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Abstract. Decentralized blockchains offer attractive advantages over
traditional payments such as the ability to operate without a trusted au-
thority and increased user privacy. However, the verification of blockchain
payments requires the user to download and process the entire chain
which can be infeasible for resource-constrained devices, such as mo-
bile phones. To address such concerns, most major blockchain systems
support lightweight clients that outsource most of the computational and
storage burden to full blockchain nodes. However, such payment verifica-
tion methods leak considerable information about the underlying clients,
thus defeating user privacy that is considered one of the main goals of
decentralized cryptocurrencies.
In this paper, we propose a new approach to protect the privacy of
lightweight clients in blockchain systems like Bitcoin. Our main idea
is to leverage commonly available trusted execution capabilities, such as
SGX enclaves. We design and implement a system called Bite where
enclaves on full nodes serve privacy-preserving requests from lightweight
clients. As we will show, naive serving of client requests from within SGX
enclaves still leaks user information. Bite therefore integrates several
privacy preservation measures that address external leakage as well as
SGX side-channels. We show that the resulting solution provides strong
privacy protection and at the same time improves the performance of
current lightweight clients.

1 Introduction

Since its inception in 2008, Bitcoin has fueled considerable interest in decentral-
ized currencies and other blockchain applications. The main goals of blockchains
include a distributed trust model and increased user privacy. Several other
blockchain platforms, such as Ethereum [1], leverage the same open or permis-
sionless model as Bitcoin, while platforms like Hyperledger [2], Ripple [3] and
R3 [4], enable closed or permissioned blockchains.

Most blockchains implement a decentralized time-stamping mechanism that
ensures eventual consistency of data, such as transactions, by collecting them
from the underlying peer-to-peer (P2P) network, verifying their correctness, and
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including them in connected blocks. This process imposes heavy requirements
on bandwidth, computing, and storage resources of blockchain nodes that need
to fetch all transactions and blocks issued in the blockchain, locally index them,
and verify their correctness against all prior transactions. For instance, a typical
Bitcoin installation requires more than 160 GB of storage today, and the sizes
of popular blockchains are growing fast (e.g., Bitcoin’s blockchain grew over
60% in the last 14 months) [5,6]. This makes usage of blockchains infeasible on
resource-constrained clients like mobile devices.

Lightweight clients and privacy. To address such heavy resource require-
ments, most open blockchain platforms support lightweight clients, targeted for
devices like smartphones, that only download and verify a small part of the chain.
E.g., the Bitcoin community provides the BitcoinJ [7], PicoCoin [8] and Elec-
trum [9] clients implementing the Simple Payment Verification (SPV) mode [10],
where the clients connect to a full node that has access to the complete blockchain
and can assist the client in transaction confirmation. Transactions contain inputs
and outputs that are bound to adresses owned by users. As the full node has to
learn all transactions issued and received by the requesting client to verify their
correctness, such action obviously violates user privacy.

To improve user privacy, several clients support filters (e.g., Bitcoin’s BIP37 [11]
and Ethereum’s LES [12]). The goal of filters is to allow the client to define an
anonymity set in an attempt to hide its real addresses from the full node. For
instance, Bitcoin’s BIP37 supports Bloom filters [13] that allow the client to
define a set of transactions, with false positives, that are requested from the
full node. Essentially, this approach presents a trade-off between communication
efficiency and privacy: a Bloom filter that returns many false positives provides
a larger anonymity set but requires more communication. Although such filters
can be configured to be efficient, recent studies have shown that in practice they
offer almost no privacy [14]. Consequently, none of the current lightweight clients
provides adequate privacy protection with practical performance overhead.

Our solution. The main goal of this work is to improve the privacy of
Bitcoin lightweight clients without compromising their performance. To reach
this goal, we combine techniques from several separate fields, including trusted
computing, private information retrieval and side-channel protection. We stress
here that a naive composition would result in a poor trade-off between privacy
and performance. The primary problem that we solve in this paper is how to
combine known and new techniques such that the resulting solution provides
strong privacy, good performance and easy adoption at the same time.

The starting point of our solution is to leverage commonly available trusted
computing capabilities, such as Intel SGX enclaves [15], on full nodes. SGX
enables the execution of protected applications, called enclaves, in isolation from
any untrusted software such as the OS and protects the integrity of enclave
execution and the confidentiality of enclave data.

We propose a new solution that we call Bite (for BItcoin lightweight client
privacy using Trusted Execution), in which a potentially untrusted entity runs
a full node with an SGX enclave that serves transaction verification requests
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from clients. However, the usage of trusted computing alone does not solve our
problem. SGX prevents an adversary that controls malicious software, such as
the OS, on the full node from directly accessing enclave’s memory or reading
sealed storage. However, secret-dependent access patterns to external storage,
such as transaction databases, can reveal the client’s address to the adversary.
Additionally, recent research has shown that SGX can be susceptible to software-
based side-channel attacks, where malicious software on the same platform infers
secret-dependent data access patterns or control flow in the enclave by monitor-
ing usage of shared hardware-resources, such as caches [16,17,18,19], or memory
management events like paging [20].

With such enclave leakage in mind, we design two Bite variants. Our first
variant is called Scanning Window and its operation is similar to the current SPV
clients that verify transactions using block headers and Merkle paths received
from the full node. To prevent leakage through external data access patterns,
we design a customized chain access mechanism that hides the client’s transac-
tions and the relationship between the size of the response and the number of
read blocks. Our second variant is called Oblivious Database and it allows the
client to verify the amount of coins associated with its addresses by querying a
specially-crafted version of the unspent transaction output (UTXO) database.
To prevent leakage from database accesses, we leverage a well-known Oblivious
RAM (ORAM) algorithm [21] to hide access patterns to an encrypted storage.
This second variant allows even lighter lightweight clients that no longer need
to download and verify Merkle paths.

To prevent software-based side-channels, we adopt protections from recent
SGX research. The basic building block for our control-flow hiding is the cmov

instruction [22] that enables building oblivious execution of branches. To pre-
vent leakage from data accesses we adopt additional defenses, such as iterating
over the entire data structure when an element is accessed based on the pro-
tected client address. In our use case, full nodes need to process large blockchain
databases to serve client request, and thus straightforward usage of known SGX
side-channel protection systems, such as [23,24,25,26], would result in either
excessive performance overhead or imperfect side-channel protection. Instead of
using such systems directly, we carefully pick low-level primitives and apply them
at critical points in our system.

Results. We show that our solution improves both the privacy and per-
formance of current lightweight clients. In both of our variants, the external
data access patterns are independent of the protected client address. The side-
channel protections in the Oblivious Database variant also make the enclave’s
memory accesses (both code and data) independent of the address, thus pre-
venting leakage caused by known SGX side-channels [16,17,18,19,20,27]. While
similar protections can also be used for the Scanning Window variant, they im-
pose a high overhead, which is why we recommend using Oblivious Database if
side-channels are a concern.

Our solution leverages trusted execution in a way that makes its adoption
safe for Bitcoin’s users. In particular, our solution can be used such that even
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if specific SGX processors would be completely broken (e.g., through physical
attacks), our solution provides no improvement in users’ privacy, but importantly
also no degradation in users’ security. That is, usage of Bite on fully broken
SGX does not enable double spending or stealing of users’ wallets or coins.

In terms of performance, the Oblivious Database variant reduces both pro-
cessing times and bandwidth consumption drastically. For example, transaction
search for 10 addresses accounts only for 750ms of processing time and a 12 kB
message size. In Scanning Window, processing times are comparable to the cur-
rent SPV mode, but bandwidth is reduced significantly. For 200 blocks, Scanning
Window accounts for 3.9s of processing time and 0.95MB message size, while
current SPV mode accounts for 2.1s of processing time and 35.01MB message
size.

We argue that Bite emerges as the first practical solution that provides
strong privacy protection for lightweight Bitcoin clients like mobile devices. Our
solution can be integrated into existing full nodes and lightweight clients with
minor modifications to the existing software. While Bite is designed for Bitcoin,
we stress that it finds direct applicability in various other blockchain platforms
as well. We plan on releasing the full implementation of our solution online as
open source.

Contributions. To summarize, in this paper we make the following main
contributions:

– Novel approach. We propose leveraging commonly available trusted execu-
tion capabilities of SGX enclaves for improved lightweight Bitcoin client
privacy.

– New system. We design and implement a system called Bite that carefully
combines a number of known and new private information retrieval and side-
channel protection techniques to prevent information leakage.

– Evaluation. We show that our solution significantly improves both privacy
and performance of current clients. We argue that Bite is the first practical
way to provide strong privacy for lightweight Bitcoin clients.

The remainder of this paper is organized as follows. Section 2 describes our
problem and Section 3 outlines our approach. Section 4 explains the details
of our system Bite. Section 5 covers security analysis and Section 6 provides
performance results. We discuss directions for future work in Section 7, review
related work in Section 8, and conclude in Section 9. For readers unfamiliar
with SGX and ORAM, we provide brief introductions in Appendices A and B,
respectively.

2 Problem Statement

In this section, we provide background on Bitcoin lightweight clients, explain
the limitations of known approaches and define requirements for our solution.
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2.1 Bitcoin Lightweight Clients

Bitcoin [10] is the first and still most popular cryptocurrency based on blockchain
technology. It enables users to perform payments by issuing transactions. While
Bitcoin enables execution of a simple scripting language, regular Bitcoin transac-
tions generally transfer Bitcoins (BTC) from one or more transaction inputs to
one or more outputs. Each of the outputs is bound to an address that is derived
from a user’s public key. A user that knows the corresponding private key will
then be able to spend the Bitcoin contained in the transaction output.

When a user wants to perform a payment, she creates a transaction that
contains inputs, outputs, and the signatures that allow her to spend the inputs.
Subsequently, the transaction is propagated to all nodes using a peer-to-peer
network created by the system’s participants. Miners, a special type of nodes,
collect valid transactions into blocks and solve a hash-based Proof-of-Work puz-
zle to make the contained transactions hard to revert. A miner that successfully
finds a valid Proof-of-Work for a candidate block, broadcasts the block to all
other nodes, who then verify its correctness and include it in their copy of the
blockchain if valid.

In order to verify transactions, Bitcoin users, or clients, need to store the full
history of all Bitcoin transactions. This approach puts a heavy load on client
implementations in terms of network and storage, and as a consequence, makes
transaction confirmation on mobile clients infeasible. To address this concern, the
original Bitcoin paper proposed a solution called Simplified Payment Verification
(SPV) [10]. In this technique, lightweight clients store only block headers, check
their Proof-of-Work puzzles and then request their own transactions and the
Merkle paths that are needed to verify their presence in the blocks from a full
node that stores the entire chain.

Improvement proposal BIP 37 [11] introduced Bloom filters [13] that allow a
lightweight client to request a subset of all transactions to preserve some privacy
without needing to download all transactions for each block. A Bloom filter [13]
is a probabilistic data structure that consists of a set of hash functions and a bit
array where each bit is set to one if one of the hash functions hashes one of its
inputs to the index of the bit in the array. This data structure allows checking
if a value is contained in the filter by hashing the value with each of the hash
functions and checking whether the corresponding bit is set. If this is not the
case, the value was not an input. If it is the case, however, the value might have
been an input or it could be a false positive. The false positive rate can be set
by the creator of the filter.

In Bitcoin lightweight clients, Bloom filters are used to encode transactions
or addresses, and allow a full node to determine which transactions to send to
a lightweight client without letting the full node know the exact addresses. A
lightweight client prepares a Bloom filter to which she adds all of her addresses
and sends it to the full node. The full node then checks for incoming (or past, if
requested) transactions whether they match the Bloom filter. If they match, she
sends them to the client together with the Merkle path needed for verification.
The client can adjust the false positive rate to increase her privacy. If the false
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positive rate is higher, the client will receive more irrelevant transactions, in an
attempt to hide her true addresses with a larger anonymity set.

2.2 Limitations of Known Solutions

The use of Bloom filters to receive Bitcoin transactions from an assisting full
node inherently creates a trade off between performance and privacy. If a client
increases the false positive rate she receives more transactions which provides
increased privacy, as any of the matching addresses could be her real addresses,
but it also means that she needs the network capacity to download all of these
transactions. In the extreme cases, the filter matches everything, i.e., the client
downloads the full blocks, or the filter only matches the client’s addresses, i.e.,
she has no privacy towards the full nodes.

In addition, Gervais et al. [14] have shown that the use of Bloom filters in
Bitcoin lightweight clients leaks more information than was previously thought.
In particular, they showed that if the Bloom filter only contains a moderate
number of addresses, the attacker is able to guess addresses correctly with high
probability. For example, with 10 addresses the probability for a correct guess is
0.99. They also show that, even with a larger number of addresses, the attacker
is able to correctly identify a client’s addresses with high probability if she is in
possession of two distinct Bloom filters from the same client (e.g., due to a client
restart). Hearn [28] later expanded on why solving these issues is hard (e.g.,
need for resizing). Furthermore, it is likely that an attacker using additional
de-anonymization heuristics, such as the ones described in [29,30], could further
increase the probability to guess correctly.

Finally, a lightweight client cannot be sure that she receives all transactions
that fit her filter from a full node. While the full node cannot include faulty
transactions in the response, as this would be detected by the client when re-
computing the Merkle root, the client cannot detect whether she has received all
requested transactions. This problem can be solved by requesting transactions
from multiple nodes, which again imposes more network load on the client.

2.3 Requirements

The high-level goal of this paper is to develop a solution that provides better
privacy for lightweight clients without compromising their performance. More
precisely, our solution should meet the following requirements:

R1 Privacy. Lightweight clients should be able to verify that their transactions
are confirmed on the blockchain or check the amount of coins associated with
their addresses without revealing their addresses to the potentially untrusted
entity that controls the assisting full node.

R2 Completeness. The verification process should guarantee that no valid
transactions have been omitted.

R3 Performance. The performance of the system should be comparable to or
better than current lightweight client schemes.
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3 Our Approach

The main idea behind our approach is to leverage commonly available Trusted
Execution Environments (TEEs) such as Intel’s SGX enclaves [31,15] running
within full nodes to provide a privacy-preserving verification service to lightweight
clients. Besides increased privacy, trusted execution can enable better perfor-
mance in terms of reduced processing and bandwidth, and guarantee complete-
ness of received responses.

In short, SGX provides a set of security enhancements in the processor that
allow creation of small applications, called enclaves, whose data confidentiality
and execution integrity is protected from any malicious software running on the
same platform, including the OS. In particular, all enclave memory is encrypted
by the CPU whenever it leaves the processor package which prevents the OS
from directly accessing enclave’s memory (see Appendix A for more details).

A simple way to leverage SGX would be a solution, where the lightweight
client sends its wallet private key to an enclave on the assisting full node. Using
the wallet key, the enclave can perform any operation on behalf of the user,
including transaction verification. However, such simple solution has a critical
drawback. If the used enclave is compromised, the adversary can steal all user’s
coins. Such approach might give the owners of full nodes an undesirable economic
incentive to break their own SGX processors, e.g., using physical attacks.

To avoid such incentives, we choose a different approach. In our solution,
when a client needs to verify a transaction or check the amount of coins associ-
ated with the user’s addresses, the client connects to one of the full nodes that
supports our service. The client performs remote attestation and establishes a
secure channel to the enclave. Then, the lightweight client sends the addresses
that the user is interested in to the enclave. The enclave obtains all the required
verification information from the locally stored blockchain or custom unspent
transactions database (UTXO) and sends back a response to the client that can
verify it. Importantly, the client’s private key is never shared with the enclave
which enables safe adoption of our solution.

We envision two types of deployment for our system. In the first example
deployment, a well-recognized company could provide such a verification service.
In the second example, any volunteer currently running a Bitcoin full node could
adopt our extension and start providing the service to lightweight clients. In both
cases, to incentivize deployment by the full nodes, the service could be ran in
return of some small renumeration (i.e., verification fees).

3.1 System Model

Figure 1 shows our system model that consists of full nodes FN1...FNm and
lightweight clients LC1...LCn. When a lightweight client LCi wants to acquire
information about its transactions or addresses, it can connect to any full node
FNj that supports our service and hosts an enclave Ej . Full nodes download and
store the entire blockchain (BC) locally and based on that maintain a database
that contains all unspent transaction outputs (UTXO). Our system additionally
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Fig. 1: System model. Lightweight clients request transaction verification ser-
vice from enclaves hosted on full nodes.

maintains a specially-crafted version of the UTXO, called enclave UTXO, in an
encrypted (sealed) form.

In SGX, enclave memory is limited to 128MB. Although swapping mem-
ory pages is supported (swapping requires expensive encryption and integrity
verification [32]), the complete blockchain (BC) and the database of unspent
transaction outputs (UTXO) are significantly larger than the enclave’s memory
limits (160GB or more). Therefore, these databases are stored on local persistent
storage such as disk outside enclave’s memory.

3.2 Adversary Model

We consider an adversary who controls the OS and any other privileged software
on the full node. For example, when the verification service is provided by a com-
pany, the adversary could be a malicious administrator or an external attacker
who has remotely compromised the OS on the full node. If the service is provided
by an unknown volunteer, the adversary could be a malicious volunteer.

Since the adversary controls the OS, she can schedule and restart enclaves,
start multiple instances, and block, delay, read, or modify all messages sent by
enclaves, either to the OS itself or to other entities over the network.

We assume that the adversary cannot break the hardware security enforce-
ments of Intel SGX. That is, the adversary cannot access processor-specific keys
(e.g., attestation or sealing key) and she cannot access enclave’s runtime memory
that is encrypted and integrity-protected by the CPU. (Although we consider
SGX trusted, in Section 5 we discuss enclave compromise and show that our
solution can handle it gracefully.)

Finally, we assume that common cryptographic primitives are secure, e.g.,
the adversary cannot break cryptographic primitives such as encryption or sig-
natures.
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3.3 Challenges

Secure and practical realization of our approach under the defined attacker model
involves several technical challenges.

Leakage through external accesses. Since the adversary controls the
OS, she can observe access patterns to any external resources, such as files or
databases stored on the disk. Although externally stored data can be sealed
(encrypted by the CPU such that only the same enclave can decrypt), the OS
may be able to infer information about the accessed element by observing access
patterns to individual records, such as files or database entries.

Similarly, enclaves rely on the OS to perform communication operations
which allows it to infer information about the communication patterns of the
enclave. Even if messages are encrypted by the enclave, the message sizes, fre-
quency and destination can leak information to the OS.

Leakage through side channels. The SGX architecture can also be suscep-
tible to internal leakage. While Intel acknowledges the possibility of side-channel
attacks on enclaves [33], they consider it out of scope for the SGX adversary
model. However, recent research shows that such attacks are practical and need
to be taken into account. For example, by monitoring usage of shared hardware
resources, such as CPU caches, the OS may be able to mount software-based
side-channels and infer secret-dependent data and code accesses inside the en-
clave’s memory [16,17,18,19]. In SGX, the memory management is left to the
untrusted OS, and therefore the OS may also be able to infer enclave’s secrets
by monitoring the memory pages that the enclave requests from the OS [20]. Re-
searchers have also demonstrated side-channel attacks using the CPU’s branch
prediction functionality [27] and speculative execution (the Spectre attack) [34].

Known side-channel attacks can be classified with respect to which memory
content is targeted. Code monitoring can identify secret-dependent execution
paths, that is, control flow. Data access monitoring can identify secret-dependent
data object usage. Branch prediction attacks [27] target execution paths, while
most demonstrated cache attacks target data accesses [16,17,18,19], although
cache attacks can target control-flow as well.

4 Bite System

In this section we present a system called Bite that realizes the above approach
securely and addresses the aforementioned challenges. In particular, we present
two variants of the same approach that serve slightly different purposes.

Our first variant is called Scanning Window and it can be seen as an extension
to the current SPV verification mode, but without reliance on bloom filters.
Based on the client request, an enclave on the full node scans the blockchain and
replies with a set of Merkle paths that the client can use to verify its transactions
using downloaded block headers. This variant allows the client to check that each
of its transactions are confirmed on the blockchain. As Bitcoin provides only
eventual consensus, the client may want to additionally verify that the blocks
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where its transactions are placed have been extended with a sufficient number
of valid blocks (e.g., six).

Our second variant is called Oblivious Database and it can be seen as a com-
pletely new verification mode for lightweight clients. In this variant, the enclave
on full node maintains a specially-crafted version of the unspent transaction out-
puts (UTXO) database and when a client sends a verification request, it checks
for the presence of client’s outputs in this database using oblivious database ac-
cess (ORAM [21]) and responds accordingly. Such verification allows the client
to check how many coins is currently associated to its addresses, with significant
performance improvements over SPV.

In both variants, the client performs remote attestation on the used enclave
and establishes a TLS connection to it. We note that current lightweight clients
communicate with the full nodes without encryption. Existing full node function-
ality, such as participation in the P2P network and mining, remain unaffected.
Therefore, our system can be seen as a simple add-on to existing full nodes. For
clients, payment execution remains unchanged. Payment verification requires
minor additions (attestation and TLS) when Scanning Window variant is used
or slightly bigger changes when Oblivious Database variant is used.

4.1 Scanning Window Variant

In our first variant, we want to improve the privacy of the current SPV verifi-
cation mode. When a client needs to verify transactions, it constructs a request
that specifies the addresses of interest and the last block that it has in its internal
state and sends that to the secure enclave residing on the full node. The enclave
reads the locally stored blockchain database using a custom scanning technique
that normalizes the relationship between response sizes and actually accessed
data to hide the data/block access patterns and ensure client privacy. Figure 2
shows the operation of this variant, and we describe the details as follows:

Initialization and continuous operation.

(a) On initialization the Full Node FNj connects to the P2P Bitcoin net-
work (a-1) and downloads the full blockchain (a-2). Similarly, the locally stored
blockchain database is updated for each new blocks that is appended to the
chain (i.e., as new blocks are received over the P2P network).

(b) The lightweight client installation package includes a checkpoint block header
from a recent date. When the client is started for the first time, it downloads all
newer block headers from the peer-to-peer network and verifies that (i) they all
have correct Proof of Work and (ii) the hash chain of the downloaded headers
leads to the checkpoint. Once the client’s internal state it synchronized with
the peer-to-peer network, it stores a small number of the newest headers (e.g.,
six blocks from the head of the chain to handle shallow forks). The client can
update its internal state by downloading newest block headers periodically or be-
fore each transaction verification request. The network and storage requirements
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Fig. 2: Scanning Window operation. Lightweiwght client establishes a secure
connection to an enclave on full node and sends a request that contains its
address and last known block. The enclave scans a number of blocks from the
locally stored complete chain and prepares a response whose size is proportional
to the number of scanned blocks.

of this process are minor and easily met even by clients with severe resource con-
straints.3

Client request handling. Clients perform transaction verification as fol-
lows:

(1) The Lightweight Client LCi performs attestation with the secure Enclave
Ej residing on the full node FNj .

3 For example, obtaining block headers for a checkpoint that is one month old, would
require 300 kB of downloaded data (one-time operation) and updating the block
headers once per day would require 10 kB of communication per day. Storing latest
six headers takes less than 1 kB of storage.
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(2) If the attestation was successful, the Lightweight Client LCi establishes a
secure communication channel to the Enclave Ej using TLS.

(3) The Lightweight Client LCi sends a request containing the addresses of
interest and a block number that specifies how deep in the chain transactions
should be searched for verification. Typically, this number would be saved from
the previous interaction with a full node or in the case of the first transaction
verification the number could roughly match the date when the client started
using Bitcoin.

(4) The Enclave Ej starts scanning its locally stored copy of the blockchain
(BC) for the requested address and range of blocks using a scanning technique
described in detail below.

(5) In preparation of the response, the Enclave Ej does the following: for blocks
containing client addresses it adds the full transaction information and the under-
lying Merkle tree path to the response, while for blocks without client addresses
it only adds the block header.

(6) The Lightweight Client LCi verifies that (i) the received block headers match
its internal state and (ii) the received transactions and Merkle Tree paths match
to the block headers. The client considers such received transactions as confirmed
(assuming that they are sufficiently deep in the chain). The client updates its in-
ternal state regarding the latest verified block number and closes the connection
to the enclave.

Block scanning details. As explained in Section 3.3, enclave execution
can leak information in various ways. For example, if our solution would simply
return each matching transaction (and the corresponding Merkle Tree) in the
specified range of blocks, based on the size of the response the adversary could
deduce how much information of interest for the client was contained within the
scanned blocks. Over a period of time, by tracking requests and response sizes,
the adversary could gain significant information about the client’s addresses and
transactions.

We address such leakage by using a tailor-made block scanning scheme. The
main goal of the scheme is to fully hide the ratio between the response size (that
indicates the number of transactions returned to the client) and the number of
scanned blocks. When this ratio is constant, the adversary cannot deduce any
meaningful information from the response size.

Figure 3 depicts the details of our scanning scheme. The newest block in
the blockchain observed by the Bitcoin network is n. A clients request contains
an addresses of interest and the number block x indicating how deep the chain
should be scanned. The enclave starts scanning from n and moves towards x. It
stores intermediate responses and when it reaches block x it performs a check.
The total size of the response, r, is divided by the threshold size, t. The threshold
indicates the maximum response size per block such that if we are to scan n−x
blocks, the maximum response size for the client can be r = (n − x) ∗ t. If the
given response size r is greater, then the enclave has to scan up to block y (or
y − x more blocks), such that r = (n − y) ∗ t. If the response size is smaller,
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Fig. 3: Block reading in Scanning Window. Depending on the number of
requested blocks (up to x) and the number of matching transaction in them,
our scanning technique read potentially extraneous blocks (up to y) to keep the
ratio between the read blocks and the response message size constant.

i.e., if after scanning n− x blocks r ≤ (n− x) ∗ t, we pad the response size such
that r = (n− x) ∗ t. The exact size of the threshold is empirically determined in
Section 6.

Side-channel protection. The scanning technique described above pre-
vents leakage from externally observable response sizes. However, if the adver-
sary is able to mount a high-granularity digital side-channel attacks (e.g., one
that allows her to observe execution paths with instruction-level granularity),
the adversary will be able to determine the transactions that were accessed, and
thus infer the client’s addresses.

To make our system more robust against such attacks, we optionally add
side-channel protections at the expense of performance (cf. Section 6). To protect
against timing leakage we compute the Merkle path for all transactions in each
of the scanned block in contrast to only computing the path for the transactions
of client’s interest. For protection against control-flow side channels we make use
of the cmov assembly instruction to hide execution paths. cmov is a conditional
move such that “If the condition specified in the opcode (cc) is met, then the
source operand is written to the destination operand. If the source operand is
a memory operand, then regardless of the condition, the memory operand is
read” [22]. This allows us to replace branches from our code resulting in the
same control flow with no leakage.

The same technique is also used in previous side-channel protection solutions
like Raccoon [23]. However, since using such a side-channel defense system di-
rectly would incur an extremely high performance overhead in our particular
setting (due to large amounts of accessed blockchain data), we customize these
techniques to our setting. Specifically, we apply the following modifications, as
per Figure 4:

(i) Instead of continuing to scan the chain if the size of the response exceeds
the threshold, we stop scanning after the specified number of blocks. If not all
transactions fit in the response, the client does not receive all transactions and
is informed of this through a flag in the response. This allows the allocation of
a response array that does not change size during processing. The client can
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Fig. 4: Oblivious copying in Scanning Window. The data is copied in an
oblivious fashion from the block to a temporary array, i.e., every transaction is
conditionally moved using cmov to every possible destination. The data contained
in the temporary array is then copied to the response in an oblivious fashion,
again using cmov to conditionally copy everything to all possible locations in the
response.

request the remaining transactions in another request (from the flagged block
until the end of the initially specified block).

(ii) For each block, we allocate a temporary array of size tm (see Figure 4), where
tm is a threshold that specifies the maximum data per block, as opposed to the
threshold t that specifies the average data per block. While the block is parsed,
each transaction is moved to the temporary array in an oblivious fashion, i.e.,
we use the cmov instruction to conditionally move each word of each transaction
to every entry in the array. This means that for every transaction we access
every entry in the array and since the same instruction is used for each possible
copy – independent of whether the data is actually copied – even an attacker
with an instruction level view of the control flow cannot determine which data
is actually copied. After processing the block, the temporary array is traversed
and all entries are copied to the response array (see Figure 4). This is again done
in an oblivious fashion, i.e., each entry is copied conditionally using the cmov

instruction to every possible position in the response array.

This method of copying transactions from the block to the response is required
to efficiently keep the data accesses oblivious. Specifically, for a block of size
m, a temporary array of size tm and n requested blocks, this method requires
O(m · tm + tm · n · t) operations instead of O(m · n · t) operations when naively
copying the data in an oblivious fashion from the block to the response directly.
Since tm is usually much smaller than m and n · t, this method is in practice
orders of magnitude faster, in relation to the data copy in oblivious fashion.

4.2 Oblivious Database Variant

In our second variant, we focus on reducing the load of lightweight clients in
terms of computation and network while offering even better privacy preser-
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vation (namely, the block number that specifies how deep the chain should be
searched does not leak). The main idea behind this variant is to allow lightweight
clients to send requests containing addresses of their interest and directly receive
information regarding unspent outputs, without the need to verify block headers
and Merkle tree paths.

In order to achieve such verification, a new indexed database of unspent
transactions (denoted as enclave UTXO) is created and searched for every client
request using an Oblivious RAM algorithm. Figure 5 shows the operation of this
variant, and we describe the details as follows:

Initialization and continuous operation.

(a) Similar to a standard full node, on initialization the full node FNj connects
to the peer-to-peer network and downloads and verifies the entire blockchain.
After initialization, when new blocks are available in the peer-to-peer network,
FNj downloads and verifies them.

(b) During initialization Enclave Ej reads the locally stored blockchain and
verifies each block. The enclave builds its own enclave UTXO database that
is a special version of the original structure present in standard full nodes. In
particular, this UTXO set is encrypted on the disk as sealed storage, indexed for
easy and fast access depending on the client request, and accessed using ORAM
to prevent information leakage through disk accesses. After initialization, the
enclave updates this UTXO using ORAM when new blocks are available in the
locally stored blockchain.

(c) As in the Scanning Window variant, the client obtains the latest block head-
ers from the peer-to-peer network.

Client request handling. Clients perform transaction verification as fol-
lows:

(1) The Lightweight Client LCi performs an attestation with the secure Enclave
Ej residing on the full node FNj .

(2) LCi establishes a secure communication channel to the Enclave Ej using
TLS.

(3) LCi sends a request containing the addresses of interest, along with the hash
and number of the latest transaction known to the client. The last two parame-
ters are needed in case the number of unspent outputs contained by an address
is larger than the maximum size of the message. For example, LCi receives the
first response containing x transaction outputs with an indication that there
is more, and in a consequent request specifies the same address as in the first
request along with the x − th transaction hash and transaction number. This
gives an indication to the enclave to respond with the second batch of outputs
starting from that transaction. The process repeats (possibly with a different
node) until the client is satisfied. To prevent information leakage through the
message sizes, requests are always of constant size, i.e., the client pads shorter
requests and splits up larger queries. The size is defined to accommodate the
majority of requests. Since a lightweight client can choose any available node to



16 Matetic et al.

search trough UTXO
for LC’s request using ORAM

establish secure communication
2

information request for addresses of interest
3

authentication, TLS connection

5

Lightweight Client LCi Full Node FNj Full Node FNn…

attestation

1

verify block, perform 
PoW, verify Merkle Tree

UTXO create/update
using ORAM

2

3

BC

enclave
UTXO

deliver each 
new block

co
nt

in
uo

us

b
secure addon for 

privacy preservation

enclave generate and 
updates its own 

UTXO storing it in an 
encrypted form

1

req(adr,trx_hash,trx_num)

4
enclave
UTXO

return request information about transactions
res(us_trx_outputs, num_trx, 
max_trx, last_block_header)

6

Enclave Ej Enclave En

P2P communication

update blockchain
unchanged full node

normal operation

co
nt

in
uo

usBC
2

1
a

summarize the enclave’s response

acquire latest block header 
from the P2P Bitcoin network c

Fig. 5: Oblivious Database operation. Lightweight client sends a request
containing its address and the last transaction to an enclave on full node. Enclave
queries a specially-constructed version of the UTXO database using ORAM and
provides a response back to the client.

connect to, she can choose to send requests to different nodes to hide the number
of sent requests.
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(4) The Enclave Ej reads the enclave UTXO database to get the unspent trans-
action output information in respect to the client’s request. Ej uses ORAM and
the previously created index to access the enclave UTXO in an oblivious fashion.

(5) In preparation of the response, Ej includes the relevant information as ex-
plained in step (3), which encompasses the currently included and maximum
number of unspent transactions found for a specific address. When these num-
bers match, the LCi knows that she has received all the unspent outputs of
a specific address. The enclave additionally includes the block hash of the last
known block from the local blockchain (longest chain). With this information the
client can deduce whether the enclave has been served with the latest block and
that the enclave’s database is fully updated. Responses are always of constant
size, i.e., shorter responses are padded and if a response is too large, the client
is informed of missing outputs, such that she can later retrieve the rest of the
outputs (e.g., from a different node). The size of the response is chosen such that
it accommodates the majority of responses.

(6) The Lightweight Client LCi can summarize the unspent transaction outputs
received from the Enclave Ej . The enclave guarantees completeness in terms of
transaction confirmation and the current state of the chain, so the client does
not have to perform any additional checks by herself. Successful update of the
client’s internal state results in the connection termination between the enclave
and the client.

Oblivious Database details. In this variant, we use an ORAM algorithm
called Path ORAM [21] to protect data access patterns of our enclaves. For read-
ers unfamiliar with this algorithm, we provide a brief description in Appendix B.

Database Initialization. The ORAM database is initialized by creating dummy
buckets on disk and filling the position map with randomized entries. The stash
is also filled with dummy chunks. After that the ORAM database is fully ini-
tialized and can be used to add new unspent outputs from the blockchain. To
ensure that the enclave always uses the latest version of the sealed enclave UTXO
database, SGX counters or rollback-protection systems such as ROTE [35] can
be used.

Database Update. When a new Bitcoin block is added, the enclave first verifies
the proof of work. It then extracts all transaction inputs and outputs and bundles
them by address. For each address found in the block, the UTXO database entry
is requested and then updated with the new information. If too many entries
are added, resulting in the chunk getting too big, the chunk is split into two and
the index is updated to reflect the changes made to the UTXO database. All
accesses are performed using the ORAM algorithm and, therefore, do not leak
any information about the access patterns.

Database Access. Accesses to the ORAM database follow the normal proce-
dure described in [21] and in Appendix B.

Side-channel protection. While the usage of ORAM protects against all
external leakage, side-channel attacks, and thus, internal leakage remains a chal-
lenge. If we consider the most powerful attacker that can perform all digital
side-channel attacks (see Section 3.3), this variant would be forfeit due to the
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leakage of the code access patterns, specifically, execution paths in the if state-
ments when the stash, indexes and the position map is being accessed. This
would leak the exact address which is used to search for the unspent transac-
tions in the internal database.

To remedy internal leakage, we deploy several mechanisms that protect our
code and execution. First, when accessing the security critical data structures,
specifically, the position map, stash, and the indexes containing information
about which chunks contain unspent transactions of a certain Bitcoin address
we pass over them entirely in the memory to hide the memory access pattern.
Second, to hide the execution paths we remove all branching in the code that
accesses these data structures and deploy the cmov assembly instruction (see
Section 4.1). Observation of the control flow and memory access does not leak
whether the operation performed by the enclave was a read or a write, and since
there is a single control flow without creating multiple branches depending on the
condition, we effectively hide the execution and thus protect this variant from
internal leakage in full. This protection mechanism has negligible performance
overhead (see Section 6).

5 Security Analysis

In this section, we provide an informal security analysis. First, we analyze our
solution with respect to our adversary model where SGX security enforcements
cannot be broken. In particular, we show that our solution ensures confidentiality
of the requested client addresses, as the attacker cannot infer the requested
address from disk access patterns, response sizes, side-channels, or a combination
thereof. Second, we discuss implication of potential SGX compromise and show
that our solution can handle such cases gracefully.

5.1 External Leakage Protection

Scanning window. This variant scans complete blocks from the blockchain
database, instead of accessing individual transactions within them, and thus
prevents direct information leakage from disk access patterns. The constant ratio
of response size to scanned blocks prevents information leakage from the response
size. The adversary may only infer the number of blocks that are accessed and
not which addresses are sent by the client or how many transactions are returned.

Oblivious Database. To protect against information leakage attacks on
the disk access, our second variant utilizes the well-studied Path ORAM [21]
algorithm. Our setting is slightly different than the typical client-server model
considered in ORAM. In our case, the enclave corresponds to the client. Because
the adversary can run the enclave freely, she can use it as an oracle, i.e., she can
influence the data that is written (by delivering blocks to the enclave) and can
query for values himself. Regardless of that, due to the unlinkability property of
ORAM, the attacker learns nothing about what is accessed and the probability
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to guess correctly which ORAM block was accessed is equal to that of a ran-
dom guess, as shown in [21]. As the responses always have a constant size, the
adversary cannot learn anything from response sizes either.

5.2 Side-channel Protection

Most known side-channel attacks on SGX provide imperfect data-access or control-
flow traces and require many repetitions to filter out noise [16,17,18,19]. In Bite,
queries from legitimate clients cannot be replayed due to the authenticated TLS
channel and since the enclave is either stateless across power cycles or protected
against rollback. The adversary can create his own client and send requests to
the enclave, but this will not result in any advantage against legitimate clients.
For these reasons, mounting side-channel attacks against Bite is more challeng-
ing than performing side-channel attacks against enclaves in general. To analyze
our solution against future adversaries that may be able to mount more pre-
cise side-channels, below we consider the worst case scenario, i.e., side-channel
attacks that obtain perfect data access and control flow traces from enclave’s
execution.

Scanning Window.To harden our Scanning Window variant against side-
channels, we provide optional protections that incur significant performance
penalty. When the enclave scans through both the temporary array and the
final response array in their entirety, it performs cmov operations for all possible
transactions. This allows us to replace branches in our code with a single in-
struction resulting in the same control flow with no leakage to the attacker since
all data is accessed and the same operation is executed every time.

Oblivious Database. For our Oblivious Database variant we always in-
clude side-channel protections to our solution, since the performance overhead
is negligible. When accessing the security critical data structures such as stash,
indexes and the position map, we pass over them entirely to hide the memory
access pattern. Second, to hide the execution paths, we remove all branching in
the code that accesses these data structures and replace them with cmov assem-
bly instructions (see Section 4.2). Observation of the control flow and memory
access does not leak whether the operation performed by the enclave was a read
or a write, and since there is a single control flow without creating multiple
branches depending on the condition, we effectively hide the execution path and
thus protect this variant from internal leakage in full.

The usage of cmov for protecting against digital side-channel and internal
leakage was previously studied in Raccoon [23] and with respect to protecting
ORAM-based systems it was studied in other SGX-related works [25,36]. These
works show the effectiveness of cmov in protecting against internal leakage. Our
solution uses the same techniques, and thus directly inherits the security guar-
antees that successfully protect against the same type of attacks, i.e. those based
on digital side-channel leakage.
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5.3 Completeness

In the Scanning Window variant, the client herself performs the verification of
the blocks, Merkle paths and transactions based on the information received from
the full node and can compare the hash of the latest block to its local view of the
chain to ensure completeness of the response. In the Oblivious Database variant,
the enclave performs all verifications for the client. To ensure completeness, the
client can compare the received response to its local view of the chain.

5.4 Implications of a full SGX break

Our adversary model assumes that side-channel leakage from enclave’s execu-
tion may happen, but the adversary cannot fully break SGX, i.e., the adversary
cannot read all enclave’s secrets and modify its control flow arbitrarily. However,
SGX was never intended to provide tamper resistance against physical attacks
and recent research has demonstrated that platform vulnerabilities like Spec-
tre [37] and Meltdown [38] can be leveraged to extract attestation keys from
SGX processors [39]. Therefore, it becomes relevant to ask how Bite handles a
full SGX compromise.

In the Scanning Window variant, the client only loses the privacy protections
provided by our system and all of his funds remain secure. Since the client still
performs Simple Payment Verification, the security is otherwise not affected and
our system provides the same guarantees as current lightweight clients, i.e. a
node may omit transactions, but cannot steal funds or make a client falsely
accept a payment.

In the Oblivious Database variant, a compromised enclave could make the
client accept false payments by sending invalid UTXOs. However, we argue that
this will not be a realistic threat since it would require the client to sell some
goods or service to the provider of the node, i.e. this is not a realistic issue for
most users. Merchants that see a full break of SGX as a realistic threat can
instead use the Scanning Window variant. Additionally, such an attack would
be easily detectable after the fact and result in loss of reputation of the provider
of our service and would thus likely only be profitable for high value transactions
for which most merchants would probably run a full node.

We conclude that Bite can provide as much security and privacy as tradi-
tional lightweight clients even given a full break of SGX. This is in contrast to
the naive solution of storing the clients’ private keys in the enclave and using it
as a remote wallet.

6 Performance Evaluation

In this section, we describe our implementation and provide performance evalu-
ation results.
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Table 1: Trusted Computing Base in LOC.

System
Our implementation Libraries

Total
Bitcoin1 Network2 mbed-tls

Scanning Window 1’876 1’613 53’831 57’320
Oblivious Database 4’117 1’613 53’831 59’561

1 Processing the Bitcoin blockchain.
2 Parsing responses from the client over TLS.

6.1 Implementation Details

The centerpiece of the Scanning Window and Oblivious Database system vari-
ants is an original blockchain parser. For TLS connections we use the mbed-tls
library from ARM [40]. A comparison between the two systems in terms of
Trusted Computing Base is shown in Table 1. We differentiate between the code
that is used for communication (Network in Table 1) and the code for processing
the blockchain (Bitcoin in Table 1).

Scanning Window. The implementation of Scanning Window is very small
(around 3.5k lines of code without mbed-tls) since it only involves scanning the
blockchain and does not have to keep state. The network code including the
mbed-tls library contributes the most to the TCB with over 96%. In order to
keep the scanning time per block constant for all requests, the enclave does the
same work for matching and non-matching transactions.

The message size per block is calculated to allow for around 5 transactions
per block. We believe that this is a reasonable choice that satisfies common usage
patterns for lightweight client users. For n included and N total transactions in
the block, an upper bound for the Merkle path size is n ∗ log(N) and each entry
in the Merkle path is 32 bytes long. This results in an approximate upper bound
of 2.2kB for N = 4000, the current limit in Bitcoin. As of today (March 2018)
the average transaction size is around 500 bytes, therefore, a message size per
block of 5kB is enough to fit around 5 transactions (5 ∗ 500B + 2200B < 5kB).
If more or larger transactions are found, following from Section 4, the enclave
scans more blocks of the blockchain until the message size is big enough.

Oblivious Database. The implementation of Oblivious Database is more
complex than Scanning Window and contains around 5.7k lines of code without
mbed-tls. Contrary to the Scanning Window variant, the enclave has to keep
state and store a large UTXO set on disk. At the time of writing, the size of
the UTXO set (indexed by Bitcoin address) is around 4GB. The bucket size for
ORAM is set to Z = 4 so one bucket contains 4 chunks.

We evaluated the ORAM performance for 32kB, 64kB and 128kB chunk sizes
in Table 2 and settled on 32kB chunk size which then implies a tree height of
16, i.e. 216 buckets. The total resulting file size on disk for the ORAM database
amounts to around 8.5GB. With the selected chunk size of 32kB, a single chunk
can fill up to 32kB with outputs from one address. If an address has more unspent
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Fig. 6: Distribution of the number of unspent transaction outputs per active
address in the Bitcoin network.

outputs, the outputs are stored in multiple chunks. Assuming an average output
size of 100B, one ORAM read can return up to 320 outputs for one address. The
outputs are grouped by the receiving address and then ordered alphabetically.
This is necessary in order to keep the size of the index small enough to fit in
the enclaves memory. In the worst case we store the lower and upper limits for
addresses (20B) and transaction hashes (32B) for every ORAM block resulting
in a maximum of 218 ∗ (32B ∗ 2 + 20B ∗ 2) ≈ 26MB.

To set the message size, we analyzed the typical unspent outputs per active
address in the Bitcoin network (Figure 6) and settled on 12 average outputs per
request, resulting in around 1.2kB. This size is big enough to accommodate for
more than 98% of all Bitcoin addresses currently in use.

We plan to release the code of our implementation online.

6.2 Performance Results and Comparison

In this section, we evaluate both variants of Bite and compare them to current
SPV protocols. Note that in all our data points, the TLS handshake times are
omitted. Matetic et al. [41] report around 100ms for a new handshake and <10ms
for TLS session resumption using mbed-tls in SGX. We do not evaluate the
performance of a client since the client-side storage and network overhead are
insignificant.

We tested our implementation on an Intel Core i7-8700k processor clocked at
3.70 Ghz. The blockchain and the ORAM database were stored on a Samsung
960 Pro 512GB SSD. To compare with current SPV clients we used python-
bitcoinlib [42].
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Table 2: ORAM access times for various chunk sizes and the corresponding size
(number of entries) needed to store the entire UTXO set. Time measurement
averaged over 1000 runs.

Chunk size Size ORAM

32kB 216 74.77 ms (±15.52 ms)
64kB 215 108.26 ms (±33.91 ms)
128kB 214 172.01 ms (±38.98 ms)

Table 3: Processing time per block with oblivious execution for Scanning Window
depending on the number of requested blocks and the temporary size, averaged
over 100 blocks.

tm

5kB 10kB 20kB

N
r

o
f

B
lo

ck
s 50 0.6s (± 0.2s) 1.2s (± 0.5s) 2.6s (± 0.9s)

100 0.7s (± 0.2s) 1.3s (± 0.5s) 2.7s (± 0.9s)
150 0.7s (± 0.2s) 1.4s (± 0.5s) 2.7s (± 0.9s)
200 0.7s (± 0.2s) 1.4s (± 0.5s) 2.8s (± 0.9s)
250 0.7s (± 0.2s) 1.4s (± 0.5s) 2.9s (± 0.9s)
300 0.7s (± 0.2s) 1.5s (± 0.5s) 3.0s (± 0.9s)

Scanning Window. In the Scanning Window variant, our approach is sim-
ilar to the original SPV procedure. Both systems let the client request filtered
blocks which results in scanning the blockchain. Previous work show that Intel
SGX imposes significant overhead for copying buffers (reading files) across the
trust boundaries [32].

Figure 7a shows the time needed to filter blocks by Scanning Window and
current SPV protocols. We report an overhead of around 100% (in total the time
is 5.3s) in comparison to Bloom filters with a false prositive rate of 0.1% (2.65s)
to 0.5% (2.7s). Note that the measurements in Figure 7a do not account for the
network speed. A device with a decent 4G connection that operates at 100Mbit/s
requires additionally around 5s to retrieve 300 blocks with the current SPV
protocol and a 0.1% false positive rate. For even higher false positive rates, i.e.,
0.5% (the default value of BitcoinJ ), an SPV client synchronizes in additionally
around 8s. Our systems are not significantly impacted by the limited bandwidth
of 4G. The synchronizing time for Scanning Window rises by 0.1s to around 5.4s
(and Oblivious Database stays constant at 0.5s). Our systems can reduce the
required bandwidth because no false positives have to be included to fool the
attacker.

The scanning time is impacted significantly by the need to recompute the
merkle tree (approx. 6.5ms). Storing the merkle tree for every block could lead
to better performance but the required disk space would grow significantly.
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Table 4: Update time for the ORAM of Oblivious Database solution averaged
over 100 measurements.

Blocks ORAM update time

1 78.5s (±13.6s)
3 112.5s (±19.8s)
6 146.7s (±19.8s)

Scanning Window with side-channel protection. Oblivious execution
and memory access adds a significant overhead to Scanning Window. All branches
have to be taken and all in-memory structures have to be touched in their en-
tirety to hide access patterns. The merkle tree has to be recomputed for every
block aswell but since generating a merkle tree for the average bitcoin block takes
6.5ms this does not contribute significantly to the runtime of the side-channel
free Scanning Window.

Table 3 shows the time per block for various number of blocks requested and
tm size. Higher tm allows to cope with some blocks that have a lot of relevant
transactions while others do not, since it limits the amount of transactions of
a single block that can be included in a response. Note that the blocks vary
in size, and thus the time per block fluctuates a lot leading to a high standard
deviation. Synchronizing 300 blocks with tm = 10kB takes around 7.3 minutes
corresponding to an overhead of approximately 100x.

Oblivious Database. In this variant, the unspent outputs are directly
fetched from the enclave UTXO. Therefore, the time needed is independent of
the number of requested blocks, yet only on the ORAM database access times.
Figure 7a shows the Oblivious Database variant response time for a request con-
taining 10 addresses and a ORAM block size of 32kB. Table 4 shows the time
an update to the ORAM database takes for various blocks at a time. In order to
reach permanent availability we propose the usage of at least 2 systems in paral-
lel which update with an offset between each other. If a user requests the result
from a node that is not fully up to date, the remaining blocks can be scanned by
utilizing oblivious Scanning Window. The amount of clients that can be served
by a single SGX enclave can be estimated by using around 120s for updating the
state and then the remaining 8 minutes to continuously answer client requests,
leading to an approximate 10000 clients per enclave. The message size is signifi-
cantly lower than all other variants, since only unspent outputs are included and
not the entire transactions and the corresponding partial Merkle path. The mes-
sage size for a request of 10 addresses amounts to 10 ∗ 1.2kB = 12kB. Figure 7b
shows bandwidth comparison between all discussed protocols.
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7 Discussion

Usage models and long-term privacy. Lightweight clients can use Bite in
different ways and the chosen usage model can have implications on the clients’
long-term privacy.

For example, in what we consider non-recommended usage, the client (i)
performs payment verification requests only when the payment appears in the
ledger, (ii) always uses the same full node for verification, and (iii) only uses a
single or few Bitcoin address. If all of the above conditions are met, although
the adversary controlling the full node does not learn the client’s address from a
single verification request, he might be able to correlate the timing of the verifi-
cation request events and the Bitcoin addresses visible in the ledger at roughly at
the same time, and thus construct a set of candidate addresses that may belong
to the served client. We acknowledge that our solution cannot eliminate this type
of correlation completely. However, we stress that such correlation would require
long-term tracking of verification requests from the adversary and that the same
limitation applies to any lightweight client payment verification scheme.

In recommended usage of our solution, the client (i) uses different full nodes
for payment verification, (ii) regularly uses fresh Bitcoin addresses (e.g., using
an HD wallet [43]), and (iii) introduces unpredictability to the timing pattern of
payment verification requests like a small number of extra requests at random
points in time. If the client follows such a usage model, the above mentioned
correlation becomes very difficult.4

Large responses. Some client requests might result in a larger response
than our defined threshold for message size. As our performance analysis shows,
the number of these requests is almost negligible and represents truly a minority
of the complete set of transactions in the blockchain. However, our mechanism
still allows these types of request with the distinctive factor that the client would
have to request them in batches. For example, if a client in the Scanning Window
variant requests transactions for 10 of his addresses from the last 300 blocks using
the full-side-channel protection, there might be more transactional data then the
300 ∗ t kB message size. In this case, the enclave sets a flag indicating there is
more information to be delivered. After receiving the response, the client can
repeat the request with the defined flag and receive the rest of the information.
The protocol operates in the same way, thus no distinction between these two
requests can be observed by the attacker. However, the attacker can see that
the request is repeated and infer that the specific client has more transactions of
interest in the designated blocks. To mitigate this problem one could obfuscate
the IP address or change to another enclave for finishing the request.

4 To quantify how accurately the adversary can correlate the client’s addresses and
how difficult to such correlation becomes with the above discussed best practices,
would be an interesting direction for future work. As building an accurate model
would require collecting significant amount data about the behavioral patterns of
lightweight clients, we consider this task a research project on its own and outside
the scope of this paper.
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Deployment models. We consider two deployment models. In the first
model, a verifiable company can run our solution as a service offering lightweight
clients privacy. In the second model, any full node operator, or a volunteer, can
operate our solution. In both deployment models we presume that multiple, or
even all nodes, will support this solution. and the scalability depends on that
number. One single node can only support around 10000 lightweight clients, and
the overall success depends on the supply, demand and acceptance of such ser-
vice. Such different deployments can enable different authentication models. In
the first option, the company could use a PKI which would allow the lightweight
clients to recognize which specific enclave they are communicating with. In the
second option the clients only know that they are connecting to a correctly
attested enclave, but they cannot make distinction between different enclaves.
Since successful attestation guarantees expected enclave execution, our solution’s
privacy properties hold in both cases, unless Intel SGX is broken. We discuss
SGX compromise in Section 5.

Denial of service. A malicious user might attempt denial of service (DoS)
by asking for a very long scan window — incurring large processing times for
full nodes and thus making the service momentarily unavailable for other clients.
DoS (and spam) are common in systems where there is no significant cost in-
volved (e.g., sending 1M emails is practically free) and hard to prevent when
introduction of fees is hard. In our setting, one could easily remedy such denial
of service attacks by applying fees based on the nature of the request. Large bal-
ance updates for lightweight clients would incur higher costs than just frequent
updates, thus limiting the attacker from performing ”free” DoS attacks.

Unbounded enclave memory. The performance of our system is mostly
bounded by the slower disk operations. However, in case that future versions of
SGX architecture would allow more enclave memory (i.e., currently the limit is
128MB without the expensive page swapping) ranging up to the RAM limit on
the residing platform, one could keep the UTXO database and all other security
critical data in the memory and not on the disk, similar to recently proposed
SGX-based in-memory database systems like EnclaveDB [44].

8 Related Work

In this section, we review related work that can be classified into two main
categories: Bitcoin lightweight client privacy and SGX information leakage pro-
tection.

8.1 Bitcoin Lightweight Client Privacy

The idea of light clients for Bitcoin was already included in the Bitcoin paper by
Satoshi Nakamoto [10] in the form of Simple Payment Verification (SPV). Hearn
and Corallo later introduced Bloom filters [13] in BIP 37 [11] that allow a client
to probabilistically request a subset of all transactions in a block to mask which
addresses are in fact owned by the client. Gervais et al. later showed that the
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information leaked by the use of Bloom filters in Bitcoin poses a serious privacy
risk and can in many cases enable the identification of client addresses [14].
Hearn – who introduced Bloom filters to Bitcoin – later addressed the issues [28],
expanded on them, and discussed the difficulties of solving them.

To overcome this privacy issue, Osuntokun et al. recently proposed modifi-
cations to Bitcoin nodes and lightweight clients that move the application of the
filter to the client [45]. In their protocol, full nodes create a filter (with a low
false positive rate) for the set of all transactions in a block. A lightweight client
then fetches the filter from one or more full nodes and can then check whether
the block contains transactions that she is interested in. If that is the case, the
client will request the full block from any node.

While this approach likely provides more privacy than the protocol using
Bloom filters, it still suffers from a number of shortcomings. First, the gained
privacy largely depends on the client behavior and how well the client is con-
nected to different entities. If the client does not request the filter headers from
multiple entities5 and uses another entity to then request the blocks, she can be
easily tricked into revealing her addresses by using forged filters as follows: A
node can prepare a filter that matches half of all addresses and send it to the
client. If the client requests the block, at least one of her addresses lies within
that set, otherwise all of her addresses lie in the other half. The node can then
continue reducing the possible set using a binary search approach by sending
modified filters for the following blocks, which allows bitwise recovery of all
client addresses. Second, depending on how often a transaction is of interest to
the client, she might end up downloading the full blockchain after all. Since the
client always either requests the full block or nothing at all, she will download
almost every block if a large fraction of blocks contain at least one transaction
that is of interest.

Other research on Bitcoin privacy shows that using different heuristics, large
parts of the Bitcoin transaction graph can be deanonymized [29,30]. These tech-
niques are, however, orthogonal to the problem of lightweight client privacy and
thus out of scope for our work.

8.2 SGX Leakage Protection

During the last few years, the research community has studied information leak-
age from SGX enclaves extensively and proposed a number of defenses. In this
section we explain why none of the existing systems solves our problem directly
and which prior systems use similar protective primitives as our solution.

The previous work that is probably closest to our solution is a system called
Raccoon [23] that addresses both internal and external information leakage for
both code and data accesses. For control-flow obfuscation, Raccoon uses taint
analysis to determine execution paths that should be hidden and transforms
enclave code such that it executes extraneous decoy paths to hide the enclave’s

5 Even if the client connects to multiple different nodes to receive the filters, she cannot
verify that they are not under the control of the same entity.
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actual control flow. The basic building block for such control-flow obfuscation
is the cmov instruction that we use as well. Raccoon also uses Path ORAM to
hide external secret-dependent data accesses and “streaming” over data struc-
tures (i.e., accessing every element) in the internal enclave memory. The main
difference between Raccoon and our solution is that by tailoring our implemen-
tation, we avoid the need for taint analysis and extra decoy paths enabling a
more efficient solution.

Other related systems include Cloak [24] that prevents cache leakage us-
ing hardware-based transactional memory features in processors; ZeroTrace [25]
that provides a library for data structures that are protected using ORAM;
DR.SGX [26] that randomizes and periodically re-randomizes all data locations
in enclave’s memory with cache-line granularity; and, T-SGX [46] and Deja
Vu [47] that detect and prevent side-channel attacks based on repeated inter-
rupts. The main limitation of Cloak is that it requires hardware features that
are not available on all SGX CPUs and it only protection cache-based leakage.
ZeroTrace is limited to data access protection and it does not prevent leakage
from secret-dependent control flow. DR.SGX is also limited to data accesses
and imposes high performance overhead when configured to prevent all leakage.
T-SGX and Deja Vu are limited to attacks that perform repeated interrupts
(subset of known attacks).

Recently published Oblix [48] presents a new ORAM algorithm that is de-
signed specifically for SGX. We use well-known Path ORAM, but our solution is
agnostic to the used ORAM algorithm and we could easily replace Path ORAM
with another algorithm.

9 Conclusion

Improved user privacy is one of the main benefits of decentralized currencies like
Bitcoin. However, payment verification requires downloading and processing the
entire chain which is impossible for most mobile clients. Therefore, all popular
blockchains support simplified verification modes where lightweight clients can
verify transactions with the help of full nodes. Unfortunately, such payment ver-
ification does not preserve user privacy and thus defeats one of the main benefits
of using systems like Bitcoin. In this paper, we have proposed a new approach
to improve the privacy of lightweight clients using trusted execution. We have
shown that our solution provides strong privacy protection and additionally im-
proves performance of current lightweight clients. We argue that Bite is the
first practical solution to ensure privacy for lightweight clients, such as mobile
devices, in Bitcoin.
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A Intel SGX

Intel’s SGX [15,?] entails a security enhancement for new Intel CPUs in form of
a TEE for security-critical applications in commodity PC platforms. The SGX
architecture enables protected applications, called enclaves that are isolated from
software running outside of the enclave. This isolation protects the integrity and
confidentiality of the enclave’s execution from any malicious software running
on the same system, including BIOS, OS and hypervisor, or even malicious
peripherals such as compromised network cards [49,50,51]. Enclave memory is
handled in plaintext only inside the processor and is encrypted by the processor
whenever it leaves the CPU (e.g., to DRAM) to ensure that neither the OS nor
malicious hardware can access it.

Even though the OS is untrusted, it is responsible for starting and managing
enclaves. To protect the integrity of the execution, the CPU securely records
all initialization actions to create a measurement that records the code and
initial state of the enclave. This can be later used by a third party to verify
that the correct code is running on the system supported by SGX. This process
is called remote attestation. A system service called Quoting Enclave signs the
attestation statement – which contains the mentioned measurements – for remote
verification. Using an online attestation service run by Intel, the verifier can check
that signature. An enclave can attach data to the attestation statement, such as
a public key, that it sends to the verifier. This can be used to establish a secure
communication channel to an enclave.

In addition, SGX enables enclaves to store data for persistent storage in an
encrypted form through a process called sealing. The processor provides a seal-
ing key that can only be accessed by the same enclave running on the same
platform, i.e. only the enclave that sealed data can later unseal it. This provides
confidentiality and integrity for the stored data, but it does not protect from so
called rollback attacks [35] when the enclave is restarted. Finally, enclaves can-
not execute system calls and do not have access to secure peripherals. For this
reason, software using SGX has to be split into two parts, a protected enclave
and an unprotected component that runs in normal user space and handles com-
munication with the OS, i.e. operations concerning networking and file accesses.
For further details, we refer the reader to [15,52].

B Oblivious RAM

Oblivious RAM (ORAM) [53], is a well-known technique that hides access pat-
terns to an encrypted storage medium. A typical ORAM model is one where a
trusted client wants to store sensitive information on an untrusted server. En-
crypting each data record before storing it on the server provides confidentiality,
but access patterns to stored encrypted records can leak information, such as
correlation of multiple accesses to the same record. The intuition behind the
security definition of ORAM is to prevent the adversary from learning anything
about the access pattern. In ORAM, the adversary does not learn any infor-
mation about which data is being accessed and when, whether the same data
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Fig. 8: a) The client wants to access the chunk 2 that is stored in Path ORAM. b)
The position map specifies that the chunk 2 is on the path to leaf 4. Therefore,
the server reads all entries on the path into the stash and re-randomizes the
position map entry of the requested chunk. c) The server writes back as many
chunks as possible on the previously read path.

is being repeatedly accessed (i.e., unlinkability), the pattern of the access itself,
and lastly the purpose, type of the access (i.e., write or read). However, one
should note that ORAM techniques cannot hide access timing.

In this work, we use a popular and simple algorithm called Path ORAM [21]
that provides a good trade-off between client side storage and bandwidth. The
storage is organized as a binary tree with buckets containing Z chunks each.
The position of each chunk is stored in a position map that maps a database
entry to a leaf in the tree, and for every access the leaf of the accessed entry
is re-randomized. A small amount of entries is stored in a local (i.e., memory)
structure – stash.

Every access involves reading all buckets of a path from the root to a leaf into
the stash and then writing back new or old re-randomized data from the stash
to the same path resulting in an overhead of O(logN) read/write operations. If
the requested chunk is already in the stash, an entire path still gets read and
written. The summary of ORAM operations is:

1. get leaf from position map
2. generate new random leaf for the database entry and insert it into the posi-

tion map, then read all buckets along the path to the leaf and put them into
the stash

3. if access is a write, replace the specified chunk in the stash with the new
chunk

4. write back some chunks from the stash to the path. Chunks can only be put
into the path if their leaf from the position map allows it. Chunks are pushed
down as far as possible into the tree to minimize stash capacity.

5. return requested chunk

Figure 8 shows an example of data access in Path ORAM.
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