly straight-forward, and is done
by adding the corresponding rows of the two matrices. Matrix multiplication is performed by the MatMul function
described in Algorithm 6.

Algorithm 6 MatMul(CT(X),CT(Y))

Input:
– CT(X),CT(Y) : ciphertexts for rows of matrices X,Y ∈ Zd×d

t

Output:
– CT(XY) : ciphertexts for rows of matrix XY ∈ Zd×d

t

1: for i = 0 to d− 1 do
2: for j = 0 to d− 1 do
3: ct(xyT

i ) += replicate(ct(xT
i ), j) · ct(yT

j ))
4: end for
5: end for
6: return CT(XY) . CT(XY) = {ct(xyT

i )}d−1
i=0

3.2 Our Method (Hypercube Arrangement)

We leverage a two-dimensional (n = 2, ref. Section 2.1) hypercube arrangement of plaintext slots to optimize matrix
operations over encrypted matrices and vectors. Let the size of the first and the second dimension be m1 = ord(f1)
and m2 = ord(f2) respectively. The hypercube can be seen as a matrix having m1 rows and m2 columns. For the rest
of discussion, we treat our hypercube arrangement of plaintext slots as a m1 ×m2 matrix V.

A matrix X ∈ Zd×dt can be packed in V by putting the (i, j)-th entry of the matrix in (i, j)-th position of the
hypercube i.e. V[i, j] = xi,j (all other positions are filled with zeros). There are two ways a vector u ∈ Zdt can be
packed in V:

1. Row-wise packing: If u is supposed to act like a row-vector in the computation, then we pack the vector u (row-wise)
in all the rows of V i.e. V[i, j] = uj , where i ∈ [m1] and j ∈ [d]. Given u = {uj}d−1j=0 , we have:

V =

 u0 . . . ud−1...
. . .

...
u0 . . . ud−1


m1



8 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

2. Column-wise packing: Similarly, if u is supposed to act like a column-vector in the computation, then we pack the
vector u (column-wise) in all the columns of V i.e. V[i, j] = ui, where i ∈ [d] and j ∈ [m2]. Given u = {ui}d−1i=0 ,
we have:

V =

︸ ︷︷ ︸
m2

 u0 . . . u0
...

. . .
...

ud−1 . . . ud−1



There are two major advantages of using the hypercube arrangement:

– Space-efficient: Using the hypercube arrangement, we can pack the whole matrix in a single plaintext, as opposed
to the linear array arrangement, which requires d plaintexts. Let Vl = {vT

i }
d−1
i=0 and Vh be the packing of matrix

X ∈ Zd×dt in the linear array and hypercube arrangement respectively. Then, we have:

︸ ︷︷ ︸
Vl = {vT

i }
d−1
i=0

 [ x0,0 . . . x0,d−1 ]
...

. . .
...

[ xd−1,0 . . . xd−1,d−1 ]


︸ ︷︷ ︸

Vh

 x0,0 . . . x0,d−1
...

. . .
...

xd−1,0 . . . xd−1,d−1



d-ciphertexts 1-ciphertext

– Time-efficient: The hypercube arrangement offers a huge advantage by enabling us to operate on a dimension,
independent of other dimensions. Therefore, given a set of positions {ki}d−1i=0 , we can replicate the ki-th element of
the i-th row through one replication operation with hypercube arrangement as opposed to d replication operations
in case of linear array. Hence, we can utilize the SIMD operations to a greater extent. On performing replication,
we get:

︸ ︷︷ ︸{
replicate(vT

i , ki)
}d−1

i=0

[ x0,k0 . . . x0,k0 ]
...

. . .
...

[xd−1,kd−1
. . . xd−1,kd−1

]


︸ ︷︷ ︸

replicate1D
(
Vh, 2, {ki}d−1

i=0

)

 x0,k0 . . . x0,k0
...

. . .
...

xd−1,kd−1
. . . xd−1,kd−1



d-replications 1-replication

This property holds for all data movement operations such as rotation and total-sum. Similarly, we can also
replicate the ki-th element of the i-th column through a call to the function replicate1D

(
Vh, 1, {ki}d−1i=0

)
.

We use the notation ct1(u) and ct2(u) to denote ciphertexts encrypting the vector u ∈ Zdt row-wise and column-wise
respectively. The encryption of matrix X ∈ Zd×dt is denoted by the notation ct(X).

Outer Product of Vectors The outer product of vectors u ∈ Zdt and v ∈ Zdt is computed by the function defined
in Algorithm 7.

Algorithm 7 OuterProduct1D(ct2(u), ct1(v))

Input:
– ct2(u) : column-wise encryption of u ∈ Zd

t

– ct1(v) : row-wise encryption of v ∈ Zd
t

Output:
– ct(uv) : ciphertext of matrix uv ∈ Zd×d

t

1: ct(uv) = ct2(u) · ct1(v)
2: return ct(uv)



Faster PCA and Linear Regression through Hypercubes in HElib 9

Matrix-Vector Multiplication To multiply a matrix X ∈ Zd×dt with a vector u ∈ Zdt , our technique requires the
matrix and the vector to be encrypted in one of the following ways:

1. X is encrypted and u is encrypted row-wise.
2. XT is encrypted and u is encrypted column-wise.

It turns out that our technique outputs vector Xu encrypted column-wise if the input vector u is encrypted row-wise
and vice-versa. This doesn’t pose a problem since we can easily convert between the two packings by multiplying the
vector with identity matrix I. For our application, we can do successive multiplications (without a need for conversion)
with encryption of X since we only deal with symmetric matrices. Our technique for matrix vector multiplication is

Algorithm 8 MatVecMul1D(ct(X), ct1/2(u))

Input:
– ct(X) : ciphertext of a symmetric matrix X ∈ Zd×d

t

– ct1/2(u) : row/column-wise encryption of u ∈ Zd
t

Output:
– ct2/1(Xu) : column/row-wise encryption of Xu ∈ Zd

t

1: ct1/2(Xu∗) = ct(X) · ct1/2(u)
2: ct2/1(Xu) = TS1D(ct1/2(Xu∗), 2)
3: return ct2/1(Xu) . ct1/2(·)→ ct2/1(·)

defined in Algorithm 8 and the following examples demonstrate its working:

︸ ︷︷ ︸
ct(X)

[
1 2
2 4

]
· ︸ ︷︷ ︸

ct1(u)

[
e g
e g

]
→ ︸ ︷︷ ︸

ct1(Xu∗)

[
e 2g
2e 4g

]
TS1D(2)−−−−−→ ︸ ︷︷ ︸

ct2(Xu)

[
e+ 2g e+ 2g
2e+ 4g 2e+ 4g

]

︸ ︷︷ ︸
ct(X)

[
1 2
2 4

]
· ︸ ︷︷ ︸

ct2(u)

[
e e
g g

]
→ ︸ ︷︷ ︸

ct2(Xu∗)

[
e 2e
2g 4g

]
TS1D(1)−−−−−→ ︸ ︷︷ ︸

ct1(Xu)

[
e+ 2g 2e+ 4g
e+ 2g 2e+ 4g

]

Note: We can switch between the two encrypted vector packings at the cost of a replication by using the SwitchOrder1D
routine that comes directly from the MatVecMul1D function by replacing ct(X) with I, where I is the identity matrix.
Therefore, combining the two functions, we get a general-purpose function to do matrix vector multiplication.

Matrix Addition & Multiplication Matrix Addition is trivial for our packing and can be simply done by adding the
ciphertexts of the two matrices. For matrix multiplication, we use the Fox Matrix multiplication method for hypercubes
described in [9]. This method can be seen as an extension of the diagonal order matrix-vector multiplication described
in [15, Section 4.3]. Suppose we want to multiply a matrix X ∈ Zd×dt with a matrix Y ∈ Zd×dt . Given the hypercube
structure, we can rotate the column vectors of Y by i positions, denoted by Y �<1 i, with one rotation operation.
Using one replication operation, we can extract the i-th diagonal of X, defined as di(X) = (x0,i, x1,i+1, . . . , xd−1,i−1),

and replicate it along the rows. Then, we can compute the product XY as
∑d−1
i=0 di(X)× (Y �<1 i). The MatMul1D

function implements our matrix multiplication procedure and is defined in Algorithm 9.
The following example demonstrates the working of MatMul1D:

︸ ︷︷ ︸
ct(X)

[
1 2
3 4

]
× ︸ ︷︷ ︸

ct(Y)

[
e f
g h

]
→

ct(d0(X)× (Y �<1 0))︷ ︸︸ ︷
︸ ︷︷ ︸

i = 0

[
1 1
4 4

]
·
[
e f
g h

]
+

ct(d1(X)× (Y �<1 1))︷ ︸︸ ︷
︸ ︷︷ ︸

i = 1

[
2 2
3 3

]
·
[
g h
e f

]

Remark 1. Our matrix multiplication technique defined for square matrices can be easily extended to general matrices.
Every matrix can be partitioned into square sub-matrices called blocks. We can then multiply the matrices block-wise
using the Block Matrix Multiplication technique.



10 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

Algorithm 9 MatMul1D(ct(X), ct(Y))

Input:
– ct(X), ct(Y) : ciphertexts of matrices X,Y ∈ Zd×d

t

Output:
– ct(XY) : ciphertext of matrix XY ∈ Zd×d

t

1: for i = 0 to d− 1 do
2: for j = 0 to d− 1 do
3: kj = i+ j (mod d)
4: end for
5: ct2(di(X)) = replicate1D(ct(X), 2, {kj}d−1

j=0 )
6: ct(Y �<1 i) = rotate1D(ct(Y), 1,−i)
7: ct(XY) += ct2(di(X)) · ct(Y �<1 i)
8: end for
9: return ct(XY)

3.3 Comparison

In this subsection, we compare the complexities of the techniques described in Section 3.1 and Section 3.2, in terms
of homomorphic operations. For details on effect of these operations on noise and their running time, we refer the
readers to [15, Table 1]. In Table 1, we have summarized the complexities for all the matrix operations. It can be easily

Table 1. Complexity of Matrix Operations in terms of Homomorphic Operations. d is the size of matrix dimensions and “−”
denotes that the operation is not used. The rows corresponding to our techniques are shown in bold face.

Addition Multiplication Rotation Scalar-multiply

OuterProduct O(d log d) O(d)∗ O(d log d) O(d)∗

OuterProduct1D − O(1)∗ − −
MatVecMul O(d log d) O(d)∗ O(d log d) O(d)∗

MatVecMul1D O(log d) O(1)∗ O(log d) −
SwitchOrder1D O(log d) − O(log d) O(1)∗

MatMul O(d2 log d) O(d2)∗ O(d2 log d) O(d2)∗

MatMul1D O(d log d) O(d)∗ O(d log d) O(d)∗

∗ : represents that the depth complexity of the operation is O(1)

observed that for all the matrix operations, our method has decreased the complexity by a factor of matrix dimension
i.e. d.

4 Secure computation in the cloud

Having defined the matrix primitives in the previous section, we are now ready to proceed to defining protocols for
secure computation in the cloud. We showed in the previous section that our method for matrix operations can result
in significant performance improvement. Therefore, we adapt the PrivatePCA and PrivateLR protocols proposed in [16]
to work with our method for secure matrix operations. The protocols used are basically the same, except we have used
our method for matrix operations. Before we proceed with their description, we first describe the input data that will
be computed upon:

– We perform statistical procedures on datasets with entries in the real domain. Since the BGV scheme only works
on integers, we first need to convert all the real attributes of a dataset into integers with fixed point precision.
Given x ∈ R, we scale it up by the magnifying constant M and then round it to the nearest integer i.e. bMxe. For
the rest of description, we assume that we are computing statistics on datasets with integer attributes.

– Our setup assumes that the data rows could be coming from different sources that require that their data remains
secure from other sources and the cloud. To keep the data secure, each source can encrypt their data rows separately,
and send them to the cloud. But there is a problem that given the dataset (X,y) = {xT

i , yi}
N−1
i=0 ∈ ZN×dt , it will

be too inefficient to compute XTX or XTy homomorphically for any practical N . To overcome this problem, we
use the fact that XTX =

∑N−1
i=0 xix

T
i and XTy =

∑N−1
i=0 yix

T
i . Therefore, each source can encrypt the matrix

xix
T
i and the vector yix

T
i for each data row independent of other sources, which can then be added in the cloud

to reconstruct XTX and XTy.



Faster PCA and Linear Regression through Hypercubes in HElib 11

Remark 2. Since we use the protocols proposed by Lu et al., with the exception of underlying matrix operations, we
defer the security analysis of the protocols to [16, Section VI].

4.1 PrivatePCA

In this subsection, we want to compute the principal components of the data matrix X ∈ ZN×dt securely in the cloud,
which requires to compute the covariance matrix Σ = 1

NXTX−µµT. Since we can’t perform division while computing
µT and 1

NXTX in the cloud, we rather calculate N2Σ, multiplying XTX by N and computing NµT in place of µT.
This works because scaling a matrix doesn’t change the direction of its eigen-vectors, it only scales their associated
eigen-values. To compute N2µµT, we first compute NµT in row-wise packing, use SwitchOrder1D procedure to get
Nµ in column-wise packing, and then input both the ciphertexts into OuterProduct1D to get an encrypted matrix
for N2µµT. Having computed N2Σ, all that is left is to multiply the vector v with matrix N2Σ repeatedly. Since
N2Σ is a symmetric matrix, we can do it directly with MatVecMul1D procedure without the need of SwitchOrder1D
procedure. The description of the protocol is given in Algorithm 10.

Algorithm 10 PrivatePCA({ct1(xT
i ), ct(xix

T
i )}N−1i=0 , T )

Input:
– ct1(xT

i ) : row-wise encryption of i-th row of X
– ct(xix

T
i ) : ciphertext of outer-product of xT

i with itself
– T : number of iterations

Output:
– u1, λ1 : first principal component of X and its magnitude

Cloud:
1: ct1(NµT) =

∑N−1
i=0 ct1(xT

i ) . NµT ∈ Zd
t

2: ct2(Nµ) = SwitchOrder1D(ct1(NµT))
3: ct(N2µµT) = OuterProduct1D(ct2(Nµ), ct1(NµT))
4: ct(N2Σ) = N ·

∑N−1
i=0 ct(xix

T
i )− ct(N2µµT) . N2Σ ∈ Zd×d

t

5: for i = 1 to T do
6: if i is odd then
7: ct2(v(i)) = MatVecMul1D(ct(N2Σ), ct1(v(i−1)))
8: else if i is even then
9: ct1(v(i)) = MatVecMul1D(ct(N2Σ), ct2(v(i−1)))

10: end if
11: end for
12: if T is odd then
13: return ct2(v(T )) and ct1(v(T−1))
14: else if T is even then
15: return ct1(v(T )) and ct2(v(T−1))
16: end if

Decryptor:
1: return u1 = v(T )/‖v(T )‖ and λ1 = ‖v(T )‖/(N2 · ‖v(T−1)‖)

In this way, we can securely compute the first principal component of data matrix X. Apart from the PowerMethod
that we have in place in the form of PrivatePCA, we just need the EigenShift procedure to compute other principal
components securely. The EigenShift procedure is easily performed in the cloud through simple operations like matrix
addition and homomorphic multiplication, along with outer product on ui’s which can be done exactly like we did on
Nµ.

Remark 3. If the input data is known to be normalized beforehand, we can skip the computation of N2µTµ since it
will always be zero. Moreover, we don’t need to multiply XTX with N then.

4.2 PrivateLR

To perform Linear Regression on the dataset (X,y) = {xT
i , yi}

N−1
i=0 ∈ ZN×dt , we need to compute w = (XTX)−1XTy.

Since we can construct encrypted matrices XTX and XTy in the cloud by adding the inputs xix
T
i and yix

T
i respectively,

all we need is to invert the matrix XTX and multiply it with XTy. We use the procedure defined in Algorithm



12 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

3 for matrix inversion, that involves just matrix multiplications and additions. Hence, we can use our proposed
matrix operations to compute Linear Regression securely. We also need the dominant eigen value λ of matrix XTX ∈
Z(d−1)×(d−1)
t for stable geometric convergence, which we can get through the PCA protocol before performing Linear

Regression. For the scalar λ ∈ Zt, we use the notation ct(λ) to refer to the ciphertext of a plaintext V with λ packed
in each plaintext slot i.e. V[i, j] = λ. The PrivateLR protocol is described in Algorithm 11.

Algorithm 11 PrivateLR({ct1(yix
T
i ), ct(xix

T
i )}N−1i=0 , ct(λ), T )

Input:
– ct1(yix

T
i ) : row-wise encryption of i-th row of X multiplied with i-th element of y

– ct(xix
T
i ) : ciphertext of outer-product of xT

i with itself
– ct(λ) : ciphertext of dominant eigen-value of XTX
– T : number of iterations

Output:
– w : weight vector w ∈ Zd−1

t

Cloud:
1: ct1(XTy) =

∑N−1
i=0 ct1(yix

T
i ) . XTy ∈ Z(d−1)

t

2: ct(A0) = ct(XTX) =
∑N−1

i=0 ct(xix
T
i ) . XTX ∈ Z(d−1)×(d−1)

t

3: ct(R0) = ct(I), ct(α(0)) = ct(λ)
4: for i = 1 to T do
5: ct(B) = 2 · ct(α(i−1)) · I− ct(A(i−1))
6: ct(R(i)) = MatMul1D(ct(R(i−1)), ct(B))
7: ct(A(i)) = MatMul1D(ct(A(i−1)), ct(B))
8: ct(α(i)) = ct(α(i−1)) · ct(α(i−1))

9: end for . ct(λ2T (XTX)−1) = ct(R(T ))

10: ct2(λ2T w) = MatVecMul1D(ct(λ2T (XTX)−1), ct1(XTy))

11: return ct2(λ2T w) and ct(λ2T ) . ct(α(T )) = ct(λ2T )

Decryptor:

1: return w from λ2T w by dividing with λ2T .

Remark 4. We have described the protocols as if each data row is coming from an independent source. In practice,
we will have multiple data rows coming from a particular source. The sources can send just one ciphertext each for
xT
i ,xix

T
i and yix

T
i by performing addition corresponding to their data rows in the plaintext.

5 Choosing the right context

The right choice of context parameters can significantly improve the performance of our protocols. Choosing the right
parameters is a non-trivial task in HElib and in most works using HElib, the authors do not describe how they chose
the optimal parameters for their application. In this section, we describe the theory used to choose optimal parameters
for our setup. Moreover, we found that the parameter choice in [16] is non-optimal. So, we describe how to choose the
right parameters for their setup as well.

As described in Section 2.1, {f1, . . . , fn} is the generating set of Z∗m/〈t〉. Let the order of fi in Z∗m/〈t, f1, . . . , fi−1〉 be
mi. Therefore, we have the number of plaintext slots ` = |Z∗m/〈t〉| =

∏n
i=1mi. For efficient data movement operations,

we basically have two main requirements:

1. For each i ∈ [n], we should have ordZ∗m(fi) = mi, since it allows true rotations on slots.
2. ` should be kept close to the number of plaintext slots required by the application.

For more details on why we have these requirements, refer [14, Section 4]. Before proceeding to the solution that
satisfies the above-mentioned requirements, we derive some results on which our solution will be based.

Theorem 1. Let G be a finite abelian group. Suppose we have an element g ∈ G and a subgroup N such that ord(g) = k
and |N | = K. Then the following holds:

gcd(k,K) = 1 =⇒ ordG(g) = ordG/N (g).



Faster PCA and Linear Regression through Hypercubes in HElib 13

Proof. It is clear from the definition of a quotient group that:

ordG(g) = ordG/N (g)⇐⇒ 〈g〉 ∩N = {e},

where e is the identity element of G. Therefore, to prove the theorem, it is sufficient to prove that gcd(k,K) = 1
implies 〈g〉 ∩ N = {e}. Let g′ be an arbitrary element ∈ 〈g〉 ∩ N . This implies that ord(g′)|k as well as ord(g′)|K.
Since gcd(k,K) = 1, g′ has order 1, implying g′ = e. Since we assumed g′ to be a general element in 〈g〉 ∩N , we have
〈g〉 ∩N = {e}.

Corollary 1. Let g ∈ G be an element of a finite abelian group G with ord(g) = k. Suppose we have n elements
g1, . . . , gn ∈ G with ord(gi) = ki. We denote the subgroup generated by the set {g1, . . . , gn} with N i.e. N = 〈g1, . . . , gn〉.
Then the following holds:

∀i ∈ [n], gcd(ki, k) = 1 =⇒ ordG(g) = ordG/N (g)

Proof. It is a well-known equality that given subgroups N1, N2 / G, we have a subgroup N1N2 = {h1h2|h1 ∈ N1, h2 ∈
N2} such that |N1N2| = |N1| · |N2|/|N1 ∩ N2|. Therefore, we have a subgroup N generated by {gi}ni=1 of order K
which divides the product of all ki’s i.e. K|(

∏n
i=1 ki). Since ∀i ∈ [n], gcd(ki, k) = 1, we have gcd(k,K) = 1. Hence, by

Theorem 1, the proof is complete.

5.1 For Lu et al.’s Method

For our application using Lu et al.’s method, we need a one-dimensional array of size m1, where m1 is greater than and
close to d. Moreover, this dimension should be a good dimension. These two conditions satisfy our above-mentioned
requirements for efficient data movement. We achieve these conditions by choosing m and t such that:

1. m = k·m1 + 1 ∈ P,
2. gcd(k,m1) = 1,

3. ord(t) = k.

Since m is chosen to be a prime, Z∗m is a cyclic group of order m1 · k. This ensures that it has an element f1 of
order m1. If we choose an element of order k (exists because Z∗m is cyclic) as t, then the number of plaintext slots
` = |Z∗m/〈t〉| = m1. Given gcd(k,m1) = 1, by Corollary 1, we get ordZ∗m(f1) = ordZ∗m/〈t〉(f1) = m1. Therefore,
Z∗m/〈t〉 = 〈f1〉 and we get a one-dimensional array with a good dimension of size m1.

5.2 For Our Method

The optimal parameters for our method lead to a two-dimensional hypercube with good dimensions of size m1 and
m2, where m1 = d and m2 is greater than and close to d. These parameters satisfy the requirements for efficiency, and
are achieved by choosing m and t such that:

1. m = k·m1 ·m2 + 1 ∈ P,
2. gcd(k,m1) = gcd(k,m2) = gcd(m1,m2) = 1,

3. ord(t) = k.

Since Z∗m is a cyclic group of order k ·m1 ·m2, we can find f1 and f2 in Z∗m with order m1 and m2 respectively. For
a chosen t of order k, we have ` = |Z∗m/〈t〉| = m1·m2. Given gcd(k,m1) = 1 and gcd(k,m2) = gcd(m1,m2) = 1, by
Corollary 1, we get ordZ∗m(f1) = ordZ∗m/〈t〉(f1) = m1 and ordZ∗m(f2) = ordZ∗m/〈t,f1〉(f2) = m2 respectively. Therefore,
Z∗m/〈t〉 = 〈f1, f2〉 and we get a two-dimensional hypercube with good dimensions of size m1 and m2.

Remark 5. It gets relatively easier to find an optimalm for Lu et al.’s method as the matrix dimension grows. Therefore,
for a considerably large d, we have to settle with relaxed parameters for our method. Despite the relaxed parameters,
our method still vastly outperforms Lu et. al’s because our method improves the complexity of their techniques by a
factor of d (see Table 1).



14 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

5.3 CRT method for plaintext modulus

In HElib, the maximum plaintext precision is 60 bits, which is not sufficient for our applications. To address this
problem, we split the plaintext modulus t into e different primes ti each of bitsize ¡ 60 bits such that t =

∏e
i=1 ti

for some e ∈ Z. Now, we create e different instances of the cryptosystem, with i-th instance operating on plaintext
modulus ti, and encrypt our inputs in each one of them. Then, the protocol is performed for every instance and the
decryption results are combined using the Chinese Remainder Theorem to get plaintext precision of

∏e
i=1blog2(ti)c

bits. Using the CRT method, we essentially have e ciphertexts as opposed to one. This does not pose a problem since
the CRT method is completely parallelizable. Moreover, increasing e leads to a smaller ti, and as a result, lesser number
of levels L. Therefore, we get a more efficient implementation, given we have enough CPU cores.

Remark 6. In practice, we want to choose each ti of p-bits, and to maintain security, m is chosen to be greater than
a lower bound which depends on t and the number of levels L. To choose each ti, we search the equivalence class of
elements with order k for distinct p-bit members. The number m is chosen such that m1 and m2 are close to d while
keeping m as close to the lower bound as possible.

6 Implementation Details and Results

We implemented the protocols defined in Section 4 using both our method and Lu et al.’s method. The implementations
were written in C++ and compiled with g++ 4.8.5. We used HElib [14] for the implementation of the BGV scheme.
Our experiments ran on a machine with Intel(R) Xeon(R) E5-4650@2.70GHz processor and 1TB memory running
CentOS 7.5.1804. In all our experiments, we use CRT method with e = 8 (see Section 5.3), and have parallelized the
implementations over 8 threads.

6.1 Experimental Setup

Our experimental setup is identical to the one used in [16]. We have conducted our experiments on five datasets
from the UCI Machine Learning Repository [8]. For the analysis of the effect of number of iterations and different
magnification constants on performance, experiments were performed on the adult dataset that has N = 32561 records
with d = 6 numerical attributes each. More specifically, we took iteration numbers T = {3, 4, 5} for PrivatePCA protocol
and iteration numbers T = {1, 2, 3} for PrivateLR protocol. Three magnification constants M = {10, 100, 1000} were
considered for both the protocols. Experiments on the other datasets serve to show the scalability of our approach
and we have taken T = 5,M = 1000 and T = 3,M = 1000 for PrivatePCA and PrivateLR protocol, respectively on
these datasets. Following the experimental setup of [16], we have also performed all our experiments on normalized
datasets, with the assumption that the data is coming from a single source. Since our experimental setup is identical
to Lu et al.’s, we defer to [16, Appendix A] for discussion on iteration-error tradeoffs.

6.2 Selection of Parameters

Our parameter selection basically involves choosing m and ti that define the plaintext spaces Z[X]/(Φm(X), ti) for 1 ≤
i ≤ e, and L which defines the number of levels. Given a dataset with each entry bounded by B, we get a lower bound

on the bitsize p of ti from the inequality ti > (B2MNd)T/8 for the PrivatePCA protocol and ti > M1/8(B2MNd)2
T /8

for the PrivateLR protocol. An ephemeral p-bit prime following this inequality is sampled and a dry run is performed
to find the required number of levels L.

According to the analysis of [11, Appendix C.3], we get κ-bit security from the BGV scheme if the following
inequality holds:

φ(m) >
(L(log φ(m) + 23)− 8.5)(κ+ 110)

7.2
.

Since we only choose a prime m in our setup, we can replace φ(m) with m− 1 in the above inequality. Given L (from
dry run) and a minimum security requirement κ, from the above inequality, we get a lower bound on m. Given the
lower bound on m and bitsize of ti, we choose m and the ti’s according to the method described in Section 5 for both
our method and Lu et al.’s. In the experiments concerning PrivatePCA, we have taken m1 = d for Lu et al.’s method
and (m1,m2) = (d, d+ 1) for our method. For experiments concerning PrivateLR, we have taken m1 = d− 1 for Lu et
al.’s method and (m1,m2) = (d− 1, d) for our method.



Faster PCA and Linear Regression through Hypercubes in HElib 15

Remark 7. We have chosen the best possible plaintext dimensions for our experiments. We could easily find such
parameters since the matrix dimension was not too large (≤ 20). For operations on matrices with large dimensions, we
can relax the upper bound on the size of plaintext dimensions, or we can use the block matrix multiplication method.

For other parameters in HElib, we use the default values such as σ = 3.2 (standard deviation parameter for error
distribution), H = 64 (Hamming weight of secret key), r = 1 (lifting factor) and c = 3 (number of columns in key
switching matrix). For all the experiments, we have maintained a minimum security of 128 bits.

6.3 Results and Analysis

In Table 2 and Table 3, we have compared the performance of our method with Lu et al.’s method for performing
PrivatePCA and PrivateLR respectively. For PrivatePCA, we have only considered the time taken to compute the first
principal component, and for PrivateLR, we exclude the time taken to compute the first eigen value λ1. From the
results of Table 2 and Table 3, the following observations can be made:

– Encryption Time: The encryption time for our method is d times faster than Lu et al.’s on an average because we
require one ciphertext to encrypt a matrix, as opposed to d ciphertexts for their method.

– Evaluation Time: The difference in homomorphic evaluation time is in accordance with the complexities of matrix
operations described in Table 1. As expected, the evaluation time of our method is d times faster than Lu et al.’s.

– Decryption Time: Since the output of both the protocols is a vector, our method outputs the same number of
ciphertexts as Lu et al.’s method. Our decryption time is more, owing to the fact that the decoding operation
takes more time for our method, given we are using more plaintext slots.

– Depth Requirement : Our method has comparatively less depth requirement. This is due to the fact that the
MatVecMul procedure requires an additional scalar-multiplication operation, which adds moderate noise (see [15,
Table 1]), compared to the MatVecMul1D procedure. This effect is more pronounced in PrivatePCA since it involves
the matrix vector multiplication in each iteration, while PrivateLR involves it only once.

7 Conclusion and Future Work

We made the protocols for PCA and Linear Regression, proposed in [16], more efficient by improving their underlying
matrix operations by a factor of data dimension. This was achieved by utilising the hypercube structure of the
plaintext slots. Our techniques for matrix operations are flexible and can be used for any application involving matrix
operations. In addition to this, we show how to choose optimal parameters for our method as well as for the method
proposed in [16] by Lu et al. With our improved matrix procedures, we reduced the evaluation time of largest case
(d = 20, N = 1994,M = 1000, T = {5}) for PCA from 149 seconds to 6.5 seconds, and of largest case (d = 20, N =
1994,M = 1000, T = {3}) for Linear Regression from 4400 seconds to 207 seconds. With this work, we show that the
plaintext space can be utilized to a larger extent, leading to much faster PCA and Linear Regression computation.

A direction for future work is the extension of the hypercube structure from two to three-dimensions. As a result,
we can reduce the complexity of matrix multiplication from O(d log d) to O(log d), where d is the matrix dimension.
This can be done by constructing a multiplication procedure along the lines of DNS algorithm [7]. A limitation of this
approach is that it will be harder for us to find optimal parameters. A future work can explore the situations where it
is beneficial to use a higher dimension plaintext structure. In this paper, we’ve considered predictive statistics through
exact arithmetic and controlled the high plaintext modulus growth by using the CRT method and leveraging multiple
cores to limit the impact. Switching to a scheme that allows approximate arithmetic, like the one described in [6], can
help resolve this problem. Encoding techniques that better utilise the finite field structure of a plaintext slot can also
help in containing the large plaintext modulus.

8 Acknowledgement

This work was supported by JST CREST Grant Number JPMJCR14D6, Japan. A part of this work was also supported
by JSPS KAKENHI Grant Number 16H02830.



16 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

Table 2. Performance comparison for the PrivatePCA protocol of our method (Section 4.1) with Lu et al.’s method ([16, Section
V.C], with our optimized parameters) to find the first principal component. For all the experiments, we split the plaintext
modulus into 8 primes t1, . . . , t8 using our CRT method and use 8 threads to execute them all in parallel. The performance for
our method is shown in bold face.

Dataset details Exp. Settings BGV settings Performance (seconds)

Dataset N d M T blog2(ti)c m L Encryption Hom. Eval. Decryption Total time

adult 32561 6

10

3 11
12703 11 0.4788 5.4683 0.1319 6.079

11047 9 0.0912 0.8562 0.2713 1.2187

4 12
14503 13 0.5767 8.8194 0.1363 9.5324

13063 11 0.1161 1.529 0.2893 1.9344

5 15
18583 17 1.2227 22.8318 0.2323 24.2868

15331 13 0.1469 2.2915 0.5591 2.9975

100

3 11
12703 11 0.4788 5.4683 0.1319 6.079

11047 9 0.0912 0.8562 0.2713 1.2187

4 14
14683 13 0.5288 9.0437 0.1364 9.7089

14071 11 0.1199 1.7285 0.296 2.1444

5 17
23011 21 1.4851 30.8704 0.2728 32.6283

15331 13 0.1423 2.3695 0.5595 3.0713

1000

3 11
12703 11 0.4788 5.4683 0.1319 6.079

11047 9 0.0912 0.8562 0.2713 1.2187

4 15
14683 13 0.6396 8.9445 0.2 9.7841

14071 11 0.1328 1.7843 1.1814 3.0985

5 19
25603 23 1.6289 33.835 0.4118 35.8757

19447 17 0.2769 5.5374 0.6144 6.4287

auto-mpg 398 7 1000 5 15
19069 17 1.3713 33.1703 0.2885 34.8301

15401 13 0.1583 2.5215 1.3696 4.0494

winequality 4898 12 1000 5 18
26293 23 3.4114 84.1018 0.5672 88.0804

19501 15 0.2865 5.3242 2.2644 7.8751

forestfires 517 13 1000 5 16
20749 19 3.074 82.9019 0.4014 86.3773

15107 13 0.1651 2.9428 1.4105 4.5184

communities 1994 20 1000 5 17
22741 21 5.1348 148.784 0.6661 154.5849

18061 15 0.2803 6.3988 2.09 8.7691

References

1. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Proceedings of the Second Inter-
national Conference on Theory of Cryptography. pp. 325–341. TCC’05, Springer-Verlag, Berlin, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30576-7 18, http://dx.doi.org/10.1007/978-3-540-30576-7_18

2. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015 (2015), https:
//www.ndss-symposium.org/ndss2015/machine-learning-classification-over-encrypted-data

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Conference. pp. 309–325. ITCS ’12, ACM, New York, NY,
USA (2012). https://doi.org/10.1145/2090236.2090262, http://doi.acm.org/10.1145/2090236.2090262

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent messages.
In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. pp. 505–524. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

5. Cheon, J.H., Kim, M., Kim, M.: Optimized search-and-compute circuits and their application to query evalua-
tion on encrypted data. IEEE Transactions on Information Forensics and Security 11(1), 188–199 (Jan 2016).
https://doi.org/10.1109/TIFS.2015.2483486

6. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi,
T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017. pp. 409–437. Springer International Publishing, Cham
(2017)

https://doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/978-3-540-30576-7_18
https://www.ndss-symposium.org/ndss2015/machine-learning-classification-over-encrypted-data
https://www.ndss-symposium.org/ndss2015/machine-learning-classification-over-encrypted-data
https://doi.org/10.1145/2090236.2090262
http://doi.acm.org/10.1145/2090236.2090262
https://doi.org/10.1109/TIFS.2015.2483486


Faster PCA and Linear Regression through Hypercubes in HElib 17

Table 3. Performance comparison for the PrivateLR protocol of our method (Section 4.2) with Lu et al.’s method ([16, Section
V.C], with our optimized parameters). We excluded the computational time required to compute the largest eigen-value λ1. For
all the experiments, we split the plaintext modulus into 8 primes t1, . . . , t8 using our CRT method and use 8 threads to execute
them all in parallel. The performance for our method is shown in bold face.

Dataset details Exp. settings BGV settings Performance (Seconds)

Dataset N d M T blog2(ti)c m L Encryption Hom. Eval. Decryption Total time

adult 32561 6

10

1 11
10531 9 0.4964 3.8267 0.0733 4.3964

8311 7 0.1959 0.6444 0.1471 0.9874

2 15
13121 11 0.5524 28.1256 0.1198 28.7978

10771 9 0.2719 4.7969 0.2767 5.3455

3 26
23741 21 1.8307 159.8920 0.2256 161.9483

20731 19 0.7658 34.0543 0.6125 35.4326

100

1 11
10531 9 0.4964 3.8267 0.0733 4.3964

8311 7 0.1959 0.6444 0.1471 0.9874

2 17
15031 13 0.6564 33.8865 0.1153 34.6582

14011 11 0.2912 6.5338 0.3211 7.1461

3 30
27011 23 1.8077 188.1300 0.2712 190.2089

23011 21 0.7817 38.3839 0.6418 39.8074

1000

1 11
10531 9 0.4964 3.8267 0.0733 4.3964

8311 7 0.1959 0.6444 0.1471 0.9874

2 19
17011 15 1.2712 60.1418 0.1906 61.6036

14731 13 0.3093 7.4470 0.3506 8.1069

3 33
28111 25 2.0766 206.4470 0.2745 208.7981

26431 23 0.9210 45.4241 0.6954 47.0405

auto-mpg 398 7 1000 3 26
24007 21 2.0630 228.9190 0.2190 231.2010

21211 19 0.8031 49.1406 0.6096 50.5533

winequality 4898 12 1000 3 30
26203 23 3.5929 1169.4800 0.3569 1173.4298

23629 21 0.8884 95.7648 3.1740 99.8228

forestfires 517 13 1000 3 27
25117 23 3.8555 1158.9700 0.3843 1163.2098

22621 21 0.8640 122.2040 2.9421 126.0101

communities 1994 20 1000 3 29
27361 23 6.0348 4399.6500 0.4428 4406.1276

26981 21 0.9311 207.5400 4.2580 212.7291

7. Dekel, E., Nassimi, D., Sahni, S.: Parallel matrix and graph algorithms. SIAM Journal on Computing 10(4), 657–675 (1981).
https://doi.org/10.1137/0210049, https://doi.org/10.1137/0210049

8. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017), http://archive.ics.uci.edu/ml

9. Fox, G., Otto, S., Hey, A.: Matrix algorithms on a hypercube i: Matrix multiplication. Parallel Computing 4(1),
17 – 31 (1987). https://doi.org/https://doi.org/10.1016/0167-8191(87)90060-3, http://www.sciencedirect.com/science/
article/pii/0167819187900603

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-first Annual
ACM Symposium on Theory of Computing. pp. 169–178. STOC ’09, ACM, New York, NY, USA (2009).
https://doi.org/10.1145/1536414.1536440, http://doi.acm.org/10.1145/1536414.1536440

11. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In: Safavi-Naini, R., Canetti, R. (eds.)
Advances in Cryptology – CRYPTO 2012. pp. 850–867. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

12. Graepel, T., Lauter, K., Naehrig, M.: Ml confidential: Machine learning on encrypted data. In: Proceedings of the 15th
International Conference on Information Security and Cryptology. pp. 1–21. ICISC’12, Springer-Verlag, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37682-5 1, http://dx.doi.org/10.1007/978-3-642-37682-5_1

13. Guo, C., Higham, N.: A schur-newton method for the matrix pth root and its inverse. SIAM Journal on Matrix Analysis
and Applications 28(3), 788–804 (2006). https://doi.org/10.1137/050643374, https://doi.org/10.1137/050643374

14. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library (2013), http://people.csail.mit.
edu/shaih/pubs/he-library.pdf

15. Halevi, S., Shoup, V.: Algorithms in helib. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014.
pp. 554–571. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

https://doi.org/10.1137/0210049
https://doi.org/10.1137/0210049
http://archive.ics.uci.edu/ml
https://doi.org/https://doi.org/10.1016/0167-8191(87)90060-3
http://www.sciencedirect.com/science/article/pii/0167819187900603
http://www.sciencedirect.com/science/article/pii/0167819187900603
https://doi.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-37682-5_1
http://dx.doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1137/050643374
https://doi.org/10.1137/050643374
http://people.csail.mit.edu/shaih/pubs/he-library.pdf
http://people.csail.mit.edu/shaih/pubs/he-library.pdf


18 Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya Yasuda

16. Lu, W., Kawasaki, S., Sakuma, J.: Using fully homomorphic encryption for statistical analysis of categorical, ordinal and
numerical data (this is the full version of the conference paper presented at NDSS 2017). IACR Cryptology ePrint Archive,
Report 2016/1163 (2016), https://eprint.iacr.org/2016/1163

17. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd
ACM Workshop on Cloud Computing Security Workshop. pp. 113–124. CCSW ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/2046660.2046682, http://doi.acm.org/10.1145/2046660.2046682

18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) Advances in Cryp-
tology — EUROCRYPT ’99. pp. 223–238. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun.
ACM 21(2), 120–126 (Feb 1978). https://doi.org/10.1145/359340.359342, http://doi.acm.org/10.1145/359340.359342

20. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Proceed-
ings of the 13th International Conference on Practice and Theory in Public Key Cryptography. pp. 420–443. PKC’10,
Springer-Verlag, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 25, http://dx.doi.org/10.1007/

978-3-642-13013-7_25

21. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Des. Codes Cryptography 71(1), 57–81 (Apr 2014).
https://doi.org/10.1007/s10623-012-9720-4, http://dx.doi.org/10.1007/s10623-012-9720-4

22. Wu, D., Haven, J.: Using homomorphic encryption for large scale statistical analysis (2012), https://crypto.stanford.
edu/~dwu4/FHE-SI_Report.pdf

23. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pattern matching using somewhat homomorphic
encryption. In: Proceedings of the 2013 ACM Workshop on Cloud Computing Security Workshop. pp. 65–76. CCSW ’13,
ACM, New York, NY, USA (2013). https://doi.org/10.1145/2517488.2517497, http://doi.acm.org/10.1145/2517488.

2517497

24. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure statistical analysis using rlwe-based homo-
morphic encryption. In: Foo, E., Stebila, D. (eds.) Information Security and Privacy. pp. 471–487. Springer International
Publishing, Cham (2015)

https://eprint.iacr.org/2016/1163
https://doi.org/10.1145/2046660.2046682
http://doi.acm.org/10.1145/2046660.2046682
https://doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/s10623-012-9720-4
http://dx.doi.org/10.1007/s10623-012-9720-4
https://crypto.stanford.edu/~dwu4/FHE-SI_Report.pdf
https://crypto.stanford.edu/~dwu4/FHE-SI_Report.pdf
https://doi.org/10.1145/2517488.2517497
http://doi.acm.org/10.1145/2517488.2517497
http://doi.acm.org/10.1145/2517488.2517497

	Faster PCA and Linear Regression through Hypercubes in HElib 

