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Abstract—Recently the CAESAR competition has announced
several finalists among the submitted authenticated encryption
algorithms, after an open selection process during the last 5 years.
Applications using these algorithms are rapidly increasing today.
Devices implementing these applications are enormously suscep-
tible to physical attacks, which are able to retrieve secret data
through side-channel information such as the power consumption
or the electromagnetic radiations. In this work we present a
Side-Channel Analysis resistant hardware implementation of
the whole family of authenticated encryption schemes KETJE.
By changing just one parameter, any of the KETJE designs
can be obtained, and tailored for different applications, either
lightweight or high throughput.

We introduce a new protected KECCAK implementation, as
well as unprotected and protected KETJE implementations, which
allow both encryption and decryption modes in the same mod-
ule. In order to secure these implementations we make use
of the masking scheme known as Threshold Implementations
and complement it with the technique of “Changing of the
Guards”, achieving a first-order Side-Channel Analysis protected
implementation with zero extra randomness needed. This way, no
dedicated PRNG needs to be additionally implemented, avoiding
issues such as the security of the PRNG itself or the quality of
the randomness.

Index Terms—Authenticated Encryption, KETJE, SHA-3, Side-
Channel Analysis, Threshold Implementations, Changing of the
guards.

I. INTRODUCTION

The use of IoT devices is growing enormously, with predic-
tions of an increase of 250% in their use in the next three years.
This makes hardware security an important issue, needed to
protect devices implementing cryptographic algorithms. Several
attacks have proliferated in the literature in the past few years,
Side-Channel Analysis (SCA) being one of the most significant
given its reduced cost and its ease of use. They exploit
computation time, power consumption or electromagnetic
radiation to extract sensitive information such as cryptographic
keys. A distinct and very powerful SCA is Differential Power
Analysis (DPA) [1].

Multiple techniques have been proposed to secure the
hardware, as can be hiding or masking [2] among others.
Masking has caught most of the attention in the literature, with
several masking schemes proposed [3]–[8]. The aim of masking
is to randomize the intermediate variables, making the power
consumption independent of their value. The first works of

Ishai et al. [3] and Trichina [4] were proven flawed, since they
did not provide security in the presence of glitches. The work
of Nikova et al. [5], known as Threshold Implementations (TI),
was the first to provide first-order SCA security in the presence
of glitches and later extended to higher-order by Bilgin et al. [6].
Reparaz et al. [7], in Consolidated Masking Schemes (CMS),
reduce the area overload to achieve the same order of security at
the cost of introducing extra randomness, and provide security
against multivariate attacks (higher-order attacks where wires in
different time frames are probed). Subsequently, Gross et al. [8],
in Domain Oriented Masking (DOM), propose a reduction in
the randomness with respect to CMS.

Our contribution. In this work we present a new protected
KECCAK implementation with new trade-offs: slightly bigger
area compared to the smallest state-of-the-art parallel imple-
mentations, but two or three times lower latency. Additionally,
we introduce the implementation of the whole KETJE family,
both unprotected and first-order SCA protected with zero
extra randomness added. Furthermore, we extend these im-
plementations to allow encryption and decryption in the same
module, both protected and unprotected. We deploy the first-
order protected KECCAK in FPGA and test it, proving the
implementation secure for up to 100 million traces. We expand
this implementation to get the secure KETJE implementation
that inherits the previously proven security, since the expansion
only involves linear operations and we use a TI sharing scheme.

We begin by summarizing the specifications of KETJE in Sec-
tion II, then we discuss important concepts and methodologies
applied to secure our implementations in Section III. Details
of the protected implementations are given in Section IV,
followed by the results and evaluation details in Sections V
and VI respectively.

II. KETJE

KETJE [9] is a CAESAR (Competition for Authenticated
Encryption: Security, Applicability and Robustness) third
round candidate. Although recent updates on the CAESAR
competition do not include KETJE as a finalist, we still believe
it is a highly valuable algorithm. It is based on the SHA-
3 standard and it is very suitable for side-channel resistant
hardware implementations. KETJE is a set of four authentication
encryption schemes that allow messages with associated data.



They target memory-constrained devices and strongly rely on
nonce uniqueness for security. Ketje is built following a layered
design, where KECCAK [10] is the underlying permutation,
called by the construction MONKEYDUPLEX, which at the
same time is instantiated by the mode MONKEYWRAP.

A. KECCAK

KECCAK is a family of hash functions that were standardized
by NIST, becoming SHA-3. It runs the permutation KECCAK-
f [b] where b ∈ {25, 50, 100, 200, 400, 800, 1600} defines dif-
ferent state sizes. KETJE uses a round reduced permutation
KECCAK-p[nr, b], which runs the last nr rounds of KECCAK-
f [b]. KECCAK works on a three dimensional state (Fig. 1),
where a round consists on five operations: R = ι ◦χ ◦π ◦ ρ ◦ θ.
We refer to [10] for further details on the operations.

Fig. 1: Three-dimensional KECCAK state [10]

B. MONKEYDUPLEX

MONKEYDUPLEX calls a round-reduced version of KEC-
CAK-f where different types of calls are supported invoking
different numbers of rounds. The performance of the functions
can be optimized by reducing the number of rounds, at the ex-
pense of requiring nonce uniqueness for the scheme to provide
security against key retrieval. MONKEYDUPLEX follows the
structure of a duplex construction, where there is an absorption
phase and a squeezing phase alternating. The absorption phase
introduces new bits to the state, while the squeezing phase
extracts bits from the state. Fig. 2 depicts this idea. The function
takes as input (absorbs) a binary string of any length σ and
returns (squeezes) a binary string of the requested length Z.

Four parameters (r, nstart, nstep, nstride) determine the effi-
ciency and security strength of the module. Two types of calls
are supported by MONKEYDUPLEX:
• D.start: at the beginning the string I = K||N that concate-

nates the Key (K) and the Nonce (N ) is introduced in the
function after a simple padding is applied, initializing the
state. Then, the function f runs for nstart rounds, f [nstart].

• D.step or D.stride: the construction absorbs a data block
σ , extended with a multi-rate padding until the string
length is equal to the rate r. Then, either f [nstep] or
f [nstride] is applied to the state f , and afterwards part of
this state is extracted (Z).

Fig. 2: The MONKEYDUPLEX construction [9]

This construction can be used for mainly three different
applications: first, the simplest one, as a stream cipher; second,
as a reseedable (fresh seed every block) pseudorandom bit
sequence generator; third, and the most relevant one, as
authenticated encryption.

Finally, it is important to stress that both uniqueness and
secrecy of I are crucial to comply with the security claims. In
addition to this, multiple instances of MONKEYDUPLEX with
the same input I are not allowed, since, otherwise, an attacker
could retrieve the full state easily by observing differences in
the output.

C. MONKEYWRAP

The authentication process takes as input a header A or
Associated Data, a data body B or Plaintext, and returns a
Ciphertext C and a Tag T . The encryption process is known
as wrapping and then the decryption process is known as
unwrapping. The functionality of the encryption is outlined
below and illustrated in Fig. 3:

Fig. 3: The MONKEYWRAP construction [9]

1) The state is initialized with Key and Nonce executing
D.start(keypack(K, |K|+16)||N) where the keypack is
a way of encoding the secret key given a string input.

2) The associated data is processed block by block (Ai)
by executing D.step(Ai||00), and D.step(Ai||01) for the
last block of A. The block size (|Ai|) of the mode is
given by ρ. The last output is XORed with the first
plaintext block to get the first ciphertext block.

3) The plaintext is similarly processed with D.step(Bi||11)
and the output of every step is XORed with the next



block of the plaintext to get a ciphertext block. The last
block of B is treated with D.step(Bi||10) to produce
the first tag block.

4) Subsequent tag blocks are produced by executing
D.step(0) until the required T length is achieved.

The decryption is essentially identical to the encryption
except for few differences: the scheme receives as input A,
C and T , where the same procedure is followed, using the
ciphertext data instead of the plaintext. The new tag T ′ is
calculated out of the plaintext blocks decrypted, and finally
the entire plaintext B is output only if T = T ′.

MONKEYWRAP supports sessions, allowing the encryption
of several messages (with the respective associated data) with
the same input I . The state is never reset or reinitialized during
the same session, so that the function keeps running with the
previously updated state. This means that intermediate tags are
produced at the end of every encryption, authenticating the
current encryption together with the previous ones.

The KETJE specifications allow four different authenticated
encryption schemes, namely: KETJE JR, KETJE SR, KETJE
MINOR and KETJE MAJOR. They are characterized by the
underlying permutation and their block size (ρ). They can be
used in either lightweight applications or higher-throughput
implementations. Tab. I summarizes the different possibilities:

TABLE I: Four KETJE authenticated encryption schemes [9]

Name f ρ Main use

KETJE JR KECCAK-p*[200] 16 lightweight
KETJE SR KECCAK-p*[400] 32 lightweight
KETJE MINOR KECCAK-p*[800] 128 lightweight
KETJE MAJOR KECCAK-p*[1600] 256 high performance

Important features of the KETJE schemes to take into
account:
• As already mentioned above, all but KETJE MAJOR are

lightweight.
• The greater block size of KETJE MINOR and KETJE

MAJOR allows the output of 128-bit tags without extra
costs.

• They are very well suitable for side-channel countermea-
sures and a perfect fit for secure messaging with secured
chips, for instance, smart cards.

Another important distinguisher is the fact that KETJE sup-
ports sessions, meaning that a sequence of messages can be
authenticated rather than a single one. This offers an easy
way of sending successive commands while preventing the
interference of an attacker.

III. SECURING THE HARDWARE

Hereunder we provide an overview of the concepts needed
and used throughout the paper to secure a hardware design,
namely: the adversary model, where the adversary capabilities
are introduced; Threshold Implementations, where the key
concepts to correctly implement this sharing scheme are
specified, and finally, the technique known as “Changing of

the Guards” to complement the previously mentioned sharing
methodology.

A. Adversary model

Along this work we consider the model proposed in [3]
known as the d-Probing Model. A single probe that monitors the
power consumption (or the electromagnetic radiance) of a single
wire. The adversary gains information of all the intermediate
values of the wire from the last register to the probe. Similarly,
an adversary probing d wires acquires the knowledge of every
intermediate value of all d wires. A dth-order security scheme
provides security against up to dth-order attacks.

B. Threshold Implementations

Threshold Implementations (TI) was first introduced by
Nikova et al. [5] for first-order security, and broadened further
to higher-order by Bilgin et al. [6]. Like multiple other masking
schemes, TI is based on secret sharing, where each sensitive,
i.e. key dependent, data element x is divided into s pieces
(x = (x1, . . . , xs)), such that x = x1 ⊥ . . . ⊥ xs. We consider
Boolean masking, where ⊥ is exclusive addition ⊕, and all s
shares are needed to derive x. The aim of this methodology
is to provide formal methods to correctly randomize the
intermediate variables and hence achieve security in hardware
implementations. TI imposes three mandatory properties for a
design to be secure:

• Correctness: a shared function f such that fi(x) = Yi,
where i = 1, . . . , s, is correctly shared if

∑
Yi = Y =

f(x).
• Non-completeness: a shared function f is dth-order non-

complete if any combination of up to d component
functions fi is independent of at least one input share.
Here d is the degree of security.

• Uniformity: the outputs of a shared function have to
conform a uniform distribution. Note that given a uniform
sharing, it is sufficient to preserve the uniformity across
operations to achieve univariate security (together with
non-completeness).

TI provides security even when the gates behavior is non-
ideal, that is, any gate can glitch depending on prior inputs
of the same clock cycle before stabilizing without giving
any advantage to an attacker thanks to the non-completeness
property.

The number of shares s define the degree of security. The
lower bounds for the number of input and output shares are
given in [6], in function of d and the algebraic degree of the
function t, following the expressions:

sin ≥ td+ 1, (1)

sout ≥
(
sin
t

)
.



Fig. 4: “Changing of the Guards” structure for three adjacent S-Boxes from a three shares secure implementation [11]

We provide an example of how to protect a simple
AND/XOR gate (z = w⊕xy) in Eq. 2, where (d, t, sin, sout) =
(1, 1, 3, 3) with TI:

Z1 = w1 ⊕ x1y1 ⊕ x1y2 ⊕ x2y1,
Z2 = w2 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2, (2)
Z3 = w3 ⊕ x3y3 ⊕ x1y3 ⊕ x3y1.

We denote an input x with lower case letters, an output Z
with upper case letters, and we refer to a specific bit of an
S-Box with index t as x[t].

C. Changing of the Guards
In [11] Daemen proposes a method to achieve uniformity in

a shared S-Box by just appending few dummy bits to the states,
also known as “guards”. This method uses these first bits to
randomize the first S-Box x1, then a few of the output bits of
this S-Box are similarly used to randomize the second S-Box
x2, and so on until the last S-Box xj . The last output bits will
be the new “guards” of the next round. By feedforwarding these
bits and the small extension of the shares, uniformity in the
whole S-Box layer is achieved instead of making every single
shared S-Box uniform. Fig. 4 illustrates a simple example of
a sequence of three shared S-Boxes with three shares each.

This technique has been used previously to protect ASCON
and KEYAC [12], and also in a first-order secure AES [13].

IV. IMPLEMENTATIONS

In this section we provide the details of the whole KETJE im-
plementation. The design follows the layered structure given
in the specifications of Sect. II. We start from the very bottom,
with the underlaying permutation KECCAK. We continue with
MONKEYDUPLEX block that calls the permutation. Finally,
we implement MONKEYWRAP, which instantiates the MON-
KEYDUPLEX module, for encryption, and further extended to
support encryption/decryption together. The implementation
is made generic, where, by just varying the width of the
permutation (b), the four instances of KETJE can be obtained.

A. KECCAK-p*
a) Twisted permutations: In KETJE v2, the permutation

is modified to KECCAK-p* = π ◦ KECCAK-p ◦ π−1. The
purpose of this is to more effectively re-order the state bits.

b) Design choice: There are several protected implemen-
tations of KECCAK proposed in the literature [14]–[16]. The
first two use TI to secure their implementations: the first one
was shown to use a non-uniform sharing, which was fixed by
Bilgin et al. in the second one by using a four shares scheme
instead of three to achieve uniformity. Gross et al. in [16]
propose several serial and parallel implementations using DOM
to secure their designs. KETJE is designed to operate with a
parallel implementation to get the most optimal implementation
performance/area wise. We discard implementations using
DOM since a single round needs two or three cycles to be
computed in the parallel implementations. We go with TI to
get the best latency, and we apply the “Changing of the Guards”
method explained before to get a uniform sharing with three
shares. With this method we are able to optimize area with
respect to the four shares version, and no extra randomness
is needed. Thus, no dedicated PRNG is needed to feed this
module.

Securing linear operations is trivial, where just mere repe-
tition is needed to get correctness. Hence, we focus on how
to secure the non-linear operation χ and how the guards are
implemented. Eqn. (3) shows the equations followed in our
first-order implementation with tree shares, similarly given
in [11].

It is difficult to compare our implementations area-wise with
previous works given that different synthesis libraries were used.
However, latency can be compared precisely. Since no registers
are needed to secure the non-linear operation, the corresponding
KECCAK-f implementation takes respectively two times and
three times less cycles than the PARALLEL double clocked
and the PARALLEL pipelined implementations from [16]. On
the other hand, our implementation is between 6% to 28%
(depending on the library) larger in area than the previous
works.

B. MONKEYDUPLEX

MONKEYDUPLEX implements three functions in its frame-
work: D.start, D.step and D.stride. All of them call the same
permutation, but for different numbers of rounds: nstart = 12,
nstep = 1, nstride = 6. The first one gets as inputs a string
forged with the Key and the Nonce, while the others get a



For 0 ≤ t ≤ 2:
Xj

1 [t] ← xj3[t]⊕ (xj3[t+ 1]⊕ 1)xj3[t+ 2]⊕ xj3[t+ 1]xj1[t+ 2]⊕ xj1[t+ 1]xj3[t+ 2] for j > 0

Xj
2 [t] ← xj1[t]⊕ (xj1[t+ 1]⊕ 1)xj1[t+ 2]⊕ xj1[t+ 1]xj2[t+ 2]⊕ xj2[t+ 1]xj1[t+ 2] for j > 0

Xj
3 [t] ← xj2[t]⊕ (xj2[t+ 1]⊕ 1)xj2[t+ 2]⊕ xj2[t+ 1]xj3[t+ 2]⊕ xj3[t+ 1]xj2[t+ 2] for j > 0

For t = 3, 4: (3)
Xj

1 [t] ← xj3[t]⊕ (xj3[t+ 1]⊕ 1)xj3[t+ 2]⊕ xj3[t+ 1]xj1[t+ 2]⊕ xj1[t+ 1]xj3[t+ 2]⊕ xj−13 [t] for j > 0

Xj
2 [t] ← xj1[t]⊕ (xj1[t+ 1]⊕ 1)xj1[t+ 2]⊕ xj1[t+ 1]xj2[t+ 2]⊕ xj2[t+ 1]xj1[t+ 2]⊕ xj−12 [t] for j > 0

Xj
3 [t] ← xj2[t]⊕ (xj2[t+ 1]⊕ 1)xj2[t+ 2]⊕ xj2[t+ 1]xj3[t+ 2]⊕ xj3[t+ 1]xj2[t+ 2]⊕ xj−12 [t]⊕ xj−13 [t] for j > 0

X0
2 [t] = CG2[t− 3]

X0
3 [t] = CG3[t− 3]

The S-Box index j assumes a one-dimensional array extracted from the three-dimensional state of KECCAK(Fig. 1). For x = 3
and x = 4, two arrays are derived where 0 < j ≤ y + 5z.

block σ of either the Associated Data or the Plaintext. Only
one KECCAK-p* block is instantiated, which means that the
input string and the number of rounds are decided based on
the function to run. The three aforementioned functions are
encoded in a two bit control signal mode as: 00, 10 and 11
respectively.

Two padding blocks are instantiated, one for D.start oper-
ation and another one for D.step and D.stride that append a
string with the following structure: 10...01 with enough zeros
to get the required length. Fig. 5 depicts the diagram of this
block: the unprotected version is represented by the black
datapath, and the protected version by the red dotted one.

Fig. 5: Unprotected and protected MONKEYDUPLEX imple-
mentation

C. MONKEYWRAP

The last block of the building process is MONKEYWRAP,
which instantiates a single MONKEYDUPLEX block. The
function call can be selected with the mode signal, which
is decided by a Control module. This module receives two

inputs that indicate when the last block of the Associated Data
and the last block of the Plaintext are put in. Together with a
counter, the Control module decides the value of mode signal,
when to load, what to input, and enables MONKEYDUPLEX.
Since the input σ is variable and in the hardware we can not
instantiate a bus to, for example, drive 16 bits sometimes and
20 bit some other times, we declare the bus with a fix length
and an integer length σln is attached so that the padding is
correctly applied.

Very few extra hardware is needed to extend the encryption
block to support decryption as well. We add a general control
signal decrypt, which decides if the block encrypts or
decrypts. New control logic is needed to decide the input
to MONKEYDUPLEX, between the input plaintext and the just
decrypted ciphertext, after the associated data is fully processed.
The decrypted plaintext is released all at once, but only after
the new tag T ′ is calculated and checked that it corresponds to
the received one T . Thus, we implement the tags comparison
and add new registers to keep the already calculated plaintext
while the new tag is calculated.

D. Securing the implementations

To protect these last two blocks is trivial, for the only non-
linear operation in the whole design is inside the permutation.
Thus, simple repetition suffices to secure the surroundings. The
control signals do not carry sensitive information, hence we
do not need to instantiate more than one Control block. When
securing the decryption datapath, a problem arises. How do
we compare the new calculated tag shared with the input tag?
To do the comparison we have to unshare T ′, resulting in a
non-completeness violation. This is not a problem since the
attacker already knows the tag, which is given as input to the
decryption. Probing, and getting a different tag, just means that
the attacker learns something went wrong in the authentication
process, but he never learns secret data.

The top module details are given in Fig. 6: the unprotected
encryption is represented in solid line, and the extension to



Fig. 6: The MONKEYWRAP implementation including encryption&decryption

allow decryption in dashed line. For the sake of clarity, we
draw just a single datapath. The scheme of the protected
version follows the same procedure as in the previous block:
the protected MONKEYDUPLEX is instantiated, and all the
surrounding logic including Muxes, paddings, the shift register,
and the comparator are repeated three times, one per each
share. As mentioned before, the Control module is left as it is,
feeding the same signals to all shares.

V. RESULTS

Here we present the synthesis results for all the implemen-
tations: area, latency, max. frequency, and power. Other than
the four bits appended to the state to act as “guards”, which
are given together with the initial sharing, there is no extra
randomness needed. Tab. II summarizes them.

Three shares are used to secure our implementations. Intu-
itively, the protected implementations should be three times
larger in area than the unprotected ones. Instead, they are
around 3.6 times larger. The extra overhead comes from the
more complex implementation of the non-linear function.

Since decryption mode does not reveal the plaintext until
the tags are verified, we need to store it. We implement a shift
register that keeps the decrypted plaintext block by block. To
be able to decrypt any message in the session, the shift register
has to be the size of the longest cipher. This means the area of
the decryption depends on the length of the ciphertext/plaintext.
The area of the shift register is given in function of the number
of plaintext bits #B, where the expression has two coefficients:
the first one refers to the combinational area per bit, calculated
experimentally, and the second one refers to the sequential
area, 5.67 GE being the area of a single bit register. Note that,
apart from the shift register area overhead, the area increase
of the encryption&decryption module is minimal.

We use a special notation to indicate the latency in the
KETJE implementations: Cycles per block for processing the
Associated Data + Cycles per block for the Plaintext + 6
(stride cycles) + #cycles to produce 128 bit tag. We do not
include here the cycles needed to initialize a session, which are
always 12 cycles. In encryption mode the Ciphertext is available
after Associated Data and Plaintext have been processed. In
decryption mode both Plaintext and Tag are given at the end.
Note that smaller versions take longer to precess since the
absorption rate is smaller.

The results gathered in Tab. II are given using the NanGate
45nm Open Cell Library [17] and synthesized with Synopsys
DC Compiler 2017.09. We compile with -exact_map option,
and medium effort for mapping, area, and power to minimize
the differences between the written and the synthesized code,
and to avoid optimizations that could affect the security.

VI. EVALUATION

To test our implementations in practice, we deploy them
into FPGA and conduct a leakage detection experiment. No
information leakage is detected with up to 100 million traces.

1) TVLA: We use the method presented in [18], known as
non-specific test vector leakage assessment (TVLA) to detect
leakage, or similarly, to detect if intermediate variables have
correlation with secret data. This test is not an attack, and
retrieving the key is not the aim. This test gives information
about the leakage, whose presence is a necessary condition,
but not sufficient, for an attack to succeed. The fact that no
leakage is observed, gives confidence to the designer on the
security of the design.

We mount the experiment following the methodology de-
scribed in [19]. We collect power traces from two different



TABLE II: Synthesis results for the entire KETJE family using the NanGate 45nm Open Cell Library

Design State Area(GE) Latency Max.Freq. Power

(bits) χ Total (per round/block) (MHz) (mW)

Protected KECCAK
p*[200] 200 6 319 15 113 1 892.85 1.58
p*[400] 400 12 639 30 104 1 892.85 2.87
p*[800] 800 25 279 60 092 1 909.1 5.47
p*[1600] 1 600 50 346 119 816 1 877.2 9.96

Unprotected KETJE encryption
JR 200 707 5 447 1+1+6+8 632.9 0.682
SR 400 1 413 9 663 1+1+6+4 591.7 1.12
MINOR 800 2 827 19 665 1+1+6+1 585 2.34
MAJOR 1 600 5 653 37 650 1+1+6+1 543.5 4.13

Protected KETJE encryption
JR 200 6 319 18 335 1+1+6+8 892.85 2.08
SR 400 12 639 35 136 1+1+6+4 892.85 3.63
MINOR 800 25 279 73 516 1+1+6+1 909.1 7.75
MAJOR 1 600 50 346 144 022 1+1+6+1 877.2 14

Unprotected KETJE encryption&decryption
JR 200 707 6 109 + 3.6 ·#B + 5.67 ·#B 1+1+6+8 632.9 0.93
SR 400 1 413 10 276 + 5.6 ·#B + 5.67 ·#B 1+1+6+4 591.7 1.29
MINOR 800 2,827 20 554 + 19.6 ·#B + 5.67 ·#B 1+1+6+1 585 2.7
MAJOR 1 600 5 653 39 596 + 40 ·#B + 5.67 ·#B 1+1+6+1 543.5 4.86

Protected KETJE encryption&decryption
JR 200 6 319 20 032 + 3 · 3.6 ·#B + 3 · 5.67 ·#B 1+1+6+8 892.85 2.8
SR 400 12 639 36 645 + 3 · 5.63 ·#B + 3 · 5.67 ·#B 1+1+6+4 892.85 4,24
MINOR 800 25 279 77 608 + 3 · 19.6 ·#B + 3 · 5.67 ·#B 1+1+6+1 909.1 9.33
MAJOR 1 600 50 346 145 259 + 3 · 40 ·#B + 3 · 5.67 ·#B 1+1+6+1 877.2 16.4

Related work [16]
Protected KECCAK
PARALLEL pip.* 1 600 57 600 111 800 3 837.5 -
PARALLEL d.c.* 1 600 44 200 100 500 2 803.9 -
PARALLEL pip.** 1 600 50 400 97 700 3 846.7 -
PARALLEL d.c.** 1 600 38 400 85 700 2 877.2 -
*Synthesis library UMC 130nm
**Synthesis library UMC 90nm

plaintext groups (one fixed and the other one random) and
compare the two sets using the t-test statistic. When the t-
statistic surpasses the threshold of ±4.5, one can conclude
with confidence 99.9995% that the two sets of power traces
follow a different distribution and hence, the design leaks.

We first test an unprotected implementation to verify that
our setup is sound and we can find leakage, which is expected
in every order. We then activate the countermeasure and run
the test again. Now only second-order leakage is expected,
since our design has first-order protection. Fig. 7 illustrates
this evaluation results.

2) Setup: To evaluate the security of our implementations
we use a SAKURA-G board, specifically designed for side-
channel evaluation, which includes two Spartan-6 FPGAs. To
reduce the experimental noise, we split our implementation
in the two FPGAs: the control FPGA, which handles the
communication with the host computer and generates the
shares for the cryptographic FPGA. In the crypto FPGA we
deploy the actual scheme. This way we isolate the power
consumption of the actual encryption, reducing considerably
the noise. We use a very slow 3 MHz clock to ensure clear
power traces with minimal overlap between consecutive time

samples. The synthesis of the design is done using the Xilinx
14.7 tools with the KEEP HIERARCHY constraint, in order to
avoid optimizations across different shares. We measure the
power consumption using a Tektronix DPO 7254C oscilloscope,
sampling at 1 GS/s with 5 000 points per frame, where fourteen
and a half rounds can be appreciated.

3) The experiment: From all the designs, we deploy the
smallest KECCAK to test, where b = 200. Given the properties
of the permutation, the conclusions on a specific version of
KECCAK transfer to versions of different width. This property
is known as the Matryoshka principle [10].

To complete the full KETJE implementation, only linear
operations are used on top of KECCAK. As shown in [20],
linear operations prior to non-linear operations might introduce
dependencies among shares and hence non-completeness
failures. TI does not have this problem, given that every
share always operates with one of the shares missing, ensuring
protection even if there are dependencies. Thus, conclusions
from the evaluation of the underlying permutation remain valid
for the full implementation for first-order protection. This
conclusion would not be valid in masking schemes based on
CMS or DOM, which need independent inputs.
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Fig. 7: Welch t-test evaluation of full KECCAK. Top to bottom:
power trace, first- and second-order masks off test, and first-
and second-order masks on test

VII. CONCLUSION

In this work we have presented a new first-order protected
KECCAK implementation using TI and the “Changing of
the Guards” technique. In addition to this, we introduce a
general implementation of first-order side-channel protected
KETJE authenticated encryption schemes that are suitable for
different applications, from lightweight to high throughput
purposes. Furthermore, we extend this implementations to
include both encryption and decryption functionalities in the
same module.

We tested the underlying permutation finding no leakage with
up to 100 million traces. By using Threshold Implementations,
we are able to transport the security conclusions from the
permutation to the whole scheme. Moreover, by implementing
the trick of “Changing of the Guards”, no extra randomness
is needed to provide first-order security, and thus, we do not
need to place any dedicated randomness source next to our
design, avoiding any problems this might entail.
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