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Abstract. Motivated by abstracting the common idea behind several implicitly authenticated key
exchange (AKE) protocols, we introduce a primitive that we call double-key key encapsulation
mechanism (2-key KEM). It is a special type of KEM involving two pairs of secret-public keys and
satisfying some function and security property. Such 2-key KEM serves as the core building block
and provides alternative approaches to simplify the constructions of AKE. To see the usefulness of
2-key KEM, we show how several existing constructions of AKE can be captured as 2-key KEM and
understood in a unified framework, including widely used HMQV, NAXOS, Okamoto-AKE, and
FSXY12-13 schemes. Then, we show 1) how to construct 2-key KEM from concrete assumptions,
2) how to adapt the classical Fujisaki-Okamoto transformation and KEM combiner to achieve the
security requirement of 2-key KEM, 3) an elegant Kyber-AKE over lattice using the improved
Fujisaki-Okamoto technique.
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1 Introduction

Key exchange (KE), which enables two parties to securely establish a common session key while com-
municating over an insecure channel, is one of the most important and fundamental primitives in cryp-
tography. After the introduction of Diffie-Hellman key exchange in [12], cryptographers have devised a
wide selection of the KE with various use-cases. One important direction is authenticated key exchange
(AKE). The main problems that the following works focus on are specified as security models [5,7, 25,
6, 15], efficient and provably-secure realizations [26,27,7,23, 25,28, 1, 15,16, 35, 30, 2, 36, 3].

In an AKE protocol, each party has a pair of secret-public keys, a static/long-term public key and the
corresponding static/long-term secret key. The static public key is interrelated with a party’s identity,
which enables the other parties to verify the authentic binding between them. A party who wants
to share information with another party generates ephemeral one-time randomness which is known as
ephemeral secret keys, computes session state (which is originally not explicitly defined [7], but nowadays
it is generally agreed [25, 15] that the session state should at least contain ephemeral secret keys) from
ephemeral and static secret keys and incoming message, then outputs corresponding ephemeral public
outgoing message. Then each party uses their static secret keys and the ephemeral secret keys along with
the transcripts of the session to compute a shared session key.

Many studies have investigated the security notion of AKE including BR model and Canetti-Krawczyk
(CK) model [7]. Fujioka et al. [15] re-formulated the desirable security notion of AKE in [24], including
resistance to KCI (key compromise impersonation attack), wPFS (weak perfect forward attack) and
MEX (maximal exposure attack), as well as provable security in the CK model, and called it the CK™
security model. LaMacchia et al. [25] also proposed a very strong security model, called the eCK model.
The CK model and the eCK model are incomparable [6], and the eCK model is not stronger than the
CK model while the CK™ model is [15]. However, each of these two models, eCK and CK* can be
theoretically seen as a strong version of the AKE security model.



To achieve a secure AKE in one of the above security models (CK, CK™, eCK), the solutions are
divided into two classes: explicit AKE and implicit AKE. The solution of explicit AKE is to explicitly
authenticate the exchanged messages between the involved parties by generally using additional prim-
itives i.e., signature or MAC to combine with the underlying KE, such as IKE [8], SIGMA [23], TLS
[22, 2] etc.; while the solution of implicit AKE initiated by [26], is to implicitly authenticate each party
by its unique ability so as to compute the resulted session key. These kinds of implicit AKE schemes
include (H)MQV [27,24], Okamoto [28,29], NAXOS [25], OAKE [35], FSXY variants [1, 15, 16, 34], and
AKE from lattice assumptions [36, 3].

Motivation. In this paper, we focus on the second class, i.e., constructions of implicit AKE. Based on
different techniques and assumptions, many implicit AKE protocols have been proposed in recent years
[24, 25, 15,16, 35, 28, 29].

However, the constructing techniques and methods of the existing implicit AKE protocols are some-
what separate and the study on the highly accurate analysis of AKE’s requirement for the building
block is critically in a shortage, especially for the exact underlying primitives that serve as fundamental
building blocks and capture the common idea and technique behind the constructions and security proofs
of AKE. On the contrary, with respect to explicit AKE Canetti and Krawcayk [23, 8] gave the frame of
“SIGin-and-MAc” (later extended by [30]) which provides a good guideline for designing explicit AKE.

In fact, Boyd et al. [1] and Fujioka et al. [15,16] initiated the research on studying frameworks of
implicit AKE. Boyd et al. firstly noticed the connection between AKE and key encapsulation mecha-
nism (KEM), then Fujioka et al. provided CK' secure AKE protocols from chosen ciphertext (CCA)
secure KEM in the random oracle and standard models. Although the paradigm of connecting the AKE
with KEM is of great significance, it can not be applied to explain many widely-used and well-known
constructions of AKE such as HMQV and its variant [24,35] which are built on the challenge-respond
signature; AKE protocol in [28] which results from universal hash proof [10]; as well as NAXOS [25].

Hence, one of the important problems on AKE is to give an even more general framework for con-
structing AKE that is able to not only unify and encompass the existing structures of AKE protocol
as much as possible, but also to systemize and simplify the construction and analysis methods of AKE
protocol. It will be useful and helpful for understanding the existing works and future studying on
formalization of the AKE construction structure under a unified framework, not only with some well-
studied cryptographic primitive as building block but also with simple formal functionality and security
requirements rather than heuristic ideas and techniques.

Main Observation. In order to find out what kind of the fundamental /essential building block is exactly
needed for CK* secure AKE, let’s go back to the original KE, and show insight on how to augment the
requirements or capability of adversary so as to achieve CK* secure AKE from KE step by step.

In fact, KEM is a KE naturally. The initiator U4 sends ephemeral public key pk to responder Up.
Up computes encapsulated key and ciphertext under pk and returns ciphertext to Uy. By decapsulating
ciphertext using sk, U4 obtains the agreed key encapsulated by Up.

Step 1. AUTHENTICATION. To make a KE be authenticated, we take unilaterally authenticating U4
for example. It is required that U4 has static secret-public keys (sska, spka), ephemeral secret key esk 4
and ephemeral public outgoing message epm 4. In light of using KEM with one pair of secret-public key
to realize KE naturally, one simple and natural approach to authenticate Uy with one pair of static
key as well as one pair of ephemeral secret key and ephemeral public message is to extend the KEM
with one pair of key to a KEM with two pairs of secret-public key. More specifically, for example, to
authenticate Uy, U4 sends ephemeral public key epk4 to Up, and Up computes encapsulated key and
ciphertext under two public keys spka and epk,. Only with both secret keys sska and eska, can Ug
extract encapsulated key. Equipped with the 2-key KEM, the authentication property of AKE comes
down to some proper security notions of such 2-key KEM. We analyze its security notion in step 2.

Step 2. SECURITY. One security consideration in AKE is to maintain the secrecy of shared session key
even if the adversary is allowed to query session state and key of non-target session and send message
by controlling the communications. The capability imparted to adversary with permission of querying
session state and key of non-target session directly corresponds to the adversary’s capability of having



access to strong! CCA decryption queries of 2-key KEM. The adversary’s capability of sending message
corresponds to the power of adversary to adaptively choose the ephemeral public keys epk4 (under which
the challenge ciphertext is computed). Another security consideration in AKE is the forward security,
in which case the adversary has the static secret key ssk4. This forward security comes down to the
(chosen plaintext attack) CPA security of such 2-key KEM if ssk 4 is leaked to adversary.

1.1 Our Contributions

— Based on the above motivations and observations, we introduce double-key key encapsulation mecha-
nism (2-key KEM) and its secure notions, i.e., [IND/OW-CCA,IND/OW-CPA] security. We also show
its distinction with previous similar notions.

— Based on the [IND/OW-CCA, IND/OW-CPA| secure 2-key KEM, we present unified frames of CK*
secure AKE, which in turn conceptually capture the common pattern for the existing constructions
and security proof of AKE, including well-known HMQV/[24], NAXOS [25], Okamoto-AKE[28, 29],
and FSXY12[15], FSXY13[16].

— We investigate the constructions of 2-key KEM based on concrete assumptions. We also show the
failure of implying [IND/OW-CCA, IND/OW-CPA|] secure 2-key KEM from KEM combiner and the
classical Fujisaki-Okamoto (FO) transformation. Hence, with a slight but vital modification by taking
public key as input to the hash step we provide improved KEM combiner and improved FO to adapt
them in our 2-key KEM setting.

— Equipped with 2-key KEM and our frame above, we propose a post-quantum AKE based on Module-
LWE assumption, which consumes less communications than Kyber [3] using frame of FSXY13 [16].

2-key Key Encapsulation Mechanism. Generally, the 2-key KEM scheme is a public key encap-
sulation with two pairs of public and secret keys, but the main distinctions are the functionality and
security.

The encapsulation and decapsulation algorithms: instead of taking as input single public key to
generate a random key K and a ciphertext C' and single secret key to decapsulate ciphertext C, each
algorithm takes two public keys (pk1, pko) to generate (C, K) and only with both two secret keys (sk1, sko)
the decapsulation algorithm can decapsulate C.

We define the security notion of 2-key KEM/PKE in the attacking model [IND/OW-CCA, IND/OW-CPA]
which captures the idea that the 2-key KEM is secure under one secret-public key pair even if another
pair of secret-public key is generated by the adversary. Informally, the [IND/OW-CCA, -] denotes the
security model where adversary A aims to attack the ciphertext under pk; and pk§ (with its control over
the generation of pk), and it is allowed to query a strong decapsulation oracle that will decapsulate
the ciphertext under pk; and arbitrary pk{ (generated by challenger); while [-,IND/OW-CPA] denotes
the security model where adversary B aims to attack the ciphertext under pky and pkj (with its control
over the generation of pk}). We say a 2-key KEM is [IND/OW-CCA, IND/OW-CPA] secure if it is both
[IND/OW-CCA, ] and [, IND/OW-CPA] secure.

Compared with classical definition of CCA security, the [CCA, ] adversary of 2-key KEM has two
main enhancements: 1) one of the challenge public keys pk§, under which the challenge ciphertext is
computed, is generated by the adversary; 2) the adversary is allowed to query a strong decryption oracle,
and get decapsulation of the ciphertext under arbitrary public keys (pki, pk{) where pkj, is generated by
the challenger.

AKE from 2-key KEM. Equipped with [IND/OW-CCA, IND/OW-CPA] 2-key KEM, by taking pk; as
static public key and pky as ephemeral public key, we give several general frames of CKT secure AKE,
AKE, AKE o pkic-Ir and AKEgq, depending on different tricks. The CK™ security of our AKE is decomposed
to the [IND/OW-CCA, ‘] security (corresponding to KCI and MEX security) and [-,IND/OW-CPA] secu-
rity (corresponding to wPFS) of 2-key KEM. Furthermore, to resist the leakage of partial randomness,

! Compare with classical decryption queries of CCA security, “strong” means adversary could query decryption
oracle with ciphertext under several other public keys.



a function f(sskp,eskp) is required so that if one of sskp and eskp is leaked f(sskp,eskp) is still
computationally indistinguishable with a random string.

In Fig. 1 we summarize which one of our general frames is used to explain which one of the existing
AKE protocols by employing the specific tricks and assumptions. Our general protocols capture the
common idea of constructing CK* secure AKE. And depending on 2-key KEM and different tricks, it
facilitates a number of instantiations, including HMQV [24], NAXOS [25], Okamoto [28], FSXY12[15],

and FSXY13[16].

Frameworks|Models Concrete AKEs Assumptions Tricks
AKE RO | FSXY13 [16],Kyber[3] | OW-CCA |Modified KEM Comb.
RO AKE-2Kyber(Sec.7) M-LWE Modified FO
AKE.. RO |[HMQV [24] OAKE [35]|GDH, KEA1 Remark 1, 2
repkielr RO NAXOS [25] GDH Remark 1, 2
AKE..q Std FSXY12 [15] IND-CCA |Modified KEM Comb.
) Std Okamoto [29] DDH, 7PRF Twisted PRF

Table 1. The unification of AKEs. Comb. is the abbreviation for combiner. GDH is the Gap-DH assumption.
RO denotes the notion of random oracle. Std is the shortened form of standard model. TPRF means the pairwise-
independent random source PRF [29].

By considering an AKE protocol in such a framework based on 2-key KEM, the complicated security
proofs of existing AKE is decomposed into several smaller cases each of which is easier to work with.
Moreover, this general scheme not only explains previous constructions, but also yields efficient AKE
from lattice problems. After giving [IND-CPA, IND-CPA] twin-kyber under Module-LWE assumption, we
obtain a post-quantum AKE with less communications.

Constructions of 2-key KEM. In addition to show that existing AKEs imply [CCA, CPA] secure 2-key
KEM, we investigate the general constructions.

Putting Public Key in the Hashing or PRF step. The Fujisaki-Okamoto (FO) [14, 18] transformation and
KEM combiner are general techniques of classical CCA security for one-key KEM. We show the failure
of implying [IND/OW-CCA, IND/OW-CPA] secure 2-key KEM from KEM combiner and the classical FO
transformation by giving particular attacks on concrete schemes. Hence, we show that with a slight but
vital modification, when extracting encapsulated key, by taking public key as input to the hash or PRF
step, the modified KEM combiner and FO transformation work for 2-key KEM.

1.2 Strong Point of the AKE via 2-key KEM

The main advantage of our contributions is that we use a non-interactive primitive to handle the complex
requirement of interactive protocols. The functionality and security requirements of [CCA, CPA] secure
2-key KEM are relatively easier to work with and understand. As it is known, in AKE we have to consider
complex and diverse adversaries. However, when considering the AKE under our unified framework based
on 2-key KEM, all the attacking strategies in CK™ model can be simplified to the singular security of
2-key KEM.

The non-interactive 2-key KEM helps us to highly simplify the constructions for AKE as well as
to understand the essential working mechanism. In fact, KEM is relatively well-studied and intensively
analyzed. Following the first practical CCA secure PKE [9], there have been a number of CCA se-
cure PKE/KEM schemes based on both concrete assumptions [9, 20, 33, 31, 3] and general cryptographic
primitives [11,19, 31]. Therefore, it is possible for us to employ the established and nature technique of
classical KEM to construct 2-key KEM, and further AKE.



2 Preliminary

For a variable z, if x is a bit string, denote [z]; as the i-th bit of x; if = is a polynomial, denote [z]; as
the i-th coefficient of x; if x is a sets of vectors (with string or number) denote [z]; as the sets of all i-th
element of vectors in x;

2.1 CKT Security Model

We recall the CK™ model introduced by [24] and later refined by [15,16], which is a CK [7] model
integrated with the weak PFS, resistance to KCI and MEX properties. Since we focus on two-pass
protocols in this paper, for simplicity, we show the model specified to two pass protocols.

In AKE protocol, U; denotes a party indexed by 7, who is modeled as probabilistic polynomial time

(PPT) interactive Turing machines. We assume that each party U; owns a static pair of secret-public keys
(ssk;, spk;), where the static public key is linked to U;’s identity, using some systems i.e. PKI, such that
the other parties can verify the authentic binding between them. We do not require the well-formness
of static public key, in particular, a corrupted party can adaptively register any static public key of its
choice.
Session. Each party can be activated to run an instance called a session. A party can be activated
to initiate the session by an incoming message of the forms (II,Z,Ux4,Ug) or respond to an incoming
message of the forms (II,R,Up,Ua, X 4), where II is a protocol identifier, Z and R are role identifiers
corresponding to initiator and responder. Activated with (II,Z, U4, Ug), U4 is called the session initiator.
Activated with (I, R,Up,Ua, X4), Up is called the session responder.

According to the specification of AKE, the party creates randommness which is generally called
ephemeral secret key, computes and maintains a session state, generates outgoing messages, and com-
pletes the session by outputting a session key and erasing the session state. Note that Canetti-Krawczyk
[7] defines session state as session-specific secret information but leaves it up to a protocol to specify
which information is included in session state; LaMacchia et al. [25] explicitly set all random coins used
by a party in a session as session-specific secret information and call it ephemeral secret key. Here we
require that the session state at least contains the ephemeral secret key.

A session may also be aborted without generating a session key. The initiator U, creates a session
state and outputs X 4, then may receive an incoming message of the forms (II, Z, U4, Up, X 4, Xp) from
the responder Up, then may computes the session key SK. On the contrary, the responder Up outputs
Xp, and may compute the session key SK. We say that a session is completed if its owner computes the
session key.

A session is associated with its owner, a peer, and a session identifier. If U 4 is the initiator, the session
identifier is sid = (II,Z,Ux,Up, Xa) or sid = (II,Z,U4,Up, X4, Xp), which denotes U, as an owner
and Up as a peer. If Up is the responder, the session is identified by sid = (II, R,Up,Ua, X4, XB),
which denotes Ug as an owner and Uy as a peer. The matching session of (II,Z,Us,Up, Xa,Xp) is
(II,R,Up,Ua, Xa,Xp) and vice versa.

Adversary. The adversary A is modeled in the following to capture real attacks in open networks,
including the control of communication and the access to some of the secret information.

— Send(message): A could send message in one of the forms: (II,Z,Ux,Ug), (I, R,Up, U4, X 4), or
(I1,Z,UA,Up, X 4, Xp), and obtains the response.

— SessionKeyReveal(sid): if the session sid is completed, A obtains the session key SK for sid.

— SessionStateReveal(sid): The adversary A obtains the session state of the owner of sid if the session
is not completed. The session state includes all ephemeral secret keys and intermediate computation
results except for immediately erased information but does not include the static secret key.

— Corrupt(U;): By this query, A learns all information of U, (including the static secret, session states
and session keys stored at U, ); in addition, from the moment Uy is corrupted all its actions may be
controlled by A.



Freshness. Let sid® = (I,Z,U4,Up, Xa,Xp) or (I,Z,U4,Up, X4, Xp) be a completed session between
honest users Uy and Ug. If the matching session of sid™ exists, denote it by sid*. We say session sid” is fresh
if A does not queries: 1) SessionStateReveal(sid*), SessionKeyReveal(sid*), and SessionStateReveal(sid*),
SessionKeyReveal(sid*) if sid* exists; 2) SessionStateReveal(sid*) and SessionKeyReveal(sid*) if sid* does
not exist.
Security Experiment. The adversary A could make a sequence of the queries described above. During
the experiment, A makes the query of Test(sid*), where sid* must be a fresh session. Test(sid*) select
random bit b €y {0,1}, and return the session key held by sid* if b = 0; and return a random key if
b=1.

The experiment continues until A returns b’ as a guess of b. The adversary A wins the game if the
test session sid™ is still fresh and ¥’ = b. The advantage of the adversary A is defined as Advﬁ’“‘ (A) =

Pr[A wins] — 3.

Definition 1. We say that a AKE protocol 11 is secure in the CKt model if the following conditions
hold:

(Correctness:) if two honest parties complete matching sessions, then they both compute the same session
key except with negligible probability.

(Soundness:) for any PPT adversary A, Adver™(A) is negligible for the test session sid*,

1. the static secret key of the owner of sid™ is given to A, if sid* does not exist.

2. the ephemeral secret key of the owner of sid™ is given to A, if sid* does not exist. L

3. the static secret key of the owner of sid* and the ephemeral secret key of sid* are given to A, if sid*
ex1sts. L L

4. the ephemeral secret key of sid* and the ephemeral secret key of sid™ are given to A, if sid™ exists.

5. the static secret key of the owner of sid* and the static secret key of the peer of sid™ are given to A,
if sid* exists. -

6. the ephemeral secret key of sid* and the static secret key of the peer of sid* are given to A, if sid*
exists.

As indicated in Table 2, the CK* model captures all non-trivial patterns of exposure of static and
ephemeral secret keys listed in Definition 1, and these ten cases cover wPFS, resistance to KCI, and
MEX as follows: Ey, Ey, E7.4, E7.9, Fs.1 and Eg capture KCI, since the adversary obtains either only
the static secret key of one party or both the static secret key of one party and the ephemeral secret
key of the other party of the test session. Es5 captures wPFS. FEs, F3 and Fg capture MEX, since the
adversary obtains the ephemeral secret key of one party of the test session at least.

Event|Case| sid* |[sid*||sska|eskaleskr|sskr Security
Ey 1 A |Nol| +/ | % - X KCI
E | 2| A [No| x | v/ | - | x | MEX
Es 2 B |No|l x - Vv X MEX
Ey 1 B |Nol|l x - X Vv KCI
Es 5 |Aor B|Yes|| v/ X X v | wPFS
E¢ | 4 |[Aor B|Yes|| x | v/ | v/ | x | MEX
Erq1| 3 A |Yes|| v/ | X | V/ | % KCI
Era| 3 | B |Yes|| x | /| x | | KCI
E8_1 6 A Yes X \/ X \/ KCI
FEso| 6 B |Yes|| v | X N4 X KCI

Table 2. The behavior of AKE adversary in CK' model. sid* is the matching session of sid*, if it exists. “Yes”
means that there exists sid*, “No” means do not. sska(sskp) means the static secret key of A(B). eska(esks)
is the ephemeral secret key of A(B) in sid* or sid* if there exists. “,/” means the secret key may be revealed to
adversary, “x” means the secret key is not revealed. “-” means the secret key does not exist.



3 2-key Key Encapsulation Mechanism

In this section, we introduce the notions of double-key encapsulation and define the security of KEM in
double-key setting. We also give some analysis and show differences with previous similar definitions.

3.1 2-key Key Encapsulation Mechanism

Generally, a double-key (2-key) KEM is a public key encapsulation with two pairs of public and se-
cret keys. Formally, a 2-key KEM 2KEM=(KeyGenl, KeyGen0, Encaps, Decaps) is a quadruple of PPT
algorithms together with a key space K.

— KeyGenl(\, pp) : on inputs security parameter A, and public parameters pp, output a pair of public-
secret keys (pki,ski). In order to show the randomness that is used, we denote key generation
algorithm as KeyGenl(\, pp;r). For simplicity, sometimes we omit the input security parameter A
and public parameter pp and denote it as KeyGenl(r) directly.

— KeyGen0()) : on inputs security parameter A output a pair of public and secret keys (pko, sko).

— Encaps(pki, pko; auxe) : on input public keys pki, pko and auxiliary input aux. (if there is), output
ciphertext ¢ and encapsulated key k in key space K. Sometimes, we explicitly add the randomness r
and denote it as Encaps(pk1, pko, ; auxe).

— Decaps(ski, sko, ¢; auxq) : on input secret keys sko, ski, auxiliary input auxy (if there is) and ¢, output
key k.

CORRECTNESS. For (pky, sk1) < KeyGenl(\, pp), (pko, sko) <+ KeyGenO(\, pp) and (¢, k) + Encaps(pk1, pko),
we require that Decaps(skq, sko,c) = k holds with all but negligible probability.

SECURITY. We consider two kinds of security i.e., indistinguishability and one-wayness in the attacking
model [ATK;, ATKj]. More precisely, in our [ATK;, ATKj] security model for 2KEM, we consider two
adversaries, i.e., A = (Ay,As) attacking pk; (controlling the generation of pkg) and B = (B, B2)
attacking pko (controlling the generation of pkj). In Figure 1 below we show the security games of
one-wayness and indistinguishable security corresponding to [IND/OW-ATKjy, ] and [-,IND/OW-ATKo]
respectively.

To be clear, the auxiliary inputs aux. and auxyq may contain public part, called public auxiliary input,
and secret part, called secret auxiliary input. In the security games, both the challenger and adversary
have public auxiliary input, while only the challenger has the secret auxiliary input. For simplicity, we
do not explicitly show auxe and auxq in the security games.

On the i-th query of Ojeak,, the challenger generates (pkg,sky) < KeyGenO(r}), sets Lo = Lo U
{(pkl, ski,ré)} and returns (pkj, ski, ry) to adversary A. On the i-th query of Oje,, the challenger
generates (pkt, ski) < KeyGenl(ri), sets Ly = Ly U{(pkt, ski, rl)} and returns (pki, ski, r?) to adversary
B.

Depending on the definition of oracle Oark, the adversary A accesses, and Oark, that the adversary
B accesses, we get CPA and CCA notions respectively.

— 1if Oatk, (pky,er) = —» 1t implies CPA notion;

— if Oatk, (pkj.c) # —» it works as following: If pky € [LoJi A (¢" # ¢* V pky # pkg), compute k' <
Decaps(sky, sk{, '), and return the corresponding k', otherwise return L. This case implies CCA
notion.

— if OaTk,(pk},er) = —» 1t implies CPA notion;

— if Oatko(pk),c) # —» it works as following: If pk{ € [L1]1 A (¢" # ¢* V pky # pki), compute k' <
Decaps(sk}, sko,c’), and return the corresponding k', otherwise return L. This case implies CCA
notion.

Let A = (A, A3) be an adversary against pk; of 2KEM. We define the advantage of A winning in
the game IND-ATK1 and OW-ATK1 respectively as: Advhxon < 1(A) = |Pr[IND-ATK1# = 1] — %‘7 and

AdvIOWATKLT () — PrOW-ATK1* = 1], where game [IND-ATK1,-] and [OW-ATKI, ] are described in

Figure 1.



Game [IND-ATK1, ] on pk Game [, IND-ATKO] on pko

01 (pki,ski) < KeyGenl(pp); 14 (pko, sko) < KeyGenO(pp)

02 LO:{(_’_v_)} 15 Iy :{(_7_7_)}

03 (state,pky) < A?ATKl’o‘eak" (pk1) 16 (state,pki) < B?ATKO’OI%M (pko);
04 b+ {0,1}; 17 b+ {0,1};

05 (c*, k) < Encaps(pki,pkp), ki < K;|18 (c*, ko) < Encaps(pki, pko), kT + K;

06 b + AfATKl’o'eakO (state, c*, ky); 19 ¥ + BSATKO’O‘SQM (state, c*, ky);
07 return b/ = 20 return b’ =

Game [OW-ATK1, ‘] on pk; Game [, OW-ATKO] on pko

08 (pk1,sk1) < KeyGenl(pp); 21 (pko, sko) < KeyGenO(pp)

09 LO:{(77777)} 22 Ly :{(77777)}

10 (state, ki) « Ay U0 (k) |23 (state, pki) « By 00 (pkg):
11 (c*, k) < Encaps(pki, pks); 24 (c*,k*) + Encaps(pk?, pko);

12 K« A;QATKI’O'eakO (state,c); 25 k'« BSATK"’O'%'“ (state, c*);

13 return k' = k* 26 return k' = k*

Fig. 1. The [ATK1,], and [, ATKO] games of 2KEM for adversaries .4 and B. The oracles Oieaky, OaTK;, Oleak;
and Oark, are defined in the following.

We say that 2KEM is [IND-ATKI, -] secure, if Advikeu "1 (A) is negligible; that 2KEM is [OW-ATK, ]

secure, if Adv[z?(vél,;AATKl"] (A) is negligible, for any PPT adversary A. The [-,IND-ATKO] and [, OW-ATKO]

security can be defined in the same way. Here to avoid repetition we omit their description.

[ATK1, ATKO] security. The scheme 2KEM is called [ATK1, ATKO] secure if it is both [ATK1,:] and
[, ATKO] secure for any PPT algorithms A and B. By the combination of adversaries A and B attacking
different security (i.e., indistinguishability and one-wayness), we could get 16 different definitions of
security for 2-key KEM.

What we concern in this paper is the [CCA, CPA] security in both indistinguishability and one-
wayness setting. For simplicity in the following parts we abbreviate the security model as [IND/OW-CCA,
IND/OW-CPA].

3.2 Differences between [CCA,:] Security and Previous Definitions

In order to avoid confusion, we re-clarify the definition of [IND/OW-CCA, -] security and analyze its differ-
ence with previous similar notions, including classical CCA security, KEM combiner [17], and completely
non-malleable scheme[13].

Compared with classical CCA adversary, the [CCA, -] adversary of 2-key KEM 1) has the capability of
choosing one of the challenge public key pk§; 2) could query a strong decryption oracle, which decapsulates
the ciphertext under several public keys (pky, pk() where pk{, is generated by the challenger. While in
the classical definition of decapsulation oracle the adversary could only query decapsulation oracle with
ciphertext under the challenge public keys (pk7, pks).

Very recently, Giacon et. al [17] study combiners for KEMs. That is, given a set of KEMs, an unknown
subset of which might be arbitrarily insecure, Giacon et. al investigate how they can be combined to
form a single KEM that is secure if at least one ingredient KEM is. The KEM combiners treated by
Giacon et. al have a parallel structure: If the number of KEMs to be combined is n, a public key of the
resulting KEM consists of a vector of n public keys; likewise for secret keys. The encapsulation procedure
performs n independent encapsulations, one for each combined KEM. The ciphertext of the resulting
KEM is simply the concatenation of all generated ciphertexts. The session key is obtained as a function
of keys and ciphertexts. Although from the literature our 2-key KEM looks like the two KEM combiner,
the security requirement and concrete constructions between them are completely different. Since the
two KEM combiner considers the problem that if one of two KEMs is insecure and the other one is



CCA secure, how to combine them to obtain a CCA secure single KEM. In fact, the adversary of KEM
combiner security model is the classical CCA adversary (it can only query the decryption oracle under
certain public keys). Actually, in Section 6.1, we show there exists [CCA, -] adversary to attack a CCA
secure two KEM combiner.

Aiming to construct non-malleable commitments, Fischlin [13] considered completely non-malleable
(NM) schemes. The complete NM scheme is later extended to indistinguishability setting by Barbosa
and Farshim [4] with a strong decryption oracle, which allows the adversary to queries with ciphertext
under arbitrary public key of its choice. Note that our [CCA, -] is also modeled to allow the adversary
to query a strong (but weaker than complete NM) decapsulation oracle with ciphertext under several
public keys that are chosen by challenger instead of by adversary. On the other hand, the complete NM
adversary is not allowed to choose part of challenge public key, while [CCA, -] is.

Based on the above observations, we give comparison among these different definitions by considering
two public keys in Table 3. For convenience, we consider classical CCA and complete NM schemes in
which public keys are expressed as two public keys (pki1, pko) and let KEM combiner be two combiner
of KEM. The differences among security requirements are the capability of adversary, namely, whether
the adversary is allowed to choose part of the challenge public keys, or under which public keys the
ciphertexts that adversary is allowed to query decryption oracle with are computed.

Definitions Cha. PK (pk7,pks) | Cha. ciphertext ¢* | Opec((pk1, pko), ')
Classical CCA (pk1,pko) « C ¢ under (pki,pko)|(pk1, pko) = (pk1, pko)
KEM Combiner [17]|(pkT, pko) < C, A(sk)|cT]|co, ¢; under pk]|(pki, pko) = (pki, pks)
Complete NM [13] (pki,pko) < C ¢* under (pk7, pkg) (pk1,pko) < A
[CCA, ] pki < C,pkg < A |c¢" under (pki,pks)| pki = pki, pko < C

Table 3. The differences of related definitions. “Cha.” is the abbreviation of “challenge”. C denote the challenger
and A denote the adversary. We use A(skg) to denote that A breaks the KEM under pkj. In both Classical CCA
and KEM combiner the decapsulation oracle only returns when (pk1, pko) = (pki, pks), while in Complete NM
(pk1, pko) could be arbitrary public keys chosen by adversary, and in [CCA, ], pko could be arbitrary public key
chosen by challenger.

3.3 Basic Definitions and Results related to 2-key KEM

[CCA, ] security with non-adaptive adversary We can define a weak [CCA, ] adversary, who is
not able to adaptively choose the challenge public key. In this case, taking the adversary A attacking
pk1 as an example, the challenge public key pkj is generated by challenger instead of A, which means
pkg S [LO]l-

Public Key Independent Ciphertext. The concept of public-key-independent-ciphertext (PKIC)
was first proposed in [34]. We extend it to 2-key KEM setting. The PKIC 2-key KEM allows a ciphertext
to be generated independently from one of two public keys, while the encapsulated key underlay in such
ciphertext to be generated with the randomness and both two public keys. More precisely, algorithm
(¢, k) < Encaps(pki, pko, r) can be realized in two steps: in step 1, ciphertex c is generated from pk; and
randomness r. We precisely denote it as ¢ < Encaps0(pky,-,7); in step 2, the encapsulated key k in ¢ is
generated from r, pky, and pko. We precisely denote it as k < Encapsl(pki, pko, ).

Classical one-key KEM and 2-key KEM. Note that given a concrete 2-key KEM, usually it is
not obvious and natural to regress to one-key KEM by setting pko = -. However given any classical
one-key KEM, it can be seen as a 2-key KEM with KeyGen0 not in use and pky = -. At that time,
the [OW/IND-CCA, ] security of this 2-key KEM return to the classical OW/IND-CCA security of the
underlying KEM.

Min-Entropy. In case of 2-key KEM with PPT adversary A, for (pk;, ski) < KeyGenl and pkg < A or
(pko, sko) + KeyGen0 and pk; < A, we define the min-entropy of Encaps(pki, pko) by ~v(pk1, pko, A) =



—log max.cc Pr[c = Encaps(pki, pko)]. We say that KEM is y-spread if for every (pki,sk;) < KeyGenl
and pko < A or (pko,sko) < KeyGenO and pky < A, v(pki,pko, A) > 7, which means for every
ciphertext ¢ € C, it has Pr[c = Encaps(pky, pko)] < 277.

4 Authenticated Key Exchange from 2-key KEM

In this section, we propose CK™ secure AKEs from [CCA, CPA] secure 2-key KEM in both random oracle
and standard models. Before showing our AKEs, we need a primitive of random function with half of
leakage, that is used by several existing AKEs.

Definition 2 (Random Function with half of leakage (hl-RF)). Let f : Dg, X Dy — R be a
function from domain Dg, x Dy to R. Denote KeyGen — Dy, X Dy, as key generation algorithm for
some KEM. Let Dy, R be the uniformly distributions over Dy, R. It is called (e1,e2) hi-RF with respect
to KeyGen, if for (pk, sk) < KeyGen, the following distributions are computational indistinguishable with
advantage €1, €.

{(pk, sk, f(sk,b))[b <= Dy} =c, {(pk, sk, U)|U < R};
{(pka b7 f(Sk? b))|b — Db} —eq {(pka b7 U)‘b — Db7 U <+ R}

The hk-RF can be achieved in both random oracle model and standard model.

— In the random oracle model, if f is a hash function, without the knowledge of b, the output of f is
totally random; if KEM with respect to KeyGen is secure, without the knowledge of sk the output
of f is computational indistinguishable with a random string (otherwise the adversary must query
random oracle with sk which against the security of KEM) given pk. Then equation 2 holds. This
structure is known as NAXOS trick [25].

— Let F' : Dy x {0,1}» — R and F” : Dy x D, — R be two pseudo random functions (PRFs). If
assume KeyGen outputs an additional string s < {0,1}*, after obtaining (pk, sk), set sk = (sk||s).
If f(sk,b) = F/(1*) @ F!(b), then even given pk, without the knowledge of s or b, f(sk,b) is com-
putational indistinguishable with random distribution over R. This is known as twisted PRF trick
[15][28].

4.1 AKE from 2-key KEM in Random Oracle Model

Roadmap: We first give a basic AKE from two [OW-CCA, OW-CPA] secure 2-key KEMs. Utilizing extra
properties of 2-key KEM, like PKIC or resistance of leakage of partial randomness, we then present two
elegant AKEs based on 2-key KEM with different property.

Let 2KEM = (KeyGenl, KeyGen0, Encaps, Decaps) be a [OW-CCA, OW-CPA] secure 2-key KEM with
secret key space Dgg, X Dgk,, random space R. Let H : {0,1}* — {0,1}* be hash function, fa :
Dy, x{0,1}* = Rand fp : Dgj, x{0,1}* — R be hl-RFs. The CK™ secure AKE is presented in Figure
2.

Stage 0: static secret-public key pair and public parameters. Each user’s static secret-public
key pair is generated using KeyGenl. Sample one pair of key (cpko, csko) < KeyGen0 (which need not
to be randomly generated). Set cpky as the predetermined ephemeral public key which will be used by
initiator afterwards and cskq as the predetermined ephemeral secret key that will be used by responder.
Let (epko, csko) be parts of public parameters.

Stage 1: Initiator Ua generates two randomness r4,740; it computes (Cp, Kp) under public key
pkp and predetermined cpkg with randomness fa(ska,74), and generates ephemeral secret-public key
(pk o, skao) < KeyGen0(r0). Then it sends Cpg, pkao to Up.

Stage 2: Responder Up generates randomness rg; it computes (C4, K 4) under public keys pk4 and pk g
with randomness fg(skp,r5); Up sends Cy to Uy and de-encapsulates C'p using skp and predetermined
csko to obtain K';; it then computes SK = H(Ua, Up, pka,pkp,Cp,pkao, Ca, Ka, K}), and erases KJ.
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Stage 3: U4 de-encapsulates C4 using sk4 and skag to obtain Ky and computes SK = H(Ua,Up, pka,
pkp,Cp, pkao, Ca, Ky, Kp).

The session state of sid owned by Ua consists of ephemeral secret key 40,74, decapsulated key Ky
and encapsulated key Kp; The session state of sid owned by Up consists of ephemeral secrete key rp
and encapsulated key K 4.

Ua Us
(pka,ska) < KeyGenl (pks, skp) < KeyGenl
ra < {0,1}*,ra0 < {0,1}" rg < {0,1}*

R4 := fa(ska,ra)
(CB,KB) < Encaps(pkB,cpko,RA) Rp = fB(Sk:B,TB)
(pkao, skao) + KeyGenO(rao) Cg,pkao (Ca,Ka) < Encaps(pka,pkao, RB)
K', < Decaps(ska, skao,Ca) Ca K75 + Decaps(skg, csko, Cg)
SK = H(si, Ky, Kp) SK = H(si,Ka, K})

Fig. 2. AKE from [OW-CCA, OW-CPA] secure 2KEM in random oracle model. cpko, csko are predetermined and
default ephemeral keys and they are part of the public parameters. si here is (Ua, U, pka, pks, Cg,pkao,Ca).

Theorem 1. If the underlying 2KEM 1is [OW-CCA, OW-CPA] secure and ~y-spread, fa, fp are (£1,€2)
hl-RFs, and there are N users in the AKFE protocol and the upbound of sessions between two users is [,
for any PPT adversary A against AKE with totally q times of CKT queries, there exists S s.t.,

2 [OW-CCA, ] 9 B
Advzice(A) < Ll VO AdvﬁKoEvl‘(’/.cpA] (8)+ N%g- (ex+e2+277), [
2 N2 Advgiey—(S) + N?1g - &2

Proof of Theorem 1. Let Succ be the event that the guess of A against freshed test session is correct.
Let AskH be the event that A poses (Ua, U, pka, pkp,Cp, pkao,Ca, Ka, Kg) to H, where Cp, pkao, Ca
are the views of the test session and K 4, K are the keys encapsulated in the test session. Let AskH be
the complement of AskH. Then,

Pr[Succ] = Pr[Succ A AskH] + Pr[Succ A AskH] < Pr[Succ A AskH] + Pr[AskH],

where the probability is taken over the randomness used in CK* experiment.

We then show that Pr[Succ A AskH] < 1/2 (as in Lemma 1) and Pr[AskH] is negligible (as in Lemma
2) in all the events (listed in Table 2) of CKT model. Followed by Lemma 1 and Lemma 2, we acheive
the security of AKE in CKT model. Thus, we only need to prove Lemma 1 and Lemma 2.

Lemma 1. If H is modeled as a random oracle, we have Pr{Succ A AskH] < 1/2.

Proof of Lemma 1: If Pr[AskH] = 0 then the claim is straightforward, otherwise we have Pr[SuccAAskH] =
Pr[Succ|AskH]Pr[AskH] < Pr[Succ|AskH]. Let sid be any completed session owned by an honest party such
that sid # sid* and sid is not matching sid*. The inputs to sid are different from those to sid* and sid* (if
there exists the matching session of sid*). If A does not explicitly query the view and keys to oracle, then
H(Ua,Up,pka,pkp,Cp,pkao, Ca, Ka, Kp) is completely random from A’s point of view. Therefore, the

probability that A wins when AskH does not occur is exactly 1/2.

Lemma 2. If the underlying 2KEM is [OW-CCA, OW-CPA| secure, the probability of event AskH defined
above is negligible. Precisely,

OW-CCA,- B
Pr[AskH] < min N2L- Adv[QKEM ](5) + N2lg- (1 +e2+277), .
- N2L- Ado Q0P (S) + N2Ug - e,
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Events sid* |sid*||sska|eska|eskp|ssks|Bounds

AskHAEr || A [Nol|l v | x | - | x AV N pki = pkg, pki = cpko
AskH A Es A |Nol|l x Vv - X AdvgiVEV,;ACCA"], pk1 = pkp, pki = cpko
AskHAEs || B |[Nof| x | - | «/ | x AdvéOK\/EV,(,,CCA"], pk1 = pka, pki < A
AskHAE; || B |No|| x - X |/ AdvgoKva,;,,CCA"], pk1 = pka, pky <+ A
AskHA Es [[A/B|Yes|| v | x | x | v [AdvLO Y pko = pho(sid*) pki € [L1]x
AskHA Es |[A/B|Yes|| x | v | v | x [AdvOECAT pky = pha, pki € [Loh
AskHA Bzl A [Yes|| v | x | v | x [AdvOE ST pki = pkg pki = cpko
AskH A Ero|| B [Yes|| x | v | x | v [AdviO@CP™T, pky = pka, pky € [Loh
AskHA Egq| A [Yes|| x | v | x | v [AdvO8 N pky = pka, pki € [Loh
AskH A Esf| B |Yes|| «/ | x V| x AdvgoKva,(,lCCA“], pk1 = pks, pko = cpko

Table 4. The bounds of AskH A Askh in the proof of Lemma 2. Refer Table 2 for the meanings of notions.

Please refer Appendix A for the formal proof. we give a sketch of proof here. In the following, to bound
Pr[AskH], we work with the events listed in Table 4.

Due to the [OW-CCA, -] security of 2KEM with pk; = pk4 and pk generated by A, the probability of
events AskH A E5 and AskH A E, is negligible; Due to the [OW-CCA, ] security of KEM with pk; = pkp
and pk§ = cpko, the probability of events AskHA Ey, AskHA Ey, AskHA Er1 and AskH A Eg_5 is negligible;
Due to the [OW-CCA, -] security of 2KEM with pky = pka and pk{ € [Lo]1, the probability of events
AskH A Eg, AskH A E7.5 and AskH A Es_; is negligible. Due to the [, OW-CPA] security with pki € [L1]1,
the probability of event AskH A Ej is negligible.

Here, we only take AskH A F5 as an example to explain in detail. For the other cases we can deal with
them in a similar way. In the event E3, the test session sid* has no matching session, and the ephemeral
secret keys rp of Up is given to A. In case of AskHA Es5, the [OW-CCA, -] adversary S performs as follows.
It simulates the CKT games, and transfers the probability that the event AskH performed by A occurs
to the advantage of attacking [OW-CCA, -] security.

In order to simulate the random oracles, S maintains two lists for H oracle and SessionKeyReveal
respectively. H-oracle and SessionKeyReveal are related, which means the adversary may ask Session-
KeyReveal without the encapsulated keys at first, and then may ask H-oracle with the encapsulated keys.
Thus, the reduction must ensure consistency with the random oracle queries to H and SessionKeyReveal.
The decryption oracle for [OW-CCA, -] game would help to maintain the consistency of H-oracle and
SessionKeyReveal.

On receiving the public key pk; from the [OW-CCA, -] challenger, to simulate the CK' game, S
randomly chooses two parties U, Up and the i-th session as a guess of the test session with success
probability 1/N2I. S, picks one preset (cpko,cskg) + KeyGen0 as public parameters, runs KeyGenl to
set all the static secret and public key pairs (pkp, skp) for all N users Up except for Ua. Specially, S
sets the static secret and public key pairs (pkg, skg) for Ug, and sets pka = pky.

Without knowing the secret key of Ua, S chooses totally random 74 as part of ephemeral secret key
and totally random R4 for Encaps. Since f4 is (e1,e2) hl-RF, the difference between simulation with
modification of r4 and real game is bounded by ;. When a ephemeral public key pkpg is needed, S
queries (pkg, sk, i) < Oleak, and sets pkpo = pki. When a session state revealed to a session owned by
Ua, is queried, S returns r4 and 7§ of this session as part of ephemeral secret key.

On receiving the i-th session (C;, pkg) from U, (that is sent by A in the CKT games), S returns
pk§ to the [OW-CCA, ] challenger and receives the challenge ciphertext C* under public key pk; and
pkg. Then S returns C* to U4 as the response of i-th session from Up. S chooses a totally independent
randomness rp as the ephemeral secret key of Up for C* and leaks it to adversary A. Since fg is (e1,€2)
hl-RF, the difference between simulation with modification of rg and real game is bounded by 5.

S simulates the oracle queries of A and maintains the hash lists. Specially, when AskH happens, which
means A poses (Ua,Up,pka,pkp, Cl,pki,C*, K4, Kp) to H, where Clz, pk§, C* are the views of the
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test session and Kp is the key encapsulated in C, S returns K4 as the guess of K* encapsulated in
C*, which contradicts with the [OW-CCA, -] security for pk; = pka, pk} < A. |

4.1.1 If 2-key KEM is PKIC. As we notice in AKE, the session state of sid owned by Up does
not contain decapsulated key K. If the underlying 2-key KEM is PKIC (which is defined in Sec. 3.3),
and Up also sends ephemeral public key pkpo out in every session, K is encapsulated under two public
keys pkp and pkpo, then Kz could be included in session state, and the predetermined ephemeral public
key cpky can be omitted. Let 2KEMpic = (KeyGenl, KeyGen0, Encaps0, Encapsl, Decaps) be PKIC and
[OW-CCA, OW-CPA] secure 2-key KEM. The AKE can be modified to include K; as session state by
1)replacing 2KEM with 2KEMpyic; 2) requiring Up to generate a fresh (pkpo, skpo) < KeyGen0 and send
out ephemeral public key pkpgo; 2) encapsulating and separating (Cp, Kp) < Encaps(pks, pkpo, Ra) in
two steps and computing Cz < Encaps0(pkp,-, R4a) and Kp < Encapsl(pkp,pkpo, Ra). The modified
protocol AKEqpkic is shown in Figure 3.

Note that the encapsulation algorithm of PKIC 2-key KEM can be split into two steps. Since the
generation of ciphertext Cp does not require pkpg, we denote it as Cp + EncapsO(pkp,-, Ra). The
computation of encapsulated key Kp requires pkpo, and we denote it as Kp <+ Encapsl(pkg, pkpo, Ra).

UA UB
(pka,ska) + KeyGenl (pkB, skp) < KeyGenl
ra < {0,1}",r40 < {0,1}" rg < {0,1}",rpo + {0,1}"
R4 := fa(ska,ra)
‘CB < EncapsO(pkB,—,RA)‘ Rp = fB(SkBﬂ“B)

(pk:Ao,SkAo) < KeyGenO(er) CB,pkAo (CA,KA) < Encaps(pkA,pkAo,RB)

&‘pkﬂu (pkBo, skpo) + KeyGenO(rgo) ‘

Ky < Decaps(ska, skao,Ca)

[ K « Encapsl(phs, pkno, Ra) | ] K}, + Decaps(sks, skzo, Cr) \
SK « H(si, Ky, K5) SK « H(si, Ka, Kby)

Fig. 3. AKE o pkic from PKIC [OW-CCA, OW-CPA] secure 2KEM. Here st =
(Ua,Us,pka,pks,Cs,pkao,Ca,pkpo). The boxed argument is the difference with AKE

Since the proof mainly follows that of Theorem 1, we only show the difference here. The main difference
is the analysis of Pr[AskH] in Lemma 2. Now, the probability of events AskHA Ey, AskHA Es, AskHA Er_1,
AskH A Eg_5 is bounded by the [OW-CCA, -] security of 2KEMyie with pk§ chosen by A rather than the
predetermined cpkg. Precisely, in those events, when the adversary queries the session state of Ug whose
secret key is unknown to simulator S, in AKE, S queries the decryption oracle of 2KEM with ¢pky and
Cp (when adversary queries Send(II, R,Ug,Up,Cg, pkao)), while in AKEyic, S queries the decryption
oracle of 2KEMyic with (pkpo, Cp) chosen by A. This modification does not affect the proof of security.

4.1.2 If PKIC 2-key KEM is even Secure with Leakage of Partial Randomness We can
further refine the framework AKE,, pkic based on two observations: 1) From the proof of Theorem 1
(especially Lemma 2), we can see that the only purpose of f4 and fp is to preserve the [OW-CCA, ]
security with pk; = pka and the [-, OW-CPA] security with pko = pkao even if part of randomness, rp
or skp is leaked to the adversary. If the underlying 2-key KEM itself is strong enough to preserve the
[OW-CCA, OW-CPA] security with respect to some function fs(ska,ra) (resp. fp(skp,74)), and leakage
of ska or r4 for fixed pka (resp. skp or rp for fixed pkpg), the functions f4 and fp don’t have to be
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hl-RFs. 2) if the 2-key KEM is strong enough to preserve security even when the randomness r g used to
generate pkpo is generated from fpo(skp,rp) for some function fpo, then we could regard fpo(skp,rs)
as a random string using to compute pkpo. The same holds when (pkag, skao) < KeyGenO(r 49) where
740 = fao(ska,r4) for some function fap.

Therefore, the problem comes down to study the security of 2-key KEM when C4 (under public keys
pka and pkap) shares the randomness of pkg and pkpg.

Definition 3. We say 2-key KEM is leakage resistant of partial randomness with respect to fgp and
fBo (they need not to be hi-RFs), if the following property holds. Under public key pka and pkao, the
[OW-CCA, OW-CPA] security still holds where the ciphertext is computed as Encaps(pka, pkao, [ (skp,TB))
for some fixed pkp (where (pkp, skp) < KeyGenl), when either rp and pkpo or skp and pkpo are given
to adversary, where (pkpo, skpo) < KeyGenO(fpo(sks,7B)).

Equipped with PKIC 2-key KEM that resists to the leakage of partial randomness with respect to fp
and fpo, we set fao(ska,r4) and fpo(skp,rp) as the randomness for KeyGen0, and denote the result
AKE as AKE o pkic-ir in Figure 4. The session state of sid owned by Uy consists of r4, K’y and Kp, the
session state of sid owned by Up consists of g, K4 and Kj.

Ua Up
(pka,ska) + KeyGenl (pks, skp) < KeyGenl
ra < {0, 1}*,‘ ra0 = fao(ska,Ta) ‘ rg + {0, 1}*7‘ rBo = fBo(sks,TB) ‘
R4 := fa(ska,ra)
Cp <+ EncapsO(pkp, —, Ra) Rp := fe(skp,TB)

(pkAmSk'Ao) < KeyGenO(er) (CB),pk'Ao (CA,KA) — Encaps(pkA,pkAo, RB)
(Ca),pkBo (pkBo, skpo) + KeyGenO(rpo)
K!, < Decaps(ska, skao,Ca)
Kp « Encapsl(pkg, pkso, Ra) K5 < Decaps(skg, skgo, Cs)
SK « H(si,K4,Kg) SK < H(si,Ka,Kp)

Fig. 4. AKE pkic-ir- Here si = (Ua, U, pka, pks, Ce,pkao, Ca,pkpo). The boxed argument is the main difference
with AKEo-pkic

Remark 1: As in the definition of 2-key KEM, both Encaps and Decaps allow to have auxiliary input
auxe or auxq. In AKE o pkic-ir (AKE and AKE,o pkic), the static public keys are generated by KeyGenl during
the registration phase (i.e., Stage 0) and publicly available. Thus, in the protocol, it makes sense that
Encaps and Decaps algorithms take the static public keys as public auxiliary input. And for user Ugz
(resp. Up), it is also reasonable that Encaps executed by Uga (resp. Up) takes his static secret key sk
(resp. skp) as auxiliary input. In this sense, one couple of 2KEM is really “coupled” with each other.
Remark 2: Since C'4 share the randomness of pkpo and secret key of pkp, if the 2-key KEM and
function fp/fpo further satisfy that C4 is publicly computable from pkp and pkpg, we can omit C4 in
the communications. The same holds for Cp, if it is publicly computable from pk, and pkag, we can
omit Cg.

Remark 3: Note that the computation of f5 is part of Encaps(pka,pkao, Rp) algorithm. fp may take
pk4 as input. At that time, to be clear, we denote fgp(skp,rp) as fp(skp,rp,pka). It is similar in the
case of fa.

With these modifications, we should handle the proof more carefully. The main challenge is that
the ciphertext C4, static public key pkp, ephemeral public key pkpg are correlated (the same holds for
Cpg, pka, and pkag). We should handle the problem that, since C4 shares the randomness with pkpg
and secret key of pkp, when applying the [OW-CCA, ‘] security of 2-key KEM with pk; = pk4 in event
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AskH A Es, AskH A Eg, not only sk4 but also skp is unknown to simulator S. (The same situation occurs
when applying [OW-CCA, -] security of 2-key KEM with pk; = pkp in event AskH A Es).

The way to solving this problem is to bring in another [OW-CCA, ] challenge. As an example, we
sketch the proof of event AskH A F5 to show how this resolves the above problem. The main modification
is for the proof of Lemma 2. In case of AskH A E3, the [OW-CCA, ] adversary S performs as follows. On
receiving the public key pk; from the [OW-CCA, -] challenger, to simulate the CK™ game, S randomly
chooses two parties Ua, Up and the i-th session as a guess of the test session. S runs KeyGenl to generate
all static public keys except Uy and Up. S queries the first [OW-CCA, -] challenger to get pk;, and sets
pka = pki. S queries the second [OW-CCA, -] challenger again to get another pk] and sets pkp = pkj.

Note that now S does not know the secret key of both pk4 and pkp. Here S generates (pkj, skjg)
by itself. S sends pk%, to the second challenge to get challenge ciphertext C% and keeps both pkp, and
C%, secret to CK™ adversary A. On receiving the i-th session (C'g,pk’,) from Uy (that is sent by A
in the CK* games), S queries the first [OW-CCA, -] challenger with pk*, and obtains C%, pkpo and its
randomness rgg. S returns C’} and pkpg to U as the response of i-th session from Up, and sets pk’, as
the public key under which C is encrypted. S also leaks rpo to adversary as the ephemeral secret key.

With the first [OW-CCA, -] challenge, S could partially maintain the hash list and SessionStateReveal
and SessionKeyReveal with strong decapsulation oracle when Upg is not involved. When Upg is involved,
the second [OW-CCA, -] challenge is needed. Note that since 2-key KEM is y-spread, the probability that
A queries a message with Cp = C% is bounded by ¢ x 277. The simulation is perfect and the other part
of proof proceeds the same with Lemma 2.

4.2 AKE from 2-key KEM in Standard Model

The protocol AKE/AKEq pkic in random oracle model can be easily extended to one that is secure in the
standard model, denoted by AKEstd/AKEstd-piic, via the following steps:

1. replacing the [OW-CCA, OW-CPA] secure 2-key KEM in random oracle model with the [IND-CCA, IND-CPA|
secure 2-key KEM in standard model;

2. instantiating the hl-RF functions f4, fp in standard model instead of the random oracle model.
As noted after the definition, the instantiation of hl-RF in standard model require PRF and extra
randomness. Thus every user holds extra random secret sp ¢ {0,1}* as part of the static secret key
and Ra = fa(skal|lsa,ra), Rp = f(skgl|sp,rB). .

3. replacing the random oracle H(si, K4, Kp) with Fg,(si) @ Fk,(si), to extract session key, where
F and F are PRFs.

Actually, converting a scheme in the random oracle model into that in the standard model is generally
not trivial, and there are many negative results. However, without taking advantage of strong property
of random oracle, our step 2 and 3 just use the property that if the input is unknown then the output
is totally random. The difficult part is step 1. Once the 2-key KEM in random oracle model is replaced
by [IND-CCA, IND-CPA] secure 2-key KEM in standard model, the proof of security for AKE in standard
model is straightforward.

5 Unification of Prior Works

In this section, we show that existing AKEs, including HMQV[24], NAXOS [25], Okamoto [28], and
FSXY framework [15, 16], can be explained in our unified frameworks.

5.1 HMQV-AKE.

In HMQV[24], the 2-key KEM is initiated by 2KEMpmqy in Figure 5. Let h and H be hash functions. Let
G be a group of prime order p with g as a generator. Both Encaps and Decaps algorithms have auxiliary
input auxe = (B,b) where B = g% and auxq = B. By applying AKE o pkic-Ir, Remark 1 and Remark 2, we
present how the HMQV scheme is integrated in our unified framework of AKE and how it is built from
the view of 2-key KEM in Figure 6.
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KeyGenl()\)‘ KeyGenO()\)‘ Encaps(pkl,pko;auxe(B,b))‘ Decaps(ski, sko, ¢; auxq(B))

a < Zyp; T Zyp Yy ZLp, Y =gY, YB® ¢

A=g" X =g" e=h(Y,A),d=h(X,B) e=h(Y,A),d=h(X,B)
phi=A | pko=X; |k=H((XA)r+e) K = H((YB®)™)

sk1 = a sko = x. Return k,c = Y B°. Return &k’

Fig. 5. The [OW-CCA, OW-CCA] secure 2KEMyuugqy implied by HMQV.

Theorem 2. Under the Gap-DH and KEA1 assumptions®, 2KEMumqv in Figure 5 is [OW-CCA, OW-
CCA] secure with the resistance to the leakage of partial randomness with respect to fg(b,y) = y+b -
h(g¥, A) and fBo(b,y) =y in the random oracle model.

Please refer Appendix B for the formal proof of Theorem 2.

By theorem 2, 2KEMpymqv is [OW-CCA, OW-CCA] secure even if partial randomness (b or y) is leaked
with respect to fp(b,y) =y+0b-h(g¥, A) and fpo(b,y) = y. By changing the role of A and B, X and Y,
we also get a dual scheme of 2KEMpymqy, with respect to fa(a,z) =z +a- h(¢g®, B) and fao(a,z) = x.
Obviously, 2KEMymqy is PKIC, which means that the ciphertext is independent of the public key pko.
Thus the Encaps algorithm can be split into two steps Encaps0 and Encapsl. However, when integrating
2KEMumqy into AKEq picir to reproduce HMQV, one may doubt that whether aux. = (B,b) or (4, a)
required by Encaps and auxy = B or A required by Decaps influence the reconstruction. As explained in
Remark 2, since B and A are the static public keys and generated during the registration phase, they
can be used as the auxiliary input by any user during the execution phase. As a static secret key b can
be used by Up as auxiliary input during the execution phase. Based on the above analysis, applying
AKE o pkic-Ir and Remark 1 to 2KEMpymqv, HMQYV is reconstructed in Fig. 6.

Moreover, A, B are static public keys, and d, e are publicly computable, C4, C'g can be publicly
computed from pkpg = Y and pkao = X. Thus, we can apply Remark 1 to omit Cz = XA? and
C4 = Y B? in the communications.

Ua:A=g%a UB:B:gb,b
T Zp, X =9¢g° Y Zp,Y =g"
d=h(X,B),Cp = XA (Cp = XA" )pkao =X e=h(Y,A),Ca=YDB*
e=h(Y,A) ‘(CA =YB® )pkpo =Y d=h(X,B)
Kp =K}y = H ((YB°)"t*) Ka=Kp=H ((XA")vTt)
SK « H(si,Kp) SK « H(si, Ka)

Fig. 6. Understanding HMQV with 2KEMuwmqv in the frame AKE o pkic-Ir Wwhere si = (Ua,Up, A, B,Cp, X,C4,Y).

5.2 NAXOS-AKE.

In [25], the 2-key KEM is initiated by 2KEMnaxos in Figure 7. Let G be a group of prime order p with
g as a generator. Let h : Z, x Z, — Z, and H: Zp % Zp — {0,1}* be hash functions. By applying
AKE o pkic-Ir and Remark 1-2, in Figure 8, we present how the NAXOS scheme is integrated in our unified
framework of AKE and how it is built from the view of 2-key KEM.

Theorem 3. Under the Gap-DH assumption, 2KEMyaxos is [OW-CCA, OW-CCA|] secure even with the
leakage of one of yo and b where fp(b,yo) = h(b,yo) and fpo(b,yo) = h(b,yo) in the random oracle
model.

2 For formal definitions of Gap-DH and KEA1 assumptions, please refer HMQV.
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KeyGenl()\)‘ KeyGenO(/\)‘ Encaps(pkl,pko;auxe(B,b));‘ Decaps(sk1, sko, ¢)

a < Lyp; T Zyp Yo < Zp, y = h(yo,b) Y ¢

A=g° X=g" Y =g¢Y x = h(zo,a)
pkr=A | pko=X; |k=H(AY, XY) K =HY*Y?)
sk1 =a sko = x. Return k,c =Y. Return &’

Fig. 7. The [OW-CCA, OW-CCA] secure 2KEMpyaxos implied by NAXOS.

By theorem 3, 2KEMpaxos is [OW-CCA, OW-CCA| secure even if partial randomness (b or yp) is
leaked with respect to fp(b,yo) = h(b,y0) and fBo(b,yo) = h(b,yo). Obviously, 2KEMnaxos is PKIC. We
split Encaps algorithm into two steps EncapsO and Encapsl. As explained in Remark 2, since b is static
secret key and generated by Ug, in the execution phase Up takes it as secret auxiliary input. Based on
the above analysis, applying AKEo pkic-Ir and Remark 1 to 2KEMyaxos, NAXOS is reconstructed in Fig.
8.

Moreover, C4 is equal to pkpg =Y and Cp is equal to pkag = X. Thus we can apply Remark 2 to
omit Cg = X and C4 =Y in the communications.

Ua:A=g%a

Us:B=g¢"b

o < Zp,x = h(xo,a)

Yo < Zp,y = h(yo,b)

Cp =pkao =X =g° (CBIX),pk’Ao:XVCA:pkBOZY:gy
Kg=H(B®,Y®) (Ca=Y),pkpo=Y Ka=H(AY,XV)

Ky =H(Y*Y"?)
SK « H(si, Ky, Kp)

Ky =H(Y’ XY)
SK « H(si,Ka, Kp)

Fig. 8. Understanding NAXOS with 2KEMp,xos in the frame AKEo pkic-ir where si = (Ua,Up, A, B, X,Y).

5.3 Okamoto-AKE.

In Okamoto-AKE [28], the 2-key KEM is initiated by 2KEMgy, in Figure 9. In 2KEMgya, the computation
is proceeded over group G of prime order p with generator g, hic, is a target-collision resistant (TCR)
hash function and F' is a pairwise-independent random source PRF. (Please refer [28] for the formal

definition of pairwise-independent random source PRFs.)

2KEMoy,.KeyGen1(\)

2KEMoy,.KeyGenO()\)

I
ai,az,as,as < Ly, A1 = g1 g52, Az = g1%g5*
pk1 = (A1, A2), ski = (a1,02,a3,a4)

T3 < Zp, X3 = gf:i
pko = X3, Sko = I3

2KEMoka-Encaps(pko, pk1);

2KEMoka.Decaps(sko, ski, C)

Y, Y3 < Z;QN )/1 :g¥,Y2 2937 )/3 = g%d
C = (Y1,Y2,Y3),C = htCT(A1,A2,C)
o= XU (A AS)Y

K = Fg(pk(),C)

CeG? (V1,Ys,Y3) « C;
c= htCT(A17A27C)

o = Y§13Y1“1+C‘13Y2¢12+ca4
K’:FO./(pk()’C)

Fig. 9. The [IND-CCA, IND-CPA] secure 2KEMox. implied by Okamato-AKE.

Let G be a group of order p with the generator g. Let 15 = ¢gP be the identity element. The DDH
assumption states that {(G,g% g% ¢%)} is computationally indistinguishable from {(G, g%, g%, %)},
where a, b, ¢ are randomly and independently chosen in Z,,. If ¢ = ab, (g, g%, g%, g°) is called a DDH tuple,
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otherwise it’s called a non-DDH tuple. Denote the advantage of any PPT algorithm B solving DDH
problem as Advig" = | Pr[B(¢%, ¢, ¢**) = 1] — Pr[B(g", ¢", 9°) = 1]|.

Theorem 4. Under the DDH assumption, if hier is a TCR hash function and F is a pairwise-independent
random source PRF, then 2KEMoy, in Figure 9 is [IND-CCA, IND-CPA] secure in the standard model.

Please refer Appendix D for the formal proof of Theorem 4.

By applying AKEgy, in Figure 10, we present how the Okamato scheme is integrated in our unified
framework of AKE and how it is built from the view of 2-key KEM. Let F' : {0,1}* x {0,1}* — Z,
and F” : Z, x {0,1}* — Z, be PRFs. In the frame of AKEgq4, by setting s4 = ag,sp = bo, 74 =
i ||xh, r a0 = 3, 1B = Y ||yh, choosing cpky = 1¢, cskg = p, initiating f4 and fp as F;/l(lk) @F’Z’:éav(xé)

and F?;i (1*) @ Fé’:4 ».(¥2), and applying 2KEMoya as 2-key KEM, we will get Okamoto AKE in Fig. 10.
oY

Ua: A1, A2,a1,a2,a3,a4,a0 < Zyp Ug : B1,B2,b1,b2,b3,bs, by < Zy
xh,ah + {0,1}* yi, s < {0,131
(e, 03) = FLy (19) + Py, (1) (v.0) = FJy (19) + Fley , (45)
X1 =91, X2 =93, X3 = g7° Yi=g{,Y2s=g3,Ys =g7®

Cp = (X1, X2,1c),pkao = X3 Cp, X3 Ca= (Y1,Y2,Y3)
d:htcr(UB,leXQ) Ca C:htCT(UA,Yl,Yé,YS)

op = (BlBg)z,KB = FO—B (1¢,CB) oA = XgS(A1A§)y,KA = F[,A(X37CA)
C:htcr(UA,CA) d:htC'I’(UBycB)
0{4 _ X;’/ayla1+casy2a2+ca4 OJB — Xf1+db3X§2+db4
Ky = F, (X3,Ca) Ky =F, (1,Cp)
SK « Fip(si) ® Fror, (si) SK « Fy (si) & Frc , (si)

Fig. 10. Understanding Okamoto-AKE from 2KEMok, where si = (Ua,Up,Cp, X3,C4) in frame AKEsq4. Some
notions are borrowed from 2KEMoy,

5.4 FSXY12-AKE and FSXY13-AKE.

Fujioka et al. in PKC 12 (called FSXY12 [15]) proposed a construction of AKE from IND-CCA secure
KEM and IND-CPA secure KEM in the standard model. In FSXY12 [15], Up sends a ciphertext of IND-
CCA secure KEM and a ciphertext of IND-CPA secure KEM, and the session key is computed from these
two encapsulated keys, public key of IND-CPA secure KEM, and ciphertext in the PRF functions. As
we point out in section 6.1, the FSXY12 scheme implies a trivial [IND-CCA, IND-CPA] secure 2-key KEM
from the improved KEM combiner in the standard model. More precisely, in AKEgq, cpkg and cskg is set
to be empty; Cpg is just ¢p1]|-, where ¢py is the ciphertext of IND-CCA secure one-key KEM under pkp;
C4 is replaced by the concatenation of ca1||cao, where c4; is the ciphertext of IND-CCA secure one-key
KEM under pk4 with encapsulated key k41 and c4g is the ciphertext of IND-CPA secure one-key KEM
under pk 4o with encapsulated key & 49; and K 4 is replaced by Fy, ,, (pkao, ca1l|ca0)® Fr 4o (Pk A0, ca1l|ca0)-
To make it clearer, in section 6.1 we explain why we should put public key in PRFs when combining
two KEMs. Note that FSXY12 implicitly did it in the same way by putting sid in PRF. Thus, due to
this observation, our frame of AKEgy with improved KEM combiner can be used to explain the FSXY12
scheme.

Considering efficiency, Fujioka et al. in AsiaCCS 13 (called FSXY13 [16]) proposed AKE from OW-
CCA secure KEM and OW-CPA secure KEM in the random oracle model. In FSXY13 [16], Up sends
a ciphertext of OW-CCA secure KEM and a ciphertext of OW-CPA secure KEM. The session key is
computed from these two encapsulated keys, public key of CPA secure KEM, and ciphertext in the
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hashing step. As we point out in section 6.1, the FSXY13 scheme implies a trivial [OW-CCA, OW-CPA]
secure 2-key KEM from the improved KEM combiner in the random oracle model. Precisely, in AKE, cpkg
and cskg is set to be empty; Cp is just ¢p1||-, where c¢p; is the ciphertext of OW-CCA secure one-key
KEM under pkg; C4 is replaced by the concatenation of ca1||cag, where ¢ 41 is the ciphertext of OW-CCA
secure one-key KEM under pk4 with encapsulated key k41 and cag is the ciphertext of OW-CPA secure
one-key KEM under pk 49 with encapsulated key k4¢; and K 4 is replaced by ﬁ(pkAo, k1l|k a0, ca1]|cao)-
In section 6.1 we explain why we should put public key in hashing step when combining two KEMs. Note
that FSXY13 implicitly did it in the same way by putting sid in hashing step. Thus, our frame of AKE
with improved KEM combiner works for explaining the FSXY13 scheme.

6 More General Constructions for 2-key KEM

As shown in Section 5, many widely-used AKEs are able to imply 2-key KEM. And over cyclic group,
HMQV and NAXOS consume the least amount of communication. However, their techniques are not
compatible with lattice assumptions. Although Zhang et al. [36] extend HMQV-type AKE to that based
on Ring LWE, the resulted AKE only achieves BR security and costs more communications. In this
section we investigate how to improve the KEM combiner [17] and Fujisaki-Okamoto transformation [14,
18] so as to yield more general constructions of 2-key KEM, which are much more well-suited for lattice
assumptions.

6.1 Improved Combiner of Two KEMs

Giacon et. al [17] propose two KEM combiner and yield a new single KEM that is classical CCA secure
as long as one of the ingredient KEMs is. We show that the simple KEM combiner does not work for our
2-key KEM. Furthermore, we show that with a slight but vital modification the combiner could work.

6.1.1 The failure to imply [OW-CCA, | secure 2key KEM from KEM combiner We give a
scheme that is a CCA secure two KEM combiner but is not [OW-CCA, -] secure.

Let h and H be hash functions. Let G =< g > be a group with prime order p. Let pk; = (91,92 =
9%), sk1 = a, the ciphertext be ¢; = (g7, g5 -m) where r = h(m) and the encapsulated key be k1 = H(m).
By the FO transformation [14] and DDH assumption, the first KEM is one-way-CCA secure. Let pky =
(h1,hy = h%), sko = b, the ciphertext be ¢y = h? and the encapsulated key be ko = H(h%); and obviously
the second KEM is IND-CPA secure.

Let the combined ciphertext be (¢1||co) and combined encapsulated key be K = H (ky|ko, ¢1||co), by
the KEM combiner [17] (Lemma 6 and example 3 in [17]), the combined KEM is CCA secure. However,
such combined KEM is not [OW-CCA, -] secure which means there exists an adversary A that can break
[OW-CCA, -] game.

Note that ¢y = h§ encapsulates the key k} = H(h3) under public key pky = (h1,h2) while it
encapsulates the same key k§ = H(h3) under public key pkg = (h{, h§) for some ¢ € Z,. The [OW-CCA, -]
adversary A first queries the Oeax oracle and gets pko = (h1, he). Then it randomly chooses ¢ € Z,, and
sets pk§ = (h$, h§). After receiving cf||cf under public keys pk; and pkg, A queries the decryption oracle

N

with (pki, pko, ci||c§), and would receive exactly K* = H(k}||k§, cil|cs)-

6.1.2 Improvement on KEM combiner to achieve [CCA, CPA] secure 2-key KEM Inspired
by the attacks above, we propose a improved combiner of CCA secure and CPA secure KEMs to achieve
[CCA, CPA] secure 2-key KEM. Let KEM., = (KeyGencc,, Encapscpa, Decapscca) be IND-CCA secure
KEM, KEM¢p, = (KeyGencpa, Encapscpa, Decapscp,) be IND-CPA secure KEM. Let H be a hash func-
tion and F be a PRF. The improved combiner is shown in Figure 11, where function f(pko, k1]|ko, ¢) can
be initiated by H(pko, k1||ko, ¢) or Fi, (pko, ¢) @ Fi, (pko, ¢). Our main modification is to take public key
as input to the hash function or PRF when generating encapsulated key.
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KeyGenl(\) ‘ KeyGenO(\) ‘ Enc(pki1, pko); ‘ Dec(sk1, sko, c1||co)

(pk‘l, Sk‘1) < (pko, Sko) < (Cl, k‘l) — Encapscca (plﬁ) k1 +— Decapscca(skzl, Cl)
KeyGencea KeyGencpa (co, ko) + Encapscpa(pko) ko <+ Decapscpa(sko, co)
c=cillco, k = f(pko, kil|ko, )| k = f(pko, k1||ko, )

Fig. 11. The [CCA, CPA] secure 2KEM/ in random oracle or standard model depending on the instantiation of
[f(pko, k1l[ko, c).

Theorem 5. Let the underlying two KEMs be IND-CCA and IND-CPA secure. If f(pko,k1|lko,c) =
H (pko, k1||ko, ) for a hash function H, 2KEM; in Figure 11 is [OW-CCA, OW-CCA] secure in random
oracle model; if f(pko, k1l|ko, ¢) = Fk, (pko, c)® Fi, (pko, ¢) for PRF F, 2KEMy in Figure 11 is [IND-CCA,
IND-CPA] secure in standard model.

Please refer Appendix E for the full proof.

6.2 Modified FO Transformation

In this section, we investigate the constructions of passively 2-key PKE and give a modified FO trans-
formation which can be used to transform a passively secure 2-key PKE to an adaptively secure 2-key
KEM.

6.2.1 Passively Secure 2-key PKE As the preparation for realizing adaptively secure 2-key KEM
and the modified FO transformation, similar to the notion of 2-key KEM, we can also provide the notion
of 2-key (public key encryption) PKE.

Informally, a 2-key PKE 2PKE=(KeyGen0, KeyGenl, Enc, Dec) is a quadruple of PPT algorithms
together with a plaintext space M and a ciphertext space C, where KeyGenl outputs a pair of public and
secret keys (pki, sk1), KeyGen0 outputs a pair of keys (pko, sko), Enc(pki, pko, m) outputs the ciphertext
C € C, and Dec(skq, sko, C) outputs a plaintext m. Sometimes, we explicitly add the randomness r to
Enc and denote it as Enc(pky, pko, m,r). Here we only describe the [IND-CPA, IND-CPA] security game.
For more concrete and full definition of 2-key PKE please refer Appendix F.

Game IND-CPA on pk; Game IND-CPA on pko

01 (pki,ski) < KeyGenl(pp) 15 (pko, sko) < KeyGenO(pp)

02 Lo :{(_7_7_)} 16 L1 :{(_7_a_)}

03 (state,pkg, m1, my) < Af'eako (pk1)|17 (state,pki, mo, m1) < B?eakl (pko)
04 b+ {0,1}; 18 b« {0,1}

05 c* < Enc(pki,pkg,ms); 19 ¢* < Enc(pki, pko, ms);

06 b « .A;D'eak“ (state, c*) 20 b« Bf'eakl (state, c*)

07 return b’ = b 21 return b’ = b

Fig. 12. The [IND-CPA, ‘], and [-, IND-CPA] games of 2PKE for adversaries A and B.

Passively Secure twin-ElGamal from DDH assumption. Our construction is actually a con-
joined ElGamal encryption. Let’s call it twin-ElGamal. The [IND-CPA,IND-CPA] secure twin-ElGamal
2PKEcpaddh =(KeyGenl, KeyGen0, Enc, Dec) is presented in detail in Figure 13.

Theorem 6. Under the DDH assumption, the twin-ElGamal 2PKEpagan scheme shown in Figure 13 is
[IND-CPA, IND-CPA|] secure.

Please refer Appendix G for the formal proof.
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KeyGen1(\) ‘ KeyGenO(\) ‘ Enc(pki, pko, m); ‘ Dec(sko, sk1,C)
a1 < Zp, h1 = g*%; ao < Zp, ho = g%°; 71,70 < Zyp (c1,c2,¢3) «+ C

a1 a0

pkl = (g7h1)7 sk1 = a1 pko = (ga h0)7 Sk() =aop| ¢ = grlngOah’?ldthO -m| m' = 63/61 Coy

Fig. 13. The [IND-CPA, IND-CPA] secure 2PKEcpadan under DDH assumption.

6.2.2 Modified FO Transformation from Passive to Adaptive Security In the random oracle
model, the FO [14, 18] technique is able to transform a passively secure one-key encryption scheme to
an adaptively secure scheme. We show that the classical FO transformation does not work for our 2-key
encryption scheme. Then we show that with a slight but vital modification the FO transformation could
work.

The failure of Classical FO Transform on 2-key KEM We give a novel twin-ElGamal scheme by
injecting redundant public keys, and show that such twin-ElGamal scheme after FO transformation is
still OW-CCA secure, but not [OW-CCA, -] secure.

The KeyGenO0 algorithm of 2PKE paddh chooses a random z < Z,,, and sets pko = (g, ho, go = g%), sko =
(ao,2). The algorithm KeyGenl, Enc,Dec are the same as in 2PKEcpaqdh. Obviously this novel twin-
ElGamal scheme is IND-CPA secure under DDH assumption. Let 2PKE§,addh be the scheme by applying
classical FO transform on the novel twin-Elgamal. It is OW-CCA secure. Note that the encapsulated key
is K = H(m,c) where H is a hash function.

However, there exists an [IND-CCA, -] attacker A of 2PKE£‘;addh that works as follows: A first queries

the Oleak, and gets pki = (g9,ho,90 = 97),sk} = (ao,2). Then A chooses g # go € G, and sets
pk§ = (g, ho, g}) as challenge public key. On receiving challenge ciphertext ¢* under (pky, pkg), A queries
Oow-cca With (pk}, c*). Since pk} # pkg, Oow.cca would return K'. A just outputs K’. Since ¢* encapsulated
the same key K* = H(m,c*) under both public keys (pki,pk{) and (pki,pky). A will succeed with
probability 1.
Modification on FO Transform to achieve [IND-CCA, IND-CCA] secure 2-key KEM from
2-key PKE Motivated by the above attacks, we give a modified FO transform by a slight but vital
modification from “Hashing” in [18] to “Hashing with public key as input”. Actually, taking the public
keys as input to hash function is also motivated by the fact that: from the perspective of proof, “Hashing
with public key as input” would help to preserve the consistency of strong decryption oracle and hashing
list.

Since we take the decryption failure into account, let’s firstly recall and adapt the definition of
correctness for decryption in [18] to our 2-key setting. When 2PKE = 2PKEY is defined with respect
to a random oracle G, it is said to be §4,-correct if for adversary .4 making at most g queries to
random oracle G, it holds that Pr[COR-ROA#* = 1] < d¢e» Where the correctness game COR-RO is
defined as following: (pki, sk1) < KeyGenl(pp), (pko, sko) < KeyGenO(pp), m « ASC) (pky, sky, pko, sko),

¢ « Enc(pki, pko, m). Return Dec(sky, sko, ¢) Zm.

Let 2PKE = (KeyGenl’, KeyGen0’, Enc, Dec) be a [IND-CPA, IND-CPA] secure 2-key PKE with message
space M. The [IND-CCA, IND-CCA|] secure 2KEM = (KeyGenl, KeyGen0, Encaps, Decaps) are described
as in Figure 14.

Theorem 7. For any [IND-CCA, -] adversary C, or [-, IND-CCA] adversary D against 2KEM with at most
gp queries to decapsulation oracle DECAPS, qy (resp. qa) queries to random oracle H (resp. G), there
are [IND-CPA, -] adversary A, or [-, IND-CPA] adversary B against 2PKE, that make at most qg (resp.
gc) queries to random oracle H (resp. G) s.t.

_CCA.- 1
A JIND-CCA, ](C) < 48 I qu +

Jo\IND-CPA.]
2KEM = M| v

+qg - 6+ 4Advyper (A).

Please refer Appendix H for the formal proof.
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KeyGenl(\)

KeyGenO(\)

(pk, ski) < KeyGenl’, s; < {0,1}};
Skl = (Sk/1781), pkl = pkll

(pk, skj) <+ KeyGen0', s < {0,1}
sko = (sko, s0), Pko = pko;

Encaps(pk1, pko);

Decaps(sk1, sko, c)

m < M
¢ < Enc(pk1, pko, m; G(m))
K = H(pk1, pko,m,c);

sk1 = (ski,s1), sko = (skg, so)
m' = Dec(sk, sk, c)
¢ = Enc(pk1, pko, m"; G(m'))

return (K, c) ifm' =1 orc#c,let m' = s1]|so

return K = H (pki, pko, m’, c)

Fig. 14. The [IND-CCA, IND-CCA] secure 2-key KEM 2KEM by modified FO.

7 Efficient Post-quantum AKE from Module-LWE

With the above analysis and tools, we give a more compact AKE from Module-LWE assumption with
less communications than Kyber [3]. The roadmap is that we first give a [IND-CPA, IND-CPA] secure
2-key PKE from Module-LWE, by applying the modified FO transform in section 6.2.2 and the AKE in
section 4.1 step by step, and we finally obtain a AKE scheme.

Let g be a prime and R, denote the ring Z,[x]/(2™ +1). Define the centered binomial distribution B,
for positive integer n as: sample (a1, ,ay,, b1, -+, by,) uniformly from {0,1}, and output >, (a; — b;).
Denote s < 3, as that each of s’s coeflicient is generated according to B,. Let k,m be a positive
integer parameter. For PPT adversary A, the advantage Advmfg’% (A) of solving Module-LWE problem
is the advantage of distinguishing two distributions {(A « R;"** As + e)|(s,e) + fBF x 8} and
{(A <~ R™* b+ RI")}.

Let dy,, ds,, du, , du,,d, be positive numbers, depending on the special choice of the parameters set-
tings, and n = 256. Every message in M = {0,1}" can be seen as a polynomial in R, with coefficients
in {0,1}. Let A be a random k X k matrix in R,. Let [z] be the rounding of x to the closest integer. For
distribution X, let ~ X = Samp(r) be sample algorithm with randomness r according to distribution X.

For an even (resp. odd) positive integer a, we define ’ = r mod Ta to be the unique element 7/ in
the range —% < 7/ < & (resp. —%5% <1’/ < 271) such that ' =7 mod a. For any positive integer o,
define v’ = r mod T« to be the unique element 7’ in the range 0 < v’ < « such that v’ = r mod a.
When the exact representation is not important, we simplify it as » mod a. For z € Q, d < log,q,
define the compress function as Comp,(z,d) = [(2%)/q - 2] mod *2¢, and the decompress function as
Decomp, (z,d) = [q/(24) - z|. And when applying the Comp and Decomp function to x, the procedure is
applied to coefficient.

Twin-Kyber Our construction, called twin-kyber, is an extension of kyber scheme [3] in the same
conjoined way for our twin-ElGamal scheme. With the parameters above, twin-kyber 2PKEqjwe =
(KeyGenl, KeyGen0, Enc, Dec) is shown in Figure 15.

KeyGenl(\)

01 o1 + {0,1}%°°

02 (s1,e1) ~ B x BF = Sam(o1)

03 t1 = Comp,(As1 +e1,dt, = [logq])
04 (pk’1 = tl, Sk’1 = Sl) 08 (pk() = to,Sko = So)

Enc(pk1 = t1, pko = to,m € M) Dec(sk1 = s1, sko = so,c = (u1, ug,v)
09 ¢ r < {0,1}*° 15 uy = Decomp, (u1,dy,)

10 (r1,ro,es,es,e) ~ (Br)* x By =Sam(r) |16 uo = Decomp, (1o, du,)

11 wm = Compq(ATrl +es,dy,) 17 v = Decomp, (v, d»)

12 ug = Compq(ATro +eq,dy,) 18 m' = Compq(v —s1Tu; —soTuo, 1)
13 v= Compq(tlTrl +tolro+e+ [%Jm, dy)
14 ¢ = (u1,uo,v)

KeyGenO(\)

05 oo < {0,1}%°

06 (so,eo0) ~ BE x BF = Sam(oy)

07 to = Comp,(Aso + eo,dt, = [logq])

Fig. 15. The [IND-CPA, IND-CPA] secure 2PKEmiwe under Module-LWE assumption.
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Theorem 8. If there is a PPT adversary A against [IND-CPA, IND-CPA] security of 2PKE e, there
exists B such that, Advgglféiz’lND_CPA] (A) < 2Advzl+hff}w (B).

Please refer Appendix I for the analysis of decryption failure and formal proof.

By applying the modified FO transformation to 2PKEq e, we obtain a [OW-CCA, OW-CCA] secure
2KEMmiwe- Then by setting cpko = (0)F and esko = (0)¥, and integrating 2KEM e to AKE in section 4,
a novel and efficient post-quantum AKE from Module-LWE assumption is constructed.

The parameter setting and comparison are given in Table 5 and 6. Note that by setting d;, =
dy, = [logq] we actually do not apply compress on public keys. (which fix one bug of the security
proof in [3]). One may doubt that with ¢ = 3329 we can not apply NTT technique to accelerate the
multiplications of two polynomials f(x) x g(z) over Ry, since 512 1 3328. Actually, we can fix this gap.
Separate f(z) = fg(2?) + xfa(z?), g(x) = g2(2?) + zg1(2?) into a series of odd power and a series of
even power, then f(z) x (z) = f5(2%)g2(2) + (£a(22)gs (6) + f5(22)g1 (+2)) + f4(2)g1 (2%)22. Then
we can apply NTT to f;(y)g;(y) over Z,[y]/(y*?® + 1) by setting y = 2% since 256/3328.

Scheme | n k] ¢ [n|(diy,diy, duysdug,dv)] & [Security Level
2KEMmiwe |256]4(3329(1 (12,12,9,9,5) 51723 256
Table 5. The parameters for 2KEMpwe. ¢ is the decryption failure.

AKEs Assumptions|Sec|Ua — Up (Bytes)|Up — Ua (Bytes)
Kyber AKE AdvIlT [256 2012 3008
AKE from 2KEMpwe| AdvE'R% (256 2838 2464

Table 6. The message size for Kyber in frame of FSXY13 and ours in frame of AKE.
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Appendix A: Proof of Lemma 2

In order to bound the probability of AskH, we investigate the events AskH A E; for 1 <4 < 8 listed in
Table 4 one by one.

Event AskH A E4

In the event Fj, the test session sid® has no matching session, and the static secret key of Uy is given to
A. In case AskH A E, the [OW-CCA, -] adversary S with pk§ = cpko performs as follows. It simulates the
CK™ games, and transforms the happening of event AskH performed by A to the advantage of attacking
[OW-CCA, -] security with pk§ = cpko.

In order to simulate the random oracles, S maintains hash list Ly and L, corresponding to the
queries and answers of the H oracle and SessionStateReveal, SessionKeyReveal. Ly and Ly are related.
For example the adversary may ask Ly, without the encapsulated keys firstly, then ask Ly with the
encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to Ly
and L. The decryption oracle of [OW-CCA, -] game could help to maintain the consistency as done in
H-oracle and SessionKeyReveal in the following.

In the [OW-CCA, ] game, on receiving the public key pky, S returns an empty pk§ = cpko to challenger.
Then on receiving the challenge ciphertext C* with public key pk; and pkj for encapsulated key K*, to
simulate the CK* game, S randomly choses two parties Uy, Up and i-th session as a guess of the test
session with success probability 1/N?I. S, picks one preset (cpk, csko) < KeyGen0 as public parameter,
by computing (pki, ski) <+ KeyGenl sets all the static secret and public key pairs (pkp, skp) for all N
users Up except Up. S sets pkp = pky.

Without knowing the secret key of Ug, S choose totally random rp and Rp as part of ephemeral
secret key and randomness for Encaps. Since fp is (£1,22) hl-RF, the difference between simulation with
modification of rp and real game is bounded by 5. When a ephemeral public key pkpy sent out by Up
is needed, S queries (pk{, sk, ) + Oleak, and sets pkpg = pki. When a session state reveal to a session
owned by Ug, is queried, S returns rp and r} as the ephemeral secret key part.

Specially, by computing (pka,ska) < KeyGenl, s4 + {0,1}* and querying (pkao, skao,740) <
Oleak, s S sets the static secret and public key pairs (pka, ska) for Uy, sets the ephemeral secret and
public key pairs (pkao, skao) for the i-th session of Us. S sends C*, pk 40 out as the message sent out by
U4 in i-th session. S also leaks the static secret key ska of Ug to adversary A.

S simulates the oracle queries of A as the following. Specially, when AskH happens, that is A poses
(Ua,Up,pka,pkp,C*,pkao,Ca, Ka, Kp) to H, where C*, pko,C4 is the view of the test session and
K 4 is the key encapsulated in Cy4, return Kp as the guess of K*.

S simulates the oracle queries of A and maintains the hash lists Ly, Ly as follows.

- Querying H-oracle with (Up, UQ,pkp,pk'Q, CQ,ka(h CP,KP, KQ)
1. U P=AQ=B,Cpg=C* and (II,I,Us,Up,pka,pkp,Cpg,pkao,Ca) is the i-th session of Ug,
then S outputs the K5 as the answer of [OW-CCA, -] challenge, that is K*, sets flag = ture.
2: Else if 3 (Up,Uq, pkp,pkq,Cq,pkpo,Cp, Kp,Kq,h) € Ly, returns h,
3: Else if P = B and 3 (Ug, Ug, pki, pkq, Cq,pkpo, Cp, h) € Lg:

1. if (Cq, pkpo) is sent by A: S, with the knowledge of sk, extracts Kég = Decaps(skq, csko, Cq);
As Cp is generated by S itself, S has the knowledge of encapsulated key K} in Cp.

2. if Cp is sent by A: As Cg is generated by S, it has the knowledge of encapsulated key Ké?
in Cq. S queries [OW-CCA, -] decryption oracle with pkpo (that is the output of Ojea, ) and
Cp to extract Kj.
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3. if both (Cq, pkpo) and Cp is sent out by S: S has the knowledge of K, K(l,g ecapsulated in
CB and CQ.

If (Kp, Kq) = (K7, K(), then returns h and records (Ug, Ug, pkg, pkq, Cq, pkpo, Cs, K5, Kq, h)
in the list Ly;
4: Else if @ = B and 3 (Up,Up, pkp,pkp,Cp, pkpo,Cp,h) € Lg:

1. if Cp £ C*

(a) if (Cp,pkpo) is sent by A: S queries the [OW-CCA, -] decryption oracle with pk’ = cpkq
and Cp to extract encapsulated key K; As Cp is generated by S, it has the knowledge
of K ecapsulated in C.
(b) if C'p is sent by A: S, with the knowledge of skp and skpg, extracts K» = Decaps(skp, skpo, Cp);
As Cp is generated by S itself, S has the knowledge of encapsulated key K% in Cp.
(¢) if both (Cp, pkpo) and Cp is sent out by S: S has the knowledge of K%, K; ecapsulated
in Cp and Cp.

If(Kp,Kg) = (K;;, K/B)’ then returns h and records (Up, Up, pkp, pkg, Cp,pkpo,Cp, Kp, Kg, h)
in the list Ly;
2. ifCp=0C~

(a) if (Cp,pkpo) is sent by S: As Cp = C* is generated by S, it just output the corresponding
encapsulated key K5 as the answer of [OW-CCA, ] game, that is K*.

(b) if (Cp,pkpo) is sent by A: if Kp = K (Cp and ecapsulated key K} is generated by S),
output h and record (Up,Ug, pkp, pkp,Cp, pkpo,Cp, Kp, Kg,h) in Ly, else S returns a
random value h and records (Up,Ugq, pkp,pkqg, Cp,pkpo, Cp, Kp, Kp,h) in the list Ly.

If (Kp,Kg) = (Kp, K}), then returns h and records (Up, Ug, pkp, pkg, Cg, pkpo, Cp, Kp, Kg, h)
in the list Ly;

5: Else if B # P,Q and 3 (UP,UQ7pk‘P,ka,CQ,pk‘po,CpJI) € Lg:

1. if (Cq, pkpo) is sent by A: S, with the knowledge of sk, extracts Ké = Decaps(skq, csko, Co);
As Cp is generated by S itself, S has the knowledge of encapsulated key K% in Cp

2. if Cp is sent by A: As Cg and pkpg is generated by S, it has the knowledge of encapsulated
key K’Q in Cg and ephemeral secret key skpg; With the knowledge of skp and skpg, S
extracts Kp from Cp.

3. if both (Cq,pko) and Cp is sent by S: S has the knowledge of K}, K’Q ecapsulated in Cp
and Cg.

If (Kp, Kq) = (Kp, Kg), then returns h and records (Up, Ug, pkp, pkq, C2, pkro, C, Kp, Kg, h)
in the list Ly;

6: otherwise, S returns a random value h and records (Up, Ug, pkp, pkq, Cq, pkpo, Cr, Kp, Kg, h)
in the list Lg.

— Send(I1,1,Up,Ug) :

1. If P = A and this session is the i-th session of U, S queries Ojeak, to get a pubic and secret
key pair, as in the setup, sets them as ephemeral public and secret key pair (pkag, skao) of Ua
in i-th session. Then § returns Cf), pk ao-

2. If P = B, S queries Ojeak, to get (pkpo, skpo, ), generates two independent randomness (rg, Rp)
(to pretend that Rp = fg(skp,rs). This will not detected by A as A since fp is a (€1, €2) hl-RF).
S generates (Cg, Kq) < Encaps(pkq, cpko, hp) and sends (Cq, pkpo) out.

3. otherwise, S generates randomness 7p and computes Rp honestly, generates (Cg, K¢q) < Encaps
(pkq, cpko, hp). S queries Oleak, to get (pkpo, skpo, ), returns (Co, pkpo).

— Send(II,R,Uq,Up, Cq, pkpo): S computes the message, session key and maitains the session key list
L. as follows

26



1. If @ = B: S generates two independent randomness (rg, hg) (to pretend that hg = fp(skp,rB).
This will not detected by A. S computes (Cp, Kp) < Encpas(pkp,pkpo, hg), and returns Cp.
If H(UP,UB,pkp,pkB, CB,pk‘po,Cp,Kp,KB,h) S LH and KID = Kp, S do the fOHOWing: if
Cp = C* then sets SK = h, else (as Cp # C*) queries (cpko, Cp) to the decryption oracle to
get K, if Ky = Kp, sets SK = h.

2. If @ # B: S generates randomness rge and queries h-oracle to get hg, generates (Cp, K}p)
Encaps(pkp, pkpo, hg). With knowledge of sk, extracts K’Q = Decaps(skq, csko, Cq). If there
exists (Up, Uqg, pkp,pkq, Cq,pkpo, Cp, Kp,Kg,h) € Ly and Kp = Kp, Kg = Ké;,, sets SK =
h.

3. otherwise, S chooses SK randomly.

S records this as the completed session and adds (Up, Ug, pkp, pkg, Cq, pkpo, Cp, SK) in the session
key list L.

— Send(I1,1,Up,Uq, Cq,pkpo, Cp): S has the knowledge of K, encapsulated in Cq. (pkpo, skpo,T) is
received from Ojea, -

1. If P = B, S queries the decryption oracle of [OW-CCA, -] with (pko, Cg) to get K. If there exists
(Ug, Uqg,pkB,pkg,Cq,pkpo,CB, KB, KQ, h) € Ly and K/B = Kp, K&? = Kg, sets SK = h.

2. If Q@ = B, with the knowledge of skp and skpg, S computes K = Decaps(skp, skpo,C). If
A(Up,Up, pkp,pkp,Cp, pkpo,Cp, Kp, Kp,h) € Ly and K}) = KP,K/Q = Kp, sets SK = h.

3. If P # B and Q # B, with the knowledge of skp and skpg, S computes K}, = Decaps(skp, skpg, C).
If there exists (UP, UQ,ka,ka, CQ,pk'po, Cp, Kp, Ko, h) € Ly and K;;, = Kp, Kb = Kq, sets
SK = h.

4. otherwise, S chooses SK randomly.

S records this as the completed session and adds (Up, Ug, pkp, pkq, Cq, pkpo, Cp, SK) in the session
key list Lgy.
— Querying SessionKeyReveal(sid): The session key list Ly is maintained as in the Send queries.

1. If the session sid is not completed, S aborts.

2. Else if sid is recorded in the list Lsx, (Up, Ug, pkp,pkg, Cq,pkpo, Cp, SK) € Ly, then returns
SK.

3. otherwise, S returns a random value SK and records it in L.

— Querying SessionStateReveal(sid): As the definition of freshness, sid is not the test session.

1. If the owner of sid is B, and B is a responder. The session state is generated by himself, or
received from Ojeak,. S just returns them.

2. If the owner of sid is B, and B is a initiator. The session state is generated by himself, or received
from Ojeak,, Or extractable from the decryption oracle. § just returns them.

3. otherwise, S holds the secret key of other users and could return the session state as the definition.

— Querying Corrupt(Up)
S returns the static secret key of Up.

— Test(sid)
If sid is not the i-th session of Uy, S aborts with failure, otherwise, S responds to the query as the
definition above.

— If A outputs a guess b/, S aborts with failure.

The simulator S maintains the consistency of H-oracle, h-oracle, SessionStateReveal, and SessionKeyReveal,
with the decryption oracle of 2KEM. Note that in the first case in the H-oracle, if flag = ture, then the
S would succeed in the [OW-CCA, -] game. Thus Pr[AskH A E;] < N?[ - Advg?(va,:,lCCA"] (S) + N2lq - es.
Event AskH A Eo
In the event Fs, the test session sid* (with owner as initiator) has no matching session, and the ephemeral
secret key of Uy is given to A. In case AskH A Eo, the [OW-CCA, -] adversary S performs as follows. It
simulates the CK* games, and transforms the happening of event AskH performed by A to the advantage
of attacking [OW-CCA, -] security with pk = cpko.

In order to simulate the random oracles, S maintains hash list Ly, and Lgj, corresponding to the
queries and answers of the H oracle and SessionStateReveal, SessionKeyReveal. Ly and Ly are related.
For example the adversary may ask Lg; without the encapsulated keys firstly, then ask Ly with the
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encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to Ly
and L. The decryption oracle of [OW-CCA, -] game could help to maintain the consistency as done in
H-oracle and SessionKeyReveal in the following.

In the [OW-CCA, -] game, on receiving the public key pk1, S returns an empty pk$ = cpkg to challenger.
Then on receiving the challenge ciphertext C* with public key pk; and pk§ for encapsulated key K*, to
simulate the CK™ game, S randomly choses two parties U, Up and i-th session as a guess of the test
session with success probability 1/N?2I. S, picks one preset (cpko, cskq) + KeyGen0 as public parameters,
by computing (pki, sk1) < KeyGenl sets all the static secret and public key pairs (pkp, skp) for all N
users Up except Ug. S sets pkp = pky.

Without knowing the secret key of Ug, S choose totally random rp and Rp as part of ephemeral
secret key and randomness for Encaps. Since fp is (£1,£2) hl-RF, the difference between simulation with
modification of rp and real game is bounded by ;. When a ephemeral public key pkpg sent out by U,
is needed, S queries (pk{, sk, ) + Oleak, and sets pkpo = pki. When a session state reveal to a session
owned by Ug, is queried, S returns 75 and 7 of this session.

Specially, by computing (pka, ska) <+ KeyGenl and querying (pkao, skao,740) ¢ Oleak,, S sets the
static secret and public key pairs (pka, ska) for Ua, sets the ephemeral secret and public key pairs
(pkao, skao) for the i-th session of Uas. S sends C*,pkao out as the message sent out bu U, in i-th
session. & chooses an independent randomness r 45 and leaks the ephemeral secret keys 49, 742 in the
i-th session of Uy to adversary A.

S simulates the oracle queries of A as what it dose in above case and maintains the hash lists as in
event AskHAE; . Specially, when AskH happens, that is A poses (Ua, Up, pka, pkp, C*,pkao, Ca, Ka, Kg)
to H, where C*, pkag,C4 is the view of the test session and K4 is the key encapsulated in C4, return
Kp as the guess of K*.

As in event AskH A By, Pr[AskH A Ey] < N21- AdviONCA(8) 4+ N2ig - e,

Event AskH A E3

In the event FEj, the test session sid® (with owner as responder) has no matching session, and the
ephemeral secret keys of Up is given to A. In case AskH A E3, the [OW-CCA, -] adversary with pkg + A,
S performs as follows. It simulate the CKT games, and transform the happening of event AskH performed
by A to the advantage of attacking [OW-CCA, -] security.

In order to simulate the random oracles, S maintains hash list Ly, Lg, corresponding to the queries
and answers of the H oracle and SessionStateReveal, SessionKeyReveal. Ly and Ly are related. For exam-
ple the adversary may ask Ly, without the encapsulated keys firstly, then ask Ly with the encapsulated
keys. Thus, the reduction must ensure consistency with the random oracle queries to Ly and L. The
decryption oracle of [OW-CCA, -] game could help to maintain the consistency as done in H-oracle and
SessionKeyReveal in the following.

On receiving the public key pk; from the [OW-CCA, -] challenger, to simulate the CK™ game, S
randomly choses two parties U4, Up and i-th session as a guess of the test session with success probability
1/N?21. S, picks one preset (cpko, cskg) < KeyGen0 as public parameters, generates (pky, ski) < KeyGen1,
and sets all the static secret and public key pairs (pkp, skp) for all N users Up except Uy. Specially, S
sets the static secret and public key pairs (pkp, skg) for Ug. S sets pka = pk;.

Without knowing the secret key of Uya, S choose totally random r4 and R4 as part of ephemeral
secret key and randomness for Encaps. Since f4 is (¢1,£2) hl-RF, the difference between simulation with
modification of 4 and real game is bounded by ;. When a ephemeral public key pkpg sent out by Up
is needed, S queries (pk{, sk, r8) + Oleak, and sets pkpo = pki. When a session state reveal to a session
owned by Uy, is queried, S returns r4 and rj of this session.

On receiving the i-th session (C;, pkg) from U, (that is sent by A in the CKT games), S returns
pk§ to the [OW-CCA, -] challenger and receives the challenge ciphertext C* under public key pk; and pk§
with encapsulated key K*. Then S returns C* to U4 as the responds of i-th session from Ug. S choose
a totally independent randomness rp as the ephemeral secret key of Ug and leaks it to adversary A.

S simulates the oracle queries of A as what it dose in above case and maintains the hash lists as in event
AskH A E5. Specially, when AskH happens, that means A poses (Ua, Up, pka,pkp, Cg,pki, C*, Ka, Kp)
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to H, where Cz,pk{, C* is the view of the test session and Kp is the key encapsulated in C, return
K 4 as the guess of K*.

As in event AskH A Ey, Pr[AskH A Es] < N21- Adviom CA(8) 4+ N21g - &5,
Event AskH A Ey
In the event Ey, the test session sid* (with owner as responder) has no matching session, and the static
secret keys of Ug is given to A. In case AskH A Ey, the [OW-CCA, -] adversary with pk} < A7, S performs
as follows. It simulate the CKT games, and transform the happening of event AskH performed by A to
the advantage of attacking [OW-CCA, -] security.

In order to simulate the random oracles, S maintains hash list Ly and L, corresponding to the
queries and answers of the H oracle and SessionStateReveal, SessionKeyReveal. Ly and L, are related.
For example the adversary may ask Ly, without the encapsulated keys firstly, then ask Ly with the
encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to Ly
and Lgy. The decryption oracle of [OW-CCA, -] game could help to maintain the consistency as done in
H-oracle and SessionKeyReveal in the following.

On receiving the public key pk; from the [OW-CCA, -] challenger, to simulate the CK' game, S
randomly choses two parties Uy, Up and i-th session as a guess of the test session with success probability
1/N?21. S, picks one preset (cpko, csko) <+ KeyGen0 as public parameters, generates (pky, sk1) < KeyGenl
and sets all the static secret and public key pairs (pkp, skp) for all N users Up except Uj,. Specially,
S sets the static secret and public key pairs (pkg, skp) for Ug. S sets pka = pki;. When a ephemeral
public key pkpq sent out by Up is needed, S queries (pk{, sk, ) < Oleak, to sets pkpo = pk.

On receiving the i-th session (C;, pkg) from U, (that is sent by A in the CKT games), S returns
pk{ to the [OW-CCA, -] challenger and receives the challenge ciphertext C* under public key pk; and pkg
with encapsulated key K*. Then S returns C* to U4 as the responds of i-th session from Ug. S leaks
the static secret key skg of Up to adversary A.

S simulates the oracle queries of A as what it dose in above case and maintains the hash lists as in
event AskH A E3. Specially, when AskH happens, that is A poses (Ua, Ug, pka,pkp, C, vk, C*, K4, Kp)
to H, where Cz,pk{, C* is the view of the test session and Kp is the key encapsulated in C’, return
K 4 as the guess of K*.

As in event AskH A Es, Pr[AskH A Ey] < N21- Adviom CA(8) 4+ N21g - ;.

Event AskH A Ej5 L

In event Es, the test session sid* (with owner as responder or initiator) has matching session sid*. Both
static secret keys of initiator and responder are leaked to A. In this case, the [-, OW-CPA] adversary S
performs as follows. It simulate the CK™ games, and transform the happening of event AskH performed
by A to the advantage of attacking [-, OW-CPA] security.

To simulate the CK™ game, S randomly choses two parties Us,Up and i-th session as a guess
of the test session with success probability 1/N?I. 8 queries some (pki, ski, i) < Ojeak,, sets all the
static secret and public key pairs (pkp,skp) = (pki,ski) for all N users Up, and picks one preset
(cpko, csko) < KeyGen0 as public parameters. When a ephemeral public key is needed, S generates
(pkpo, skpg) < KeyGen0(rg) by himself. In the [-, OW-CPA] game, S sends pka to the challenger and
receives challenge ciphertext C*. In the i-th session of Ua, S sends C*, pky to Ug. S also leaks sk and
skp to adversary A.

With all the static secret keys, S could perfectly simulate the CK™ games. When AskH happens,
that is A poses (Ua,Up, pka, pkp, Cp, pk§,C*, Ka, Kp) to H, where C;, pk$, C* is the view of the test
session and Kpg is the key encapsulated in Cp, return K 4 as the guess of K*.

Thus, Pr[AskH A E5] < N21- AdvE, QWP (S) 4+ N2ig - e,

Event AskH A Ejg -

In event Eg, the test session sid* has matching session sid*. Both ephemeral secret keys of initiator and
responder are leaked to A. This is almost the same with Event AskH A E3, in which the ephemeral public
key is generated by A. In this case, the only difference is that the ephemeral secret key of test session
(or the matching session) is leaked to A, not generated by A, which means pk§ € L.

Event AskH A E7_ L

In event E;_1, the test session sid® has matching session sid*. Both ephemeral secret keys of responder
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and static secret key of initiator are leaked to .A. This is almost the same with Event AskH A E;. In this
case, the only difference is that the ephemeral secret key of Upg is leaked to A, which does not affect the
proof.

Event AskH A E7_5 L

In event E7.5, the test session sid® has matching session sid*. Both ephemeral secret keys of initiator and
static secret key of responder are leaked to .A. This is almost the same with Event AskH A Eg. In this
case, the only difference is that the ephemeral secret key of Uy is leaked to A, which does not affect the
proof.

Event AskH A Eg_ L

In event Eg 1, the test session sid™ has matching session sid*. Both ephemeral secret keys of initiator and
the static secret key of responder are leaked to A. This is almost the same with Event AskH A E75. In
this case, the only difference is that the position of initiator and responder, which does not affect the
proof.

Event AskH A Eg_o L

In event Ejg o, the test session sid* has matching session sid*. Both static secret keys of initiator and and
the ephemeral secret key of responder are leaked to .A. This is almost the same with Event AskH A Fg_o.
In this case, the only difference is position of initiator and responder, which does not affect the proof.

Appendix B: Proofs of Theorem 2 related to HMQV

We first show the [OW-CCA, OW-CCA] security of 2KEMpmqv against the resistance to the leakage of b
by proving the security of 2KEMymqve in Figure 16 (in Lemma 4), then show it resists the leakage of
randomness y by reducing to the security of Dual HCR signature (in Lemma 5).

Since after replacing Y in 2KEMymqve by Y B¢ and y in 2KEMymqve by y+eb, we will get 2KEMpmqv,
and B is auxiliary input, the security of 2KEMypyqvo is preserved in 2KEMuymqy. Thus, if 2KEMypmqyve is
[OW-CCA, OW-CCA] secure then 2KEMumqy also is [OW-CCA, OW-CCA] secure even b is leaked.

KeyGenl()\)‘ KeyGenO()\)‘ Encaps(pkl,pko;auxe(B))‘ Decaps(ski, sko, ¢; aux.(B))

a < Zyp; x4 ZLp Y4 Zp, Y =g Y« ¢

A =g X =g d=h(X,B) d=h(X,B)
pki=A | pko=X; |k =H(XAYY) k= H(y=+da)
sk1 =a sko = x. Return k,c =Y Return &’

Fig.16. The [OW-CCA, OW-CCA] secure 2KEMyqve-

Therefore, in the following, we focus on the security of 2KEMypqye, and furthermore we reduce its
security to the unforgeability of HCR signature. Before going to the lemmas, we depict the HCR signature
scheme provided in [24] and its unforgeability game.

Definition 4 (The (Dual) HCR signature, [24]). Let U be a signer with public key A = g%, Ug be a
verifier with public key B. The HCR signature of U 4 is defined as: Y = g¥, X = ¢® and HSIG(m,Y, X) =
fI(Y’”"’d“); The Dual HCR signature of Ua is defined as: Y = ¢g¥, X = ¢° and HSIG(m,Y,X) =
H((YB®)™t9%): where Y is a challenge computed by Ug, X is a respond generated by U (x is chosen
byUa), and e = h(Y,A),d = h(X, B).

The forgery game for HCR signature is described as follows. Any PPT forger F with the challenged
public key A and X of his choice, interactively queries a sign oracle SignO. Finally F holds and outputs
“fail” or a forgery (Xo, mo, o). The sign oracle SignO works as following: build a list L = {—,—, —, —, —}.
On receiving a message m from F it returns X = ¢” for x < Z,, and sets L = LU (z, X, m, -, -) where the
last two elements are empty. On receiving (X’,m’) and challenge Y’, if (-, X’,m/,-,-) € L and Y’ #£ 0,
it returns o’ = H(Y‘”*h(xl’m/)“), then makes up the tuple (-, X', m/,-,-)) as (-, X/, m/, Y’ o’), else it
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returns L. We say that F wins the game successfully if both of the following two conditions are hold:
i) (-, Xo,mo,~,") & L, or (-, Xo,mg,,+) € LA (-, X0, m0,Y0,0) & L; ii) 0 = fI(Y‘”°+h(X°”'L°)a), where
rg = log, Xo. Note that in HMQV [24], the case of (-, Xo,mo,-,+) € L A (-, Xo,mo,Yp,0) ¢ L is not
considered as a successful forgery when they define the forgery game. But their proof still works when
this type of forgery is also included in the forgery game.

The advantage of F is defined as AdvY = Pr[F wins]. HCR is said to be unforgeable if Adv}{cg(F) is
negligible for any PPT forger F. The unforgeability of Dual HCR can be defined similarly.

Lemma 3 ([24], Lemma 27 & Remark 7.1). Under the Gap-DH, KEA1 assumptions, HCR ‘is un-
forgeable in the random oracle model; and Dual HCR is unforgeable with the leakage of randomness y.

Lemma 4. If HCR is unforgeable in the random oracle model, 2KEMymqyo is [OW-CCA, OW-CCAJ]
secure in the random oracle model.

Proof. We reduce the [OW-CCA, -] security to the unforgeability of HCR. The [, OW-CCA] security is
similar.

We construct a forger F that performs as follows. F simulates the [OW-CCA, -] game for KEMpymqyo,
and transfers the advantage of adversary A attacking 2KEMymqve to that of forging HCR. As shown in
Figure 17, F perfectly simulates Ojeako and Oow.cca using SignO. If A succeeds in [OW-CCA, -] game,

it holds K = H(Y=0+h(X0.3)a) Thus, we have AdVQEEMCHfA’:VQ (A) < Advifr (7).

Forger FA(A,Yo):

01 send pk1 = A to A, build Lo = {—,—, -}

02 on the i-th query of Oeako F performs as following:

03 query SignO with m = B and get (z;, X;)

04 set Lo = Lo U (pkly = Xi, sk = xi, 78 = x)

05 return (sk =z, pki = Xi, 16 = 1)

06 on receiving pky = Xo, return C* = Yy = g¥° as challenge ciphertext
07 on receiving Oow-cca(pko = X', C' =Y');

08 ifXIG[Loh/\X/;éXO OI'XIE[L()]l/\X/:Xo/\YI#Yo
09 query SignO with (X', B) and challenge Y’

10 send what SignO returns to A

11  otherwise send L to A

12 on receiving k' from A as the guess of k*

13 return (Xo, A, k') as signature on challenge Y;.

Fig. 17. Forger of HCR using [OW-CCA, -] adversary A

Lemma 5. If Dual HCR is unforgeable with the leakage of randomness y, 2KEMpymqv is [OW-CCA,
OW-CCA] secure with the leakage of randomness y in the random oracle model.

Appendix C: Proofs of Theorem 3 related to NAXOS

Proof. We reduce the [OW-CCA, -] security to the underlying Gap-DH assumption. The [, OW-CCA]
security is similar. For convenience, we define a twisted 2KEMyaxos, i which, the encapsulation algorithm
Encaps choses y < Z,, directly, rather than yo < Z, and y = h(yo,b). Obviously, in the random oracle
model, to prove the [OW-CCA, -] security of 2KEMyaxos with the leakage of 2y or b, we need only prove
the [OW-CCA, -] security of 2KEMyaxos-

We construct an algorithm B which utilizes the [OW-CCA, -] adversary A as a sub-routine to solve the
Gap-DH problem. Given Gap-DH instance, B simulates the [OW-CCA, ] games for A, and transforms
the advantage of A attacking [OW-CCA, -] security to that of solving Gap-DH instance. To perfectly
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simulate the [OW-CCA, -] game for A, B maintains one decapsulation list Lgec and one hash list Ly, and
guarantees the consistency of two lists by utilizing the DDH oracle.

B is given as input (Xo,Y)), where X = g% and Yy = g% for random zg, yo, and outputs a value
guess. B is also given a DDH oracle Oppy. At first B sets pk; = A = X and sends A to A. On receiving
pki = X from A, B sets ¢* = Yp, and choses a random k* < {0,1}*. Then B fixes a default value g for
guess. Our hope is that A at some point makes a queries of the form (Z = Y, D’) to H-oracle such
that Oppn (A4, Yo, Z) = 1, since otherwise A would have no advantage to output challenge session key.
To find out when A queries its H-oracle with Yy, we query Oppr(A, Yy, Z) whenever A makes a query
(Z,D’) to H-oracle. If Obph (A, Yy, Z) =1, then Z =Y and we update the value of guess to Z.

— The decapsulation DECAPS(X',Y”) (where pk{, = X’ and ¢ = Y’) is to be simulated as fol-
lows: If (X',Y") = (X,Yp), it just abort. If (X', Y’) has been asked of DECAPS (which means
X', Y, k') € Lgec) just return £’. If (X', Y”) has not been asked of DECAPS, then first check whether
3(Z',D',1') € Ly (which means (Z’,D’) has been asked of H-oracle) where Oppn(A,Y’,2") =
1A Oppu(X',Y', D) =1. If so, set k' = h/ else set k' as a random value. At last add (X', Y’, k') to
list Ldec~

— The H-oracle is to be simulated as follows: If (Z',D') has been asked of H-oracle (which means
3(Z',D',h') € Lg) just return h'. If (Z',D’) has not been asked of DECAPS, then first check
whether Oppn(A, Yo, Z') = 1. If so, update the value of guess to Z. If not, then check whether
X", Y', k') € Lgec (which means (X’,Y”) has been asked of DECAPS) where Oppn(4,Y’,Z') =
1A Oppu(X',Y', D) = 1. If so, set h' = k' else set b’ as a random value. At last add (Z’, D', h’) to
the hash list L.

Note that no matter A asks H with (Z’,D’) first or asks DECAPS with (X’,Y”’) first, two lists are
consistent.

Consider the game [OW-CCA, ] and let AskA and AskA denote the event in which H-oracle query
(Y™, D’) for some D’ is made by A and its complement. When (Y°, D’) for some D’ is not made by
Ato H -oracle, there is no-way to output the challenge key k* rather than guess with probability 1/2*.
Thus we have that

AQVRRe AL (A) = Pr[OW-CCA* = 1 A AskA] + PrOW-CCA* = 1 A AskA|
< Pr[OW-CCA™ = 1 A AskA] + 1/2*
< Prl A AskA] +1/2*
< AdvSePPH(BYy 4122

O
Put it all together, we have that 2KEMpyaxos is [OW-CCA, OW-CCA] secure even with the leakage of
one of zg and b

Appendix D: Proofs of Theorem 4 and optimized AKE related to Okamoto

The proof of Theorem 4. The proof of [, IND-CPA] security proceeds by a series of games. Let A be
the adversary that is involved in the [-,IND-CPA] game. We set it as game G, then Advgklg,a;f;A] (A) =
|Pr[t) = b in Go] — 1/2|. In game G1, when computing challenge encapsulated key kf corresponding
to ¢ = (Y1,Y2,Y3), ng used in challenge encapsulated key are substituted with uniform random
values in G. There exists an algorithm B such that Pr[t/ = b in Go] — Pr[t/ = b in G1] < Advig".
B works as following: on receiving DDH challenge (g1, X3,Y3,T), it computes and returns pko = Xs.
After receiving pki = (A1, As) from A, B computes challenge ciphertext as ¢* = (Y1 = ¢7,Y2 = g5, Y3)

and o* =T - (A1 A5)Y, then kf = E,. (pko, ¢*). Finally, on receiving b’ and the guess of b, B returns b’ Zb.
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If (g1, X1,Y1,T) is a DDH tuple, this is exactly the game Go; If (g1, X1,Y1,T) is a non-DDH tuple, this
is exactly the game G7. Note that in Gy, k; is independent of b, therefore Pr[b =b" in G1] = 1/2.

To prove the [IND-CCA, ] security, we face the problem that the adversary may query the strong
decapsulation oracle with ciphertext under other public keys, thus the input of PRF should include
public key as input and the PRF is lifted to pairwise-independent random source PRF, which is still
PRF even the random key is only pairwise-independent. The proof of [IND-CCA, -] security proceeds by
a series of games. Let A be the adversary that is involved in the [IND-CCA, ] game. We set it as game
Go, then Advhegn"(A) = [ Pr[t) = b in Go] — 1/2|.

In game G1, the decryption oracle will reject queries with (Y7,Y5,Y3) # (Y1, Ys,Y3), and hier (41, As,
Y], Y], YY) = hier (A1, A2, Y1,Y3,Y3). Note that this will happen with negligible probability if A, is
target collision resistant hash function.

In game G, when generate challenge encapsulated key, o* corresponding to ¢* = (Y1,Ys,Ys), is
computed using XJ* - Y1 ey 2% ingtead of X3* - (A1 A5)Y" which is the exact value computed in
game G.

In game G35, Y1,Y5 used in ¢* are substituted with non-DDH tuple. There exists an algorithm B such
that Pr[b’ = b in Gy] — Pr[t/ = b in G3] < Advi™.

In game G4, with the trapdoor s = log,, g1, on receiving the decryption queries with (X5 =
gfé;Yl’,YQ',Yg’), sets o’ as a totally random element, if (Y7,Ys) # (Y{,Yy) A Y] # Y,*. G4 is identi-
cal with G, except that when bad happens, namely, (Y1,Y2) # (Y{,Y4) AYJ # Y|* but (A AS)Y =
yrteasyeteas By [g] |y teasy 12 §g the universal 2 function and bad happens with probability
less than 1/p.

In game G5, the encapsulated key kj is substituted with random string. Note that in case (Y{,Yy) =
(Y1,Y2), we have (pk{, ') # (pkg, ¢*) (otherwise the decryption oracle aborts); in case (Y{,Yy) # (Y1, Y2),
o* is pairwise independent with o® (where o' as the internal values computed by the i-th decryption
oracle). By the definition of pairwise independent random source PRF, the difference between G4 and
G5 are bounded by the advantage against pairwise independent random source PRF. Note that in G5,
kf is independent of b, therefore Pr[b =" in G5] = 1/2.

Optimized Okamoto AKE.

One more thing. Let Hy : {0,1}* — {0,1} be a 4-wise independent hash function [21]. We employ
the technique of optimizing classical KEM [21] to 2KEMoy, and get optimized 2KEMoka-opt scheme shown
in Figure 18. Applying 2KEMoys-opt t0 AKEsq, we will get an optimized AKE of Okamoto-AKE.

2KEMOka,opt.KeyGen1()\) 2KEMOka,opt.KeyGen0()\)

a1, a2 <+ Zy, A= g7 g57; x3  Lp, X3 = g7°

pkl = A, Sk‘l = (al,ag) pk}() = Xg,sko =3
2KEMoka-opt-Encaps(pko, pk1); 2KEMOoka-opt-Decaps(sko, sk1, C)
y,y3(—Zp7 Y1:g%,Y2:gg,Y:5:g¥3 C€G3, (Yl,YQ,Yg)(—C

o= H4(X§!3 . Ay) O‘l — H4(Y3IS . Y'1a1 Y2a2)
C=(,Ys,Ys), K = F,(pko,C) K' = Fyi(pko, C)

Fig. 18. The [IND-CCA, IND-CPA] secure optimized 2KEMoka-opt-

Theorem 9. If Hy is a 4-wise independent hash function, then 2KEMoka.opt is [IND-CCA, IND-CPA]
secure under DDH assumption.

Lemma 6 ([21],Theorem 4.3, Lemma 5.1). Let G be a group with prime order p, and generators
g1,92. Let A = gi*gs?. If both (g1,92,Y1,Y2) and (g1,92,Y7,Ys) are non-DDH tuples and (Y1,Y2) #
(Y{,Y3), then {A, Hy, Hy (Y Y5?), Hy (Y, Y,“?)} is statistically indistinguishable with {A, Hy, U }.

The proof of |-, IND-CPA] security proceeds by a series of games. Let A be the adversary that is involved
in the [-,IND-CPA] game. We set it as game Gy, then Adv[z'l’(lg,\[,)l;)ifﬁl (A) = |Pr[t/ =bin Go] — 1/2|. In
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game G, when computing challenge encapsulated key kf corresponding to ¢* = (Y1, Y, Ys), X é’ 5 used in
challenge encapsulated key are substituted with uniform random values in GG. There exists an algorithm
B such that Pr[t/ = b in Go] — Pr[t/ = b in G1] < Advy". B works as following: on receiving DDH
challenge (g1, X3,Y3,T), it compute and returns pko = X3. After receiving pky = A from A, B computes
challenge ciphertext as ¢* = (Y7 = g¥,Ys = ¢5,Y3) and ki = FH4(T, Avy(pko, c*). Finally, on receiving b’

and the guess of b, B returns o/ Zb It (g1,X1,Y1,T) is a DDH tuple, this is exactly the game Gp; If
(91,X1,Y1,T) is a non-DDH tuple, this is exactly the game G;. Note that in G, k; is independent of b,
therefore Pr[b =¥’ in Go] = 1/2.

The proof of [IND-CCA, ] security proceeds by a series of games. Let A be the adversary that is
involved in the [IND-CCA, -] game. We set it as game Go, then Adviggn- " (A) = | Pr[b’ = bin Go]—1/2|,

In game G1, when generating challenge encapsulated key, ¢* corresponding to ¢* = (Y1,Ys,Ys), is
computed using X$* - V"' Y5 instead of X¥* - A¥" which is the exact value computed in game Gy.

In game G4, Y1,Y5 used in ¢* are substituted with non-DDH tuple. There exists an algorithm B such
that Pr[b’ = b in G1] — Pr[t/ = b in Gy] < Adviy™.

In game G35, with the trapdoor s = log,, g1, on receiving the decryption queries with (X5 =
gfé;Yl/,}/é7Y3/), sets o’ as a totally random key, if (V3,Ys) # (Y{,Y4) AY] # Y|*. Gy is identical with
Gs, except that when bad happens, namely, (Y1,Ys) # (Y{,YJ) AY] £ Y,* but o/ = H4(Y3xi°’ -Y1'“1Y2'“2).
From Lemma 6, bad happens with probability less than 1/2!.

In game G4, the encapsulated key k¢ is substituted with a random string. Note that in case (Y{,Y5) =
(Y1,Y3), we have (pkj, ¢') # (pk§, ¢*) (otherwise the decryption oracle aborts); in case (Y{,Y5) # (Y1, Y3),
o* is pairwise independent with o® (where 0! as the internal values computed by the i-th decryption
oracle). By the definition of pairwise independent random source PRF, the difference between G4 and
(3 are bounded by the advantage against pairwise independent random source PRF. Note that in Gy,
k; is independent of b, therefore Pr[b =¥’ in G4] = 1/2.

Appendix E: Proof of Theorem 5 related to improved KEM combiner

Proof of Theorem 5 in the random oracle model, f(pko, ki ||ko,c) = H(pko,k:1||ko,c). Then [-,
OW-CPA| security is straight forward, we only prove the [OW-CCA, -] security. The proof proceeds with
a sequence of games. Let S; denote the advantage of [OW-CCA, -] adversary in Game i.

In Game 0, it is the original [OW-CCA, ‘] game, precisely, on receiving (pky, ¢} ||cf) the decapsula-
tion oracle works as follows: if (pk{), ci||ch) = (pkg, cillch), abort; else if pk{ & [Lolo, abort; else k] =
Decapscea (sk1,c}), kly = Decapsepa(sko, ) and return k' = H(pkp, k;||k5, ¢’). The challenger also main-
tains a hash list L, which works as follows: on receiving (pky, k1 ||k, ¢i||cp), if I(pkq, k1|ko, ¢illch, k') €
Ly, return k'; else k < IC, Ly = Ly U {pky, k1||ko, ¢}]]cp, k}, and return k.

In Game 1, we modify decapsulation oracle and hash list. decapsulation oracle works as follows: on re-
ceiving (pky, ¢} ||cp), if (pky, cillcy) = (pkS, cillcs), abort; else if pk{) & [Lo]o, abort; else if 3(pky, ¢} ||ch, k') €
Lp, return k'; else k < K, Lp = Lp U {pk{, ¢}||ch, k}, and return k.

The challenger also maintains a hash list L, which works as follows: on receiving (pkq, k1||kq, ¢} ||cp),
if 3(pko, k1||ko, cil|co, k') € Ly, return k'; else k « K; if pky € [Lo)i, return k; if pky & [Loli, if
k| = Decapscca(sk1,c;) and k{, = Decapscpa(sko, ¢), if Ik s.t. (pk(, ci||ch, k') € Lp return k' else Lp =
Lp U{(pky,c||c, k)}. At last Ly = Ly U {pkg, k1||kG, ¢1||cp, k'}. Then if not abort, return &’

To show the identical of Game 1 and Game 0 from the point view of A, consider the following cases

— Case 1: pk{, & [Lo]1. The decapsulation oracle aborts in both Game 0 and Game 1.

— Case 2: pk( € [Loly. if k] = Decapscca(ski,c}) and k{, = Decapscpa(sko, ¢()), the decapsulation oracle
returns H (pky, k) ||k}, ¢;||c) in both Game 1 and Game 0. And if A queries decapsulation oracle
first, it adds (pk{, k1 ||k(, cillch, k < K) to Lp. When A queries H on (pky, k1 ||k, ¢i1|cp) later if the
judgment k] = Decapscca(ski,c)) and k{, = Decapscpa(sko, ¢p) is true, it adds (pkj, k1 ||k, ¢1||ch, k)
to Ly to declare H(pkj,k;||kb,c)l|ch,) = k. if A queries H oracle first, if the judgment k| =
Decapscca(ski, ¢j) and k{ = Decapscpa(sko, cp) is true, it adds (pkg, k1 ||k, ¢il|co, k) to Ly to declare
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H (pkly, ki ||kb, ¢ |ch, ) = k and adds (pkj, K, ||k}, ¢ ||ch, k) to Lp. Later if it queries (pkj, K} ||k}, ¢,]|ch)
to decapsulation oracle., it returns k.

We now re-clear the sub-cases of case 2 for hash list.

— Subcase 2.1: if pk{ € [Lo|o and pk{ = pk{ and k{, = Decaspc,

e Subsubcase 2.1.1 ¢f = ¢}, compute k; = Decaspepa (sky, ;) and check if &} Sy
?

e Subsubcase 2.1.2 ¢} # ¢}, compute k; = Decaspcpa (sky, ¢;) and check if k] = k4
— Subcase 2.2: if pkj € [Lo|o and pk{ # pk{ and k{, = Decaspcpa (sky, ¢{)
e Subsubcase 2.2.1 ¢f = ¢}, compute k; = Decaspepa (sky, i) and check if &} Z k.

oS O~ v O~ O™ o
~— ~— M~ — ~— —

e Subsubcase 2.2.2 ¢} # ¢}, compute k; = Decaspepa (sky, ;) and check if kf Lk

In Game 2, we add flags in the hash list in two cases

— Case 1: if pkj) & [Lolo, and pk{, = pk§ A cil|cy = ¢fl|ct, set flag as true and abort.
— Case 2: if pk{, € [Lolo, k{j = Decapscpa(sko, cy) and pkj = pk§ A c|cl, = cillct, set flag as true and
abort;

Which now in Case 2 the subcases is

— Subcase 2.1: if pkj € [Lolo and pkj = pkg and k{, = Decaspcpa(sk(), ¢()

e Subsubcase 2.1.1 ¢f = ¢f, set flag as true and abort;

e Subsubcase 2.1.2 ¢} # ¢}, compute k; = Decaspepa(sk(), ¢) and check if &} Lk
— Subcase 2.2: if pkj, € [Lolo and pk{ # pkg and k{ = Decaspcpa(sk(, ¢j)

e Subsubcase 2.2.1 ¢ = ¢ ,set flag as true and abort;

e Subsubcase 2.2.2 ¢} # ¢}, compute k; = Decaspepa (sky, ;) and check if kf Lk

In both case 1 and case 2 the event that flag=ture is bounded by the OW-CCA security of KEMcc,.

By the property of random oracle the [OW-CCA, -] adversary only has advantage when he ask H with
(pk(, k11K, cllcs), where kT is the key encapsulated in ¢f. We denote this event as AskH, and prove that
this event is negligible if KEM, is OW-CCA secure.

Given a KEMc, challenge ciphertext ¢*, the CCA adversary S simulate the [OW-CCA, -] game and
transform the event AskH to the advantage of solving OW-CCA problem. Given a KEM, challenge
ciphertext ¢*, since S does not know the secret key skj, the problem for S to simulate the [OW-CCA,
'] game is subsubcase 2.1.2 and 2.2.2. But S could fix the problem by query the decapsulation oracle of
KEMcea.

Now in Game 2, H(pk, k¥||k&, ¢i||ct) will not given to adversary, thus the adversary’s view is inde-
pendent of the challenge encapsulated key. Thus the adversary’s advantage in Game 2 is negligible.

To sum up, we have that the [OW-CCA, -] security is guaranteed by the OW-CCA securtiy of KEMc,.
Proof of Theorem 5 in the standard model. f(pko,k1||ko,c) = F, (pko,c) ® Fk,(pko,c). Since
[, IND-CPA] security is straight forward, we only prove the [IND-CCA, -] security and reduce it to the
IND-CCA security of KEM¢, and the security of PRF. The proof proceeds with a sequence of games.
Let S; denote the advantage of [IND-CCA, -] adversary in Game .

In Game 0, it is the original [IND-CCA, ‘] game, precisely, on receiving (pk(,c}||cj) the decapsu-
lation oracle works as follows: if (pk{,cillcy) = (pk,cilles), abort; else if pk{ & [Lolo, abort; else
K} = Decapscea(ski, ¢}), ki = Decapsepa(sko, ¢y) and return k' = Fy/ (pkg, ') © Fyy (pko, ¢').

In Game 1, we change the decryption oracle when ¢] = ¢f. That is: if (pk(, ci||ch) = kS, cil|cd),
abort; else if pk{, & [Lolo, abort; else if ¢| = ¢f k} + K; else kj = Decapscea(ski,c}), then compute
kg = Decapscpa(sko, cp) and return k' = Fy/ (pk, ') © Fy; (pk, ¢'). There exists a IND-CCA adversary B
against KEMc, if [IND-CCA, -] adversary A can distinguish Game 0 and Game 1. IND-CCA adversary
B after receiving challenge ciphertext ¢} and K, in the [IND-CCA, -] game, if ¢} = ¢} sets ki = k*. Note
that if K is the key encapsulated in cj, it corresponds to Game 0, or if K} is a totally random key, it
corresponds to Game 1.
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In Game 2, the computation of (cj||cf, k*) is changed, where PRF F is replace by a random function.
Note that the decryption oracle only works when (pk(, c’) # (pk§, cil|c}), and kf is replaced by a totally
random string. Since F' is PRF, this replacement will not detected by [IND-CCA, - adversary. Note that
in Game 2 the challenge cipheretext contains nothing about b, thus Pr[Ss] = 1/2.

Sum them up, we have that the [IND-CCA, -] security is guaranteed by the IND-CCA securtiy of
KEMc, and pseudorandomness of PRF.

Appendix F: Definitions of 2-key Public Key Encryption

Similar to the notion of 2-key KEM, we can also define the notion of 2-key public key encryption (PKE).
Formally, a double-key public key encryption 2PKE=(KeyGen0, KeyGenl, Enc, Dec) is a quadruple of
probabilistic algorithms together with a plain-text space M and a ciphertext space C as follows.
SECURITY. To define [ATK;, ATKj] security of 2PKE, we consider two adversaries, i.e., A = (Aj, A1)
attacking pk; and B = (B, B1) attacking pko. In Figure 19 we show the security games of ATK; and
ATKj respectively.

Game IND-ATK1 on pk; Game IND-ATKO on pko

01 (pki,ski) « KeyGenl(pp); 15 (pko, sko) < KeyGenO(pp)

02 LO:{(_,_7_)} o o 16 L: :{(_7_7_)} o o
03 (state, pkg, mo,m1) «— A, VT (pk )17 (state, pkT,mo, my1) — By O (pko)
04 b+ {0,1}; 18 b+ {0,1}

05 c* < Enc(pk1, pkg,mp); 19 c¢* < Enc(pki, pko, ms);

06 b <+ ASATKl'O'eakO (state, c*) 20 b« BSATKO’O'eakl (state, c*)

07 return b’ = b 21 return b’ = b

Game OW-ATK1 on pk; Game OW-ATKO on pko

08 (pki,ski) + KeyGenl(pp); 22 (pko, sko) + KeyGenO(pp)

09 LO:{(_,_’_)}O o 23 Ly :{(_7_7_)};9 o

10 (state,pky) «+ A, "7V (pky) 24 (state, pki) < B, "0 (pho);
11 m =« M; 25 m =+ M;

12 ¢* « Enc(pk1, pks, m); 26 ¢ < Enc(pki, pko,m);

13 m' « .A;DATK“O'eakl (state, c*); 27 m' BSATKO’O'eakO (state, c*);

14 return m’ = m 28 return m’ = m

Fig.19. The [ATKL, ], and [, ATKO] games of 2PKE for adversaries A and B. The oracles Oieaky, Oatk;, Oleaky
and Oatk, are defined in the following.

On the i-th query of Ojeak, and Ojeak, , the challenger perform as what it does in 2-key KEM. Depending
on the definition of oracle Oark, for ¢ = 1,0 the adversary accesses, one gets CPA and CCA notions
respectively

— 1if Oatk, (pky,er) = —» 1t implies CPA notion;

— if Oatk, (pky, o) # — it works as following: If pk € [LoJiA(c” # ¢*Vpky # pkg) return the corresponding
plaintext, otherwise return |, it implies CCA notion.

— if OaTi,(pk},er) = —» it implies CPA notion;

— if OnTko(pk} ') # — it works as following: If pk{ € [L1]1A(c’ # c*Vpk) # pki) return the corresponding
plaintext, otherwise return L, it implies CCA notion.

Let A = (A1, A2) be an adversary against pk; of 2PKE. We define its advantage winning in the game
IND-ATK1 and OW-ATKI as: Adviper <"1(A) = |Pr[IND-ATK1# = 1] — 1| and AdvioreA TR T(4) =
Pr[OW-ATK1# = 1], where game [IND-ATK1, -] and [OW-ATK1, ] are described in Figure 19.
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We say that 2PKE is [IND-ATKL, -] secure, if Adviyoe <1 (A) is negligible; that 2PKE is [OW-ATKI, -]

secure, if Advione "J(A) is negligible, for any PPT adversary A. The [-,IND-ATKO0] and [-, OW-ATKO]

security can be defined in the same way. Here for avoiding repetition we omit their description.
[ATK1, ATKO] security. The [ATK1, ATKO] security is similar with that in 2-key KEM.
Reduction [IND-CCA, -] = [OW-CCA, .

Lemma 7. For any adversary A attacks the [IND-CPA, -] security on pky with message space M, there
exists an adversary B with the same running time as that of A such that

AP A) < 1/ 1M+ 2 AddE T (B).
The lemma still works when attacks on pkg.

Proof. We process the proof by constructing adversary B using A as subroutine shown in Figure 20.

IND-CPA adversaryB*:

01 mi,mo < M

02 (state,pkg) < B (pky)
03 On receiving c*

04 m' <« BS (state, c*)

05 if m’ = my return 1 else 0.

Fig. 20. Reduction between [OW-CPA, -], and [IND-CPA, -] security for 2-key PKE.

In the construction of adversary B, since Pr[t/ = 1|b = 1] > AdVEK?}I(VECPA"] (A), and if b = 0 the

probability that B outputs m; is less than 1/|M|,

- . 1 rtial-OW- :
Advpey (€)= S (Prl) = 1)b= 1] = Prft/ = 1]b = 0)) > S(Advigs O (B) — 1/|M)).

N | =

Appendix G: Proof of Theorm 6 about Twin-ElGamal

As the proofs of [IND-CPA, -] and [, IND-CPA] security are similar, we only show [IND-CPA, -] security
here. Let A be the adversary that is executed in the [IND-CPA, ] game, that we call game Gy. Then
Advgy&:ﬁ;'](fl) = |Pr[t/ = b in Go] — 1/2|. In game Gi, g™ and h]' used in challenge ciphertext
are substituted with uniform random values (g*, h}). There exists an algorithm B such that Pr[t/ =
bin Go] —Pr[t/ =bin G4] < Adv%dh. B works as following: on receiving DDH challenge (g, h1,g’, h}),
sets pk1 = (g, h1). After receiving pko = (g, ho) from A, return challenge ciphertext (¢’, g™, hihg® - myp).
Then on receiving b, the guess of b, return b L 1f (9,h1,¢',h}) is a DDH instance, this is exactly
Go; If (g, h1,9¢',h}) is a random instance, this is exactly G1. Note that in Gy, hihy® - my, is uniformly
distributed and independent of b, therefore Pr[b = b in G1] = 1/2.

Appendix H: Proof of Theorem 7 related to modified FO transform.

Sketch of proof: The main idea of the proof is to simulate the decapsulation oracle without half of the
secret keys. This can be achieved by replacing the decryption using secret keys with “re-encryption”.
That is to answer the decapsulation oracle the challenger chooses a random key, while to answer the
random oracle queries for encapsulated key with public keys, plaintext and cipheretext the challenger
“re-encrypts” it so as to maintain the consistent. (The challenger may answers the random oracle firstly
and then the decapsulation oracle). In order to simulate the random oracle queries, pk{, (chosen by
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adversary) should be included in the input to the random oracle. For the same reason, pkj also should
be included in the input to the random oracle.
Formal Proof: The only decapsulation failure 2KEM may happened only if the decryption of 2PKE
fails. Consider the CORR-RO game of 2PKE. The adversaries make at most gg queries to G, that may
introduce the decryption failure (that is Dec(sky, sk, Enc(pky, pk{, m; G(m))) # m, for pk{, € [Lo]; when
attacking pky ). Since 2PKE is d-correct and G outputs independent randomness, each query of G exhibits
a correctness error with probability . The probability that at least 1 query of G exhibits a correctness
error is 1 — (1 — §)9¢ < ¢gd. Hence 61 = ¢gd.

To show the security, We only reduce the IND-CCA security against pk; to the IND-CPA security.
The reduction of IND-CCA security against pky to IND-CPA security is almost the same. Consider the
sequence of games in Figure 21. Let S; be the probability that adversary C outputs 1 in Game 1.

Games Go-Gs H (pk1, pky, m, c) //Go-Gs

01 (pki,skl) < KeyGenl’, pki = pki; 28 if I(pk1, pky, m, c, K) € Lg return K

02 s1||t1 + M, sk = (ski,s1) 29 K+ K

03 Lo = {(—, -, —)} 30 if pk(') S [Loh

DECAPS, Ojeak )

04 (state,pkg) < Cy ° (pk1) 31 if m = s1||so, flag, = ture, abort //G1-Gs

05 m* + M 32 if Dec(ski,sky,c) =m

06 c¢* < Enc(pki,pko,m*,G(m")) AEnc(pk1, pky, m; G(m)) = ¢ //G2

07 K§ = H(pki,pks,m*,c*) 33 if Enc(pki,pko, m; G(m)) = ¢ //G3-Gs

08 Ky« {0,1}" 34 if pk{ = pki Ac=c* //Ga-Gs

09 b+ {0,1} 35 flagl’ = ture, abort //Ga-Gs

10 b« CDEPASHC (gtate ¢ K 36 if IK’, s.t. (pk1,pky,c, K') € Lp //G2-Gs

11 return b= b/ 37 K=K’ //G2-Gs
38 else Lp = Lp U {(pk1,pkj,c, K)}  //G2-Gs

DECAPS(pky, c) /] Go-Gs |39 if pky & [Lo]1 A (pko, m, ) = (pkg, m*,c*) //Gs

12 if pkj & [Lo)1, abort 40  flagh,, = ture, abort //Gs

13 if pk{ € [Lo]1 A (pkj, c) = (pk§,c*), abort 41 Ly = Lg U{(pk1,pk),m,c, K)}

14 m' = Dec(sku, sk, c), //Go-G1 |42 return K

15 ¢ = Enc(pki, pko, m’; G(m')) //Go-G1 |G(m) //Go-Gs

16 if (m/,c') = (L,¢) //Go 43 if Ir, s. t.(m,7) € Lg

17 return K = H (pk1, pko, s1||s0,¢) //Go 44 return r

18 if (m', ") = (L,¢) //G1 45 r+ R

19 return K = H'(pk1, pkj, c) //G1 46 Lo = Lo U{(m,r)}

20 if (m’,¢") = (s1]]s0,c) //G1 47 return r

21 return K = H'(pk1, pk, c) //G1 Oleakq

22 return K = H(pki1,pkj,m’,c) //Go-G1 |48 rh < {0,1}*

23 if 3K s.t. (pk1,pko,c, K) € Lp //G2-Gs |49 (pké,,skél) +— KeyGen0'(rd)

24  return K //G2-Gs |50 sb « {0,1}*, sko,; = (sk 1, 0)

25 else K «+ K //G2-Gs |51 pk§ = pkél

26 Lp=Lp U{(pkhpké,c, K)} //GQ-G5 52 Lo = LoU{(pké,Ské,Té”Sé)}

27 return K //G2-Gs |53 Return (pk{, ské, r||sd)

Fig. 21. Game 1-Game 5 for the proof of Theorem 7.

Game 0: This is the original [IND-CCA, -] game against pk; with C, and
[Pr[So] — 1/2] = Advhg 7 (0).
Game 1: In this Game, we add a flag flag, and set it to be true and abort when H (pky, pk{, s1||so, ) is

queried (line 31). At the same time, in DECAPS, replace if m’ = L, K = H(pky, pk{, m’,c) (line 16-17)
with if m’ = L or s1||so, K = H'(pk1,pk(,c) (line 18-21) where H' is an internal random oracle. This
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will only be noted if C queries H with (pk1, pky, s1]|so, -), as it will be abort. Since s; is uniformly random
over {0, 1}, [Pr[S;] — Pr[So]| = 4-.
Game 2: In this game, the DECAPS oracle does not use the secret key to decapsulate any longer. We
maintain two hash lists £p and Ly and guarantee the consistent by testing if Dec(sky, sk(,c) = m A
Enc(pk1, pk{, m; G(m)) (line 32) during the H queries. (pk1, pkj, m,c, K) € Ly means that (pk1, pkj, m, ¢)
was queried on H and H returns random K or for pk{, € [Lol1, (pk1, pk{, ¢, K) € Lp and Dec(skq, skg, ¢) =
m A Enc(pky, pk{, m; G(m))

To show the identical of Game 1 and Game 2 from the point view of C, consider the following cases
for fixed pk(, c,m’ that Dec(sk1, sk, c) = m A Enc(pky, pk{, m; G(m)).

— Case 1: pk{, & [Lo]1. The decapsulation oracle DECAPS aborts in Game 1 and 2. The oracle H outputs
random K in both Games in this case. For pk{ & [L¢]1, the DECAPS(pky, pk{, -) results in abort, the
queries of H(pky, pk{, m,c) will return a uniformly random key, as in Game Gj.

— Case 2: pk{, € [Lols Am' € {L,s1]|s0} A’ = c. Since H(pky,pk{, L, c) is not allowed and H (pk1, pk,
s1]|s0, ¢) results in abort, the random oracle H would not add (pki, pk{, ¢, K) in Lp in this case. The
DECAPS(pk1, pko, ¢) will return a totally random key as in Game 1.

— Case 3: pkj € [Loli Am' & {L,s1]|so} A ¢ = ¢. In Game 1, the DECAPS oracle and H ora-
cle is consistent, as the DECAPS return the key H(pki,pk(, Dec(ski, sk{,c),c) by querying H.
In Game 2, the lists Lp and Lg checks each other firstly, and help the consistent by judgmen-
t m = Dec(sk, sk{,c) A ¢ = Enc(pky,pk), m; G(m)) (line 32) in two cases: C may queries H on
(pk1, pkj, m, c) first, then DECAPS on (pk{, ¢); or the other way.

o If C queries H on (pky,pk{, m,c) first in this case (by checking m = Dec(ski,skj,c) Ac =
Enc(pk1, pk(, m; G(m)) (line 32)), there is no entry (pk{, ¢, K) in Lp yet. Besides adding (pk1, pk(
m,c, K + K) to Ly, H also adds (pk{,c, K) to Lp. When (pk{,c) is queried to DECAPS, i
returns K from Lp.

o If C queries DECAPS on (pk{, c) first, it adds (pk{, ¢, K < K) to Lp to declare DECPAS(pk(, c) =
K. When C queries H on (pky, pk(), m, c) later, if the decryption and re-encrypt judgment (as in
line 32) is ture, H adds (pki1,pk{,m,c,K) to Ly to declare that H(pk1,pk{, m,c) = K. Thus
H (pky, pk{, m,c) = K = DECAPS(pk{, ).

From the analysis in sub-cases, the view of C is identical to that in Games 1 and Pr[Ss] = Pr[S4].
Game 3: In this game, we replace the judgment m = Dec(sk1, sk, ¢) A ¢ = Enc(pky, pk{, m; G(m)) (line
32) with ¢ = Enc(pky,pk{, m; G(m)) (line 33), that do not check m = Dec(sky, sk{,c) any more. The
Game 2 and Game 1 are different only when Dec(sky, sk(, Enc(pk1, pk(, m; G(m))) # m happens. C makes
at most ¢g queries to G, that may introduce the correctness error, which means Dec(sk1, sk, Enc(pk1, pkj,
m; G(m))) # m, for (pk{,sk)) € L. Since 2PKE is d-correct and G outputs independent randomness,
each query of G exhibits a correctness error with probability 6. The probability that at least 1 query of
G exhibits a correctness error is 1 — (1 — §)9¢ < ggd. Thus |Pr[S3] — Pr[S2]| = ¢¢d.
Game 4: In this game, we add a flag flagl! (line 34-35) and abort when it is true. The difference between
Game 4 and Game 3 is bounded by the events flag! = ture, thus, |Pr[S4] — Pr[Ss]| < Pr[flag? = ture].

To bound Prlflagf = ture], we construct an adversary A;, against the [OW-CPA, -] security of 2PKE
when pk§ € [Lo)1, as in Figure 22. The simulation of H and ENCAPS is the same with Game 3, and
perfect as the decryption key sk; and sk{ (since pk{, € [Lo]1) does not required. After C outputs ¥, the
adversary A check the list Lp, if I(pk1,pkd, m',c, K) € Ly, outputs m’ else abort. flag = ture means
that C queries H (pky,pk§, m', c) and (pky, pki, m', ¢, K') € Ly, thus m’ = m*. Hence Pr[flagf = ture] =
Advipe " (Ain).
Game 5 In this game, we add a flag flaggIt (line 39-40) and abort when it is true. The difference between
Game 4 and Game 5 is bounded by the events flag, = ture, thus, [Pr[S,] — Pr[Ss]| < PrlflagZ, = ture].

In this game, H (pk1, pkl, m*,c*) will not be given to C in both cases pk{ € [Lo]1 and pk§ & [Lol1,
which meaning b is independent from C’ view. Hence Pr[S5] = 1/2.

To bound Pr[flag’, = ture], we construct an adversary Aoy against the [OW-CPA, -] security of 2PKE
when pk§ & [Lo|1 as in Figure 22.
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[OW-CPA, ‘] adversary Ai, and Aoyt [IND-CPA, ] adversary A’

01 K™« /C, Ain, Aout 01 mi, Mo < M

02 81‘|t1,80||t0<—/\/l Aionut 02 K*<—’C7 81,80<—M;

03 (state, pkg) + C?ECAPS’O'eakO’H’G(pkl) Ain, Aout|03  (state, pkg) CIDECAPS’O'eakU"H’G(pkl)
04 b COEPAS Ol G (sate ¢ K*) Ain, Aout|04 b < Cor A Qe G (gpate o* | K*)

05 If 3(pk1, pks,m',c, K') € Ly Ain|05 Ly < L N {(pk1,pks,-,c*, )}

06 return m’ Ain|06 if |[L5(m1)| > [Ly(mo)], ¥ =1

07 else return L. Ain|07 if [L(ma)| < |[L7(mo)], b =0

08 m’ < Ly N {(pk1,pk6, '70*7 )}7 Aout |08 if |[’}{(m1)| = |‘ClH(m0)|7 b {07 1}
09 return m/'. Aout|09 return v’

Fig. 22. The [OW-CPA:] adversary Aj, in Game 4 and Aoy in Game 5 for the proof Theorem 21; The [IND-CPA:]
adversary A’ for the proof Theorem 21 in Game 5. L (m1) is the set of all (pki,pks, mi||,c*,) € L. The
DECPAS , H and G oracle are those (in corresponding Game) in Figure 21

If pk§ & [Lol1, on input pky and ¢* < Enc(pky, pk§, m*), perfectly simulate Game 5. If ﬂagf{Jt = ture,
there exists (pki, pks, m*,c*,-) € Ly, and A returns the correct m’ = m* with probability at most 1/qg.
Hance Pr[flag,] < qx - Adv[zg\l/(VECPA"] (A).

To sum up, we have first claim of the theorem.

If 2PKE is [IND-CPA, IND-CPA]-secure, the reduction is tight. By Lemma 20, in Game 4 |Pr[Sy] — Pr[Ss]| <
Prlflagl! = ture] < Adv[z?;V};/éCPA"] (A) <1/IM|+2- AdvgyKDéCPA"](A’). In Game 5, to bound Prlflag, =
ture], we construct an adversary A’ against the [IND-CPA, -] security of 2PKE when pk§ & [Lo]1 as in
Figure 22. Consider the [IND-CPA, | game with challenge bit b, Denote Bad the event A’ queries H with
(pk1, pk§,mi—p||-, c*). Since my_; is uniformly distributed over M, we have that Pr[Bad] < qp/|M]|.
If pki & [Lo)1 A Bad A flag?, = ture, C queried on (pky, pki, my||-, ¢*) and |[Ly(mp)| > [Lh(ma_p)|. If
pki & [Lol1 A Bad A flag?, = false, C did not query on (pki, pk&, my||-, ¢*) and Pr[b = b'] = 1/2.

We have AdviNO-C"A (A7) + g /|M| < [Pr[b = b] — 1/2| = |Pr[flagh, = ture] + 1/2flagh, = false —
1/2| = 1/2Pr[flag?, = ture].

Appendix I: Decryption Failure and proof of security for Twin-Kyber

Decryption Failure: To handle the decryption failure, for a uniformly random y € R’; with d,,, de-
fine ¢, = y — Decomp,(Comp,(y,dy),d,) mod 27 as the output of distribution ny. For dy,,dy,, set
distributions Wfftl and ijto. Set the above parameters as public parameters. Since under Module-LWE
assumption, As; +e;, ATr; +e4_;(i=0,1) and t17ry + to? ro + € are indistinguishable from uniform
random values. Then, for algorithm Enc, we have t; = As; +e; and tg = Asg + eg. For algorithm Dec,
we have u; = ATr; +e3 + Cuy, Ug = ATrg+e4+ Cug- Thus from the decryption algorithm,

E=v—s1Tu; —solug = (eg + e'l)Trl
+ (eo +€p) ro + 517 (€3 + Cuy) + 50" (€4 + Cug) + €+ Cy.

Denote every coefficient of E as [E];, for 1 < i < 256. From the computation rule over Ry, all the
variables in computing [E]; is independent, but they are reused in other summations for [E]; for j # i.
Although the average-case distribution of each [E]; is the same, they are not fully independent. However,
[32] and [3]® proposed an independence assumption, that for x,y and z chosen according to ,’?, 5,’; and
W% the distributions of each two coefficients of x”'y and x’'z are independent. Their assumptions further
implies the independence of each bit of E, here we continue to use the their assumptions.

Let §; = 1 — Pr[[m]; = [m/];] be the failure probability of the i-th single bits. Then §; = 1 —
Pr [[E]Z < f%ﬂ Under the independence assumption, the failure probability of each bit d15;; = 9; for any
1 <4 < 255. Thus, the total failure probability is bounded by é = nd1pit-

Proof of Theorem 8

3 the assumption is implicitly given in their code
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Proof. Without loss of generality, we only show the [IND-CPA, -] security here, and the proof for |-, IND-CPA]
security is similar. The proof proceeds in a sequence of hybrid games. Let game Gy be the original
[IND-CPA, -] game, then Advipgeo I(A) = Pr[t) = b in Go]. In Game G1, Asy + ey is replaced by a
uniform random value in R’;. If A is able to distinguish As; + e; from a unifor random value, then there
exists an algorithm B to solve the k x k Module-LWE problem. That is Pr[b’ = bin Go]—Pr[t) = bin G1] <
AdefLﬁ”; (B) < Advi”_f_tl”fkm(l?). In game G, when generating the challenge ciphertext, ATr; + ez of
line 14, and t17ry + e of line 17 are substituted by uniform random values in R’; or R,. If A is able
to distinguish it the challenge ciphertext from random values, then there exists an algorithm B to solve
the (k4 1) x k Module-LWE problem. That is Pr[t/ = b in G;1] — Pr[t/ = b in Ga]| < Advz'ffim(B).
Specially, given a (k + 1) x k instance, B parses the first k rows (A, b) and the last rows (t1,b1), sets
the public key as t; = Comp,(As; + e1,d:, ), generates the challenge ciphertext by chosen rg, ey, e,
and computes challenge ciphertext including uy = Comp, (b, dy,),up = Compq(ATrO + eq,dy, ), and
v = Comp,(by +tolro+ [%]cm, dy). Finally, B just outputs what the adversary A returns. Note that in
G2, the challenge ciphertext is independent of b, thus Pr[)/ = b in Go] = 1/2. O
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