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Abstract

We present a cryptographic primitive P satisfying the following properties:

• Rudich’s seminal impossibility result (PhD thesis ’88) shows that P cannot be used in a
black-box manner to construct an injective one-way function.

• P can be used in a non-black-box manner to construct an injective one-way function as-
suming the existence of a hitting-set generator that fools deterministic circuits (such a
generator is known to exist based on the worst-case assumption that E = DTIME(2O(n))
has a function of deterministic circuit complexity 2Ω(n)).

• Augmenting P with a trapdoor algorithm enables a non-black-box construction of an in-
jective trapdoor function (once again, assuming the existence of a hitting-set generator that
fools deterministic circuits), while Rudich’s impossibility result still holds.

The primitive P and its augmented variant can be constructed based on any injective one-way
function and on any injective trapdoor function, respectively, and they are thus unconditionally
essential for the existence of such functions. Moreover, P can also be constructed based on
various known primitives that are secure against related-key attacks, thus enabling to base the
strong structural guarantees of injective one-way functions on the strong security guarantees of
such primitives.

Our application of derandomization techniques is inspired mainly by the work of Barak,
Ong and Vadhan (CRYPTO ’03), which on one hand relies on any one-way function, but on
the other hand only results in a non-interactive perfectly-binding commitment scheme (offering
significantly weaker structural guarantees compared to injective one-way functions), and does
not seem to enable an extension to public-key primitives.

The key observation underlying our approach is that Rudich’s impossibility result applies not
only to one-way functions as the underlying primitive, but in fact to a variety of “unstructured”
primitives. We put forward a condition for identifying such primitives, and then subtly tailor
the properties of our primitives such that they are both sufficiently unstructured in order to
satisfy this condition, and sufficiently structured in order to yield injective one-way and trapdoor
functions. This circumvents the basic approach underlying Rudich’s long-standing evidence for
the difficulty of constructing injective one-way functions (and, in particular, injective trapdoor
functions) based on seemingly weaker or unstructured assumptions.

A preliminary version of this work appeared in Proceedings of the 16th Theory of Cryptography Conference (TCC),
2018.
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1 Introduction

Over the last few decades the cryptography community has been successful in constructing a wide va-
riety of cryptographic primitives based on the minimal assumption that one-way functions exist. For
example, the existence of one-way functions has been shown equivalent to the existence of private-key
encryption schemes [GGM84], pseudorandom functions and permutations [GGM86, LR88, NR99],
message authentication codes [GGM86], pseudorandom generators [BM84, HIL+99], universal one-
way hash functions and signature schemes [NY89, Rom90], commitment schemes [Nao91, HIL+99,
HNO+09], and many other symmetric primitives (also known as “MiniCrypt” primitives [Imp95]).

Despite the great progress in basing symmetric cryptography on one-way functions, the exis-
tence of one-way functions is still not known to imply the existence of all symmetric cryptographic
primitives. A prime example is that of injective one-way functions (and, in particular, one-way per-
mutations), whose existence seems to require somewhat more structured assumptions (e.g., specific
number-theoretic assumptions [GLN11]).1 Moreover, the seminal work by Rudich [Rud88], within
the framework of Impagliazzo and Rudich modeling black-box constructions [IR89, RTV04], provided
substantial evidence that the existence of injective one-way functions may not be “naturally implied”
by the existence of arbitrary one-way functions. Specifically, Rudich proved that one-way functions
cannot be used in a black-box manner to construct injective one-way functions.2

Black-box impossibility results are clearly inherently limited, and do not capture non-black-box
techniques (e.g., [GMW86, Yao86, NY90, Bar01, AIK06, BP12, CPS16]). Thus, it may still be the
case that one-way functions can be used in a non-black-box manner to construct injective one-way
functions (and even one-way permutations). Given that Rudich’s black-box barrier is currently the
main evidence for explaining our lack of success in constructing injective one-way functions based
on seemingly weaker assumptions, this naturally raises the fundamental question of whether or not
Rudich’s black-box barrier can be circumvented using non-black-box techniques.

Significant progress towards obtaining a better understanding of the above question was made
in the work of Barak, Ong and Vadhan [BOV07]. Their work demonstrated that derandomization
techniques can be fundamentally useful in cryptographic constructions by enabling to eliminate
interaction from certain two-message cryptographic protocols. Relying on the existence of a hitting-
set generator that fools co-non-deterministic algorithms3, they derandomized Naor’s statistically-
binding commitment scheme [Nao91] for obtaining a non-interactive perfectly-binding commitment
scheme (in addition, relying on the existence of a hitting-set generator that fools co-non-deterministic
circuits, they derandomized Dwork and Naor’s ZAPs [DN07] for obtaining a non-interactive witness-
indistinguishable proof system for NP).

In particular, as observed by Barak, Ong and Vadhan, a non-interactive perfectly-binding com-
mitment scheme naturally implies a somewhat weak form of an injective one-way function, to which
they refer to as a “partially-injective” one-way function. Such a function f is a two-input function
f(x, y), which is injective with respect to its first input x but not necessarily with respect to its sec-
ond input y (thus offers significantly weaker structural guarantees compared to an injective one-way
function), and for which it is hard to recover x given f(x, y) where both x and y are distributed
uniformly. This shows that non-black-box techniques are useful for constructing a somewhat weak

1An additional example is that of collision-resistant hash functions, whose existence also seems to require somewhat
stronger assumptions [Sim98].

2Although Rudich formalized his statements for one-way permutations, his proof relies only on the injectivity of
the resulting functions, and thus applies to injective one-way functions.

3Such a generator is known to exist based on the worst-case assumption that E = DTIME(2O(n)) has a function
that is not computable for infinitely many input lengths by a probabilistic non-deterministic algorithm that runs in
sub-exponential time [NW94, IW97, MV99, GSTS03].
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form of injective one-way functions, but the problem of whether or not such techniques can be useful
for constructing (fully) injective one-way functions (and even trapdoor functions) based on seemingly
weaker assumptions has been left completely open.

1.1 Our Contributions

We show that non-black-box techniques can be used to circumvent the basic approach underlying
Rudich’s long-standing evidence for the difficulty of constructing injective one-way functions (and,
in particular, injective trapdoor functions) based on seemingly weaker or unstructured assumptions.
In addition, whereas separations between the black-box and non-black-box power of cryptographic
constructions were known to exist for private-key primitives [MP12], our work provides in particular
such a separation for public-key primitives.

Specifically, we present a cryptographic primitive P and prove that it satisfies the following
properties:

• Rudich’s seminal impossibility result shows that P cannot be used in a black-box manner to
construct an injective one-way function.

• P can be used in a non-black-box manner to construct an injective one-way function assuming
the existence of a hitting-set generator that fools deterministic circuits. The non-black-box
aspect of our construction is quite modest, asking for an upper bound on the size of P’s
implementation.

• Augmenting P with a trapdoor algorithm enables a non-black-box construction of an injective
trapdoor function (once again, assuming the existence of a hitting-set generator that fools
deterministic circuits), while Rudich’s impossibility result still holds.

Generally speaking, a hitting-set generator that fools deterministic circuits is known to exist
based on the worst-case assumption that E = DTIME(2O(n)) has a function of deterministic circuit
complexity 2Ω(n) (see Section 2.1 for more details). For our construction, however, it suffices to
assume the existence of a hitting-set generator that fools a rather simple computation involving the
primitive P (two parallel invocations of P followed by a comparison of their outputs). Thus, if a
hitting-set generator that fools this specific computation is known to exist unconditionally then we
do not need to rely on the above worst-case assumption.

Our application of derandomization techniques is inspired mainly by the work of Barak, Ong and
Vadhan [BOV07], which on one hand relies on any one-way function, but on the other hand only
results in a non-interactive perfectly-binding commitment scheme (offering a significantly weaker
structural guarantee when compared to injective one-way functions), and does not seem to enable
an extension to public-key primitives (see Section 1.3 for an in-depth discussion and comparison to
previous applications of derandomization techniques in cryptography).

The primitive P. Our primitive P is a predicate P : {0, 1}∗ → {0, 1} that satisfies two rather
natural properties, and we refer to this primitive as a correlated-input balanced one-way predicate.
We show that such a predicate P can be constructed based on any injective one-way function without
relying on any additional assumptions, and thus the existence of such a predicate is unconditionally
essential for the existence of an injective one-way function. Therefore, under a standard worst-case
hardness assumption, the existence of our primitive is equivalent to that of an injective one-way
function, although it is strictly weaker when restricted to black-box constructions.

Moreover, we also show that P can be constructed in a black-box manner from various known
primitives that are secure against related-secret attacks (e.g., related-key pseudorandom functions

2



and related-seed pseudorandom generators). Although these primitives seem rather unstructured,
it turns out that we can rely on their strong security guarantees to achieve the relatively modest
structural guarantee of P, and then apply derandomization techniques to obtain the more robust
structure of injective one-way functions.

In addition to the primitive P, we also introduce a natural “public-key” variant of P which is
obtained by augmenting P with a trapdoor algorithm. We show that this augmented primitive can be
constructed based on any injective trapdoor function without relying on any additional assumptions,
and thus the existence of this primitive is unconditionally essential for the existence of an injective
trapdoor one-way function. Therefore, similarly to the above, under a standard worst-case hardness
assumption, the existence of our augmented primitive is equivalent to that of an injective trapdoor
function, although it is strictly weaker when restricted to black-box constructions.

Our approach. The key observation underlying our approach is that Rudich’s black-box impos-
sibility result applies not only to rule out black-box constructions of injective one-way functions
from general one-way functions as the underlying primitive class, but in fact from a wide variety of
“unstructured” primitive classes. As basic examples, these include one-way functions and “almost-
injective” one-way functions4, and obviously do not include injective one-way functions. At a very
high level, as we discuss in Section 1.2 in more detail, Rudich’s impossibility applies to any primitive
class S satisfying the following condition: For any O,O′ ∈ S and for any two disjoint sets of inputs
X and X ′ of polynomial size, there exists an O′′ ∈ S that agrees with O on the set X and agrees
with O′ on the set X ′.

Equipped with this observation, a significant part of our effort in this work focuses on carefully
identifying a primitive P that on one hand is sufficiently unstructured in order to satisfy the above
condition, whereas on the other hand it is sufficiently structured in order to yield an injective one-
way function (via a non-black-box construction). As we pointed out, one-way functions and almost-
injective one-way functions are examples for primitive classes that satisfy the above condition, but it
is still a long-standing open problem to use them in order to construct an injective one-way function.
Instead, we specifically tailor the properties of our primitive P in order to simultaneously satisfy the
above condition and yield an injective one-way function via derandomization techniques.

1.2 Overview of Our Approach

In this section we provide an overview of our main contributions. First, we describe our new notion
of a correlated-input balanced one-way predicate, as well as our non-black-box construction of an
injective one-way function. We emphasize that we view the introduction and the specific formaliza-
tion of our new primitive as a central contribution given that: (1) it is sufficiently unstructured in
order to satisfy the above-mentioned condition for Rudich’s impossibility result, (2) it is sufficiently
structured in order to yield an injective one-way function, and (3) its existence is essential for the
existence of an injective one-way function.

Then, we describe the application of Rudich’s impossibility proof to correlated-input balanced
one-way predicates, and discuss the observation that Rudich’s impossibility result applies to a wide
variety of primitives. In fact, we prove a stronger result, showing that there is no black-box con-
struction of a partially-injective one-way function (as defined by Barak, Ong and Vadhan [BOV07])
from these primitives.

4We denote by an ”almost-injective” function a function that is injective for each input length on all but a negligible
fraction of its domain.
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Correlated-input balanced one-way predicates. The new primitive at the heart of our ap-
proach is an efficiently-computable predicate P : {0, 1}∗ → {0, 1} that can be viewed as a two-input
predicate P(x, r), where r ∈ {0, 1}`(|x|), which satisfies the following two natural requirements with
respect to correlated inputs:

• The first requirement is that the predicate P has to be rather balanced in the sense that
|Pr[P(x, r) = P(x′, r)]−1/2| is bounded for every distinct x, x′ ∈ {0, 1}n, where the probability
is taken over the choice of a uniform r ∈ {0, 1}`(n).

This requirement (on its own) is easy to satisfy by making sure that P is pair-wise independent
over the choice of r ∈ {0, 1}`(n). For example, this requirement can be satisfied by defining
P(x, r) = 〈f(x), r〉, where f may be any injective function mapping n-bit inputs to `(n)-bit
outputs.

• The second requirement is that for adversarially-chosen values r1, . . . , rT ∈ {0, 1}`(n), the
function mapping x to the sequence of values P(x, r1), . . . ,P(x, rT ) is a one-way function of x.

This requirement (on its own) is easy to satisfy by making sure that P first applies any given
one-way function to its first input x, and only then involves its second input r in the compu-
tation. For example, this requirement can be satisfied by defining P(x, r) = 〈f(x), r〉, where f
may be any one-way function mapping n-bit inputs to `(n)-bit outputs (note that this predicate
fails to satisfy the first requirement whenever f is not an injective function).

The following definition formalizes these two requirements:

Definition 1.1. Let P : {0, 1}∗ → {0, 1} be an efficiently-computable predicate, and let ` = `(n) and
δ = δ(n) be functions of the security parameter n ∈ N. Then, P is a correlated-input (`, δ)-balanced
one-way predicate if it satisfies the following two requirements:

• For any n ∈ N and for any x, x′ ∈ {0, 1}n such that x 6= x′ it holds that∣∣∣∣ Pr
r←{0,1}`(n)

[
P(x, r) = P(x′, r)

]
− 1

2

∣∣∣∣ ≤ δ(n).

• For any probabilistic polynomial-time algorithm A there exists a negligible function ν(·) such
that

Pr [InvertP,A(n) = 1] ≤ ν(n)

for all sufficiently large n ∈ N, where the experiment InvertP,A(n) is defined as follows:

1. (state, r1, . . . , rT ) ← A(1n) for r1, . . . , rT ∈ {0, 1}`(n), where T = T (n) may be any poly-
nomial determined by A.

2. x′ ← A (state,P (x, r1) , . . . ,P (x, rT )) where x← {0, 1}n.
3. If x′ = x then output 1, and otherwise output 0.

As demonstrated above, each of the two requirements on its own can be easily satisfied, but
it seems significantly more difficult to simultaneously satisfy both requirements. However, putting
together our examples for predicates that satisfy each requirement on its own, we observe that for
any injective one-way function f mapping n-bit inputs to `(n)-bit outputs, it holds that P(x, r) =
〈f(x), r〉 is a correlated-input (`(n), δ(n))-balanced one-way predicate, where δ(n) = 0.5 This shows

5This follows from our above observation that P(x, r) = 〈f(x), r〉 satisfies the first requirement for any injective f ,
and satisfies the second requirement for any one-way f .
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that the existence of such a predicate is unconditionally essential for the existence of an injective
one-way function.

In addition, in Appendix A we show that the existence of a correlated-input balanced one-way
predicate is also implied by that of various primitives that are secure against related-key attacks.
These include, for example, related-key pseudorandom functions (e.g., [BK03, Luc04, BC10, LMR14,
AW14]) and related-seed pseudorandom generators (e.g., [GL10]). Unlike injective one-way functions,
these primitives seem rather unstructured, yet still suffice for constructing correlated-input balanced
one-way predicates.

Our injective one-way function. Given any correlated-input (`, 1/4)-balanced one-way pred-
icate P, we present a construction of an injective one-way function by relying on a hitting-set
generator H that fools deterministic circuits whose size is roughly that of P’s given implementation.
Our construction applies to any function ` = `(n) of the security parameter n ∈ N (recall that
`(n) denotes the length of P’s second input r), as long as it is upper bounded by some polynomial
(e.g., `(n) = log2(n), `(n) = n2). In what follows we first describe the construction assuming that
`(n) = O(log n), as this case already sheds initial light on some of the main ideas underlying the
construction. In fact, assuming that `(n) = O(log n) the construction is fully black box, and the
hitting-set generator is not needed. Then, we show that the construction extends to any polynomial
`(n) by relying on a hitting-set generator.

Let P be a correlated-input (`, 1/4)-balanced one-way predicate where `(n) = O(log n), and
denote by rn,1, . . . , rn,L(n) all L(n) = 2`(n) possible `(n)-bit strings for any n ∈ N (note that L = L(n)
is polynomial given that `(n) = O(log n)). Then, we claim that the function

g(x) =
(
P(x, r|x|,1), . . . ,P(x, r|x|,L(|x|))

)
is both injective and one way:

• The injectivity of g follows from the fact that P is balanced: For any distinct x, x′ ∈ {0, 1}n,
as long as Pr[P(x, r) = P(x′, r)] < 1, where the probability is taken over the choice of a
uniform r ∈ {0, 1}`(n), this means that there exists at least one value r ∈ {0, 1}`(n) for which
P(x, r) 6= P(x′, r), and therefore g(x) 6= g(x′).

• The one-wayness of g follows from the fact that P is one-way for correlated inputs: For any
sequence of values r1, . . . , rT the function mapping x to the sequence of values P(x, r1), . . . ,
P(x, rT ) is a one-way function of x. This holds, in particular, for the sequence of values
rn,1, . . . , rn,L(n), and thus g is a one-way function.

Now suppose that P is a correlated-input (`, 1/4)-balanced one-way predicate where `(n) may be
any polynomial. Here, we can no longer define g as above by enumerating over all possible `(n)-bit
strings to be used as P’s second input r. All we need, however, is to enumerate over a carefully-
chosen set r1, . . . , rT such that for any distinct x, x′ ∈ {0, 1}n there exists a value r ∈ {r1, . . . rT }
such that P(x, r) 6= P(x′, r). This is exactly the type of guarantee that is provided by a hitting-
set generator, and enables us to argue that the following function g is both injective and one way:
On input x ∈ {0, 1}n our function g : {0, 1}∗ → {0, 1}∗ first uses a hitting-set generator H that
fools circuits whose size is roughly the size of P’s implementation for obtaining a sequence of values
r1, . . . , rT (n) ∈ {0, 1}`(n), and then outputs the value

g(x) =
(
P(x, r1), . . . ,P(x, rT (n))

)
.

In Section 3 we prove that the injectivity of g follows from the fact that P is balanced and H is
a hitting-set generator, whereas the one-wayness of g follows from the fact that P is one way for
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correlated inputs as above. Moreover, we show that by augmenting P with a trapdoor argument,
our construction generalizes to an injective trapdoor function. We refer the reader to Section 3 for
the formal details.

Applying Rudich’s impossibility to correlated-input predicates. We now briefly overview
Rudich’s approach while pointing out the adjustments required in order to apply it to correlated-
input balanced one-way predicates. Let O = {On}n∈N be an oracle, where each On is uniformly
chosen from some function family Sn, and let C be an oracle-aided circuit guaranteeing that CO

implements an injective function for any O ∈ {Sn}n∈N. In the case of Rudich’s proof, Sn is
the family of all functions mapping n bits to n bits, and hence O is simply a random length-
preserving function. In our case, Sn is the set of all (`(n) = n, δ(n) = 2−n/3)-balanced predicates;
i.e., predicates taking inputs in {0, 1}n × {0, 1}n, such that for every distinct x, x′ ∈ {0, 1}n it holds
that

∣∣Prr←{0,1}n [On(x, r) = On(x′, r)]− 1/2
∣∣ ≤ 2−n/3. We set `(n) = n for the sake of simplicity,

but the proof holds for any super-logarithmic ` with minor adjustments.
Rudich’s proof then considers an adversary that makes a polynomial number of queries to O

and always succeeds in inverting CO(x∗) for any input x∗. On input y∗ = CO(x∗), the adversary
A proceeds in iterations, where in each iteration it arbitrarily picks a value x and a possible oracle
O′ that is consistent with what it has learned so far on O, such that y∗ = CO

′
(x). A then checks

if CO(x) = y∗ (if so x = x∗), and if not, queries O with all queries in the execution of CO′(x) that
were not already known. The main observation is that in each iteration, the adversary either learns
a new query made in the evaluation of CO(x∗), or finds the correct pre-image x = x∗ of y∗. Hence,
if C makes at most q oracle queries, then A is guaranteed to find x∗ within q + 1 iterations.

In order to prove this main observation, suppose that in some iteration A does not learn a new
query made in the evaluation of CO(x∗) nor does it hold that x = x∗. This means that from A’s
point of view, the oracles have so far been defined on disjoint sets of inputs. Now, the idea is that
O and O′ can be “glued” together to form a third oracle O′′ ∈ S such that CO′′(x) = CO

′′
(x∗) = y∗,

contradicting the injectivity guarantee of C. In the case of Rudich’s proof, this is straightforward:
since S is the family of all length-preserving functions, O′′ can simply be any oracle that is consistent
with the answers of O and O′ to the queries made during the evaluations of CO(x∗) and CO

′
(x),

respectively, and can be arbitrarily defined everywhere else. In our case, we need to show that we
can complete O′′ to be balanced for every input length.

More generally, this shows that Rudich’s proof does not only apply to length-preserving functions
or to correlated-input balanced predicates, but in fact to any function family S that is “sufficiently
unstructured” in order to guarantee the following property: For any two functions O,O′ ∈ S and for
any two disjoint sets of “not too short” inputs X and X ′ of polynomial size, there exists a function
O′′ ∈ S that agrees with O on the set X and agrees with O′ on the set X ′. We have provided two
examples for such families: All length-preserving functions (i.e., where O a random oracle) and all
balanced predicates. Of course, not all families exhibit this property as some primitives — and in
particular injective one-way functions — do imply injective one-way functions in a black-box manner.
For example, if we consider S = {Sn}n∈N where Sn is the set of all permutations on n-bit strings,
then this is obviously not the case even for X and X ′ of size one. For any n ∈ N and any distinct
x, x′ ∈ {0, 1}n, if O(x) = O′(x′), then no function O′′ ∈ S can agree both with O on input x and
with O′ on input x′, as this will contradict the injectivity of O′′.

Two final remarks are in order. First, one still needs to show that our balanced predicate oracle is
hard to invert for correlated inputs. Roughly speaking, this follows from the fact that a truly uniform
predicate is correlated-input one way, and is also balanced with an overwhelming probability. Second,
our proof readily extends to rule out black-box constructions of the seemingly weaker partially-
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injective one-way functions from our strengthened variant of P that is augmented with a trapdoor
algorithm. We refer the reader to Section 4 for the formal details.

1.3 Related Work

The power of black-box vs. non-black-box constructions. Our work shows a gap between
the power of black-box constructions and the power of non-black-box constructions both in the
private-key setting and in the public-key setting.

Such a gap in the private-key setting was previously identified by Mahmoody and Pass [MP12]
who proved that one-way functions cannot be used in a black-box manner for constructing a non-
interactive commitment scheme. Combining their negative result with the above-mentioned positive
result of Barak et al. implies that, under a standard worst-case hardness assumption, the existence
of a one-way function is equivalent to that of a non-interactive commitment scheme, although it is
strictly weaker when restricted to black-box constructions.6

Our work identifies such a gap in the public-key setting as well, by showing that augmenting our
primitive P with a trapdoor algorithm enables a non-black-box construction of a trapdoor function
(while Rudich’s impossibility result still holds), whereas the construction of Barak et al. does not seem
to enable an extension to the public-key setting. An additional such gap in the public-key setting was
identified by Döttling and Garg [DG17] who presented a breakthrough construction of an identity-
based encryption scheme based on the computational Diffie-Hellman assumption, circumventing the
impossibility result of Papakonstantinou et al. [PRV12] in the generic-group model.

Derandomization in cryptography. When compared to the work of Barak, Ong and Vadhan
[BOV07] and other applications of derandomization in similar scenarios (e.g., [Lau83, Nao91, DN07,
DNR04, BV17]), our work exhibits the following main differences.

• The underlying cryptographic building block and the resulting primitive in our work are incom-
parable to those in their work: We rely on a seemingly stronger cryptographic building block
(specifically, a correlated-input balanced one-way predicate in our work vs. a one-way function
in their work), and obtain a seemingly stronger primitive (an injective one-way function in our
work vs. a partially-injective one-way function in their work). A natural question that arises in
this context is whether or not our two approaches can be combined and yield a non-black-box
construction of an injective one-way function based on any one-way function.

• We rely on the existence of a hitting-set generator that fools deterministic circuits, whereas
Barak et al. rely on the seemingly incomparable assumption that there exists a hitting-set
generator that fools co-non-deterministic algorithms. In turn, our transformation relies on the
assumption that E = DTIME(2O(n)) has a function of deterministic circuit complexity 2Ω(n),
whereas Barak et al. rely on the assumption that E = DTIME(2O(n)) has a function that is not
computable for infinitely many input lengths by a probabilistic non-deterministic algorithm
that runs in sub-exponential time.

• Following the work of Barak et al. derandomization using pseudorandom generators was also
applied in the recent work of Bitansky and Vaikuntanathan [BV17] (both motivated by the
classic applications of derandomization techniques in similar settings [Lau83, Nao91, DN07,
DNR04]). The common theme underlying these applications is to derandomize an “almost
perfectly correct” primitive into a “perfectly correct” one. This seems somewhat incomparable

6As pointed out by Mahmoody and Pass [MP12], this is different from the results of Barak [Bar01] and Goldreich
and Krawczyk [GK96] which provide separations between the power of black-box and non-black-box proofs of security.
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to our work, where our starting point is not an “almost perfectly correct” injective one-way
function, but rather our new notion of a correlated-input balanced one-way predicate.

Indeed, it would seem that using an “almost perfectly correct” injective one-way function as our
starting point is not enough. Consider for example a collection of functions, where all of them
are one way, and most of them are injective. A standard attempt to apply derandomization
techniques to construct an injective one-way function from such a collection may naturally rely
on the following idea: Given an input x, use a hitting-set generator to choose a small subset
of the functions in the collection, evaluate all of these functions on the same input x, and
concatenate their outputs. The properties of the hitting-set generator indeed guarantee that
the resulting function is injective (since at least one of the functions chosen by the generator
is injective), but unfortunately there is no guarantee that this function is actually one way. A
similar problem will arise when trying to start with a single function that is almost injective
in the sense that it has only a few collisions. Our new primitive P is just strong enough to
enable the construction of an injective one-way function by applying such techniques, yet still
weak enough so that Rudich’s black-box separation directly applies to it.

Strengthening the framework of black-box constructions. In recent years there have been
several approaches for extending the framework of black-box impossibility results to capture various
non-black-box techniques. For example, Brakerski et al. [BKS+11] and Asharov and Segev [AS15]
showed that various non-black-box constructions that are based on non-interactive zero-knowledge
proofs and indistinguishability obfuscation [BGI+12, GGH+13], respectively, can in fact be modeled
in a black-box manner. This enabled them to prove various limitations on the power of these two
primitives even when used in a particular non-black-box manner. Subsequently, Garg et al. [GMM17]
refined the framework of Asharov and Segev to also account for “self-calls” of some primitives that
might receive circuits as input (e.g., indistinguishability obfuscation).

Baecher, Brzuska and Fischlin [BBF13] considered more fine-grained variants of black-box con-
structions. Among their definitions, they considered constructions where the correctness or security
guarantees need hold only for the case when the underlying primitive or the adversary in the security
reduction are assumed to be efficient. They also went a step further, to consider a more subtle defini-
tion in which the security reduction may depend on some parameters of the assumed adversary (such
as running time, success probability, etc.), even though its access to the adversary may still be black
box. These notions seem related to, but do not precisely capture our non-black-box construction
of an injective one-way function, which makes use of knowledge of the implementation size of the
underlying primitive (with a security proof that makes black-box use of the adversary).

Most relevant to our work is the work of Pass, Tseng and Venkitasubramaniam [PTV11] that rules
out constructions of various cryptographic primitives (e.g., one-way permutations, collision-resistant
hash functions, constant-round statistically-hiding commitments, and constant-round black-box zero-
knowledge proofs for NP) based on one-way functions, where the implementation of the underlying
one-way function can be used in an arbitrary manner both within the construction and within the
security proof, but the adversary may only be used in a black-box manner within the proof of
security7. Their results are based on average-case strengthenings of the traditional assumption that
coNP is not contained in AM. As Pass et al. pointed out, their approach does not seem to extend to
ruling out constructions of injective one-way functions (as such functions may not be size-verifiable
in general).

7This is exactly our case: We need a bound on the size of the underlying primitive’s implementation both for the
construction and for security proof, but the adversary is used in a black-box manner.
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More recently, the work of Dachman-Soled [Dac16] strengthened the black-box barrier of con-
structing a public-key encryption scheme based on one-way functions [IR89] by relying on somewhat
similar assumptions. Roughly speaking, her work considers non-adaptive constructions, where both
the underlying one-way function and the adversary are used in a black-box manner by the construc-
tion and the security proof, respectively, but the security proof is allowed to rely on the implemen-
tation of the underlying one-way function in an arbitrary manner (this class of constructions seems
orthogonal to our construction).

1.4 Open Problems

Circumventing other black-box barriers. A natural question that arises is whether we can
rely on worst-case assumptions and similar techniques to those we use in order to circumvent other
known and long-standing black-box impossibility results. In particular, can such techniques be
useful in obtaining a key-agreement protocol from any one-way function or from slightly stronger
yet symmetric-key primitives, or in constructing collision-resistant hash functions from any one-way
function; circumventing the black-box separation results of Impagliazzo and Rudich [IR89] and of
Simon [Sim98], respectively? Conversely, can one enhance the aforementioned impossibility results
in a way that will provide evidence that such constructions are unlikely to exist? We refer the reader
to Section 1.3 for a discussion on recent approaches to broaden the black-box separations framework.

Correlated-input balanced one-way predicates vs. one-way functions. Our new primitive
P seems to be somewhat stronger than “plain” one-way functions, yet at least from a structural
point of view, the added requirement is fairly modest and it seems much weaker than the injectivity
requirement of injective one-way functions. A central open question is then the following: Can
one construct a correlated-input balanced one-way predicate from any one-way function, resulting –
when combined with our result (and a worst-case complexity assumption) – in a construction of an
injective one-way function from any one-way function? Alternatively, can it be shown that such a
construction is impossible in a black-box manner, thus establishing that a black-box barrier between
general one-way functions and their injective counterparts still exists?

Per the latter possibility, it seems that the structural properties of P are weak enough, so that
at least the techniques underlying Rudich’s approach cannot be applied to ruling out black-box
constructions of P from one-way functions. More broadly, any separation that aims to derive a
contradiction to P’s balance requirement (the first property in Definition 1.1) will have to funda-
mentally deviate from Rudich’s technique due to the following observation. Suppose C is a candidate
implementation of an (`, δ)-balanced predicate with respect to some oracle O, and say we partially
fix O so that the output of CO is determined for a subset X of its possible inputs of length n+ `(n).
Even if X is of exponential size (in n), then CO might still be (`, δ)-balanced for a non-negligible δ,
which is enough for our needs of constructing an injective one-way function.

Constructing correlated-input balanced trapdoor predicates. In the current state of affairs,
candidates for injective trapdoor functions are scarce. Most candidates rely on specific number-
theoretic or lattice based assumptions, and general constructions from other cryptographic primi-
tives either rely on very strong assumptions such as sub-exponential indistinguishability obfuscation
[BPW16] or are proven in the random oracle model [BHS+98]. We thus view the construction of
our trapdoor version of P from new assumptions as a very interesting open problem, as this will
imply new constructions for injective trapdoor functions. More specifically, can the trapdoor version
of P be obtained from public-key encryption (perhaps with additional symmetric primitives)? Can
enhancing the latter’s security properties help in such a transformation (similarly to the symmetric
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case, in which we were able to trade strong security guarantees of related-key secure pseudorandom
functions for the structural ones of P)?

Weakening the derandomization-related assumption. Our construction of an injective one-
way function is based on the existence of a hitting-set generator, which in turn is known to exist under
the assumption of a non-uniform circuit lower bound (namely, that E = DTIME(2O(n)) has a function
of deterministic circuit complexity 2Ω(n)). Can this assumption be weakened? More specifically, can
similar results be obtained using weaker types of hitting-set generators or pseudorandom generators,
known to exist under seemingly weaker complexity assumptions? For example, can results of similar
nature be based on the seemingly weaker assumption that P = BPP, which Goldreich [Gol11] showed
to yield certain uniform versions of pseudorandom generators?

Implications to extensions of Rudich’s work. A variety of extensions have been developed to
Rudich’s impossibility result, including for example [BKS+11, MM11, AS15, AS16b, BDV17, RSS17].
Our result does not directly imply that all of these extensions may be circumvented as well, since they
deal with primitives that seem either significantly stronger than injective one-way functions (e.g.,
public-key primitives [BKS+11, AS15] and specific forms of injective one-way functions [MM11,
AS16b]), or incomparable to injective one-way functions (e.g., bounded-TFNP instances [RSS17]),
and are currently not known to be implied by our notion of a correlated-input balanced one-way
predicate. An interesting problem that arises given these extensions is to extend our approach to
such stronger or incomparable primitives.

1.5 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce our notation as well
as the basic cryptographic primitives that we consider in this paper. In Section 3 we present our
constructions of an injective one-way function and of an injective trapdoor function. In Section 4 we
show that Rudich’s impossibility result applies not only to constructions based on one-way functions,
but also to constructions based on correlated-input balanced one-way predicates (and even when
augmented with a trapdoor algorithm). Finally, in Appendix A we show that the existence of such
predicates is unconditionally implied not only by that of any injective one-way function, but also by
that of various cryptographic primitives that are secure against related-key attacks.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . The statistical distance between two distributions X and Y over a finite domain
Ω is SD(X,Y ) = 1

2

∑
ω∈Ω |X(ω)− Y (ω)|. For an integer n ∈ N we denote by [n] the set {1, . . . , n}.

A function ν : N→ R+ is negligible if for any polynomial p(·) there exists an integer N such that for
all n > N it holds that ν(n) ≤ 1/p(n).

2.1 Hitting-Set Generators

We rely on the following standard notion of a hitting-set generator, as formalized by Goldreich et al.
[GVW11], for the class of deterministic circuits (see also [Sip88, CG89, And94, ACR+97, LLS+97,
ACR98, GVW11] and the references therein).

10



Definition 2.1. A deterministic polynomial-time algorithm H is a hitting-set generator that fools
deterministic circuits if for every n, t ∈ N the generator H on input

(
1n, 1t

)
outputs a set S such

that the following hold:

• S ⊆ {0, 1}n.

• For every circuit C : {0, 1}n → {0, 1} of size at most t for which

Pr
x←{0,1}n

[C(x) = 1] ≥ 1/4,

there exists some x∗ ∈ S such that C(x∗) = 1.

Any pseudorandom generator [NW94] that fools deterministic circuits and has a logarithmic seed
length immediately gives rise to such a hitting-set generator (by having H enumerate over all possible
seeds). This implies the following corollary on which we rely for our constructions in Section 3:

Corollary 2.2 ([NW94, IW97]). If there exists a function f ∈ DTIME(2O(n)) with deterministic
circuit complexity 2Ω(n), then there exists a hitting-set generator that fools deterministic circuits.

2.2 Injective and Partially-Injective One-Way Functions

In this paper we rely on the following standard notions of one-way functions and injective one-way
functions (see, for example, [Gol01]), as well as on the notion of partially-injective one-way functions
due to Barak, Ong and Vadhan [BOV07].

Definition 2.3. An efficiently-computable function f : {0, 1}∗ → {0, 1}∗ is one way if for every
probabilistic polynomial-time algorithm A there exists a negligible function ν(·) such that

Pr
x←{0,1}n

[
A(1n, f(x)) ∈ f−1 (f(x))

]
≤ ν(n)

for all sufficiently large n ∈ N.
An injective one-way function is a function that is both injective and one way. Barak, Ong, and

Vadhan [BOV07] introduced the following notion of a partially-injective one-way function.

Definition 2.4 ([BOV07]). Let m = m(n) be a function of the security parameter n ∈ N. An
efficiently-computable function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ is a partially-injective one-way function
if it satisfies the following two requiremets:

1. For every n ∈ N, every x, x′ ∈ {0, 1}n such that x 6= x′, and every y, y′ ∈ {0, 1}m(n), it holds
that f(x, y) 6= f(x′, y′) (i.e., f is injective with respect to its first input).

2. For every probabilistic polynomial-time algorithm A there exits a negligible function ν(·) such
that

Pr
(x,y)←{0,1}n+m(n)

[A (f(x, y)) = x] ≤ ν(n)

for all sufficiently large n ∈ N.
Note that a partially-injective one-way function with m(n) = 0 is in fact an injective one-way

function, but for general m(n) this notion seems potentially weaker than that of an injective one-way
function. Barak et al. observed that any perfectly-binding non-interactive commitment scheme yields
a partially-injective one-way function. Since Barak et al. derandomized Naor’s commitment scheme
[Nao91] into a perfectly-binding non-interactive one assuming the existence of a hitting-set generator
that fools co-non-deterministic algorithms (recall Section 2.1), the following corollary follows.

Corollary 2.5 ([BOV07]). Assuming the existence of a hitting-set generator that fools co-non-
deterministic algorithms, then one-way functions imply partially-injective one-way functions.
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2.3 Injective Trapdoor Functions

We also rely in this paper on the following standard notion of a collection of trapdoor functions (see,
for example, [Gol01]).

Definition 2.6. Let m = m(n) be a function of the security parameter n ∈ N. A collection
of trapdoor functions is a triplet of efficient algorithms F = (G,F, F−1) satisfying the following
requirements:

1. G is a probabilistic algorithm that on input 1n, samples and outputs a public key pk ∈ {0, 1}n
and a corresponding trapdoor td ∈ {0, 1}n.8

2. F is a deterministic algorithm that receives as input a public key pk ∈ {0, 1}n and an addi-
tional input value x ∈ {0, 1}n and outputs a value y ∈ {0, 1}m(n). We require that for every
probabilistic polynomial-time algorithm A there exists a negligible function ν such that

Pr
(td,pk)←G(1n)

x←{0,1}n

[F (pk,A(1n, pk, F (pk, x))) = F (pk, x)] ≤ ν(n)

for all sufficiently large n ∈ N.

3. F−1 is a deterministic algorithm that on input (td, F (pk, x)) has the following guarantee: For
any n ∈ N, (td, pk) in the range of G(1n) and x ∈ {0, 1}n, it holds that F−1(td, F (pk, x))
outputs x′ ∈ {0, 1}n such that F (pk, x′) = F (pk, x).

We say that F is a collection of injective trapdoor functions if for every n ∈ N and any (td, pk)
in the range of G(1n) the function F (pk, ·) is injective.

3 Our Constructions

In this section we present our non-black-box constructions of an injective one-way function (see
Section 3.1) and an injective trapdoor function (see Section 3.2).

3.1 An Injective One-Way Function

In this section we present our non-black-box construction of an injective one-way function from any
correlated-input balanced one-way predicate and any hitting-set generator that fools deterministic
circuits. More formally, our construction relies on the following two building blocks:

• A correlated-input (`, 1/4)-balanced one-way predicate P (recall Definition 1.1), where `(n)
may be upper bounded by any fixed polynomial (e.g., `(n) = log2(n), `(n) = n2). Let t = t(n)
be an upper bound on the size of the circuit computing P(x, r) for inputs x ∈ {0, 1}n (recall
that r ∈ {0, 1}`(n)).

• A hitting-set generator H that fools deterministic circuits. Denote by T = T (n) the size of
the set S that is produced by the generator H on input (1`(n), 12t(n)+c) for a constant c to be
determined later. As discussed in Section 2.1, such a generator exists based on the worst-case
assumption that E = DTIME(2O(n)) has a function with deterministic circuit complexity 2Ω(n).

8Definition 2.6 assumes that the lengths of the public key and of the trapdoor are equal to the security parameter
n. This is for simplicity only, and in both cases one may replace n with any length that is polynomial in n.

12



We note that the choice of the constant 1/4 that parameterizes both of our building blocks is
rather arbitrary. More generally, the construction may rely on any (`, δ)-balanced predicate and on
any ε-hitting-set generator as long as δ + ε ≥ 1/2 (in Definition 2.1 we fixed ε to be 1/4, but the
definition readily extends to any ε ∈ [0, 1]).

The construction. On input x ∈ {0, 1}n our function g : {0, 1}∗ → {0, 1}∗ first computes

H
(

1`(n), 12t(n)+c
)

=
(
r1, . . . , rT (n)

)
∈ {0, 1}`(n)×T (n),

where c > 0 is a fixed constant that we determine later on, and then outputs the value

g(x) =
(
P(x, r1), . . . ,P(x, rT (n))

)
∈ {0, 1}T (n).

The following theorem states that g is an injective one-way function based on our assumptions
on the underlying building blocks P and H:

Theorem 3.1. Assuming that P is a correlated-input (`, 1/4)-balanced one-way predicate and that
H is a hitting-set generator that fools deterministic circuits, the function g is an injective one-way
function.

Proof. We first prove that g is injective (Claim 3.2) by relying on the fact that P is balanced for
correlated inputs (recall the first requirement of Definition 1.1) and on the hitting property of H.
Then, we prove that g is one-way (Claim 3.3) by relying on the fact that P is one-way for correlated
inputs (recall the second requirement of Definition 1.1).

Claim 3.2. For every n ∈ N and for every distinct x, x′ ∈ {0, 1}n it holds that g(x) 6= g(x′).

Proof of Claim 3.2. Fix any n ∈ N and distinct inputs x, x′ ∈ {0, 1}n, and we show that g(x) 6=
g(x′). Consider the deterministic circuit C = Cx,x′ that on input r ∈ {0, 1}`(n) outputs 1 if and only
if P(x, r) 6= P(x′, r). This circuit preforms two evaluations of P and one bit comparison, and thus
the size of the circuit C is at most 2t(n) + c, where c is the number of gates needed to compare two
bits. The balancing property of P guarantees that

Pr
r←{0,1}`(n)

[C(r) = 1] = Pr
r←{0,1}`(n)

[
P(x, r) 6= P(x′, r)

]
≥ 1/4.

Now, the hitting-set generator H guarantees that for the sequence of values

H
(

1`(n), 12t(n)+c
)

=
(
r1, . . . , rT (n)

)
∈ {0, 1}`(n)×T (n)

there exists some i ∈ [T (n)] such that C(ri) = 1, which is equivalent to P(x, ri) 6= P(x′, ri), and
thus g(x) 6= g(x′).

Claim 3.3. The function g is one way.

Proof of Claim 3.3. Assume towards a contradiction that there exists a probabilistic polynomial-
time algorithm A and a polynomial p(·) such that

Pr
x←{0,1}n

[A(1n, g(x)) = x] ≥ 1/p(n)

for infinitely many values of n ∈ N.
We construct a probabilistic polynomial-time algorithm A′ that contradicts the correlated-input

one-wayness of P. On input 1n the algorithm A′ participates in the experiment InvertP,A′(n) as
follows:
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1. The algorithm A′ outputs the sequence of correlated inputs
(
r1, . . . rT (n)

)
= H

(
1`(n), 12t(n)+c

)
,

and then receives P (x, r1) , . . . ,P
(
x, rT (n)

)
for a uniformly sampled x← {0, 1}n.

2. The algorithm A′ invokes A on the input
(
1n,
(
P (x, r1) , . . . ,P

(
x, rT (n)

)))
, and returns its

output.

Since g(x) = P (x, r1) , . . . ,P
(
x, rT (n)

)
, it holds that

Pr
[
InvertP,A′(n) = 1

]
= Pr

x←{0,1}n
[A(1n, g(x)) = x] ≥ 1/p(n)

for infinitely many values of n ∈ N, which contradicts the correlated-input one-wayness of P. There-
fore, the function g is one way.

This concludes the proof of Theorem 3.1.

3.2 An Injective Trapdoor Function

We now turn to extend our approach to injective trapdoor functions. Loosely speaking, we augment
our primitive P with a trapdoor algorithm P−1, and show that an extension of the construction
presented in Section 3.1 yields an injective trapdoor function. Informally, knowledge of a trapdoor
enables P−1 to find an x ∈ {0, 1}n such that P(x, r) = b for each pair (r, b) ∈ {0, 1}`(n) × {0, 1}
in a set S of such pairs that is given as input to the algorithm, with the proviso that S provides
“sufficient information” about x. This last condition may be formalized as a boolean set function
φ :
(
{0, 1}`

)∗ → {0, 1} with the interpretation that a set is mapped to 1 if and only if it is “sufficiently
rich”. Informally, a reasonable choice of a function φ should meet two criteria:

1. For every n ∈ N, it should be possible to efficiently come up with a set that satisfy φ. Otherwise,
P−1 seems of little use.

2. φ should be monotone; i.e., if S ⊆ T and φ(S) = 1, then φ(T ) = 1. Intuitively, if φ(S) = 1
has the interpretation that S generates “enough information” on x, then surely this is also the
case for T .

A natural choice for φ, which we will adopt in our definition below, is a function that checks
whether or not the input set contains a basis for F`(n)

2 (when each element r ∈ {0, 1}`(n) is viewed a
vector in F`(n)

2 ); that is, φ(S) = 1 if and only if S contains a subset of `(n) linearly independent r’s.
This choice, other than satisfying the aforementioned criteria, enables us to construct a correlated-
input balanced trapdoor predicate (as will be defined shortly in Definition 3.4) from any injective
trapdoor function, making our trapdoor predicate with respect to that choice of φ essential for the
existence of injective trapdoor functions.

It should be noted, however, that any choice of φ that satisfies the above two criteria yields a
predicate that can be used in a non-black-box manner to construct an injective trapdoor function
via our transformation, yet (a strengthened version of) Rudich’s proof shows that this is not the
case when restricting ourselves to black-box constructions. Indeed, in Section 4 we show that this
augmented variant of P cannot be used in a black-box manner to construct even a partially-injective
one-way function.

The following definition naturally extends Definition 1.1 by considering a family of predicates
equipped with a trapdoor algorithm, as discussed above:

Definition 3.4. Let ` = `(n) and let δ = δ(n) be functions of the security parameter. A correlated-
input (`, δ)-balanced trapdoor predicate is a triplet T = (G,P, P−1) of efficiently-computable algo-
rithms such that:
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• The algorithm G on input 1n outputs a pair (pk, td) ∈ {0, 1}∗.

• For every n ∈ N and for every pk ∈ {0, 1}∗ produced by G(1n), the function P (pk, ·, ·) :
{0, 1}n × {0, 1}`(n) → {0, 1} is an (`, δ)-balanced predicate. That is, for any x, x′ ∈ {0, 1}n
such that x 6= x′ it holds that∣∣∣∣ Pr

r←{0,1}`(n)

[
P(pk, x, r) = P(pk, x′, r)

]
− 1

2

∣∣∣∣ ≤ δ(n).

• For every n, T ∈ N, and for every (pk, td) that is produced by G(1n), the algorithm P−1

satisfies the following guarantee:
On input td and {(ri, bi)}Ti=1 ∈

(
{0, 1}`(n) × {0, 1}

)T , if the set {ri}Ti=1 contains a subset of
`(n) linearly independent elements and there exists an x ∈ {0, 1}n such that P (pk, ri) = bi for
every i ∈ [T ], then P−1 outputs such an x. Otherwise, P−1 outputs ⊥.

• For any probabilistic polynomial-time algorithm A there exists a negligible function ν(·) such
that

Pr [InvertT ,A(n) = 1] ≤ ν(n)

for all sufficiently large n ∈ N, where the experiment InvertT ,A(n) is defined as follows:

1. (state, r1, . . . , rT ) ← A(1n, pk) for r1, . . . , rT ∈ {0, 1}`(n), where T = T (n) may be any
polynomial determined by A and (pk, td)← G(1n).

2. x′ ← A (state, Ppk (x, r1) , . . . , Ppk (x, rT )) where x← {0, 1}n.
3. If x′ = x then output 1, and otherwise output 0.

Observe that the existence of T is indeed essential for the existence of an injective trapdoor
function. Let F = (GF , F, F

−1) be any collection of injective trapdoor functions, and consider the
construction Ppk(x, r) = 〈Fpk(x), r〉. This is essentially (a keyed version of) the same construction
that we had in the symmetric case, and P is thus both balanced for every pk and correlated-input
one way for the same reasons as before. As for the inversion algorithm P−1, note that given the
construction P , every pair (r, b) in the input to P−1 may be interpreted as a linear equation with `(n)
variables over F2: 〈Fpk(x), r〉 = b. Hence, when the input to P−1 contains `(n) linearly independent
r’s (which is only then that it is required to return a pre-image x), it can uniquely recover z = Fpk(x)
and invoke F−1

td (z) to find x.
Similarly to Section 3.1, our construction of an injective trapdoor function is based a hitting-set-

generator against deterministic circuits H, but we replace the correlated-product (`, 1/4)-balanced
one-way predicate P, with a correlated-product (`, 1/4)-balanced trapdoor predicate T = (G,P, P−1).
As before, we let t = t(n) be an upper bound on the size of the circuit computing Ppk(x, r) for
x ∈ {0, 1}n and let T = T (n) denote the size of S = {r1, . . . , rT } - the output set of H on input
(1`(n), 12t(n)+c).

The construction. The construction extends that of an injective one-way function presented in
Section 3.1. The main difference is that we need to make sure that the output of Fpk(x) encodes
“enough information” on x so that we may use P−1

td to implement the inversion algorithm F−1
td .

To ensure that, when computing Fpk(x), we will also invoke Ppk on (x, e1), . . . , (x, e`(n)), where
e1, . . . , e`(n) are the standard basis vectors, interpreted as binary strings of length `(n). The output
of Fpk(x) will then consist of two parts: The first part Ppk(x, r1), . . . , Ppk(x, rT ) ensures injectivity
(as in Section 3.1), while the second part Ppk(x, e1), . . . , Ppk(x, e`(n)) ensures efficient invertibility.
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Concretely, given the aforementioned ingredients, we construct an injective trapdoor function
F = (GF , F, F

−1) as follows:

• The algorithm GF on input 1n invokes G(1n), and outputs its output (pk, td).

• The algorithm F on input (pk, x) ∈ {0, 1}n×{0, 1}n computes H(1`(n), 12t(n)+c) = (r1, . . . , rT ),
and outputs

Fpk(x) =
(
Ppk(x, r1), . . . Ppk(x, rT ), Ppk(x, e1), . . . , Ppk(x, e`(n))

)
.

• The algorithm F−1 on input (td, y) ∈ {0, 1}n × {0, 1}T+`(n) computes H(1`(n), 12t(n)+c) =
(r1, . . . , rT ), and outputs

F−1
td (y) = P−1

td

(
(r1, y1), . . . , (rT , yT ), (e1, yT+1), . . . , (e`(n), yT+`(n))

)
where yi denotes the ith bit of y for every i ∈ {1, . . . , T + `(n)}.

Theorem 3.5. Assuming that T = (G,P, P−1) is a correlated-input (`, 1/4)-balanced trapdoor
predicate and that H is a hitting-set generator that fools deterministic circuits, the triplet F =
(GF , F, F

−1) is an injective trapdoor function.

Proof. We first note that for every n ∈ N and for every pk ∈ {0, 1}n, the injectivity of Fpk(·)
follows from the fact that Ppk is balanced and from the properties of the hitting-set-generator H
(the formal proof is essentially identical to that of Claim 3.2). In addition, the one-wayness of
F follows directly from the one-wayness of P for correlated inputs as defined via the experiment
InvertT ,A(n) in Definition 3.4 (the proof is again essentially identical to that of Claim 3.3).

It is thus left to prove the correctness of the inversion algorithm F−1. Indeed, by the definition
of the algorithms GF and F , for any n ∈ N, (pk, td)← GF (1n), x ∈ {0, 1}n and y = Fpk(x), it holds
that yi = Ppk(x, ri) for every i ∈ [T (n)] and yT+i = Ppk(x, ei) for every i ∈ [`(n)]. Moreover, by the
injectivity of Fpk(·), for any x′ ∈ {0, 1}n such that x′ 6= x, there exists an index i ∈ [T (n)] for which
Ppk(x, ri) = (Fpk(x))i 6= yi. Put in words, x is the only element in {0, 1}n for which Ppk(x, ri) = yi

for every i ∈ {0, 1}n. Moreover, the set {ri}Ti=1 ∪{ei}
`(n)
i=1 on which P−1

td is invoked on by F−1
td indeed

contains a subset of `(n) linearly independent elements (in particular, it includes e1, . . . , e`(n)). It
follows by the guarantee of P−1

td that indeed F−1
td (y) = x.

4 Applying Rudich’s Impossibility to Correlated-Input Predicates

In this section we show that Rudich’s impossibility result [Rud88] can be applied to correlated-
input balanced trapdoor predicates. That is, we show that there is no black-box construction of an
injective one-way function from such a predicate. In fact, we prove a stronger result, showing that
there is no black-box construction of a partially-injective one-way function (as defined by Barak, Ong
and Vadhan [BOV07]) from such a predicate (recall Definition 2.4). Since any injective trapdoor
function is also an injective (and a partially-injective) one-way function, it trivially follows that the
former also cannot be constructed in a black-box manner from our predicate. We prove the following
theorem:

Theorem 4.1. There is no black-box construction of a partially-injective one-way function based on
a correlated-input (`(n), δ(n))-balanced trapdoor predicate, where `(n) = n and δ(n) = 2−n/3.
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We note that, as with Rudich’s original statement, the above theorem applies even to semi-
black-box constructions (i.e., cases where the construction itself is black box, but adversaries may
be used in a non-black-box manner within the proof of security – see [RTV04] for more details). In
addition, we note that our choice of `(n) = n is done purely for simplicity, and our proof applies to
any super-logarithmic `(n) (recall that a logarithmic `(n) does imply an injective one-way function
in a black-box manner – see Section 1.2).

In what follows we first describe the oracle that enables us to prove our result (essentially replacing
Rudich’s random function with a random predicate and complementing it with a trapdoor oracle).
We describe and analyze (a slightly modified version of) Rudich’s attacker with respect to this oracle,
showing that it can invert any partially-injective one-way function. Then, we show that this oracle
is an exponentially-secure correlated-input balanced trapdoor predicate for poly-query adversaries.
Theorem 4.1 then immediately follows (see, for example, [Rud88, IR89, RTV04]). Throughout our
proof we rely on the following standard notion of a q-query algorithm:

Definition 4.2. Let A be an oracle-aided algorithm and let q = q(n) be a function of the security
parameter n ∈ N. Then, A is a q-query algorithm if for any n ∈ N it holds that A issues at most
q(n) oracle queries when invoked on inputs of length n.

The oracle. Our oracle is a triplet T = (G,P,P−1) = {(Gn,Pn,P−1
n )}n∈N of three sub-routines.

For every n ∈ N, the functions Gn,Pn and P−1
n are defined as follows:

• The function Gn : {0, 1}n → {0, 1}n is a uniformly chosen function from {0, 1}n to {0, 1}n.
Looking ahead, Gn will be used for mapping trapdoors to corresponding public keys.

• For any pk ∈ {0, 1}n the function Pn(pk, ·, ·) : {0, 1}n×{0, 1}n → {0, 1} is a predicate sampled
uniformly at random from all predicates of suitable input-length that are correlated-input
δ(n)-balanced, independently of Pn(pk′, ·, ·) for any pk′ 6= pk. That is, for any pk ∈ {0, 1}n,
the predicate Pn(pk, ·, ·) is sampled uniformly subject to the condition that for any distinct
x, x′ ∈ {0, 1}n it holds that∣∣∣∣ Pr

r←{0,1}n

[
Pn(pk, x, r) = Pn(pk, x′, r)

]
− 1

2

∣∣∣∣ ≤ 2−n/3.

• For any td ∈ {0, 1}n, the function P−1(td, ·) : ({0, 1}n × {0, 1})∗ → {0, 1}n ∪ {⊥} is defined as
follows. For R = {(ri, bi)}i ∈ ({0, 1}n × {0, 1})∗ define the set:

Xtd,R = { x ∈ {0, 1}n : ∃pk ∈ {0, 1}n s.t. G(td) = pk ∧ ∀i,P(pk, x, ri) = bi} .

Then, for every R ∈ ({0, 1}n × {0, 1})∗, if Xtd,R 6= ∅, P−1
n (td,R) returns a uniformly chosen

element in the set. Otherwise, it returns ⊥.

We denote the set of all such oracles by S.

4.1 Inverting Partially-Injective One-Way Functions

Suppose F is an s-size, q-query black-box implementation of a partially-injective one-way function
from the oracle T for some polynomially bounded s = s(n) and q = q(n). We assume without loss
of generality that before each query of the form (td, {(ri, bi)}i) that F makes to P−1, it also obtains
pk = G(td) via a single query to G, and after learning x = P−1(td, {(ri, bi)}i) it also queries P with
(pk, x, ri) for each ri (if x = ⊥, we forgo these queries to P). Note that as F makes at most q(n)

17



queries to P−1 and each of which involves at most s(n) values of r, this adds at most q(n) ·(s(n) + 1)
queries to the computation. For ease of notation we simply assume F makes the afore-described
queries and continue to bound on the total number of queries made by F by q(n).

The following lemma shows that for every black-box implementation F of a partially-injective
one-way function from the oracle T , there exists a poly-query adversary that on input F T (x, y)
always finds x.

Lemma 4.3. Let q = q(n), s = s(n) and let F be an s-size, q-query algorithm such that for every
T ∈ S it holds that F T : {0, 1}∗ → {0, 1}∗ is partially injective. Then, there exists an O(q6 ·s6)-query
algorithm A such that

Pr
(x,y)←{0,1}n+m(n)

[
AT
(
F T (x, y)

)
= x

]
= 1

for all sufficiently large n ∈ N.

Consider the following attacker A, that on input v∗ finds x∗ such that there exists some y∗ for
which F T (x∗, y∗) = v∗:

• Input: A string v∗ ∈ {0, 1}∗, which is the output of F T on input (x∗, y∗) ∈ {0, 1}n+m(n).

• Initialize: A initializes a set Q(A) = ∅, to hold all query/answer pairs to T that A learns
throughout the attack.

• Learning: Let n′ = 2 log (2q(n) · s(n)). A queries P with all queries of length at most 3n′ =
n′ + n′ + `(n′), and updates Q(A) accordingly.

• Iteration: A runs q(n) + 1 iterations of the following three steps:

1. Simulation: A finds a possible execution of F that is consistent with Q(A) and v∗. That
is, A finds inputs x, y, and an oracle T̂ = (Ĝ, P̂, P̂−1) ∈ S that is consistent with Q(A),
such that F T̂ (x, y) = v∗.

2. Evaluation: A evaluates F T (x, y) (note that the evaluation is done with the true oracle
T ). In case F T (x, y) = v∗, A terminates and outputs x.

3. Update: A queries the true oracle T with all queries made in the execution of F T̂ (x, y)
and are not in Q(A), and updates Q(A) accordingly. Additionally, for any query of the
form u = (td, {(ri, bi)}i) that A makes to (the true oracle) P−1 in the update phase, it
also queries P with (pk, x, ri) for each ri, where x is the answer to u according to P̂−1

(if x = ⊥, A forgoes these queries to P), and pk is the public-key associated with td
according to Ĝ; i.e., pk = Ĝ(td).9

The success and query efficiency of A follow immediately by the following claim.

Claim 4.4. In each iteration, at least one of the following events occur:

1. A queries T with a query that is made by the execution of F T (x∗, y∗), but was not in Q(A)
at the beginning of the iteration.

2. A finds x∗ and some y for which F T (x∗, y) = v∗, and terminates.
9Recall that we assumed that before each query to P−1 that contains some trapdoor td, F queries G with td.

Hence, this is also the case in the execution chosen by A in the simulation step.
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Proof of Lemma 4.3 from Claim 4.4. Since F T (x∗, y∗) makes at most q(n) queries to T , by
Claim 4.4 and the pigeon-hole principle, there exists an iteration in which A finds x∗ and terminates.
Moreover, during the learning phase, A queries the oracle with O

(
q(n)6 · s(n)6

)
queries, and in each

iteration it queries the oracle with at most q(n) · (s(n) + 2) new queries. Since there are at most
q(n) + 1 iterations, A is an O(q6 · s6)-query algorithm.

Proof of Claim 4.4. Assume towards a contradiction that in some iteration neither of the events
occur. In the case event 1 does not occur, we can build a valid oracle T̃ = (G̃, P̃, P̃−1) that is
consistent with T in the evaluation of F T (x∗, y∗), and is consistent with T̂ in the sampled execution
F T̂ (x, y) in the following manner. We describe how to define G̃ and P̃, as this will also define P̃−1.

For every trapdoor td ∈ {0, 1}n, we define G̃(td) as follows:

• If td is queried during the evaluation of F T (x∗, y∗), we let G̃(td) = G(td).

• If td is queried during the evaluation of F T̂ (x, y), we let G̃(td) = Ĝ(td).

• Otherwise, we set G̃(td) to be some arbitrary public-key pk ∈ {0, 1}n that does not appear in
a query to P in either of the above computations (i.e., F T (x∗, y∗) and F T̂ (x, y)).

Note that since we assumed to be in an iteration in which event 1 does not occur, all queries in the
intersection of both computations – F T (x∗, y∗) and F T̂ (x, y) – were already in Q(A) in the beginning
of the iteration. Hence, Ĝ was chosen to be consistent with them, and G̃ is thus well-defined.

We can now define P̃ in a similar manner. For every query u = (pk, x′, r) such that |x′| ≤ n′

(i.e., queries that were learned during the learning phase), P̂(u) is defined consistently with P. For
every query u = (x′, r) such that |x′| > n′:

• If u is asked during the evaluation of F T (x∗, y∗), we let P̃(pk, x′, r) = P(pk, x′, r).

• If during the evaluation of F T (x∗, y∗), there exists some query (td, {(ri, bi)}i) to P−1 whose
answer is x′ and such that pk = G(td), then we set P̃(pk, x′, ri) = P(pk, x′, ri) for every i.

• If u is asked during the evaluation of F T̂ (x, y), then we let P̃(pk, x′, r) = P̂(pk, x′, r).

• If during the evaluation of F T̂ (x∗, y∗), there exists some query (td, {(ri, bi)}i) to P̂−1 whose
answer is x′ and such that pk = Ĝ(td), then we set P̃(pk, x′, ri) = P̂(pk, x′, ri) for every i.

• If none of the above cases holds, we define P̃(pk, x′, r) = 〈x′, r〉.

Similarly to the case of G̃, all queries that appear in both the aforesaid computations were learned
by the adversary in previous iterations, and are defined consistently in both of them. What is still
left to be shown in order to show that P̃ is well defined and is a valid oracle in S is that the following
two conditions are met:

1. There is no conflict (with respect to G̃) between the definition of P̃ via a query to P and a
query to P−1 made in one or more of the computations F T (x∗, y∗) and F T̂ (x, y).

2. For every n ∈ N and for every pk ∈ {0, 1}n, the predicate Pn(pk, ·, ·) is (n, 2−n/3)-balanced.

In order to see that condition (1) holds, suppose toward contradiction that such a conflict exists
with respect to some pair of keys pk = G̃(td). Note that this in particular means that td is an oracle
query made by at least one of the computations (as we assumed that other trapdoors are mapped
by G̃ to a public-key that does not appear in either computation), and consider the following cases:
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• P(pk, x, r) = b and P−1(td, {. . . , (r, 1−b), . . .}) = x both appear in the evaluation of F T (x∗, y∗).
Since the true oracle is of course consistent, this means that G(td) 6= pk and that Ĝ(td) = pk ap-
pears in the computation F T̂ (x, y). But since we assumed that when F queries P−1(td, {. . . , (r, 1−
b), . . .}) = x it also queries G(td), which means that this is a new query made by F T (x∗, y∗)
that A learns during the update step, in contradiction to our assumption that event 1 of Claim
4.4 does not occur.

• P̂(pk, x, r) = b and P̂−1(td, {. . . , (r, 1−b), . . .}) = x both appear in the evaluation of F T̂ (x, y).
This yields a contradiction similar to the last case, noting that T̂ is chosen to be consistent
and that the adversary also queries G with td.

• P(pk, x, r) = b appears in the evaluation of F T (x∗, y∗) but P̂−1(td, {. . . , (r, 1 − b), . . .}) = x

appears in F T̂ (x, y). But this means that in the update phase, the adversary also queries G with
td. If Ĝ(td) 6= pk, this means that F T (x∗, y∗) also queries G(td) and that G(td) = pk, which
means that the adversary learns a new query F T (x∗, y∗), yielding a contradiction. Otherwise,
Ĝ(td) = G̃(td) = pk and the adversary queries P with (pk, x, r) in the update phase of the
iteration. Again, since T̂ was chosen to be a valid oracle, this means that P̂(pk, x, r) = 1− b,
but since T̂ is consistent with what A have learned about T so far, this means that this is the
first time it queries P(pk, x, r), thus learning a new query made by F T (x∗, y∗).

• P̂(pk, x, r) = b appears in the evaluation of F T̂ (x, y) but P−1(td, {. . . , (r, 1 − b), . . .}) = x
appears in F T (x∗, y∗). This again derives a contradiction similarly to the last case.

As for condition (2), we consider two cases of input lengths to P̃. Since for every n′′ ≤ n′, we
defined P̃n′′ = Pn′′ , and Pn′′ is (n′′, 2−n

′′/3)-balanced for every n′′, P̃n′′ is also (n′′, 2−n
′′/3)-balanced

for every n′′ ≤ n′. For n′′ > n′, it is easy to see that had P̃n′′ been defined solely by the inner
product P̃n′′(pk, x′, r) = 〈x′, r〉, it would have been (n′′, 0)-balanced for every pk. Since for every
pk ∈ {0, 1}n, x′ ∈ {0, 1}n

′′
it holds that P̃n′′(pk, x′, r) 6= 〈x′, r〉 for at most 2q(n) · s(n) values of r, it

follows that for every pk ∈ {0, 1}n and x′, x′′ ∈ {0, 1}n
′′
:∣∣∣∣∣ Pr

r←{0,1}n′′

[
P̃n′′(pk, x′, r) = P̃n′′(pk, x′′, r)

]
− 1

2

∣∣∣∣∣ ≤ 2q(n) · s(n)

2n′′

≤ 22n′′/3

2n′′
= 2−n

′′/3.

In other words, P̃ ′′n is (n′′, 2−n
′′/3)-balanced for every n′′.

We conclude that T̃ is a valid oracle for which F T̃ (x∗, y∗) = F T̃ (x, y) = v∗. If in addition, event
2 of Claim 4.4 does not hold, then x 6= x∗. Putting things together, we get that F P̃ is not partially
injective, deriving a contradiction.

4.2 T is One Way for Correlated Inputs

The proof that the oracle T is one way for correlated inputs (according to Definition 3.4) consists of
the following two steps. First, we show that a uniformly-chosen predicate (not necessarily balanced)
is one way with an extremely high probability. Then, we show that the uniform distribution over
predicates is statistically close to the uniform distribution over balanced predicates (for our choice
of `(n) = n and δ(n) = 2−n/3).

In more detail, recall that the trapdoor and public key in the experiment InvertT ,AT (n) are chosen
as follows: First, the trapdoor td is chosen uniformly at random from the set {0, 1}n and then the
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public key is set to be pk = G(td). Now, let Rn denote the uniform distribution over predicates
mapping a triplet of strings of length n each, to an output bit (i.e., if Pn is a predicate drawn from
Rn, then for every pk ∈ {0, 1}n and x, r ∈ {0, 1}n it holds that P(pk, x, r) is a uniformly-chosen bit
which is independent of the value of Pn on all other inputs). The following lemma shows that when
Pn is sampled from Rn, then any poly-query adversary inverts P = {Pn′}n′∈N on inputs of length
n (vis-à-vis Definition 3.4) with probability that is negligible in n, regardless of how P−n is chosen
(where we use P−n to denote P \ {Pn}).

Lemma 4.5. Let q = q(n) be a function of the security parameter n ∈ N. For any q-query algorithm
A, any n ∈ N and any fixing of P−n, it holds that

Pr
[
InvertT ,AT (n) = 1

]
≤ 2q(n)

2n − q(n)

where Pn ← Rn.

Proof. Let (td∗, pk∗) be the trapdoor and public key chosen at the beginning of the experiment
InvertT ,AT (n), let x∗ be the uniform challenge value drawn in the experiment, and let x be A’s
output at the end of the experiment.

We first show that queries to G and to P−1 are of little use, since the probability of A finding
a trapdoor td such that G(td) = pk∗ is exponentially small. In more detail, assume without loss
of generality that A always queries G with a trapdoor td before querying P−1 with a query that
contains td. Denote by QG the set of queries made by A to G, and denote by HIT the event in which
there exists some td ∈ QG such that G(td) = pk∗. Then, the following claim captures the above
intuition.

Claim 4.6. Pr [HIT] ≤ q(n)/(2n − q(n)).

Proof of Claim 4.6. Denote by HITi the event that one of the first i queries of A was a query to
G and was answered by pk∗. Then, before the ith query of A, and conditioned on HITi−1, it holds
that Pr

[
td∗ = td|HITi−1

]
= Pr

[
td∗ = td′|HITi−1

]
for any td, td′ ∈ {0, 1}n that were not previously

queried by A (since td∗ was uniformly sampled). Moreover, for every trapdoor td ∈ {0, 1}n that was
not already queried, it holds that Pr [G(td) = pk∗|td 6= td∗] = 2−n. Hence, for all i ∈ [q(n)] it holds
that Pr

[
HITi|HITi−1

]
≤ 1/(2n− i+1). Taking a union bound over all queries, we conclude the proof

of the claim.

We now turn to prove that conditioned on HIT (i.e., conditioned on A not finding a trapdoor
corresponding to pk∗), it has very little chance of finding x∗. Denote by Q1, Q2 ⊆ {0, 1}n the sets
of arguments in the second coordinate of the queries made by A to P (i.e., the x’s in A’s queries),
before and after x∗ is drawn, respectively, and let Q = Q1 ∪Q2. Assume without loss of generality
that A queries the oracle for P(pk∗, x, r) for some r ∈ {0, 1}n (recall that x is A’s output at the end
of the experiment). Then, it holds that Pr

[
InvertT ,AT (n) = 1

]
≤ Pr [x∗ ∈ Q]. We first prove the

following two claims.

Claim 4.7. Pr [x∗ ∈ Q1] ≤ |Q1|/2n.

Proof of Claim 4.7. x∗ is chosen uniformly at random from {0, 1}n while Q1 is already fixed.
Thus, x∗ is drawn to be in Q1 with probability |Q1| /2n.

Claim 4.8. Pr
[
x∗ ∈ Q2|x∗ 6∈ Q1 ∧ HIT

]
≤ |Q2|/ (2n − q(n)) .
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Proof of Claim 4.8. For each xi ∈ Q2 we let Q(i) be the set of (second arguments in) queries issued
by A before xi was queried. The key observation is that once x∗ is chosen and fixed, before asking
a query containing xi it holds that Pr

[
x′ = x∗|x∗ 6∈ Q(i) ∧ HIT

]
= Pr

[
x′′ = x∗|x∗ 6∈ Q(i) ∧ HIT

]
for

every x′, x′′ ∈ {0, 1}n \ Q(i), where the probability is taken over the choice of Pn and x∗. Hence,
for every xi ∈ Q2 it holds that Pr

[
xi = x∗|x∗ 6∈ Q(i) ∧ HIT

]
≤ 1/ (2n − |Q(i)|). Summing over all

queries in Q2 implies that

Pr
[
x∗ ∈ Q2|x∗ 6∈ Q1 ∧ HIT

]
≤
|Q2|∑
i=1

1

2n − |Q(i)|
≤ |Q2|

2n − q(n)
.

Combining Claims 4.7 and 4.8 we obtain:

Pr
[
InvertP,AP (n) = 1

]
≤ Pr [x∗ ∈ Q]

≤ Pr [x∗ ∈ Q1] + Pr [x∗ ∈ Q2|x∗ 6∈ Q1]

≤ Pr [x∗ ∈ Q1] + Pr [x∗ ∈ Q2|x∗ 6∈ Q1 ∧ HIT] + Pr [HIT]

≤ |Q1|
2n

+
|Q2|

2n − q(n)
+

q(n)

2n − q(n)

≤ 2q(n)

2n − q(n)
.

This concludes the proof of Lemma 4.5.

Next, we let Bn be the uniform distribution over predicates taking inputs in {0, 1}n × {0, 1}n ×
{0, 1}n that are 2−n/3-balanced for every fixing of pk in the first coordinate, and argue that it is
statistically close to Rn.

Lemma 4.9. SD (Rn, Bn) ≤ 23n+1 · exp
(
−2n/3+1/3

)
.

Proof. Denote Ppk = Pn(pk, ·, ·) for every pk ∈ {0, 1}n. We first prove that

Pr
Pn←Rn

[
∃pk ∈ {0, 1}n : Ppk is not 2−n/3-balanced

]
≤ 23n+1 · exp

(
−2n/3+1/3

)
.

Then, the proof is concluded by bounding the statistical distance by the aforementioned probability.
Fix any pk ∈ {0, 1}n and distinct x, x′ ∈ {0, 1}n. Then, the probability over the choice of Pn ← Rn

that Ppk is not 2−n/3-balanced with respect to x and x′ can be bounded as follows:

Pr
Pn←Rn

[∣∣∣∣ Pr
r←{0,1}n

[
Ppk(x, r) = Ppk(x′, r)

]
− 1

2

∣∣∣∣ ≥ 2−n/3

]
= Pr
Pn←Rn

[∣∣∣∣{r : Ppk(x, r) = Ppk(x′, r)
}∣∣− 2n−1

∣∣ ≥ 22n/3
]

≤ 2 · Pr
Pn←Rn

[∣∣{r : Ppk(x, r) = Ppk(x′, r)
}∣∣− 2n−1 ≥ 22n/3

]
≤ 2 · Pr

Pn←Rn

[∣∣{r : Ppk(x, r) = Ppk(x′, r)
}∣∣ ≥ 2n−1

(
1 + 2 · 2−n/3

)]
≤ 2 · exp

(
−2n/3+1/3

)
.
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where the last inequality follows by Chernoff bound. By taking a union bound over all pairs x, x′ ∈
{0, 1}n we obtain

Pr
Pn←Rn

[
Ppk is not 2−n/3-balanced

]
≤ 22n+1 · exp

(
−2n/3+1/3

)
.

By another union bound, over all public keys pk ∈ {0, 1}n, we get

Pr
Pn←Rn

[
∃pk ∈ {0, 1}n : Ppk is not 2−n/3-balanced

]
≤ 23n+1 · exp

(
−2n/3+1/3

)
.

Finally, let S denote the set of all predicates taking three inputs of lengths n each (i.e., S =
{0, 1}{0,1}n×{0,1}n×{0,1}n), and let B be the set of all such predicates that are 2−n/3-balanced for every
public key (i.e., B =

{
Pn ∈ S : Ppk is 2−n/3-balanced for every pk ∈ {0, 1}n

}
). Then, the statistical

distance between Bn and Rn can be bounded as follows:

SD(Rn, Bn) =
1

2
·

∑
Pn∈B

|Rn(Pn)−Bn(Pn)|+
∑
Pn∈S\B

|Rn(Pn)−Bn(Pn)|


=

1

2
·
(
|B| ·

(
1

|B|
− 1

|S|

)
+ (|S| − |B|) · 1

|S|

)
= 1− |B|

|S|

= Pr
Pn←Rn

[
∃pk ∈ {0, 1}n : Ppk is not 2−n/3-balanced

]
≤ 23n+1 · exp

(
−2n/3+1/3

)
.

4.3 Extension to Perfectly-Complete Key-Agreement Protocols

The attack presented in Section 4.1 can be modified to show that there is no black-box construction
of a perfectly complete key-agreement protocol (in which the parties end up with the same key
with probability 1) from any correlated-input balanced trapdoor predicate. This is again in contrast
to the fact that there exists a non-black-box construction of a perfectly complete key-agreement
protocol from a such a predicate (since such protocols can be constructed from any injective trapdoor
function). The modified attacker gets as input the transcript T of such a protocol, and retrieves
the key computed by the parties with probability 1. Note that even though secure key-agreement
protocols imply one-way functions [IL89], it is not clear that they yield an injective (or a partially-
injective) one-way function, even if they are perfectly complete. Thus, the separation does not
immediately follow by that of Section 4.1.

Roughly speaking, following the outline laid out in [BKS+11, AS16a], the extension of the at-
tack would go about as follows. Let (A,B) an black-box construction of a perfectly complete key-
agreement protocol from the oracle T , and let q = q(n) denote a bound on the number of B’s oracle
queries. Then, the adversary will run 2q(n) + 1 iterations, in each of which it will: (1) Choose a
possible execution of A that is consistent with the transcript T and with what it has learned so far
on the true oracle; (2) Compute A’s resulted key ki; (3) Update its knowledge of the true oracle
similarly to the adversary of Section 4.1. Finally, it will output k = majority{ki}i∈[2q(n)+1]. A sim-
ilar argument to that of Claim 4.4 shows that by the perfect completeness of the protocol, in each
iteration either the adversary learns a new oracle query made by B in the true execution, or ki is
the correct key computed by the parties. It follows that in the majority of the iterations (at least
q(n) + 1), the adversary indeed computes the correct key.
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A Constructing Correlated-Input Predicates from Related-Secret Primitives

In section 1.2 we observed that a correlated-input balanced one-way predicate can be constructed
directly from any injective one-way function. In this section we additionally show how such predicates
can be constructed from various pseudorandom primitives that are secure against related secret
attacks (and that do not seem to guarantee any form of injectivity to begin with). The most
prominent example of such primitives are pseudorandom functions secure against related-key attacks
(RKAs), formally defined by Bellare and Kohno [BK03]. Loosely speaking, in the setting of PRFs
secure against RKAs with respect to some function family ∆, once the PRF key k is chosen, the
adversary is allowed to ask for evaluations of the oracle to which it has access under keys related
to k via any function δ ∈ ∆. Canonical examples are those of “linear nature”, which include the
families of key shifts (e.g. via an exclusive or operation or modular addition), and group induced-
transformations (where the related keys are the result of applying the group operation on the key and
an additional element). In fact, for our needs we only need to consider a week form of related-secret
attacks, were the adversary must choose its queries non-adaptively.

PRFs secure against non-trivial adaptive key transformations were first shown to exist in idealized
models. Namely, Bellare and Kohno showed in [BK03] that an ideal cipher is a PRF secure against
related key attacks with respect to families of functions exhibiting some intuitive properties, including
key shifts, and Lucks [Luc04] observed that if the key to a PRF is hashed via a random oracle before
use then the PRF becomes secure against many families of key transformations. A subsequent line
of works gave rise to constructions of RKA-secure PRFs from concrete assumptions. Most notably,
Bellare and Cash [BC10] constructed such PRFs secure against group-induced key transformations
based on the DDH assumption (and PRFs based on the DLIN assumption as well). Lewi et al.
[LMR14] managed to construct PRFs secure against linear key transformations based on lattices,
and namely the learning with errors (LWE) assumption. In the passive setting, where the key
transformations are chosen randomly and not by the adversary, Applebaum and Widder [AW14]
constructed an RKA-secure PRF from the learning with rounding (LWR) assumption. They then
continued to show that in “MiniCrypt” — where one-way functions exist but public key encryption
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does not — PRFs secure against passive RKA-attacks can be transformed to PRFs secure against
non-adaptive RKA-attacks (where the adversary may choose the key transformations, but must do
so in advance). All of the above constructions can be used to instantiate a construction of correlated-
input balanced one-way predicates in ways similar to what we show below.

Goldenberg and Liskov [GL10] relaxed the notion of RKA-secure PRFs and defined pseudorandom
generators secure against related-secret attacks, which they showed to be equivalent to RKA-secure
PRFs. Thus, for the sake of simplicity, we concentrate on showing how to construct correlated-
input balanced one-way predicates from PRGs secure against related secret attacks, where similar
constructions trivially exist from RKA-secure PRFs. Furthermore, though Goldenberg and Liskov
defined such PRGs in the adaptive setting, we will restrict ourselves to the simpler, yet sufficient
for our needs, non-adaptive case. Informally speaking, an efficiently computable function G is a
PRG secure against non-adaptive related secret attacks with respect to a function family ∆, if an
efficient adversary cannot distinguish between G and a truly random function, even when it may
ask in advance for evaluations of G (δ(s)) for any δ ∈ ∆ (where, as usual, s is chosen uniformly at
random)10.

Definition A.1. Let G : {0, 1}∗ → {0, 1}∗ be an efficiently computable function which maps n bits
to `(n) bits for every n ∈ N. We say G is a pseudorandom generator secure against non-adaptive
related-secret attacks with respect to a function family ∆, if for every probabilistic polynomial-time
adversary A there exists a negligible function ν(·) such that

AdvG,A,∆(n)
def
=
∣∣Pr
[
ExpG,A,∆(n) = 1

]
− Pr

[
ExpO,A,∆(n) = 1

]∣∣ ≤ ν(n)

for all sufficiently large n ∈ N, where O is a randomly drawn function mapping n bits to `(n) bits
and for H ∈ {G,O} the experiment ExpH,A,∆(n) is defined as follows:

1. (state, δ1, . . . , δT )← A(1n) for δ1, . . . , δT ∈ ∆, where T = T (n) may be any polynomial deter-
mined by A.

2. b← A (state, H(δ1(s)), . . . ,H(δT (s))) where s← {0, 1}n.

3. output b.

For concreteness, we consider PRGs secure against non-uniform adversaries making non-adaptive
related-secret queries with respect to the set of key shifts, ∆⊕ =

{
δr(x) = x⊕ r : r ∈ {0, 1}|x|

}
. We

observe that such a PRG immediately yields a correlated-input (n, ν)-balanced one-way predicate
for some negligible function ν(·). Let G be such a PRG, and define P(x, r) to return the par-
ity bit of G(x ⊕ r). The correlated-input one-wayness of P is guaranteed by the related-secret
pseudo-randomness of G. Moreover, suppose that P is not balanced; meaning, there are x, x′ and a
polynomial p(·), such that∣∣∣∣ Pr

r←{0,1}n

[
Parity (G(x⊕ r)) = Parity

(
G(x′ ⊕ r)

)]
− 1

2

∣∣∣∣ > 1/p(n).

In that case, an adversary can simply query its oracle with x and x′ (which it gets as non-uniform
advice) and compare the parity bits of the results. In case H = G, then the two bits will be identical
with probability that differs from 1/2 by at least 1/p(n). On the other hand, if the H = O, then the
two answers will be the same with probability exactly 1/2, thus allowing the adversary to distinguish
between the cases with noticeable advantage.

10Unlike typical PRGs, a PRG secure against related secret attacks is not necessarily length increasing, and in fact,
we do not need it to be for our needs.
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Note that the construction based on related-secret PRGs yields a primitive with properties that
are potentially stronger than those specified by Definition 1.1: The vector

(P(x, r1), . . . ,P(x, rT )) = (Parity (G(x⊕ r1)) , . . . ,Parity (G(x⊕ rT )))

given to the adversary in step 2 of the security experiment of Definition 1.1 is not only one-way with
respect to x, but is pseudorandom. Indeed, in our construction in Section 3, if we use P with this
strengthen property, we get an injective PRG, and not just an injective one-way function.
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