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Abstract. We give a new signature scheme for isogenies that combines the class group actions of CSIDH with
the notion of Fiat-Shamir with aborts. Our techniques allow to have signatures of size less than one kilobyte at the
128-bit security level, even with tight security reduction (to a non-standard problem) in the quantum random oracle
model. Hence our signatures are potentially shorter than lattice signatures, but signing and verification are currently
very expensive.

1 Introduction

Stolbunov [38] was the first to sketch a signature scheme based on isogeny problems. Stolbunov’s scheme is in the
framework of class group actions. However the scheme was not analysed in the post-quantum setting, and a naive
implementation would leak the private key. Due to renewed interest in class group actions, especially CSIDH [10]
(due to Castryck, Lange, Martindale, Panny and Renes) and the scheme by De Feo, Kieffer and Smith [19], it is of
interest to develop a secure signature scheme in this setting. Our main contribution is to use Lyubashevsky’s “Fiat-
Shamir with aborts” strategy to obtain a secure signature scheme. We also describe some methods to obtain much
shorter signatures than in Stolbunov’s original proposal.

Currently it is a major problem to get practical signatures from isogeny problems. Yoo et al (see Table 1 of [42])
state signatures of over 100 kilobytes. This can be reduced using some optimisations. For example [22] state approx-
imately 12 kilobytes for their signature scheme (for classical 128-bit security level). In contrast, in this paper we are
able to get signatures smaller than a kilobyte, which is better even than lattice signatures. Unfortunately, signing and
verification are very slow, but we might just about be able to live with that in certain applications.

We now briefly summarise the main findings in the paper (for more details see Table 2). For the parameters
(n,B) = (74, 5) as used in CSIDH [10] we propose a signature scheme whose public key is around 4Mb, signature
size is 944 bytes, and verification time is around 8 minutes (signing time is up to three times longer than this, since
rejection sampling requires repeating the signing algorithm). For the same parameters we show that one can reduce
the public key size to only 32 bytes, but this increases the signature size to around 3kb and does not add any significant
additional cost to signing or verification time. One can obtain even shorter signatures by taking different choices of
parameters, for example taking (n,B) = 20, 3275) leads to signatures as small as 416 bytes, but we do not have an
estimate of the verification time for these parameters.

The paper is organised as follows. Section 3 gives the basic signature scheme concept, that was proposed by
Stolbunov, and our secure variant based on Fiat-Shamir with aborts. Section 4 explains how to get shorter signatures,
at the expense of public key size, by using challenges that are more than just a single bit. Section 5 shows how to retain
the benefit of shorter signatures, while also having a short public key, by using modified Merkle trees. In Appendix B
we show how to use our scheme in the context of lossy keys, from which we obtain tight security in the quantum
random oracle model via the results of Kiltz, Lyubashevsky and Schaffner [26] (and this security enhancement involves
no increase in signature size, though the primes are larger so computations will be somewhat slower).

The name “SeaSign” is a reference to the name CSIDH, which is pronounced “sea-side”.

2 Background and notation

We use the following notation: #X is the number of elements in a set X; log denotes the logarithm in base 2; for
B ∈ N we denote by [−B,B] the set of integers u with −B ≤ u ≤ B.



2.1 Elliptic curves, isogenies, ideal class groups

References for elliptic curves over finite fields and isogenies are Silverman [37], Washington [41], Galbraith [20],
Sutherland [39] and De Feo [17]. A good reference for ideal class groups and class group actions is Cox [15].

Let E be an elliptic curve over a field K and let P ∈ E(K) be a point of order m. Then there is a unique (up
to isomorphism) elliptic curve E′ and separable isogeny φ : E → E′ such that ker(φ) = 〈P 〉. Vélu [40] gives an
algorithm to compute and equation for E′ and rational functions that enable to compute φ. The complexity of this
algorithm is linear in m and requires field operations in K, so when K is a finite field it has cost O(m log(#K)2)
bit operations using standard arithmetic. In the worst case (i.e., when m is large) this algorithm is exponential-time.
In practice this computation is only feasible when m is relatively small (say m < 1000) and when the field K over
which P is defined is not too large (say, at most a few thousand bits).

For an elliptic curve E over a field K we define End(E) to be the the ring of endomorphisms of E defined over
the algebraic closure of K, and EndK(E) to be the the ring of endomorphisms defined over K. Since we are mostly
concerned with the CSIDH [10] approach, we will be interested in supersingular elliptic curvesE such that j(E) ∈ Fp,
where p is a large prime. In this case End(E) is a maximal order in a quaternion algebra, while EndFp

(E) is an order
in the imaginary quadratic field Q(

√
−p). Indeed, Z[

√
−p] ⊆ EndFp(E).

We will be concerned with the ideal class group of the order O = EndFp(E). This is the quotient of the group of
fractional invertible ideals inO by the subgroup of principal fractional invertible ideals. Given two invertibleO-ideals
a, b we write a ≡ b if a and b are equivalent (meaning that ab−1 is a principal fractional O-ideal).

2.2 Class group actions and computational problems

Let p be a prime. Let E be an ordinary elliptic curve over Fp with End(E) ∼= O or E a supersingular curve over Fp
with EndFp

(E) ∼= O where O is an order in an imaginary quadratic field. Let Cl(O) be the ideal class group of O.
One can define the action of an O-ideal a on the curve E as the image curve E′ under the isogeny φ : E → E′ whose
kernel is equal to the subgroup E[a] = {P ∈ E(Fp) : α(P ) = 0 ∀α ∈ a}. We denote E′ by a ∗ E.

The set {j(E)} of isomorphism classes of elliptic curves with End(E) ∼= O is a principal homogenous space for
Cl(O). Good references for the details are Couveignes [14] and Stolbunov [38]. The key exchange protocol proposed
by Couveignes and Stolbunov is for Alice to send a ∗ E to Bob and Bob to send b ∗ E to Alice; the shared key is
(ab) ∗ E.

The difficulty is that if a ⊂ O is an arbitrary ideal then the subgroup E[a] is typically defined over a very large
field extension and the computation of a ∗ E has exponential complexity. For efficient computation it is necessary to
work with ideals that are a product of powers of small prime ideals, so it is necessary to find a “smooth” ideal in the
ideal class of a. Techniques for smoothing an ideal class in the context of isogeny computation were first proposed
in [21] and developed further in [9,25,6]. The state of the art is [6] which gives computation a ∗ E for any ideal class
in subexponential complexity in log(#Cl(O)).

Since subexponential complexity is not good enough, for cryptographic applications it is necessary to choose ideals
deliberately of the form a =

∏n
i=1 l

ei
i where l1, . . . , ln are prime O-ideals of small norm `i and where (e1, . . . , en)

is an appropriately chosen vector of exponents. Then, the action of a can be computed as a composition of isogenies
of degree `i. Throughout the paper we assume that {l1, . . . , ln} is a set of non-principal prime ideals in O, generating
Cl(O), of norm polynomial in the size of the class group. Theoretically we have the bounds #Cl(O) = O(

√
p log(p))

and, assuming a generalised Riemann hypothesis, `i = O(log(p)2). In practice one usually takes `i = O(log(p)) for
efficiency reasons; heuristically, this is more than enough to generate the class group.

The basic computational assumption is the ideal action problem. Stolbunov called it “Group Action Inverse Prob-
lem (GAIP)”. The CSIDH paper speaks of hard homogenous spaces and calls the below problem “Key recovery”.

Problem 1. Given two elliptic curves E and EA over the same field with End(E) = End(EA) = O. Find an ideal a
such that j(EA) = j(a ∗ E).

The best classical algorithms for this problem in the general case have exponential time (at least
√
#Cl(O)

isogeny computations). Childs, Jao and Soukharev [11] were the first to point out that this problem can be formulated
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as a “hidden shift” problem, and so quantum algorithms for the hidden shift problem can be applied. Hence, there
are subexponential-time quantum algorithms for Problem 1 based on the quantum algorithms of Kuperberg [28] and
Regev [34]. It is still an active area of research to assess the exact quantum hardness of these problem; see the recent
papers by Biasse-Iezzi-Jacobson [7], Bonnetain-Schrottenloher [8], Jao-LeGrow-Leonardi-Ruiz-Lopez (MathCrypt
2018)). But at the very least, Kuperberg’s algorithm requires at least Õ(2

√
log(p)/2) quantum gates, thus taking

p > 22λ
2

, (1)

where λ is the security parameter, should be sufficient to make Problem 1 hard for a quantum computer.
If the ideals a in Problem 1 are sampled uniformly at random then the problem admits a random self-reduction:

given an instance (E,EA) one can choose random ideal classes b1, b2 and construct the instance (E1, E2) = (b1 ∗
E, b2 ∗EA), which is now uniformly distributed across the set of pairs of isomorphism classes of curves in the isogeny
class. If a′ is a solution to the instance (E1, E2) then any ideal equivalent to the fractional ideal a′b1b−12 is a solution
to the original instance. This is a nice feature for security proofs that is not shared by SIDH; we use this idea in
Section 4.2.

As already mentioned, when instantiating the group action in practice, one must choose parameters that make
evaluating isogenies of degree `i as efficient as possible. This is done both by chooseing the `i to have as small norm
as possible, and also by arranging that the kernel subgroups E[`i] are defined over as small a field as possible (so that
Vélu’s formulas can be used). In the ordinary case, De Feo, Kieffer and Smith [19] introduced a method to make the
system as efficient as possible (namely, using Vélu’s formulas [40] for some primes `i, but they were unable to use
Vélu’s formulas for all the primes they needed). By using supersingular curves over a field Fp with p+1 = 4

∏n
i=1 `i,

CSIDH [10] manages to apply Vélu’s formulas to all primes `i. For key exchange, CSIDH samples the exponent
vectors e = (e1, . . . , en) ∈ [−B,B]n ⊆ Zn for a suitable constant B.

This leads to a special case of Problem 1 where the ideals may not be uniformly distributed in the ideal class group.
For further discussion see Definition 1 and the discussion that follows it. In this special case one can also consider a
straightforward meet-in-the-middle attack: Let E and a ∗ E be given, where a =

∏n
i=1 l

ei
i over ei ∈ [−B,B]. We

compute lists (assume n is even)

L1 =


n/2∏
i=1

leii

 ∗ E : ei ∈ [−B,B]

 and L2 =


 n∏
i=n/2+1

leii

 ∗ EA : ei ∈ [−B,B]

 .

If L1 ∩ L2 6= ∅ then we have solved the isogeny problem. This attack is faster than general methods when the set of
ideal classes generated is a small subset of Cl(O). Hence for security we may require

(2B + 1)n > 22λ, (2)

where λ is the security parameter. Further, there is a quantum algorithm due to Tani, which is straightforward to adapt
to this problem (we refer to Section 5.2 of De Feo, Jao and Plût [18] for details). This means we might need to take
(2B + 1)n > 23λ to have post-quantum security. However, Adj et al. [2] have given an in-depth analysis of these
algorithms, and they argue that the naive analysis is unrealistic as it ignores storage costs and other overheads. Instead,
they claim the fastest algorithm in practice (even considering quantum adversaries) for this problem is based on an
approach by van Oorschot and Wiener that takes time (2B + 1)n/M3/2, where M is the number of processors. Since
M < (2B + 1)n/3 in practice, this cost is larger than (2B + 1)n/2.

Choosing the best values of B,n, p for large choices of λ (e.g., satisfying the constraints of equations (1) and (2))
is non-trivial, but will generally lead to sampling in a very small subset of the whole ideal class group.

We remark that Kuperberg’s algorithm uses the entire class group, and there seems to be no way to improve the
algorithm for the case where the “hidden shift” is sampled from a distribution far from the uniform distribution. We
leave the study of this question to future work.

By taking into account the best known attacks, the CSIDH authors propose parameters for the three NIST cate-
gories [32], as summarized in Table 1. Note that in all CSIDH instances the set of sampled ideal classes is (heuristi-
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cally) likely to cover the whole class group. Their implementation of the smallest parameter size CSIDH-1 computes
one class group action in under 100ms on a 3.5GHz processor.

n log2 p B NIST level classical security quantum security message size private key size
CSIDH-1 74 500 5 1 125 bits 61 qbits 63B 32B
CSIDH-3 131 1020 7 3 255 bits 93 qbits 128B 64B
CSIDH-5 208 1787 10 5 447 bits 129 qbits 224B 115B

Table 1. Proposed parameters for CSIDH [10]. Effective parameters p, n and B for CSIDH-3 and CSIDH-5 were not given in
the paper, and are produced here following their methodology. Message size is the number of bytes to represent a j-invariant, and
private key size is the space required to store the exponent vector e ∈ Zn.

For our signature schemes we may work with less specific primes than considered in CSIDH [10]. For example,
CSIDH takes p+1 = 4

∏n
i=1 `i, whereas we may be able to use fewer primes and just multiply by a random co-factor

to get a large enough p.

2.3 Public key signature schemes

One can describe Fiat-Shamir-type signatures in various ways, including the language of sigma protocols or identifica-
tion schemes. In the main body of our paper we mostly work with the language of signatures, and give proofs directly
in this formulation. In Section B.1 we use the language of identification schemes, and introduce the terminology fully
there.

A canonical identification scheme consists of algorithms (KeyGen,P1,P2,V) and a set ChSet. The randomised
algorithm KeyGen(1λ) outputs a key pair (pk, sk). The deterministic algorithm P1 takes sk and randomness r1 and
computes (W,St) = P1(sk, r1). Here St denotes state information to be passed to P2. A challenge c is sampled
uniformly from ChSet. The deterministic algorithm P2 then computes Z = P2(sk,W, c,St, r2) or ⊥, where r2 is
the randomness. The output ⊥ corresponds to an abort in the “Fiat-Shamir with aborts” paradigm. We require that
V(pk,W, c, Z) = 1 for a correctly formed transcript (W, c, Z).

A public key signature scheme consists of algorithms KeyGen,Sign,Verify. The randomised algorithm KeyGen(1λ)
outputs a pair (pk, sk), where λ is a security parameter. The randomised algorithm Sign takes input the private key sk
and a message msg, and outputs σ = Sign(sk,msg). The verification algorithm Verify(pk,msg, σ) returns 0 or 1. We
require Verify(pk,msg,Sign(sk,msg)) = 1.

The Fiat-Shamir transform is a construction to turn a canonical identification scheme into a public key signature
scheme. The main idea is to make the interactive identification scheme into a non-interactive scheme by replacing the
challenge c by a hash H(W,msg).

The standard notion of security is unforgeability against chosen-message attack (UF-CMA). A UF-CMA ad-
versary against the signature scheme is a randomised polynomial-time algorithm A that plays the following game
against a challenger. The challenger runs KeyGen to get (pk, sk) and runs A(pk). The adversary A sends messages
msg to the challenger, and receives σ = Sign(sk,msg) in return. The adversary outputs (msg∗, σ∗) and wins if
Verify(pk,msg∗, σ∗) = 1 and if msg∗ was not one of the messages previously sent by the adversary to the chal-
lenger. A signature scheme is UF-CMA secure if there is no polynomial-time adversary that wins with non-negligible
probability.

3 Basic Signature Scheme

This section contains our main ideas and presents a basic signature scheme. We focus in this section on classical adver-
saries and proofs in the random oracle model. Hence our signature is based on the traditional Fiat-Shamir transform.
For schemes and analysis against a post-quantum adversary see Appendix B.
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3.1 Stolbunov’s scheme

Section 2.B of Stolbunov’s PhD thesis [38] contains a sketch of a signature scheme based on isogeny problems (though
his description is not complete and he does not give a proof of security). It is a Fiat-Shamir scheme based on an
identification protocol. Section 4 of Couveignes [14] also sketches the identification protocol, but does not mention
signature schemes.

The public key consists of E and EA = a ∗ E, where a =
∏n
i=1 l

ei
i is the private key. To construct the private key

one uniformly chooses an exponent vector e = (e1, . . . , en) ∈ [−B,B]n ⊆ Zn for some suitably chosen constant B.
Stolbunov assumes the relation lattice for the ideal class group is known, and uses it in Section 2.6.1 to sample ideal
classes uniformly at random. Section 2.6.2 of [38] suggests an approach to approximate the uniform distribution.

In the identification protocol the prover generates t random ideals bk =
∏n
i=1 l

fk,i

i for 1 ≤ k ≤ t and computes
Ek = bk ∗ E. Here the exponent vectors fk = (fk,1, . . . , fk,n) are uniformly and independently sampled in a region
like [−B,B]n (Stolbunov assumes these ideal classes are uniformly sampled). The prover sends (j(Ek) : 1 ≤ k ≤ t)
to the verifier. The verifier responds with t uniformly chosen challenge bits b1, . . . , bt ∈ {0, 1}. If bk = 0 the prover
responds with fk = (fk,1, . . . , fk,n) and the verifier checks that j(Ek) = j((

∏n
i=1 l

fk,i

i ) ∗ E). If bk = 1 the prover
responds with a representation of bka−1. When bk = 1 the verifier checks that j(Ek) = j((bka

−1) ∗ EA). A cheating
prover (who does not know the private key) can succeed with probability 1/2t.

The major problem with the above idea is how to represent the ideal class of bka−1 in a way that does not leak
a. Stolbunov notes that sending the vector fk − e = (fk,i − ei) would not be secure as it would leak the private key,
instead he mentions in one sentence a solution that is applicable when the discrete logs of the primes li in the class
group are known. Couveignes also does not explain how to prevent this leakage. A main contribution of our paper is
to give solutions to this problem.

To obtain a signature scheme Stolbunov applies the Fiat-Shamir transform, and hence obtains the challenge bits bk
as the hash value H(j(E1), . . . , j(Et),msg) where H is a cryptographic hash function with t-bit output and msg is the
message to be signed. The signature consists of the binary string b1 · · · bt and the representations of the ideal classes
bk when bk = 0 and bka

−1 when bk = 1.
The verifier computes, for 1 ≤ k ≤ t, Ek = bk ∗E when bk = 0 and Ek = bka

−1 ∗EA when bk = 1. The verifier
then computes H(j(E1), . . . , j(Et),msg) and checks whether this is equal to the binary string b1 · · · bt, and accepts
the signature if and only if the strings agree.

We stress that neither Couveignes nor Stolbunov give a secure post-quantum signature scheme. Both authors
assume that the relations in the ideal class group have been computed (Stolbunov needs this to prevent leakage, since
he needs to know discrete logs). However the cost to compute the relations in the ideal class group on a classical
computer is roughly the same as the cost to break the scheme on a quantum computer (using the Kuperberg or Regev
algorithms). Hence it does not make sense to assume the generator of the scheme knows the relations in the ideal class
group (although see Appendix C for a version of this idea in the fully post-quantum setting where quantum computers
are readily available).

The main contribution of this paper is to give a solution to the problem of representing bka
−1 without leaking

the private key and without needing to compute relations in the ideal class group. Our solution uses ideas from lattice
cryptography (Fiat-Shamir with aborts) and we describe this in the remainder of the section. An alternative solution
requires a basis of a relation lattice in the ideal class group, which can be computed efficiently using a quantum
computer. We describe this alternative solution in Appendix C.

3.2 Using rejection sampling

The idea is to use rejection sampling in exactly the way proposed by Lyubashevsky [29] in the context of lattice
signatures.

Let B > 0 be a constant. When generating the private key we sample uniformly ei ∈ [−B,B] for 1 ≤ i ≤ n. Let
e = (e1, . . . , en). The value B may be chosen large enough that

∏n
i=1 l

ei
i covers most ideal classes and so that the

output distribution is close to uniformly distributed in Cl(O), but we avoid any explicit requirement or assumption that
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this distribution is uniform. We refer to Definition 1 for more discussion of this issue, and in Appendix B we consider
a variant where the ideals are definitely not distributed uniformly in Cl(O).

Exponents fk,i are sampled uniformly in [−(nt+1)B, (nt+1)B], where t is the number of parallel rounds of the
identification/signature protocol and n is the number of primes. Let fk = (fk,1, . . . , fk,n), bk =

∏n
i=1 l

fk,i

i and define
Ek = bk ∗ E.

If the k-th challenge bit bk is zero then the prover responds with fk = (fk,1, . . . , fk,n) and the verifier checks
that j(Ek) = j((

∏n
i=1 l

fk,i

i ) ∗ E) as in the basic scheme above.3 If bk = 1 then the prover is required to provide
a representation of bka−1, the idea is to compute the vector zk = (zk,1, . . . , zk,n) defined by zk,i = fk,i − ei for
1 ≤ i ≤ n. As already noted, outputting z directly would potentially leak the secret. To prevent this leakage we only
output zk if all its entries satisfy |zk,i| ≤ ntB. We give the signature scheme in Figure 1. It remains to show that in
the accepting case the vector leaks no information about the private key, and that the rejecting case occurs with low
probability. We do this in the following two lemmas.

Lemma 1. The distribution of vectors zk output by the signing algorithm is the uniform distribution and therefore is
independent of the private key e.

Proof. Let U = [−(nt+ 1)B, (nt+ 1)B]. Then #U = 2(nt+ 1)B + 1. If e ∈ [−B,B] then

[−ntB, ntB] ⊆ U − e = {f − e : f ∈ U} ⊆ [−(nt+ 2)B, (nt+ 2)B].

Hence, when rejection sampling (only outputting values fk,i− ei in the range [−ntB, ntB]) is applied then the output
distribution of zk is the uniform distribution on [−ntB, ntB]n. This argument does not depend on the choice of e, so
the output distribution is independent of e. ut

Lemma 2. The probability that the signing algorithm outputs a signature (i.e., does not output ⊥) is at least 1/e >
1/3.

Proof. Let notation be as in the proof of Lemma 1. For fixed e ∈ [−B,B] and uniformly sampled f ∈ U = [−(nt+
1)B, (nt+ 1)B], the probability that a value f − e lies in [−ntB, ntB] is

2ntB + 1

2(nt+ 1)B + 1
= 1− 2B

2(nt+ 1)B + 1
≥ 1− 1

nt+ 1
.

Hence, the probability that all of the values zk,i over 1 ≤ k ≤ t, 1 ≤ i ≤ n lie in [−ntB, ntB] is at least (1− 1/(nt+
1))nt. Using the inequality 1 − 1/(x + 1) ≥ e−1/x for x ≥ 1 it follows that the probability that all values are in the
desired range is at least (

e−1/nt
)nt

= e−1.

This completes the proof. ut

We can therefore get a rough idea of parameters and efficiency for the scheme. Let λ be a security parameter (e.g.,
λ = 128 or λ = 256), for security we need at least t = λ so that an attacker cannot guess the hash value or invert the
hash function (see also the proof of Theorem 1). We also need a large enough set of private keys, so we need (2B+1)n

large enough. The signature contains one hash value of t bits, plus t vectors fk or zk with entries of size bounded by
(nt + 1)B, for a total of λ + tdn log(2(nt + 1)B + 1)e bits (assuming each vector is represented optimally). If we
take t = λ = 128, and (n,B) = (74, 5) as in CSIDH-1, we obtain signatures of 19.6 kilobytes (see also Table 2).

To sign/verify one needs to evaluate the action of either of bk and bka
−1 for every 1 ≤ k ≤ t, which means

that for each k and each prime li one needs to compute up to ntB isogenies of degree `i. Hence, the total number
of isogeny computations is upper bounded by (nt)2B. The quadratic dependence on nt is a major inconvenience.

3 In the scheme and analysis I actually apply rejection sampling to the case bk = 0. It doesn’t really matter one way or the other.
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Algorithm 1 KeyGen
Input: B, l1, . . . .ln, E
Output: sk = e and pk = EA
1: e← [−B,B]n

2: EA = (
∏n
i=1 l

ei
i ) ∗ E

3: return sk = e, pk = EA

Algorithm 2 Sign
Input: msg, (E,EA), e
Output: (z1, . . . , zt), (b1, . . . , bt)
1: for k = 1, . . . , t do
2: fk ← [−(nt+ 1)B, (nt+ 1)B]n

3: Ek = (
∏n
i=1 l

fk,i

i ) ∗ E
4: end for
5: b1‖ · · · ‖bt = H(j(E1), . . . , j(Et),msg)
6: for k = 1, . . . , t do
7: if bk = 0 then
8: zk = fk
9: else

10: zk = fk − e
11: end if
12: if zk 6∈ [−ntB, ntB]n then
13: return ⊥
14: end if
15: end for
16: return σ = (z1, . . . , zt, b1, . . . , bt)

Algorithm 3 Verify
Input: msg, (E,EA), σ
Output: Valid/Invalid
1: Parse σ as (z1, . . . , zt, b1, . . . , bt)
2: for k = 1, . . . , t do
3: if bk = 0 then
4: Ek = (

∏n
i=1 l

zk,i

i ) ∗ E
5: else
6: Ek = (

∏n
i=1 l

zk,i

i ) ∗ EA
7: end if
8: end for
9: b′1‖ · · · ‖b′t = H(j(E1), . . . , j(Et),msg)

10: if (b′1, . . . , b′t) = (b1, . . . , bt) then
11: return Valid
12: else
13: return Invalid
14: end if

Fig. 1. The basic signature scheme using rejection sampling.
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For example, taking (n, t, B) = (74, 128, 5) gives around 228 isogeny computations in signature/verification. We can
make t small using the techniques in later sections, but one needs n large unless B is going to get very large. So
even going down to t = 8 still has signatures requiring around 220 isogeny computations. The acceptance probability
estimate from Lemma 2 is very close to the true value: for (n, t, B) = (74, 128, 5) then the true acceptance probability
is approximately 0.36790, while e−1 ≈ 0.36788.

We discuss some possible optimisations in Appendix A, including the idea to use discrete Gaussians instead of
uniform distributions for the vectors.

3.3 Security proof

We now prove security of the basic scheme in the random oracle model against a classical adversary. The proof
technique is the standard approach that uses the forking lemma. In this section we do not consider quantum adversaries,
or give a proof in the quantum random oracle model (QROM). A proof in the QROM follows from the approach in
Appendix B.

First we need to discuss some subtleties about the distribution of ideal classes coming from the key generation and
signing algorithms.

Definition 1. Fix distinct ideals l1, . . . , ln. For B ∈ N, consider the random variable a which is the ideal class of∏n
i=1 l

ei
i over a uniformly random e ∈ [−B,B]n. Define DB to be the distribution on Cl(O) corresponding to this

random variable. Define MB to be an upper bound on the probability, over a, b sampled from DB , that a ≡ b.

In other words,DB is the output distribution of the public key generation algorithm. Understanding the distribution
DB is non-trivial in general.4 For small B and n (so that (2B + 1)n � #Cl(O)) we expect DB to be the uniform
distribution on a subset of Cl(O) of size (2B + 1)n. For fixed n and large enough B it should be the case that DB is
very close to the uniform distribution on Cl(O). A full study of the distribution DB is beyond the scope of this paper,
but is a good problem for future work.

For the isogeny problem to be hard for public keys we certainly need MB ≤ 1/2λ, where λ is the security
parameter. In the proof we will need to use MntB , since the concern is about the auxiliary curves generated during the
signing algorithm. We do not require these curves to be uniformly sampled, but in practice we can certainly assume
that MntB = O(1/

√
p). In any case, it is negligible in the security parameter.

Problem 2. Let notation be as in the key generation protocol of the scheme. Given (E,EA), where EA = a ∗ E for
some ideal a =

∏n
i=1 l

ei
i and where the exponent vector e = (e1, . . . , en) is uniformly sampled in [−B,B]n ⊆ Zn,

to compute any ideal equivalent to a.

Depending on how close to uniform is the distributionDB , this problem may or may not be equivalent to Problem 1
and may or may not have a random self-reduction. Nevertheless, we believe this is a plausible assumption.

We recall the forking lemma, in the formulation of Bellare and Neven [4].

Lemma 3. (Bellare and Neven [4]) Fix an integer Q ≥ 1. Let A be a randomized algorithm that takes as input
h1, . . . , hQ ∈ {0, 1}t and outputs (J, σ) where 1 ≤ J ≤ Q with probability ℘. Consider the following experiment:
h1, . . . , hQ are chosen uniformly at random in {0, 1}t; A(h1, . . . , hQ) returns (I, σ) such that I ≥ 1; h′I , . . . , h

′
Q are

chosen uniformly at random in {0, 1}t;A(h1, . . . , hI−1, h′I , . . . , h′Q) returns (I ′, σ′). Then the probability that I ′ = I

and h′I 6= hI is at least ℘(℘/Q− 1/2t).

Theorem 1. In the random oracle model, the basic signature scheme of Figure 1 is unforgeable under a chosen
message attack under the assumption that Problem 2 is hard.

4 Even the analogous problem of understanding the distribution of
∏
i `
ei
i (mod q), where `i are small primes and q is some

integer, is an open problem in general.
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Proof. Consider a polynomial-time adversary A against the signature scheme. So A takes a public key, makes queries
to the hash function H and the signing oracle, and outputs a forgery of a signature with respect the public key.

Let (E,EA = a ∗ E) be an instance of Problem 2. The simulator runs the adversary A with public key (E,EA).
Suppose the adversary A makes at most Q (polynomial in the security parameter) queries in total to either the

random oracle H or the signing oracle. We now explain how the simulator responds to these queries. The simulator
maintains a list, initially empty, of pairs (x,H(x)) for each value of the random oracle that has been defined.
Sign queries: To answer a Sign query on message msg the simulator chooses t uniformly chosen bits b1, . . . , bt ∈
{0, 1}. When bk = 0 the simulator randomly samples zk ← [−ntB, ntB]n and sets bk =

∏n
i=1 l

zk,i

i and computes
Ek = bk∗E, just like in the real signing algorithm. When bk = 1 the simulator chooses a random ideal ck =

∏n
i=1 l

zk,i

i

for zk,i ∈ [−ntB, ntB] and computes Ek = ck∗EA. By Lemma 1, the values j(Ek) and zk are distributed exactly as in
the real signing algorithm. We program the random oracle (update the hash list) so that H(j(E1), . . . , j(Et),msg) :=
b1 · · · bt, unless the random oracle has already been defined on this input in which case the simulation fails and outputs
⊥. The probability of failure is at most Q/M t

ntB , where MntB is defined in Definition 1 to be an upper bound on the
probability of a collision in the sampling of ideal classes. Note that Q/M t

ntB is negligible. Assuming the simulation
does not fail, the output is a valid signature and is indistinguishable from signatures output by the real scheme in the
random oracle model.
Hash queries: To answer a random oracle query on input x the simulator checks if (x, y) already appears in the list,
and if so returns y. Otherwise the simulator chooses uniformly at random y ∈ {0, 1}t and sets H(x) := y and adds
(x, y) to the list.

Eventually A outputs a forgery (msg, σ = (z1, . . . , zt, b1 · · · bt)) that passes the verification equation. Define
ck =

∏
i l
zk,i

i . The proof now invokes the Forking Lemma (see Bellare-Neven [4]). The adversary is replayed with
the same random tape and the exact same simulation, except that one of the hash queries is answered with a different
binary string. With non-negligible probability the adversary outputs a forgery σ = (z′1, . . . , z

′
t, b
′
1 · · · b′t) for the same

message msg and the same input (j(E1), . . . , j(Et),msg) to H , but a different output string b′1 · · · b′t. Let k be an index
such that bk 6= b′k (without loss of generality bk = 0 and b′k = 1). Then the ideal classes ck and c′k in the two signatures

are such that j(ck ∗ E) = j(c′k ∗ EA) and so c′kc
−1
k =

∏
i l
z′k,i−zk,i

i is a solution to the problem instance. ut

We make two observations about the use of the forking lemma. First, as always, the proof is not tight since
if the adversary succeeds with probability ε then the simulator solves the computational problem with probability
proportional to ε2. Second, the hash output length t in Lemma 3 only appears in the term 1/2t, so it suffices to take
t = λ. There may be situations where a larger hash output is needed; for more discussion about hash output sizes we
refer to Neven, Smart and Warinschi [33].

4 Smaller sigs

The signature size of the basic scheme is very large, since the sigma protocol that underlies the identification scheme
only has single bit challenges. In practice we need t ≥ 128, which means signatures are very large. To get shorter
signatures it is natural to try to increase the size of the challenges. In this section we sketch an approach to obtain s-bit
challenge values for any small integer s ∈ N, by trading the challenge size with the public key size. In the next section
we explain how to shorten the public keys again.

The basic idea is to have public keys (EA,0 = a0 ∗ E, . . . , EA,2s−1 = a2s−1 ∗ E). For each 0 ≤ m < 2s we
choose em ← [−B,B]n and set EA,m = (

∏n
i=1 l

em,i

i ) ∗E. The signing algorithm for user A chooses t random ideals
bk =

∏n
i=1 l

fk,i

i and computes Ek = bk ∗E, as before. Now we have s-bit challenges b1, . . . , bt ∈ {0, 1, . . . , 2s − 1}.
For each 1 ≤ k ≤ t the signer computes zk = fk − ebk , which corresponds to the ideal class ck = bka

−1
bk

and the
verifier can check that j(Ek) = j(ck ∗ EA,bk).

A signature consists of one hash value, plus t vectors zk with entries of size bounded by ntB, i.e., a total of
λ+ tdn log(2ntB+1)e bits, similar to the previous section. But now for security we now only require ts ≥ λ. Taking,
say, λ = 128 and s = 16 can mean t as low as 8, and so only 8 vectors need to be transmitted as part of the signature,
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giving signatures of well under one kilobyte (see Table 3). Of course the public key now includes 216 j-invariants
(elements of Fp) which would be around 4 megabytes, and key generation is also 216 times slower.

As far as we can tell, this idea cannot be applied to the schemes of Yoo et al [42] or Galbraith et al [22].

4.1 Security

A trivial modification to the proof of Theorem 1 can be applied in this setting. But note that the forking lemma produces
two signatures such that bk 6= b′k for some index k. Hence from a successful forger we derive two ideal classes ck
and c′k such that j(ck ∗ EA,bk) = j(c′k ∗ EA,b′k). It follows that (c′k)

−1ck is an ideal class corresponding to an isogeny
EA,bk → EA,b′k . Hence the computational assumption underlying the scheme is the following.

Problem 3. Let notation be as in the key generation protocol of the scheme. Consider a set of 2s elliptic curves
{EA,0, . . . , EA,2s−1}, all of the formEA,m = am∗E for some ideal am =

∏n
i=1 l

em,i

i where the exponent vectors em
are uniformly sampled in [−B,B]n ⊆ Zn. The “one out of 2s” isogeny problem is to compute an ideal corresponding
to any isogeny EA,m → EA,m′ for some m 6= m′.

We believe this problem is hard for classical and quantum computers. One can easily obtain a non-tight reduction
of this problem to Problem 2. However, if the ideals am are not sampled uniformly at random from Cl(O) then we do
not know how to obtain a random-self-reduction for this problem, which prevents us from having a tight reduction to
Problem 2.

Theorem 2. In the random oracle model, the signature scheme of this section is unforgeable under a chosen message
attack under the assumption that Problem 3 is hard.

The proof of this theorem is almost identical to the proof of Theorem 1 and so is omitted.

4.2 Variant based on a more natural problem

Problem 3 is a little un-natural. It would be more pleasing to prove security based on Problem 1 or Problem 2. We now
explain that one can prove security based on Problem 1, under an assumption about uniform sampling of ideal classes.

Suppose in this section that the distributionDB of Definition 1 has negligible statistical distance (Renyi divergence
can also be used here) from the uniform distribution. This assumption is reasonable for bounded n and very large B;
but we leave for future work to determine whether practical parameters for isogeny crypto can be obtained under this
constraint.

Lemma 4. Let parameters be such that the statistical distance between DB and the uniform distribution on Cl(O) is
negligible. Suppose that all the prime ideals li have norm bounded as O(log(p)) Then given an algorithm that runs in
time T and solves Problem 3 with probability ε, there is an algorithm to solve Problem 1 with time T +O(2s log(p)5)
and success probability ε/2.

Proof. Let A be an algorithm for Problem 3, and let (E,EA = a ∗ E) be an instance of Problem 1.
Choose random ideal classes b0, . . . , b2s−1 (chosen as bm =

∏n
i=1 l

ui,m

i for 0 ≤ m < 2s and ui,m ∈ [−B,B]) and
computeE′A,m = bm∗E for 0 ≤ m < 2s−1 andE′A,m = bm∗EA for 2s−1 ≤ m < 2s. Choose a random permutation
π on {0, 1, . . . , 2s − 1} and construct the sequence EA,m = E′A,π(m). This computation takes O(2s log(p)5) bit
operations, since n and B and the norm `i of li are all O(log(p)). Note that these curves are all uniformly sampled in
the isogeny class, and so there is no way to distinguish whether any individual curve has been generated from E or
EA. This is where the subtlety about distributions appears: it is crucial that the curves derived from the pair (E,EA)
are indistinguishable from the curves in Problem 3.

Now run the algorithm A on this input. Since the input is indistinguishable from a real input, A runs in time T and
succeeds with probability ε. In the case of success, we have an ideal c corresponding to an isogeny EA,m → EA,m′

for some m 6= m′. With probability 1/2 we have that one of the curves, say EA,m, is known to the simulator as b ∗E
and the other (i.e., EA,m′ ) is known as b′ ∗ EA. If this event occurs then we have cb ∗ E = b′ ∗ EA (or vice versa) in
which case cb(b′)−1 is a solution to the original instance. ut
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Note that this proof introduces an extra 1/2 factor in the success probability, but this is not a serious issue since
the security proof isn’t tight anyway.

Using this result, the following theorem is an immediate consequence of Theorem 2.

Theorem 3. Let parameters be such that the statistical distance between DB and the uniform distribution on Cl(O)
is negligible. In the random oracle model, the signature scheme of this section is unforgeable under a chosen message
attack under the assumption that Problem 1 is hard.

We have a tight proof in Appendix B based on a less standard assumption. It is an open problem to have a tight
proof and also the security based on Problem 1.

4.3 Reducing storage for private keys

Rather than storing all the private keys am for 0 ≤ m < 2s one could have generated them using a pseudorandom
function as PRF(seed, i) where seed is a seed and i is used to generate the i-th private key (which is an integer exponent
vector). The prover only needs to store seed and can then recompute the private keys as needed. Of course, during key
generation one needs to compute all the public keys, but during signing one only needs to determine t ≈ 8 private keys
(although this adds a cost to the signing algorithm).

5 Smaller public keys

The approach of Section 4 gives signatures that are potentially quite small, but at the expense of very large public keys.
In some settings (e.g., software signing or licence checks) large public keys can be easily accommodated, while in other
settings (e.g., certificate chains) it makes no sense to shorten signatures at the expense of public key size. In this section
we explain how to use techniques from hash-based signatures to compress the public key while also maintaining
compact signatures. The key idea is to use a Merkle tree [31] with leaves the public curves EA,0, . . . , EA,2s−1, and
use the tree root (a single hash value) as public key. However, the security of plain Merkle trees depends on collision
resistance of the underlying hash function, thus requiring hashes of size at least twice the security parameter. Instead,
we use a modified Merkle tree, as introduced in the hash-based signatures XMSS-T [24] and SPHINCS+ [5], whose
security relies on the second preimage resistance of a keyed hash function.

Let λ be a security parameter, and let n,B, s, t, p be as in the previous sections; we assume that dlog pe > 2λ, as
this is the case in any secure instantiation. Let the following (public) functions be given:

– PRFsecret : {0, 1}λ × {0, 1}s → [−B,B]n,
– PRFkey : {0, 1}λ × {0, 1}s+1 → {0, 1}λ,
– PRFmask : {0, 1}λ × {0, 1}s+1 → {0, 1}dlog pe three pseudo-random functions, and
– M : {0, 1}λ × {0, 1}dlog pe → {0, 1}λ a keyed hash function (where we think of the first λ bits as the key and the

second dlog pe bits as the input).

Finally, let PK.seed and SK.seed be two random seeds; as the names suggest, PK.seed is part of the public key,
while SK.seed is part of the secret key. Like in Section 4.3, we define the secret ideals am =

∏n
i=1 l

em,i

i , where
em = PRFsecret(SK.seed,m), and the public curves EA,m = am ∗ E, for 0 ≤ m < 2s.

We set up a hash tree by defining hl,u for 0 ≤ l ≤ s and 0 ≤ u < 2s−l. First we set

hs,u =M
(
PRFkey(PK.seed, 2

s + u), j(EA,u)⊕ PRFmask(PK.seed, 2
s + u)

)
for 0 ≤ u < 2s, where ⊕ denotes bitwise XOR. Now, for any 0 ≤ l < s, the rows of the hash tree are defined as

hl,u =M
(
PRFkey(PK.seed, 2

l + u), (hl+1,2u‖hl+1,2u+1)⊕ PRFmask(PK.seed, 2
l + u)

)
.

Finally, the public key is set to the pair (PK.seed, h0,0).
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To prove that a value EA,u is in the hash tree, we use its authentication path. That is the list of the hash values
hl,u′ , for 1 ≤ l ≤ s, occurring as siblings of the nodes on the path from hs,u to the root. The proof in [24, Appendix B]
shows that having M output λ-bit hashes gives a (classical) security of approximately 2λ. See [24,5] for more details.

Typically, in hash-based signatures the secret key would only contain SK.seed, since all secret and public values
can be reconstructed from it at an acceptable cost. However, in our case recomputing the leaves of the hash tree (2s

class group actions) is much more expensive than recomputing the internal nodes (2s − 1 hash function evaluations),
thus we set the secret key to the tuple (SK.seed, hs,0, . . . , hs,2s−1). This is a considerably large secret key, e.g., around
1 megabyte when λ = 128 and s = 16, but it is offset by a more than tenfold gain in signing time. Also note that the
values hs,u can (and will) be leaked without any loss in security, they are indeed part of the uncompressed public key,
thus they are more formally treated as auxiliary signer data, rather than as part of the secret key.

To sign we proceed like in Section 4, but the signature now needs to contain additional information. The signer
computes the random ideals b1, . . . , bt and the associated curves E1, . . . , Et to obtain the challenges b1, . . . , bt. Then,
using PRFsecret, they obtain the secrets ab1 , . . . , abt , recompute the public curves EA,b1 , . . . , EA,bt , and the ideals
ci = a−1bi bi. The signature is made of the ideals c1, . . . , ct, the curves EA,b1 , . . . , EA,bt , and their authentication paths
in the hash tree. The verifier computes Ei as ci ∗ EA,bi , obtains the challenges b1, . . . , bt, and uses them to verify
the authentication paths. Hence, the signature contains t ideals represented as vectors in [−ntB, ntB]n, t curves
represented by their j-invariants, and t authentication paths of length s. The t authentication paths eventually merge
before the root, thus some hash values will be repeated. We can save some space by only sending the hash values
once, in some standardized order: the worst case happening when no path merges before level log(t), no more than
t(s− log(t)) hash values need to be sent as part of the signature. In total, a signature requires at most tdn log(2ntB+
1)e+ t log(p) + tλ(s− log(t)) bits. For our parameters t = 8, s = 16 and λ = 128, this adds about 2 kilobytes to the
signature of Section 4. Note that this is still an order of magnitude smaller than the best hash-based signature schemes,
while being stateless, and also still of the same size as the shortest known lattice-based signatures.

Concerning security, the proofs of the previous sections, and that of [24, Appendix B] can be combined to prove
the following theorem.

Theorem 4. The signature scheme of this section is unforgeable under a chosen message attack under the following
assumptions:

– Problem 3;
– The multi-function multi-target second-preimage resistance of the keyed hash function M ;
– The pseudo-randomness of PRFsecret;

when the hash function H and the pseudo-random functions PRFkey and PRFmask are modeled as random oracles
(ideal random functions).

Like in the previous section, it is possible to replace Problem 3 with Problem 1, modulo some additional assump-
tions. Both proofs are straightforward adaptations, and we omit them for conciseness. As already noted, the proofs are
not tight, however the part concerned with the second-preimage resistance of M is.

6 Performance

Table 2 gives some estimates of cost for the schemes presented in Sections 3, 4, 5. The rows of the table are divided
into three sections.

The first section of the table (under the heading “Exact”) reports the parameter sizes, as a number of bits, already
computed in each section, where λ is the security parameter, n,B and s are as described previously (in Section 3
we have s = 1). To simplify the expressions we assume that all hash functions have λ-bit outputs, and we set the
parameter t = λ/s.

In all sections we give a rough lower bound for the performance of the keygen and sign/verify algorithms, in terms
of Fp-operations. The lower bound only takes into account the number of operations needed to compute and evaluate
the isogeny path, and so the exact cost may be higher. The operation count is based on the following estimates.
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1. Based on [13,35], we estimate that computing/evaluating an isogeny of degree `, when given a kernel point, costs
O(`) operations.

2. By the prime number theorem
∑n
i=1 `i ∼

1
2n

2 ln(n), and the estimate is very accurate already for n > 3.

Putting these estimates together, an ideal with exponent vector within [−C,C]n can be evaluated in O(Cn2 log(n))
operations on average and in the worst case. We note that the above estimate is not likely to be the dominant part in
the computation, especially asymptotically, as scalar multiplications of elliptic points are likely to dominate. However,
estimating this part of the algorithm is much more complex and dependent on specific optimizations, we thus leave a
more precise analysis for future work.

The second section of rows in the table (under the heading “Asymptotic”) gives asymptotic estimates in terms only
of the security parameter λ, and the parameter of s of Section 4. We now give a brief justification for the parameter
restrictions in terms of λ.

1. Kuperberg’s algorithm is believed to require at least 2
√

log(N) operations in a group of size N . In our case N >√
p. Taking log(p) > 2λ2 gives √

log(N) >
√

1
2 log(p) >

√
1
22λ

2 = λ.

So we choose log(p) ≈ 2λ2.
2. To resist a classical meet-in-the-middle attack we need (2B + 1)n > 22λ. For security against Tani’s quantum

algorithm we may require (2B + 1)n > 23λ, and so n log(B) ∼ 3λ, although the work of Adj et al. [2] suggests
this may be too cautious. In any case, we have n log(B) = Ω(λ).

3. Assuming that one wants to optimize for (asymptotic) performance, the best choice is then to take B = O(1) and
n = Ω(λ), which means that the prime ideals li have norm `i = Ω(n log(n)) = Ω(λ log(λ)). Note that this is
compatible with the requirement log(p) > 2λ2, since

∑n
i=1 ln(`i) ∼ n ln(n) ∼ λ log(λ)2.

4. Instead of measuring performance in terms Fp-operations, here we measure them in terms of bit-operations. After
substitutingB and n, this adds a factor λ2 log(λ) in front of the lower bound if using fast (quasi-linear complexity)
modular arithmetic.

Note that our asymptotic choices forbid the key space from covering the whole class group. If the conditions of
Problem 1 are wanted, different choices must be made for n and B. In this case it is best to choose primes of the form
p + 1 = 4

∏n
i=1 `i, as in CSIDH [10]. Then, n log(n) ∼ log(p) ∼ 2λ2 and so we have n ∼ λ2/ log(λ). To have a

distribution of ideal classes close to uniform we need (2B+1)n � √p and so log(B) > log(
√
p)/n ∼ log(λ). Hence

B >
√
n, making all asymptotic bounds considerably worse.

The third block of rows (under the heading “CSIDH”) gives concrete sizes obtained by fixing λ = 128 and s = 16
and using the CSIDH-1 primitive, i.e., (n,B, log(p)) = (74, 5, 500). We estimate these parameters to correspond to
the NIST-1 security level. Note that we are able to get smaller signatures at similar cost, for example see the various
options in Table 3 (and one can also potentially consider s > 16, such as (s, t) = (21, 6)). However, for Table 2 we
choose the same parameters as [10] so that we are able to refer to their running-time computations. We estimate real-
world performance, using as baseline the worst-case time for one isogeny action in CSIDH. In [10], for an exponent
vector in [−B,B]n, this time is reported to be 0.1 seconds. Accordingly, we multiply this time by the size of the
exponent vector to obtain our estimates. Note that the estimates are very rough, as they purposely ignore other factors
such as hash tree computations and rejections in signing. However the results in [24,5] show that hash trees much
larger than ours can be computed in a fraction of the time we need to compute isogenies. On the other hand, rejections
that happen during signing multiply the running time by a small constant, typically less than 3 on average.
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Rejection sampling (Section 3.2) Shorter signatures (Section 4) Smaller public keys (Section 5)
Exact

Sig size λdn log(2nλB + 1)e+ λ λ
s
dn log(2nλ

s
B + 1)e+ λ λ

s
(dn log(2nλ

s
B + 1)e+ log p) + λ(λ− λ

s
log λ

s
)

PK size log p 2s log p 2λ
SK size n log(2B + 1) λ (2s + 1)λ
Performance (Fp-ops)
→ keygen Ω

(
Bn2 log(n)

)
Ω
(
2sBn2 log(n)

)
Ω
(
2sBn2 log(n)

)
→ sign/verify Ω

(
λ2Bn3 log(n)

)
Ω
(
(λ/s)2Bn3 log(n)

)
Ω
(
(λ/s)2Bn3 log(n)

)
Asymptotic

Sig size O(λ2 log(λ)) O((λ2/s) log(λ)) O(λ3/s)
PK size 2λ2 2s+1λ2 2λ
SK size 3λ λ (2s + 1)λ
Performance (bits)
→ keygen Ω

(
λ4 log(λ)2

)
Ω
(
2sλ4 log(λ)2

)
Ω
(
2sλ4 log(λ)2

)
→ verify Ω

(
λ7 log(λ)2

)
Ω
(
(λ7/s2) log(λ)2

)
Ω
(
(λ7/s2) log(λ)2

)
CSIDH

Performance (bits)
Sig size 19600 B 944 B 3092 B
PK size 63 B 4032 KB 32 B
SK size 32 B 16 B 1024 KB
Est. keygen time 0.1 s 6554 s 6554 s
Est. sig/verify time 123136 s 474 s 474 s

Table 2. Parameter size and performance of the various signature protocols. Parameters taken in the asymptotic analysis are: log p ∼ 2λ2, n log(B) ∼ 3λ,B = O(1).
The entry CSIDH is for parameters (λ, n,B, log2(p)) = (128, 74, 5, 16, 500) with (s, t) = (1, 128) in the first column and (s, t) = (16, 8) in the second two
columns. All logarithms are in base 2.
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n B dlog2(2ntB + 1)e Signature size (bytes)
20 3275 20 416
28 293 17 492
33 124 16 544
37 55 15 571
46 22 14 660

Table 3. Parameter choices for small signatures, with (s, t) = (16, 8), at around 128-bit classical security level. Signature size is
ntdlog2(2ntB + 1)e+ 128 bits.

7 Conclusions

We have given a signature scheme suitable for the CSIDH isogeny setting. This solves an unresolved problem in
Stolbunov’s thesis. We have also shown how to get shorter signatures by increasing the public key size. We do not
know how to obtain a similar tradeoff between public key size and signature size for the schemes of Yoo et al [42] or
Galbraith et al [22] based on the SIDH setting.
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A Variants

One can consider various ideas to get more efficient (i.e., faster signing and verification) or more compact signatures.

1. Following Stolbunov one could use higher powers for the smaller primes.
This is definitely worth looking at. We could take B = 1 for some of the larger primes (e.g., the ones bigger than
50), and then use much larger values for B for the primes 3, 5, 7 etc. If Bi is the bound used for li then the full
key space is

∏
i(2Bi + 1).

The main problem is that a change to a singleBi makes very little difference to the key size. For example, doubling
B1 only adds roughly +1 to the logarithm of the product, which is the security parameter. Hence the main factor
in having a large security parameter is using lots of distinct primes li, which automatically means a high cost for
signing and verification since almost all fk,i will be non-zero.

2. A natural idea is to sample the exponents ei from a discrete Gaussian distribution (or perhaps some other distribu-
tion), as has been done with lattice signatures. We could hope that this leads to shorter signatures.
Suppose the ei are sampled from a discrete Gaussian distribution with parameter σ, so that the standard deviation
is close to σ. The entropy of the continuous Gaussian distribution with standard deviation σ is log(2πeσ2)/2.
For example, take n = 50, s = 16, t = 8 and choose σ = 5 (so almost all values ei will lie in [−15, 15] but
occasionally one is larger than this. Then

n log(2πeσ2)/2 ≈ 218

so determining the ei using a meet-in-the-middle strategy should require at least 2109 iterations, and realistically
much more than this since organising a search based on the entropy is hard to do. For post-quantum security we
might want to replace 2λ with 3λ in the above.
We following the methods and results of Lyubashevsky [30]. Lemma 4.3(3) of [30] shows we can bound the norm
‖e‖ by T = 2σ

√
n. Now we need to choose the fk,i from a discrete Gaussian with parameter σ′, so that the

distribution of fk,i − ei is close (within statistical distance, though we could probably use Renyi divergence to
get better results) to the discrete Gaussian with parameter σ′. Lemma 4.6 of [30] suggests that σ′ = T

√
log(n) is

sufficient, though in practice one usually chooses σ′ = αT where α ≈ 10. In our case we need to apply rejection
sampling to all t vectors zk simultaneously, which leads to an additional factor.
For our choices n = 50, t = 8, σ = 5 this may give σ′ ≈ 3000. If we use some kind of compact coding
of integers distributed as Gaussians [16] then signature size would be at best nt log(2πe(σ′)2)/2 bits. For our
example parameters this would be between 7000-8000 bits, or around one kilobyte again.
The best approach seems to be to sample e uniformly with coefficients in [−B,B], while sampling f from a discrete
Gaussian. Taking n = 74, B = 5 we have ‖e| ≤ T = 28 with high probability. Taking σ′ = 10

√
tT ≈ 790

potentially gives signatures of around 900 bytes.
The numbers in this section may be updated in response to further experiments and optimizations.

3. One might try to trade-off the size of exponent vectors and the rejection probability. Lemma 2 is about sampling
fk,i ∈ [−(nt + 1)B, (nt + 1)B] and gives probability of acceptance ≈ 1/e ≈ 0.368. A simple modification of
the proof shows that, for any u > 0, if one samples fk,i ∈ [−u(nt + 1)B, u(nt + 1)B] and accepts only those
zk,i ∈ [−untB, untB], then the acceptance probability is approximately e−1/u.
Taking u = 1/2 roughly halves the time spent on computing bk ∗ E, but changes the acceptance probability to
e−2 ≈ 0.135; overall this is worse than the original proposal since 2e−2 ≈ 0.271 < e−1. Similarly, taking u = 2
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doubles the time spent on computing bk ∗E, but changes the acceptance probability to e−1/2 ≈ 0.607; again this
is worse on average than our proposal.
Indeed, if T is the cost for nt computations of bk ∗ E then the expected cost of signing is uTe1/u. Since f(x) =
xe1/x is minimised at x = 1 it follows that taking u = 1 is the optimal choice.

B Tight security reduction based on lossy keys

We now explain how to implement lossy keys in our setting. This allows us to use the methods of Kiltz, Lyubashevsky
and Schaffner [26] (that build on work of Abdalla, Fouque, Lyubashevsky and Tibouchi [1]) to obtain signatures from
lossy identification schemes. This approach gives a tight reduction in the quantum random oracle model.

Here’s the basic idea to get a lossy scheme, using uniform distributions for simplicity (one can also use discrete
Gaussians in this setting): Take a very large prime p so that the ideal class group is very large, but use relatively small
values for n and B so that {a =

∏n
i=1 l

ei
i : |ei| ≤ B} is a very small subset of the class group.5 The real key is

(E,EA = a ∗E) for such an a. The lossy key is (E,EA) where EA is a uniformly random curve in the isogeny class.
Further, choose parameters so that the fk,i are also such that {b =

∏n
i=1 l

fk,i

i : |fk,i| ≤ (nt+ 1)B} is a small subset
of the ideal class group. In the case of a real key, the signatures define ideals that correspond to “short” paths from E
or EA to a curve E . In the case of a lossy key, then such ideals do not exist, as for a curve E it is not the case that there
is a short path from E to E AND a short path from EA to E .

In the remainder of this section we develop these ideas.

B.1 Background definitions

We closely follow Kiltz, Lyubashevsky and Schaffner [26]. A canonical identification scheme consists of algorithms
(IGen,P1,P2,V) and a set ChSet. The randomised algorithm IGen(1λ) outputs a key pair (pk, sk). The deterministic
algorithm P1 takes sk and randomness r1 and computes (W,St) = P1(sk, r1). Here St denotes state information
to be passed to P2. A challenge c is sampled uniformly from ChSet. The deterministic algorithm P2 then computes
Z = P2(sk,W, c,St, r2) or ⊥, where r2 is the randomness. The output ⊥ corresponds to an abort in the “Fiat-Shamir
with aborts” paradigm. We require that V(pk,W, c, Z) = 1 for a correctly formed transcript (W, c, Z).

We assume, for each value of λ, there are well-defined setsW and Z , such thatW contains all W output by P1

and Z contains all Z output by P2. The scheme is commitment recoverable if, given c and Z = P2(sk,W, c,St), there
is a unique W ∈ W such that V(pk,W, c, Z) = 1 and this W can be efficiently computed from (pk, c, Z)

A canonical identification scheme is εzk-naHVZK non-abort honest verifier zero knowledge if there is a simulator
that given only pk outputs (W, c, Z) whose distribution has statistical distance at most εzk from the output distribution
of the real protocol conditioned on P2(sk,W, c,St, r2) 6=⊥.

A lossy identification scheme is a canonical identification scheme as above together with a lossy key generation
algorithm LossIGen, which is a randomised algorithm that on input 1λ outputs pk. An adversary against a lossy
identification scheme is a randomised algorithm A that takes an input pk and returns 0 or 1. The advantage of an
adversary against a lossy identification scheme is

AdvLOSS(A) =
∣∣Pr (A(pk) = 1 : pk ← LossIGen(1λ)

)
− Pr

(
A(pk) = 1 : pk ← IGen(1λ)

)∣∣ .
The two security properties of a lossy identification scheme are:

1. There is no polynomial-time adversary that has non-negligible advantage AdvLOSS in distinguishing real and lossy
keys.

5 It might even be possible to consider working with subgroups, in the quantum algorithm case where the class group structure is
known.
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2. The probability, over (pk,W, c) where pk is an output of the lossy key generation algorithm LossIGen, W ← W
and c← ChSet, that there is some Z ∈ Z with V(pk,W, c, Z) = 1, is negligible.
This will allow to show that no unbounded quantum adversary can pass the identification protocol (or, once
we have applied Fiat-Shamir, forge a signature) with respect to a lossy public key, because with overwhelming
probability no such signature exists.

B.2 Scheme
We can re-write our scheme in this setting, see Figure 2. Here we are assuming that E is a supersingular elliptic curve
with j(E) ∈ Fp where p satisfies the constraint

√
p > (4(nt+ 1)B + 1)n2λ (3)

This bound is sufficient for the keys to be lossy.

Algorithm 4 IGen

Input: B, l1, . . . .ln, E
Output: sk = e and pk = EA
1: e← [−B,B]n

2: EA = (
∏n
i=1 l

ei
i ) ∗ E

3: return sk = e, pk = EA

Algorithm 5 P1

Input: (E,EA), r1
Output: W = (j(E1), . . . , j(Et)), St = (f1, . . . , ft)
1: for k = 1, . . . , t do
2: fk ← [−(nt+ 1)B, (nt+ 1)B]n using PRF(r1)

3: Ek = (
∏n
i=1 l

fk,i

i ) ∗ E
4: end for
5: return (j(E1), . . . , j(Et)), (f1, . . . , ft)

Algorithm 6 P2

Input: (E,EA), e, W , c, St, r2
Output: Z = (z1, . . . , zt)
1: Parse c as b1‖ · · · ‖bt
2: for k = 1, . . . , t do
3: if bk = 0 then
4: zk = fk
5: else
6: zk = fk − e
7: end if
8: if zk 6∈ [−ntB, ntB]n then
9: return ⊥

10: end if
11: end for
12: return σ = (z1, . . . , zt)

Algorithm 7 V

Input: (E,EA), (W, c, Z)
Output: Valid/Invalid
1: Parse W as (j1, . . . , jt)
2: Parse c as b1‖ · · · ‖bt
3: Parse Z as (z1, . . . , zt)
4: for k = 1, . . . , t do
5: if bk = 0 then
6: Ek = (

∏n
i=1 l

zk,i

i ) ∗ E
7: else
8: Ek = (

∏n
i=1 l

zk,i

i ) ∗ EA
9: end if

10: end for
11: if (j1, . . . , jt) = (j(E1), . . . , j(Et)) then
12: return Valid
13: else
14: return Invalid
15: end if

Fig. 2. The identification protocol. Note that P1 does not need sk, while P2 does not use r2 (it really is deterministic) and does not
use W . Also note that the scheme is commitment recoverable.

Now we state the generic deterministic signature construction from Kiltz, Lyubashevsky and Schaffner [26]: The
key generation and verification algorithms are the same as Figure 2. The signing algorithm is given in Figure 3. Since
the identification protocol is commitment recoverable, the signatures can be shortened to be (c, Z) instead of (W,Z).
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Algorithm 8 Deterministic Signing algorithm
Input: (pk, sk), K, msg
Output: σ
1: l = 0, Z =⊥
2: while Z =⊥ and l ≤ l0 do
3: (W,St) = P1(sk,PRFK(0,msg, l))
4: c = H(W,msg)
5: Z = P2(sk,W, c,St,PRFK(1,msg, l))
6: end while
7: if Z =⊥ then
8: return ⊥
9: else

10: return (W,Z)
11: end if

Fig. 3. The deterministic signature scheme of Kiltz, Lyubashevsky and Schaffner [26]. Here K is a PRF key that is internal to the
signing algorithm and is not required for verification.

B.3 Proofs

We now explain that our identification scheme satisfies the required properties, from which the security of the signature
scheme will follow from Theorem 3.1 of [26].

We make some heuristic assumptions.

Heuristic 1: There are at least
√
p supersingular elliptic curves with j-invariant in Fp.

This assumption, combined with the bound
√
p � (4(nt + 1)B)n of equation (3), implies that the curves Ek

constructed by algorithm P1 are a negligibly small proportion of all such curves.
Heuristic 2: Each choice of fk ∈ [−(nt+ 1)B, (nt+ 1)B]n gives a unique value for j(Ek).

This is extremely plausible given equation (3). It implies that the min-entropy of the values W output by P1 is
extremely high (more than sufficient for the security proofs).

Under heuristic assumption 1, we now show that the keys are lossy. The lossy key generator outputs a pair (E,EA)
where E and EA are randomly sampled supersingular elliptic curves with j(E), j(EA) ∈ Fp. To implement this one
constructs a supersingular curve with j-invariant in Fp and then runs long pseudorandom walks in the isogeny graph
until the uniform mixing bounds imply that EA is uniformly distributed.

Lemma 5. Let parameters satisfy the bound of equation (3) and suppose heuristic 1 holds. Let (E,EA) be a key
output by the lossy key generator. Then with overwhelming probability there is no ideal a =

∏n
i=1 l

fi
i such that

f ∈ [−2(nt+ 1)B, 2(nt+ 1)B]n and j(EA) = j(a ∗ E).

Proof. If fi ∈ [−2(nt+1)B, 2(nt+1)B] then there are 4(nt+1)B+1 choices for each fi and so at most (4(nt+1)B+
1)n choices for a. Given E it means there are at most that many j(a ∗ E). Since EA is uniformly and independently
sampled from a set of size at least

√
p > (4(nt+1)B+1)n2λ, the probability that j(EA) lies in the set of all possible

j(a ∗ E) is at most 1/2λ, which is negligible. ut

We consider the following decisional problem. It would be an interesting problem to give a “search to decision”
reduction in this context (showing that if one can solve Problem 4 then one can solve Problem 2). This seems to be
non-trivial.
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Problem 4. Consider two distributions on pairs (E,EA) of supersingular ellptic curves over Fp. Let D1 be the out-
put distribution of the algorithm IGen. Let D2 be the uniform distribution (i.e., output distribution of the lossy key
generation algorithm). The decisional short isogeny problem is to distinguish the two distributions when given one
sample.

The next result shows the second part of the security property for lossy keys.

Lemma 6. Assume heuristic 1. Let pk be an output of the lossy key generation algorithm LossIGen. Let W ← W be
an output of P1. Let c← ChSet be a uniformly chosen challenge. Then the probability that there is some Z ∈ Z with
V(pk,W, c, Z) = 1, is negligible.

Proof. Let pk = (E,EA) be an output of LossIGen(1λ). By Lemma 5 we have that with overwhelming probability
j(EA) 6= j(a ∗ E) for all ideals a of the form in Lemma 5. Let W = (j(E1), . . . , j(Et)) be an element ofW , so that
each Ek is of the form ak ∗ E where ak =

∏
i l
fk,i

i for fk,i ∈ [−(nt+ 1)B, (nt+ 1)B].
Let c ← ChSet be a uniformly chosen challenge, which means that c 6= 0 with overwhelming probability. Then

there is some k with ck 6= 0 and so if Z was to satisfy the verification algorithm V(pk,W, c, Z) = 1 then it would
follow that zk gives an ideal ck such that j(Ek) = j(ck ∗ EA). From ak ∗ E ∼= Ek ∼= ck ∗ EA it follows that
EA ∼= (c−1k ak) ∗E. But c−1k ak =

∏
i l
fk,i−zk,i

i , which violates the claim about EA corresponding to Lemma 5. Hence
Z does not exist and the result is proved. ut

Note that Heuristic 2 also shows that there are “unique responses” in the sense of Definition 2.7 of [26] (not just
computationally unique, but actually unique). But we won’t need this for the result we state.

We now discuss no-abort honest verifier zero-knowledge (naHVZK). This is simply the requirement that there is a
simulator that produces transcripts (W, c, Z) that are statistically close to real transcripts output by the protocol.

Lemma 7. The identification scheme (sigma protocol) of Figure 2 has no-abort honest verifier zero-knowledge.

Proof. This is simple to show in our setting (due to the rejection sampling): Instead of choosing W = (j((
∏
i l
f1,i
i ) ∗

E) . . . , j((
∏
i l
fk,i

i ) ∗ E)), then c, and then Z = (z1, . . . , zk) the simulator chooses Z first, then c, and then sets, for
1 ≤ k ≤ t, jk = j((

∏
i l
zk,i

i )∗E) when ck = 0 and jk = j((
∏
i l
zk,i

i )∗EA) when ck = 1. SettingW = (j1, . . . , jk) it
follows that (W, c, Z) is a transcript that satisfies the verification algorithm. Further, the distribution of triples (W, c, Z)
is identical to the distribution from the real protocol since, for any choice of the private key, this choice of W would
have arisen for some choice of the original vectors fk. ut

Theorem 5. Assume Heuristic 1, and the hardness of Problem 2. Then the signature scheme (applying Figure 3 to
Figure 2) has UF-CMA security in the quantum random oracle model, with a tight security reduction.

Proof. See Theorem 3.1 of [26]. In particular this theorem gives a precise statement of the advantage. ut

One can then combine this proof with the optimisations of Sections 4 and 5, to get a compact signature scheme
with tight post-quantum security based on a merger of the assumptions corresponding to Problems 3 and 4.

C Using the relation lattice

This section explains an alternative solution to the problem of representing an ideal class without leaking the private
key of the signature scheme. This variant can be considered if a quantum computer is available during system setup.
Essentially, this is the scheme from Stolbunov’s thesis (see Section 3.1), which can be used securely once the relation
lattice is known.

Let {l1, . . . , ln} be a set of O-ideals that generates Cl(O). Define

L = {(x1, . . . , xn) ∈ Zn :

n∏
i=1

lxi
i ≡ (1)}.
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Then L is a rank n lattice with volume equal to #Cl(O). We call this the relation lattice.
A basis for this lattice can be constructed in subexponential time using classical algorithms [23,6]. However, of

interest to us is that a basis can be constructed in probabilistic polynomial time using quantum algorithms: define
f : Zn → Cl(O) by f(x1, . . . , xn) =

∏n
i=1 l

xi
i , then f can be evaluated in polynomial time [36,12], and finding

a basis for L = ker f is an instance of the Hidden Subgroup Problem for Zn, which can be solved in polynomial
time using Kitaev’s generalization of Shor’s algorithm [27]. The classical approach is not very interesting since the
underlying computational assumption is only subexponentially hard for quantum computers, but it might make sense
in a certain setting. The quantum case would make sense in a post-quantum world where a quantum computer can be
used to set up the system parameters for the system and then is not required for further use. It might also be possible
to construct (E, p) such that computing the relation lattice is efficient (e.g., constructing E so that Cl(End(E)) has
smooth order), but we do not consider such approaches in this paper.

For the remainder of this section we assume that the relation lattice is known. Let {x1, . . . ,xn} be a basis for L
Let F = {

∑n
i=1 : uixi : −1/2 ≤ ui < 1/2} be the centered fundamental domain of the basis of L. Then there is a

one-to-one correspondence between F ∩Zn and Cl(O) by (z1, . . . , zn) ∈ F ∩Zn 7→
∏n
i=1 l

zi
i . In practice one prefers

a basis for L so that all vectors in F have relatively short norm, which is achieved by taking the basis to be as short and
close to orthogonal as possible. Hence one applies lattice basis reduction to obtain as “nice” a basis for L as possible.

Note that, given a basis {x1, . . . ,xn} for L and a vector z = (z1, . . . , zn) ∈ Zn one can efficiently compute the
unique vector in F ∩ (z+ L) using the Babai rounding method [3].

Returning to Stolbunov’s signature scheme, the solution to the problem is then straightforward: Given a =
∏n
i=1 l

ei
i

and bk =
∏n
i=1 l

fk,i

i , a representation of bka−1 is obtained by computing the vector z′ = fk − e = (fk,i − ei) and
then using Babai rounding to get the unique vector z in F ∩ (z′ + L). The vector z is sent as the response to the k-th
challenge. Since bk is a uniformly chosen ideal class, the class bka−1 is also uniformly distributed as an ideal class,
and hence the vector z ∈ F ∩ Zn is uniformly distributed and carries no information about the private key.

Lemma 8. If bk is a uniformly chosen ideal class then the vector z ∈ F ∩ Zn corresponding to fk − e is uniformly
distributed.

Proof. For fixed e the vector z depends only on the ideal class of bk. But bk is uniform and independent of e and not
known to verifier. ut

If the basis for L is sufficiently nice then one can obtain good bounds on the size of the vectors z; for example
some details are given in [8].

One final remark: In the security proof we need to be able to simulate the signing oracle, and hence we need to
produce uniformly chosen vectors z ∈ F ∩ Zn. The simplest way to do this is to uniformly sample z′ in a large box
in Zn and then apply Babai rounding as above. It is an open problem to obtain rigorous results about the uniform
distribution of ideal classes in this setting.

Lemma 9. Let B ∈ N. Let D1 be the distribution on ideal classes obtained by computing
∏n
i=1 l

xi
i over uniformly

sampled xi ∈ [−B,B]. Suppose the statistical distance betweenD1 and the uniform distribution on Cl(O) is bounded
by ε. Let D2 be the distribution on F ∩ Zn defined by uniformly sampling vectors x ∈ [−B,B]n and applying Babai
rounding. Let U be the uniform distribution on F ∩ Zn. Then the statistical distance between D2 and U is at most ε.

Proof. The distribution of ideal classes
∏n
i=1 l

xi
i in Cl(O) is the same as the distribution of vectors in F∩Zn obtained

by Babai rounding of x = (x1, . . . , xn). Hence, if one distribution is close to uniform then so is the other. ut

One can then prove a variant of Theorem 1 and all the theorems in the paper. This approach should give rise to
much smaller signatures – close to optimal size given the subexponential security of the class group action problem.
But we do not consider this topic further in this paper as it requires a quantum computer during key generation.
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