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Abstract. In this work, we propose two IPE schemes achieving both adaptive security and full attribute-hiding
in the prime-order bilinear group, which improve upon the unique existing result satisfying both features from
Okamoto and Takashima [Eurocrypt ’12] in terms of efficiency.

– Our first IPE scheme is based on the standard k-LIN assumption and has shorter master public key and shorter
secret keys than Okamoto and Takashima’s IPE under weaker DLIN = 2-LIN assumption.

– Our second IPE scheme is adapted from the first one; the security is based on the XDLIN assumption (as
Okamoto and Takashima’s IPE) but now it also enjoys shorter ciphertexts.

Technically, instead of starting from composite-order IPE and applying existing transformation, we start from an
IPE scheme in a very restricted setting but already in the prime-order group, and then gradually upgrade it to our
full-fledged IPE scheme. This method allows us to integrate Chen et al.’s framework [Eurocrypt ’15] with recent new
techniques [TCC ’17, Eurocrypt ’18] in an optimized way.

1 Introduction

Attribute-based encryption (ABE) is an advanced public-key encryption system supporting fine-grained
access control [31, 20]. In an ABE system, an authority publishes a master public key mpk for encryption and
issues secret keys to users for decryption; a ciphertext for message m is associated with an attribute x while
a secret key is associated with a policy f , a boolean function over the set of all attributes; when f (x) = 1,
the secret key can be used to recover message m. The basic security requirement for ABE is message-hiding:
an adversary holding a secret key with f (x) = 0 cannot infer any information about m from the ciphertext;
furthermore, this should be ensured when the adversary has more than one such secret key, which is called
collusion resistance.

In some applications, an additional security notion attribute-hiding [10, 22] is desirable, which concerns
the privacy of attribute x instead of message m. In the literature, there are two levels of attribute-hiding: (1)
weak attribute-hiding is against an adversary who holds multiple secret keys with f (x) = 0; (2) full attribute-
hiding is against an adversary holding any kind of secret keys including those with f (x) = 1. Nowadays we
have seen many concrete ABE schemes [20, 30, 7, 26, 24, 33, 25, 9, 18, 19, 21]. Based on the seminal dual
system method [32], we even reached generic frameworks for constructing and analyzing ABE [4, 35, 11, 2, 5,
3, 6, 12] in bilinear groups. Many of them, including both concrete ABE schemes and generic frameworks,
have already achieved weak attribute-hiding [9, 18, 19, 21, 11, 12].

However it is much harder to obtain ABE with the full attribute-hiding feature. In fact, all known
schemes only support so-called inner-product encryption (IPE), in which both ciphertexts and secret keys
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are associated with vectors and the decryption procedure succeeds when the two vectors has zero inner-
product. Furthermore, almost all of them are selectively or semi-adaptively secure which means the adver-
sary has to choose the vectors associated with the challenge ciphertext (called challenge vector/attribute)
before seeing mpk or before seeing any secret keys [10, 22, 29, 36]. Both of them are much weaker than
the standard adaptive security (i.e., the one we have mentioned in the prior paragraph) where the choice
can be made at any time. (Note that Wee achieved simulation-based security in [36].) What’s worse, some
schemes [10, 22] are built on the composite-order group, on which group operations are slower and
more memory space is required to store group elements. The best result so far comes from Okamoto and
Takashima [27]: the IPE scheme is adaptively secure and fully attribute-hiding based on external decisional
linear assumption4 (XDLIN) in efficient prime-order bilinear groups.

1.1 Our Results

In this work, we propose two IPE schemes in prime-order bilinear groups achieving both adaptive security
and full attribute-hiding, which improve upon Okamoto and Takashima’s IPE scheme [27] in terms of space
efficiency:

– Our first construction is proven secure under standard k-Linear (k-LIN) assumption. When instantiating
with k = 2 (i.e., DLIN assumption), it enjoys shorter master public key and secret keys under weaker
assumption than Okamoto and Takashima’s IPE, but we have slightly larger ciphertexts. With parameter
k = 1 (i.e., SXDH assumption), we can also achieve shorter ciphertexts but at the cost of basing the
security on a stronger assumption.

– Our second construction is proven secure under the XDLIN assumption, which is stronger than DLIN

assumption. This gives another balance point between (space) efficiency and assumption. Now we can
get better efficiency than Okamoto and Takashima’s IPE in terms of master public key, ciphertext and
secret keys without sacrificing anything — Okamoto and Takashima also worked with XDLIN.

A detailed comparison is provided in Table 1.

Table 1. Comparison among our two IPE schemes and Okamoto and Takashima’s IPE [27]. All schemes are built on an asymmetric
prime-order bilinear group (p,G1,G2,GT ,e : G1 ×G2 → GT ). In the table, |G1|, |G2|, |GT | denote the sizes of group elements in
G1,G2,GT , respectively.

scheme |mpk| |ct| |sk| assumption

OT12 [27] (12n +16)|G1|+ |GT | (5n +1)|G1|+ |GT | 11|G2| XDLIN

Sec. 3.4 ((2k2 +k)n +3k2 +2k)|G1|+k|GT | ((2k +1)n +k +1)|G1|+ |GT | (3k +2)|G2| k-LIN

(10n +16)|G1|+2|GT | (5n +3)|G1|+ |GT | 8|G2| DLIN

(3n +5)|G1|+ |GT | (3n +2)|G1|+ |GT | 5|G2| SXDH

Sec. 4.4 (8n +14)|G1|+2|GT | (4n +3)|G1|+ |GT | 7|G2| XDLIN

1.2 Our Technique in Composite-Order Groups

As a warm-up, we present a scheme in asymmetric composite-order bilinear groups. Here, we will rely on
composite-order groups whose order is the product of four primes; this is different from the settings of

4 The construction is originally based on the decisional linear assumption in symmetric prime-order bilinear group. In this paper,
we will work with asymmetric bilinear group where their proof will be translated into a proof based on the external decisional
linear assumption. Note that XDLIN assumption is stronger than DLIN assumption.
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adaptively secure ABE schemes and selectively secure full attribute-hiding inner product encryption where
it suffices to use two primes.

The scheme. Assume an asymmetric composite-order bilinear group G = (N ,GN , HN ,GT ,e : GN × HN →
GT ) where N = p1p2p3p4. Let g1,h14 be respective random generators of subgroups Gp1 , Hp1p4 . Pick
α,u, w1, . . . , wn ←ZN . We describe an IPE scheme for n dimensional space over ZN as follows.

mpk : g1, g u
1 , g w1

1 , . . . , g wn
1 , e(g1,h14)α

sky : hα+(y1w1+···+yn wn )r
14 , hr

14

ctx : g s
1, g s(u·x1+w1)

1 , . . . , g s(u·xn+wn )
1 , H(e(g1,h14)αs) ·m

(1)

where x = (x1, . . . , xn) ∈ Zn
N and y = (y1, . . . , yn) ∈ Zn

N . The construction is adapted from Chen et al. IPE [11]
(without attribute-hiding feature) by embedding it into groups with four subgroups. This allows us to carry
out the proof strategy introduced by Okamoto and Takashima [27], which involves a non-trivial extension
of the standard dual system method [32]. We only give a high-level sketch for the proof below but show the
complete game sequence in Fig 1 for reference.

As is the case for adaptively secure ABE [32, 35], we will rely on the following private-key one-ciphertext
one-key fully attribute-hiding inner product encryption scheme in the proof of security. Here, g3,h3 denote
the respective generators for the subgroups of order p3.

sky : hα+y1w1+···+yn wn

3

ctx : g u·x1+w1
3 , . . . , g u·xn+wn

3 , gα3 ·m
(2)

Note that the scheme satisfies (simulation-based) information-theoretic security in the selective setting,
which immediately yields (indistinguishability-based) adaptive security via complexity leveraging.

In the proof of security (outlined in Fig 1), we will first switch the ciphertext to having just a p2p3p4-
component via the subgroup decision assumption. At the beginning of the proof, all the secret keys will
have a p4-component, and at the end, all the secret keys will have a p2-component; throughout, the secret
keys will also always have a p1-component but no p3-components at the beginning or the end. To carry
out the change in the secret keys from p4-components to p2-components, we will switch the keys one by
one. For the switch, we will introduce a p3-component into one secret key and then invoke security of the
above private-key one-ciphertext one-key scheme in the p3-subgroup. It is important here that throughout
the hybrids, at most one secret key has a p3-component.

1.3 Our Technique in Prime-Order Groups

Assume a prime-order bilinear group G = (p,G1,G2,GT ,e : G1 × G2 → GT ) and let [·]1, [·]2, [·]T denote
the entry-wise exponentiation on G1,G2,GT , respectively. Naively, we simulate a composite-order group
whose order is the product of four primes using vectors of dimension 4k “in the exponent” under k-LIN

assumption. That is, we replace

g1,h14 7→ [A1]1, [B14]2

where A1 ← Z4k×k
p ,B14 ← Z4k×2k

p . However, the resulting IPE scheme is less efficient than Okamoto and
Takashima’s scheme [27]. Instead, we will show that it suffices to use

A1 ←Z(k+1)×k
p , B14 ←Z(2k+1)×k

p (3)
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Game ct κth sk: Hp1× ? Remark

g s(u· ? +wi )
1 g s(u· ? +wi )

2 g s(u· ? +wi )
3 g s(u· ? +wi )

4 κ< j κ= j κ> j

0 xi ,b — Hp4 Real game

1 — xi ,b Hp4 p1 7→ p2p3p4 in G

2. j −1 — xi ,0 xi ,b xi ,b Hp2 Hp4 Hp4

2. j −1.1 — xi ,0 xi ,b xi ,b Hp2 Hp3 Hp4 p4 7→ p3 in H

2. j −1.2 — xi ,0 xi ,0 xi ,b Hp2 Hp3 Hp4 private-key scheme in p3

2. j −1.3 — xi ,0 xi ,0 xi ,b Hp2 Hp2 Hp4 p3 7→ p2 in H

3 — xi ,0 xi ,0 xi ,0 Hp2 statistical in p3, p4

Fig. 1. Game sequence for composite-order IPE. In the table, x0 = (x1,0, . . . , xn,0) and x1 = (x1,1, . . . , xn,1) are the challenge vectors;
b ∈ {0,1} is the secret bit we hope to hide against the adversary. The gray background highlights the difference between adjacent
games. The column “ct” shows the structure of the challenge ciphertext on four subgroups whose generators are g1, g2, g3, g4, while
the next column gives the subgroup where every secret keys lie in. In the last column, the notation “p1 7→ p2p3p4 in G” is indicating
the subgroup decision assumption stating that Gp1 ≈c Gp2p3p4 .

Then, with the correspondence by Chen et al. [11, 16, 13]:

α 7→ k ∈Zk+1
p u, wi 7→ U,Wi ∈Z(k+1)×(2k+1)

p ∀i ∈ [n]

s 7→ s ∈Zk
p , r 7→ r ∈Zk

p

g s
1 7→ [s>A>

1 ]1, hr
14 7→ [B14r]2

g sw
1 7→ [s>A>

1 W]1, hwr
14 7→ [WB14r]2

(4)

we have the following prime-order IPE scheme:

mpk : [A>]1, [A>U]1, [A>W1]1, . . . , [A>Wn]1, [A>k]T

sky : [k+ (y1 ·W1 +·· ·+ yn ·Wn)B14r]2, [B14r]2

ctx : [s>A>
1 ]1, [s>A>

1 (x1 ·U+W1)]1, . . . , [s>A>
1 (xn ·U+Wn)]1, [c>k]T ·m

(5)

Note that, with matrices A1 ∈Z(k+1)×k
p and B ∈Z(2k+1)×k

p , we only simulate two and three subgroups, respec-
tively, rather than four subgroups; meanwhile some of them are simulated as low-dimension subspaces.
Although it has become a common optimization technique to adjust dimensions of subspaces, it is not
direct to justify that we can work with less subspaces. In fact, these optimizations are based on elaborate
investigations of the proof strategy sketched in Section 1.2. In the rest of this section, we explain our method
leading to the optimized parameter shown in (3).

Our Translation. We start from an IPE scheme in a very restricted setting and then gradually upgrade it to
our full-fledged IPE scheme in the prime-order group. In particular, we follow the roadmap

private-key one-key IPE
Step 1−−−−−→

[11, 13]
private-key IPE

Step 2−−−−−→
[11, 36]

public-key IPE

The private key one-key IPE corresponds to scheme (2) over p3-subgroup (cf. Game2. j−1.2 in Fig 1). In Step 1,
we move from one-key to multi-key model using the technique from [13], which is related to the argument
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just after we change ciphertext in proof of scheme (1) (cf. Game2.0 to Game2.q and Game3 in Fig 1). In
Step 2, we move from private-key to public-key setting with the compiler in [36], which is related to the
change of ciphertext at the beginning of the proof (cf. Game1 in Fig 1). By handling these proof techniques
underlying the proof sketched in Section 1.2 (cf. Fig 1) one by one as above, we are able to integrate Chen et
al.’s framework [11] with recent new techniques [36, 13] in an optimized way.

Private-key IPE in One-key Setting. We start from a private-key IPE where the ciphertext is created from msk
rather than mpk. We also consider a weaker one-key model where the adversary can get only one secret key.
Pick α,u, w1, . . . , wn ←R Zp and let message m ∈Zp . We give the following private-key IPE over Zp :

msk : α,u, w1, . . . , wn

sky : α+ (y1 ·w1 +·· ·+ yn ·wn)

ctx : x1 ·u +w1, . . . , xn ·u +wn ,α ·m

(6)

Analogous to scheme (2), the scheme satisfies (simulation-based) information-theoretic security in the
selective setting (cf. [36]). By the implication from simulation-based security to indistinguishability-based
security and standard complexity leveraging technique, we have the following statement: For adaptively
chosen x0 = (x1,0, . . . , xn,0) ∈ Zn

p , x1 = (x1,1, . . . , xn,1) ∈ Zn
p and y = (y1, . . . , yn) ∈ Zn

p satisfying either 〈x0,y〉 6=
0∧〈x1,y〉 6= 0 or 〈x0,y〉 = 〈x1,y〉 = 0 and for all b ∈ {0,1}, we have

{ x1,b ·u +w1, . . . , xn,b ·u +wn , y1 ·w1 +·· ·+ yn ·wn }

≡ { x1,1−b ·u +w1, . . . , xn,1−b ·u +wn , y1 ·w1 +·· ·+ yn ·wn }
(7)

Note that the statement here is different from that used in Fig 1 (where xi ,0 is in the place of xi ,1−b). Looking
ahead, this choice is made to employ the “change of basis” technique when moving from one-key to multi-
key model (see the next paragraph).

Private-key IPE in Multi-key Setting. To handle multiple keys revealed to the adversary, we employ Chen
et al.’s prime-order generic framework5 [11] based on the dual system method [32] to scheme (6). The
framework works with prime-order finite cyclic group G on which the k-LIN assumption holds. Let [·] denote
the entry-wise exponentiation on G . In order to avoid collusion of multiple secret keys, we will re-randomize
each secret key [8, 34, 31] using fresh vector d ← span(B1) where B1 ← Z

(k+1)×k
p , which supports standard

dual system method [32] with a hidden subspace B2 ←Zk+1
p . For this purpose, we need to do the following

“scalar to vector” substitutions:

u ∈Zp 7→ u ∈Z1×(k+1)
p and wi ∈Zp 7→ wi ∈Z1×(k+1)

p ∀i ∈ [n].

Then the re-randomization is done by multiplying u and each wi in secret keys by d and moving them from
Zp to G . This yields the following private-key IPE:

msk : α,u,w1, . . . ,wn

sky : [α+ (y1 ·w1 +·· ·+ yn ·wn)d], [d] where d ← span(B1)

ctx : x1 ·u+w1, . . . , xn ·u+wn , [α] ·m

(8)

To carry out the non-trivial extension by Okamoto and Takashima [27] which involves three subgroups of
HN (cf. game sequence from Game2.0 to Game2.q ), we increase the dimension of vectors u,w1, . . . ,wn , d in

5 Note that, with their framework, we can work out a public key IPE directly, but we focus on the technique handling multiple
secret keys at the moment.
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secret keys by k (i.e., from k + 1 to 2k + 1) as in [13] such that the support of d can accommodate three
subspaces defined by

(B1,B2,B3) ←Z(2k+1)×k
p ×Z2k+1

p ×Z(2k+1)×k
p

where B1,B2,B3 play the roles similar to p4, p2, p3-subgroup respectively. Following the proof strategy
in [13] and statement (7) for the one-key scheme (6), we can change secret keys and the challenge ciphertext
revealed to the adversary into the following form:

sky : [α+ (y1 ·w1 +·· ·+ yn ·wn)d], [d] where d ← span(B1, B2 )

ct∗ : x1,b ·u(1) + x1,1−b ·u(2) +x1,b ·u(3) +w1, . . . , xn,b ·u(1) + xn,1−b ·u(2) +xn,b ·u(3) +wn , [α] ·m

where u(1) (resp. u(2), u(3)) is a random vector orthogonal to span(B2,B3) (resp. span(B1,B3), span(B1,B2)).
Finally, by the “change of basis” commonly appeared in the proof with dual pairing vector space [23, 27]
(and a simple statistical argument), we claim that ct∗ has the same distribution as

x1,0 ·u0 +x1,1 ·u1 +w1, . . . , xn,0 ·u0 +xn,1 ·u1 +wn , [α] ·m

where u0,u1 ←Z
1×(2k+1)
p . This means that ct∗ hides b and scheme (8) is fully attribute-hiding.

Note that the support of randomness d (after the change) is span(B1,B2) rather than span(B2), which
simulates p2-subgroup in the composite-order scheme (1). This is crucial to derive more efficient IPE
scheme but slightly complicates the final argument above where “change of basis” technique has to be used
to deal with xi ,b ·u(1) interplaying with B1-component in sky.

(Public-key) IPE scheme. To upgrade our private-key IPE to public-key IPE, we will employ the “private-
key to public-key” compiler in [36]. The compiler relies on bilinear groups (p,G1,G2,GT ,e : G1 ×G2 → GT )
in which the k-LIN assumption holds. In detail, we do the following “vector to matrix”/“scalar to vector”
substitution for entries in msk and secret keys:

u,w1, . . . ,wn ∈Z1×(2k+1)
p 7→ U,W1, . . . ,Wn ∈Z(k+1)×(2k+1)

p

α ∈Zp 7→ k ∈Zk+1
p

and publish them as parts of mpk in the form of

[A>U]1, [A>W1]1, . . . , [A>Wn]1, [A>k]T where A ←Z(k+1)×k
p .

In the ciphertext, we translate u,w1, . . . ,wn into [c>U]1, [c>W1]1, . . . , [c>Wn]1 where c ← span(A) and translate
[α]2 into [c>k]T . Finally, secret keys are now moved to group G2. This results in the following IPE scheme:

mpk : [A]1, [A>U]1, [A>W1]1, . . . , [A>Wn]1, [A>k]T

sky : [k+ (y1 ·W1 +·· ·+ yn ·Wn)d]2, [d]2 where d ← span(B1)

ctx : [c>]1, [x1 ·c>U+c>W1]1, . . . , [xn ·c>U+c>Wn]1, [c>k]T ·m where c ← span(A)

(9)

Note that the translation does not involve (B1,B2,B3) we just introduced.
To prove the security of the resulting public-key IPE scheme, we first show that we can change the

support of c from span(A) to Zk+1
p by the following statement implied by the k-LIN assumption:

([A]1, [c ← span(A)]1 ) ≈c ( [A]1, [c ←Zk+1
p ]1 ).

Since (A | c) is full-rank with overwhelming probability, we can see that

m̃sk= (A>U,A>W1, . . . ,A>Wn ,A>k ) and msk∗ = (c>U,c>W1, . . . ,c>Wn ,c>k )
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are distributed independently. Then the security of scheme (9) can be reduced to that of private-key
scheme (8) by observations: (i) m̃sk is necessary for generating mpk in scheme (9); (ii) we can view a
ciphertext in scheme (9) as a ciphertext of our private-key IPE scheme under master secret key msk∗; (iii)
a secret key in scheme (9) can be produced from a secret key of private-key IPE scheme (8) under master
secret key msk∗ with the help of m̃sk.

How to Shorten the Ciphertext. The ciphertext size of our IPE scheme (9) mainly depends on the width
of matrix U and Wi , which is further determined by the dimensions of subspaces defined by B1,B2,B3.
Therefore, in order to reduce the ciphertext size, we employ the “dimension compress” technique used
in [16]. The basic idea is to let B1 and B3 “share some dimensions” and finally decrease the width of U
and Wi , the cost is that we have to use the XDLIN assumption. Compared with our first scheme, a qualitative
difference is that the private-key variant now works with bilinear maps. This is not needed when we work
with the k-LIN assumption in the first scheme.

Organization. The paper is organized as follows. In section 2, we review some basic notions. The next two
sections, Section 3 and Section 4, will be devoted to our two IPE schemes, respectively. In both sections, we
will first develop a private-key scheme and then transform it to the public-key version as [36].

2 Preliminaries

Notation. Let A be a matrix over Zp . We use span(A) to denote the column span of A, use basis(A) to denote
a basis of span(A), and use (A1|A2) to denote the concatenation of matrices A1,A2. By span(A>), we are
indicating the row span of A>. We let In be the n-by-n identity matrix and 0 be a zero matrix of proper
size. Given an invertible matrix B, we use B∗ to denote its dual satisfying B>B∗ = I.

2.1 Inner-product encryption

Algorithms. An inner-product encryption (IPE) scheme consists of four algorithms (Setup,KeyGen,Enc,Dec):

Setup(1λ,n) → (mpk,msk). The setup algorithm gets as input the security parameter λ and the dimension
n of the vector space. It outputs the master public key mpk and the master key msk.

KeyGen(msk,y) → sky. The key generation algorithm gets as input msk and a vector y. It outputs a secret
key sky for vector y.

Enc(mpk,x,m) → ctx. The encryption algorithm gets as input mpk, a vector x and a message m. It outputs
a ciphertext ctx for vector x.

Dec(ctx,sky) → m. The decryption algorithm gets as a ciphertext ctx for x and a secret key sky for vector y
satisfying 〈x,y〉 = 0. It outputs message m.

Correctness. We require that for all vectors x,y satisfying 〈x,y〉 = 0 and all m, it holds that

Pr[Dec(ctx,sky) = m] = 1,

where (mpk,msk) ← Setup(1λ,n), ctx ←Enc(mpk,x,m) and sky ←KeyGen(msk,y).

7



Security. For a stateful adversary A, we define the advantage function

AdvIPE
A (λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b′ :

(mpk,msk) ← Setup(1λ,n);

(x0,x1,m0,m1) ←AKeyGen(msk,·)(mpk);

b ←R {0,1}; ct∗ ←Enc(mpk,xb ,mb);

b′ ←AKeyGen(msk,·)(ct∗)

− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
with the following restrictions on all queries y that A submitted to KeyGen(msk, ·):

– if m0 6= m1, we require that 〈x0,y〉 6= 0∧〈x1,y〉 6= 0;
– if m0 = m1, we require that either 〈x0,y〉 6= 0∧〈x1,y〉 6= 0 or 〈x0,y〉 = 〈x1,y〉 = 0.

An IPE scheme is adaptively secure and fully attribute-hiding if for all PPT adversaries A, the advantage
AdvIPE

A (λ) is a negligible function in λ.

Private-key IPE. In a private-key IPE, theSetup algorithm does not output mpk; and theEnc algorithm takes
msk instead of mpk as input. The adaptive security and full attribute-hiding can be defined analogously
except that A only gets ct∗ and has access to KeyGen(msk, ·). The advantage function is denoted by
AdvIPE*

A (λ). Accordingly, we may call the standard IPE public-key IPE.

2.2 Prime-order groups and matrix Diffie-Hellman assumptions

A group generator G takes as input security parameter λ and outputs group descriptionG= (p,G1,G2,GT ,e),
where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p, and e : G1 ×G2 → GT is a non-
degenerate bilinear map. We require that group operations in G1, G2 and GT as well the bilinear map e are
computable in deterministic polynomial time with respect to λ. Let g1 ∈G1, g2 ∈G2 and gT = e(g1, g2) ∈GT

be the respective generators. We employ the implicit representation of group elements: for a matrix M over
Zp , we define [M]1 = g M

1 , [M]2 = g M
2 , [M]T = g M

T , where exponentiations are carried out component-wise.
Given A and [B]2, we let A¯ [B]2 = [AB]2; for [A]1 and [B]2, we let e([A]1, [B]2) = [AB]T .

We reivew the matrix Diffie-Hellman (MDDH) assumption on G1 [14]. The MDDHk,` assumption on G2

can be defined analogously and it is known that k-LIN ⇒ MDDHk,` [14].

Assumption 1 (MDDHk,` Assumption) Let `> k ≥ 1. We say that the MDDHk,` assumption holds with respect
to G if for all PPT adversaries A, the following advantage function is negligible in λ.

Adv
MDDHk,`

A
(λ) := |Pr[A(G, [M]1, [Ms]1) = 1]−Pr[A(G, [M]1, [u]1) = 1] |

where G←G(1λ), M ←Z`×k
p , s ←Zk

p and u ←Z`p .

We also use the external decisional linear (XDLIN) assumption on G2 [1]:

Assumption 2 (XDLIN Assumption) We say that the XDLIN assumption holds with respect to G if for all PPT
adversaries A, the following advantage function is negligible in λ.

AdvXDLIN
A (λ) := |Pr[A(G,D,T0 = [a3(s1 + s2)]2) = 1]−Pr[A(G,D,T1 ←G2) = 1] |

where G←G(1λ) and D = ( [a1, a2, a3, a1s1, a2s2]1, [a1, a2, a3, a1s1, a2s2]2 ) with a1, a2, a3, s1, s2 ←Zp .

3 Construction from k -LIN assumption

3.1 Preparation

Fix parameters `1,`2,`3 ≥ 1 and let ` := `1 +`2 +`3. We use basis

B1 ←Z
`×`1
p , B2 ←Z

`×`2
p , B3 ←Z

`×`3
p ,

8



and its dual basis (B∥
1,B∥

2,B∥
3) such that B>

i B∥
i = I (known as non-degeneracy) and B>

i B j = 0 if i 6= j (known as
orthogonality), as depicted in Fig 2.

B1 B2 B3

B∥
1 B∥

2 B∥
3

Fig. 2. Basis relations. Solid lines mean orthogonal, dashed lines mean non-degeneracy.

Assumption. We review the SD
G2
B1 7→B1,B2

assumption [15, 17, 13] as follows. By symmetry, one may permute
the indices for subspaces.

Lemma 1 (MDDH`1,`1+`2 ⇒ SD
G2
B1 7→B1,B2

). Under the MDDH`1,`1+`2 assumption in G2, there exists an effi-

cient sampler outputting random ([B1]2, [B2]2, [B3]2) (as described above) along with base basis(B∥
3) and

basis(B∥
1,B∥

2) (of arbitrary choice) such that the following advantage function is negligible in λ.

Adv
SD

G2
B1 7→B1,B2

A
(λ) := |Pr[A(G,D, [t0]1) = 1]−Pr[A(G,D, [t1]1) = 1] |

where

D := ( [B1]2, [B2]2, [B3]2,basis(B∥
1,B∥

2),basis(B∥
3) )

t0 ← span(B1), t1 ← span(B1,B2).

Facts. With basis (B1,B2,B3), we can uniquely decompose w ∈Z1×`
p as

w =∑
β∈[3] w(β) where w(β) ∈ span(B∥

β

>
).

In the paper, we use notation w(β) to denote the projection of w onto span(B∥
β

>
) and define w(β1β2) = w(β1) +

w(β2) for β1,β2 ∈ [3]. Furthermore, we highlight two facts: (1) For β ∈ [3], it holds that wBβ = w(β)Bβ; (2) For
all β∗ ∈ [3], it holds that {

w(β∗) , {w(β)}β 6=β∗
}≡ {

w∗ , {w(β)}β 6=β∗
}

when w ←Z1×`
p and w∗ ← span(B∥

β∗
>

).

3.2 Step One: A Private-key IPE in Prime-order Groups

Our first prime-order private-key IPE is described as follows. We use the basis described in Section 3.1 with
(`1,`2,`3) = (k,1,k). As mentioned in Section 1.2, we do not need bilinear map for this private-key IPE.
However, for our future use in Section 3.4, we describe the IPE in bilinear groups and note that only one of
source groups (i.e., G2) is used.

– Setup(1λ,n): RunG= (p,G1,G2,GT ,e) ←G(1λ). Sample B1 ←Z
(2k+1)×k
p and pick u,w1, . . . ,wn ←Z

1×(2k+1)
p ,

α←Zp . Output

msk= (G,α,u,w1, . . . ,wn ,B1 ).

9



– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈Zn
p . Sample r ←Zk

p and output

sky = (K0 = [α+ (y1 ·w1 +·· ·+ yn ·wn)B1r]2, K1 = [B1r]2 )

– Enc(msk,x,m): Let x = (x1, . . . , xn) ∈Zn
p and m ∈G2. Output

ctx = (C1 = x1 ·u+w1, . . . , Cn = xn ·u+wn , C = [α]2 ·m )

– Dec(ctx,sky): Parse ctx = (C1, . . . ,Cn ,C ) and sky = (K0,K1) for y = (y1, . . . , yn) ∈Zn
p . Output

m′ =C · ((y1 ·C1 +·· ·+ yn ·Cn)¯K1) ·K −1
0 .

Correctness. For all x,y ∈Zn
p satisfying 〈x,y〉 = 0, we have

((y1 ·C1 +·· ·+ yn ·Cn)¯K1) ·K −1
0

= [(y1 · (x1 ·u+w1)+·· ·+ yn · (xn ·u+wn))B1r]2 · [α+ (y1 ·w1 +·· ·+ yn ·wn)B1r]−1
2

= [〈x,y〉 ·uB1r]2 · [(y1 ·w1 +·· ·+ yn ·wn)B1r]2 · [α]−1
2 · [(y1 ·w1 +·· ·+ yn ·wn)B1r]−1

2 = [α]−1
2

where the last equality follows from the fact that 〈x,y〉 = 0. This readily proves the correctness.

3.3 Security of Private-key IPE

We will prove the following theorem.

Theorem 1. Under the k-LIN assumption, the private-key IPE scheme described in Section 3.2 is adaptively
secure and fully attribute-hiding (cf. Section 2.1).

Following [35, 11], we can reduce the case m0 6= m1 to the case m0 = m1 by arguing that an encryption for
mb is indistinguishable with an encryption for m0. Therefore it is sufficient to prove the following lemma
for m0 = m1.

Lemma 2. For any adversary A that makes at most Q key queries and outputs m0 = m1, there exists
adversaries B1,B2,B3 such that

AdvIPE*
A (λ) ≤Q ·AdvSD

G2
B1 7→B1,B3

B1
(λ)+Q ·AdvSD

G2
B3 7→B3,B2

B2
(λ)+Q ·AdvSD

G2
B1 7→B1,B3

B3
(λ)

and Time(B1),Time(B2),Time(B3) ≈Time(A).

Game sequence. We prove Lemma 2 via the following game sequence, which is summarized in Fig 3.

– Game0 is the real game in which the challenge ciphertext for xb = (x1,b , . . . , xn,b) is of the form

x1,b ·u+w1, . . . , xn,b ·u+wn , [α]2 ·m0.

Here b ← {0,1} is a secret bit.
– Game1 is identical to Game0 except that the challenge ciphertext is

x1,b ·u(13) + x1,1−b ·u(2) +w1, . . . , xn,b ·u(13) + xn,1−b ·u(2) +wn , [α]2 ·m0.

We claim that Game1 ≡Game0. This follows from facts that (1) secret keys will not reveal w(2)
1 , . . . ,w(2)

n ; (2)

for all x0,x1 ∈Zn
p and u(2) ∈ span(B∥

2

>
), it holds that

{ xi ,b ·u(2) +w(2)
i }i∈[n] ≡ { xi ,1−b ·u(2) +w(2)

i }i∈[n]

when w(2)
1 , . . . ,w(2)

n ← span(B∥
2

>
). See Lemma 4 for more details.
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Game ct κ-th sk (d ← span( ? )) Remark

?(1) +w(1)
i ?(2) +w(2)

i ?(3) +w(3)
i κ< j κ= j κ> j

0 xi ,b ·u B1 Real game

1 xi ,b ·u xi ,1−b ·u xi ,b ·u B1 statistical argument: {xi ,b · u(2) + w(2)
i }i∈[n] ≡

{xi ,1−b ·u(2) +w(2)
i }i∈[n]

2. j −1 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B2 B1 B1 Game2.0 =Game1, Game2. j =Game2. j−1.5

2. j −1.1 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B2 B1,B3 B1 SD
G2
B1 7→B1,B3

: [span(B1)]2 ≈c [span(B1,B3)]2 given

basis(B∥
2),basis(B∥

1,B∥
3)

2. j −1.2 xi ,b ·u xi ,1−b ·u xi ,1−b ·u B1,B2 B1,B3 B1 statistical argument: {xi ,b · u(3) + w(3)
i }i∈[n] ≡

{xi ,1−b ·u(3)+w(3)
i }i∈[n] given y1 ·w(3)

1 +·· ·+yn ·w(3)
n

2. j −1.3 xi ,b ·u xi ,1−b ·u xi ,1−b ·u B1,B2 B1,B2,B3 B1 SD
G2
B3 7→B3,B2

: [span(B3)]2 ≈c [span(B2,B3)]2 given

basis(B∥
1),basis(B∥

2,B∥
3)

2. j −1.4 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B2 B1,B2,B3 B1 statistical argument: analogous to Game2. j−1.2

2. j −1.5 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B2 B1,B2 B1 SD
G2
B1 7→B1,B3

: analogous to Game2. j−1.1

3 xi ,0 ·u0 +xi ,1 ·u1 xi ,b ·u B1,B2 u0,u1 ← Z
1×(2k+1)
p ; statistical argument: change

of basis w.r.t. span(B1,B2)

4 xi ,0 ·u0 +xi ,1 ·u1 B1,B2 statistical argument: analogous to Game2. j−1

Fig. 3. Game sequence for private-key IPE based on k-LIN assumption. The gray background highlights the difference between
adjacent games. Here, B1,B2,B3 play a role similar to the p4, p2, p3-subgroups in Fig 1.

– Game2. j for j ∈ [0, q] is identical to Game1 except that the first j secret keys are

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1,B2) .

We claim that Game2. j−1 ≈c Game2. j for j ∈ [q] and give a proof sketch later.

– Game3 is identical to Game2.q except that the challenge ciphertext is

x1,0 ·u(12)
0 +x1,1 ·u(12)

1 +x1,b ·u(3) +w1, . . . , xn,0 ·u(12)
0 +xn,1 ·u(12)

1 +xn,b ·u(3) +wn , [α]2 ·m0.

where u0,u1 ← Z
1×(2k+1)
p . We claim that Game2.q ≡ Game3. This follows from the “change of basis”

technique used in dual pairing vector spaces [23, 28]. In particular, we argue that

(

xi ,b︷︸︸︷
u(1) ,

xi ,1−b︷︸︸︷
u(2) ) ≡ (u(12)

0 ,u(12)
1 )

when u,u0,u1 and basis B1,B2 are chosen at random. Here we use the fact that randomness d in secret
keys reveals no information about the basis of span(B1,B2). See Lemma 5 for more details.

– Game4 is identical to Game3 except that the challenge ciphertext is

x1,0 ·u0 +x1,1 ·u1 +w1, . . . , xn,0 ·u0 +xn,1 ·u1 +wn , [α]2 ·m0

in which the adversary has no advantage in guessing b. We claim that Game3 ≡ Game4. The proof is
similar to that for Game1 ≡Game0. See Lemma 6 for more details.

Proving Game2. j−1 ≈c Game2. j . We now prove Game2. j−1 ≈c Game2. j and thus complete the proof for
Lemma 2. For all j ∈ [q], we employ the following game sequence, which has been included in Fig 3.
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– Game2. j−1.1 is identical to Game2. j−1 except that the j th secret key is

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1,B3) .

We claim that Game2. j−1.1 ≈c Game2. j−1. This follows from the SD
G2
B1 7→B1,B3

assumption stating that

[t ← span(B1)]2 ≈c [t ← span(B1,B3)]2 given [B1]2, [B2]2, [B3]2,basis(B∥
2),basis(B∥

1,B∥
3).

In the reduction, we sample α←Zp , w1, . . . ,wn ←Z
1×(2k+1)
p and pick

u(13) ← span((B∥
1|B∥

3)>) and u(2) ← span(B∥
2

>
)

using basis(B∥
1,B∥

3) and basis(B∥
2), respectively. The challenge ciphertext is generated using

{ xi ,b ·u(13) +xi ,1−b ·u(2) +wi }i∈[n];

the j th secret key is created from w1, . . . ,wn and [t]2 while the remaining keys can be generated using
[B1]2 and [B2]2 along with α,w1, . . . ,wn . See Lemma 7 for more details.

– Game2. j−1.2 is identical to Game2. j−1.1 except that the challenge ciphertext is

x1,b ·u(1) +x1,1−b ·u(2) + x1,1−b ·u(3) +w1, . . . , xn,b ·u(1) +xn,1−b ·u(2) + xn,1−b ·u(3) +wn , [α]2 ·m0.

We claim that Game2. j−1.2 ≡Game2. j−1.1. This follows from facts that: (1) u(3) and w(3)
i are only revealed

from the challenge ciphertext and the j th secret key; (2) for all x0, x1 and y with the restriction that (a)
〈x0,y〉 = 〈x1,y〉 = 0; or (b) 〈x0,y〉 6= 0∧〈x1,y〉 6= 0, it holds that

(

ct︷ ︸︸ ︷
x1,b ·u(3) +w(3)

1 , . . . , xn,b ·u(3) +w(3)
n ,

sk︷ ︸︸ ︷
y1 ·w(3)

1 +·· ·+ yn ·w(3)
n )

≡ ( x1,1−b ·u(3) +w(3)
1 , . . . , xn,1−b ·u(3) +w(3)

n , y1 ·w(3)
1 +·· ·+ yn ·w(3)

n ).

See Lemma 8 for more details.

– Game2. j−1.3 is identical to Game2. j−1.2 except that the j th secret key is

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1,B2,B3) .

We claim that Game2. j−1.3 ≈c Game2. j−1.2. This follows from the SD
G2
B3 7→B3,B2

assumption stating that

[t ← span(B3)]2 ≈c [t ← span(B2,B3)]2 given [B1]2, [B2]2, [B3]2,basis(B∥
1),basis(B∥

2,B∥
3).

In the reduction, we sample α←Zp , w1, . . . ,wn ←Z
1×(2k+1)
p and pick

u(1) ← span(B∥
1

>
) and u(23) ← span((B∥

2|B∥
3)>)

using basis(B∥
1) and basis(B∥

2,B∥
3), respectively. The challenge ciphertext is generated using

{ xi ,b ·u(1) +xi ,1−b ·u(23) +wi }i∈[n]

the j th secret key is created from α,w1, . . . ,wn and [B1], [t]2 while the remaining keys can be generated
using [B1,B2]2 along with α,w1, . . . ,wn . See Lemma 9 for more details.

– Game2. j−1.4 is identical to Game2. j−1.3 except that the challenge ciphertext is

x1,b ·u(1) +x1,1−b ·u(2) + x1,b ·u(3) +w1, . . . , xn,b ·u(1) +xn,1−b ·u(2) + xn,b ·u(3) +wn , [α]2 ·m0.

We claim that Game2. j−1.4 ≡Game2. j−1.3. The proof is identical to that for Game2. j−1.2 ≡Game2. j−1.1. See
Lemma 10 for more details.
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– Game2. j−1.5 is identical to Game2. j−1.4 except that the j th secret key is

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1,B2) .

We claim that Game2. j−1.5 ≈c Game2. j−1.4. The proof is identical to that for Game2. j−1 ≈c Game2. j−1.1. See
Lemma 11 for more details. Note that Game2. j−1.5 =Game2. j .

3.4 Step Two: From private-key to public-key

We describe our prime-order full-fledged IPE, which is derived from our private-key IPE in Section 3.2 via
the “private-key to public-key” compiler [36].

– Setup(1λ,n): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample A ←Z
(k+1)×k
p , B1 ←Z

(2k+1)×k
p and pick

U,W1, . . . ,Wn ←Z(k+1)×(2k+1)
p and k ←Zk+1

p .

Output

mpk= (G, [A>]1, [A>U]1, [A>W1]1, . . . , [A>Wn]1, [A>k]T ) and msk= (k,W1, . . . ,Wn ,B1 ).

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈Zn
p . Sample r ←Zk

p and output

sky = (K0 = [k+ (y1 ·W1 +·· ·+ yn ·Wn)B1r]2,K1 = [B1r]2 )

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈Zn
p and m ∈GT . Sample s ←Zk

p and output

ctx = (C0 = [s>A>]1, {Ci = [s>A>(xi ·U+Wi )]1 }i∈[n],C = [s>A>k]T ·m )

– Dec(ctx,sky): Parse ctx = (C0,C1, . . . ,Cn ,C ) and sky = (K0,K1) for y = (y1, . . . , yn). Output

m′ =C ·e(y1 ¯C1 · · · yn ¯Cn ,K1) ·e(C0,K0)−1.

Correctness. For all x,y ∈Zn
p with 〈x,y〉 = 0, we have

e(y1 ¯C1 · · · yn ¯Cn ,K1) ·e(C0,K0)−1

= e([y1 ·s>A>(x1 ·U+W1)]1 · · · [yn ·s>A>(xn ·U+Wn)]1, [B1r]2) ·e([s>A>
1 ]1, [k+ (y1 ·W1 +·· ·+ yn ·Wn)B1r]2)−1

= [〈x,y〉 ·s>A>UB1r]T · [s>A>(y1 ·W1 +·· ·+ yn ·Wn)B1r]T · [s>A>k]−1
T · [s>A>(y1 ·W1 +·· ·+ yn ·Wn)B1r]−1

T

= [s>A>k]−1
T

where the last equality follows from the fact that 〈x,y〉 = 0. This readily proves the correctness.

Security. We will prove the following theorem.

Theorem 2. Under the k-LIN assumption, the IPE scheme described above is adaptively secure and fully
attribute-hiding (cf. Section 2.1).

For the same reason as in Section 3.3, we prove the lemma for the m0 = m1, which shows that the security of
the IPE described above is implied by that of our private-key IPE in Section 3.2 and the MDDHk assumption.

Lemma 3. For any adversary A that makes at most Q key queries and outputs m0 = m1, there exists
adversaries B0,B such that

AdvIPE
A (λ) ≤AdvMDDHk

B0
(λ)+AdvIPE*

B (λ)

and Time(B0),Time(B) ≈Time(A).
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We prove Lemma 3 via the following game sequence.

– Game0 is the real game in which the challenge ciphertext for xb = (x1,b , . . . , xn,b) is of the form

[c>]1, [c>(x1,b ·U+W1)]1, . . . , [c>(xn,b ·U+Wn)]1,e([c>]1, [k]2) ·m0 where c ← span(A).

Here b ← {0,1} is a secret bit.
– Game1 is identical to Game0 except that we pick c ←Zk+1

p when generating the challenge ciphertext. We
claim that Game1 ≈c Game0. This follows from the MDDHk assumption:

[c ← span(A)]1 ≈c [c ←Zk+1
p ] given [A]1.

In the reduction, we sample k,U,W1, . . . ,Wn and B1. The master public key mpk and the challenge
ciphertext are simulated using k,U,W1, . . . ,Wn along with [A]1, [c]1; all secret keys can be created
honestly. See Lemma 12 for more details.

It remains to show that the advantage in guessing b ∈ {0,1} in Game1 is negligible. This follows from the
security of our private-key IPE in Section 3.2. For A and c, define

A>U = Ũ ∈Zk×(2k+1)
p A>Wi = W̃i ∈Zk×(2k+1)

p A>k = k̃ ∈Zk
p

c>U = u ∈Z1×(2k+1)
p c>Wi = wi ∈Z1×(2k+1)

p c>k =α ∈Zp

We can then rewrite mpk as

[A>]1, [Ũ]1, [W̃1]1, . . . , [W̃n]1, [k̃]T ;

the challenge ciphertext (in Game1) becomes

[c>]1, [ x1,b ·u+w1 ]1, . . . , [ xn,b ·u+wn ]1,e([1]1, [α]2) ·m0.

Assume that (A|c) is full-rank which occurs with high probability and define T =
(

A>
c>

)−1
, we have Wi = T

(
W̃i
wi

)
and k = T

(
k̃
α

)
, a secret key can be rewritten as

T¯
[k̃+ (y1 ·W̃1 +·· ·+ yn ·W̃n)d]2

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2

 , [d]2.

Observe that the underlined parts are exactly the ciphertext and secret keys of our private-key IPE in
Section 3.2; and (Ũ,W̃i , k̃), (u,wi ,α) are distributed uniformly and independently. This means we can
simulate mpk honestly and transform a ciphertext/secret key from our private-key IPE to its public-key
counterpart using A, c, Ũ, W̃i , k̃. This is sufficient for the reduction from the public-key IPE to private-key
IPE. See Lemma 13 for more details.

3.5 Lemmas for Private-key IPE

Let Advx be the advantage function with respect to A in Gamex . We prove the following lemma for the game
sequence in Section 3.3.

Lemma 4 (Game0 ≡Game1). Adv0(λ) =Adv1(λ).

Proof. It is sufficient to prove that, for all u ←Z
1×(2k+1)
p , it holds that

(

sk︷ ︸︸ ︷
w1B1, . . . ,wnB1,

ct︷ ︸︸ ︷
x1,b ·u(13) + x1,b ·u(2) +w1, · · · , xn,b ·u(13) + xn,b ·u(2) +wn )

≡ (w1B1, . . . ,wnB1, x1,b ·u(13) + x1,1−b ·u(2) +w1, · · · , xn,b ·u(13) + xn,1−b ·u(2) +wn )
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when w1, . . . ,wn ← Z
1×(2k+1)
p . By the facts shown in Section 3.1, it is implied by the statement that, for all

u(2) ∈ span(B∥
2

>
), it holds that

{ xi ,b ·u(2) +w(2)
i }i∈[n] ≡ {w(2)

i }i∈[n] ≡ { xi ,1−b ·u(2) +w(2)
i }i∈[n]

when w(2)
1 , . . . ,w(2)

n ← span(B∥
2

>
). This completes the proof. ut

Lemma 5 (Game2.q ≡Game3). Adv2.q (λ) =Adv3(λ).

Proof. We simulate Game2.q as follows:

Setup. We alternatively prepare basis (B1,B2,B3 ) as follows: Sample B̃1,B3 ← Z
(2k+1)×k
p , B̃2 ← Z2k+1

p and

compute dual basis B̃∥
1, B̃∥

2,B∥
3 as usual. Pick R ← GLk+1(Zp ) and define

(B1|B2) = (B̃1|B̃2)R and (B∥
1|B∥

2) = (B̃∥
1|B̃∥

2)R∗.

This does not change the distribution of basis. We then sample α,u,w1, . . . ,wn honestly.
Key queries. On input y = (y1, . . . , yn), output

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B̃1, B̃2).

Although we sample d using B̃1, B̃2, the vector is uniformly distributed over span(B1,B2) as required and
our simulation is perfect.

Ciphertext. On input (x0,x1,m0,m1) with m0 = m1, we create the challenge ciphertext honestly using
(B∥

1,B∥
2,B∥

3). That is, we pick b ← {0,1} and output

x1,b ·v0 +x1,1−b ·v1 +x1,b ·u(3) +w1, . . . , xn,b ·v0 +xn,1−b ·v1 +xn,b ·u(3) +wn , [α]2 ·m0

where u(3) ← span(B∥
3

>
) and

v0 = u(1) ← span(B∥
1

>
) and v1 = u(2) ← span(B∥

2

>
).

Observe that, we have a 2-by-(k +1) matrix V of rank 2 such that—v0—

—v1—

= V(B∥
1|B∥

2)> = VR−1︸ ︷︷ ︸
uniformly over Z2×(k+1)

p

(B̃∥
1|B̃∥

2)>.

Since R is independent of other part of simulation, VR−1 are uniformly distributed over Z2×(k+1)
p and thus

it is equivalent to sample v0,v1 ← span((B̃∥
1|B̃∥

2)>) when creating the challenge ciphertext. This leads to the
simulation of Game3 (with respect to B̃1, B̃2,B3). ut

Lemma 6 (Game3 ≡Game4). Adv3(λ) =Adv4(λ).

Proof. The proof is similar to that for Lemma 4, except that we work with u(3),u(3)
0 ,u(3)

1 ,w(3)
i instead. ut

Lemma 7 (Game2. j−1 ≈c Game2. j−1.1). There exists adversary B1 with Time(B1) ≈Time(A) such that

|Adv2. j−1.1(λ)−Adv2. j−1(λ) | ≤Adv
SD

G2
B1 7→B1,B3

B1
(λ).

Proof. This follows from the SD
G2
B1 7→B1,B3

assumption stating that

[t ← span(B1)]2 ≈c [t ← span(B1,B3)]2 given [B1]2, [B2]2, [B3]2,basis(B∥
2),basis(B∥

1,B∥
3).

On input [B1]2, [B2]2, [B3]2,basis(B∥
2),basis(B∥

1,B∥
3) and [t]2, the adversary B1 works as follows:
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Setup. Sample α←Zp , w1, . . . ,wn ←Z
1×(2k+1)
p . Implicitly sample u by picking

u(13) ← span((B∥
1|B∥

3)>) and u(2) ← span(B∥
2

>
)

using basis(B∥
1,B∥

3) and basis(B∥
2), respectively.

Key Queries. On the κth query y = (y1, . . . , yn), output

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ←


span(B1,B2) κ< j ;

t κ= j ;

span(B1) κ> j ;

using [B1]2, [B2]2 and [t]2

Ciphertext. On input (x0,x1,m0,m1) with m0 = m1, pick b ← {0,1} and output

x1,b ·u(13) +x1,1−b ·u(2) +w1, . . . , xn,b ·u(13) +xn,1−b ·u(2) +wn , [α]2 ·m0.

Observe that, when t is uniformly distributed over span(B1), the simulation is identical to Game2. j−1;
otherwise, when t is uniformly distributed over span(B1,B3), the simulation is identical to Game2. j−1.1. This
proves the lemma. ut

Lemma 8 (Game2. j−1.1 ≡Game2. j−1.2). Adv2. j−1.1 =Adv2. j−1.2.

Proof. By complexity leveraging and the facts shown in Section 3.1, it is sufficient to prove the following
statement: for all x0, x1 and y (corresponding to the j th key query) satisfying that (a) 〈x0,y〉 = 〈x1,y〉 = 0; or
(b) 〈x0,y〉 6= 0∧〈x1,y〉 6= 0, it holds that

(

ct︷ ︸︸ ︷
x1,b ·u(3) +w(3)

1 , . . . , xn,b ·u(3) +w(3)
n ,

sk︷ ︸︸ ︷
y1 ·w(3)

1 +·· ·+ yn ·w(3)
n )

≡ ( x1,1−b ·u(3) +w(3)
1 , . . . , xn,1−b ·u(3) +w(3)

n , y1 ·w(3)
1 +·· ·+ yn ·w(3)

n )

when u(3),w(3)
1 , . . . ,w(3)

n ← span(B∥
3

>
). By the linearity, it in turn follows from the following statement

{ x1,b ·u +w1, . . . , xn,b ·u +wn , y1 ·w1 +·· ·+ yn ·wn }

≡ { x1,1−b ·u +w1, . . . , xn,1−b ·u +wn , y1 ·w1 +·· ·+ yn ·wn }

where u, w1, . . . , wn ←Zp . This follows from the statistical argument for all x = (x1, . . . , xn) which is implicitly
used in the proof of Wee’s simulation-based selectively secure IPE [36]: by programming w̃i = xi ·u +wi for
all i ∈ [n], we have

{ x1 ·u +w1, . . . , xn ·u +wn , y1 ·w1 +·· ·+ yn ·wn }

≡ { w̃1, . . . , w̃n , (y1 · w̃1 +·· ·+ yn · w̃n)−u · (x1 y1 +·· ·+xn yn) }

which means that the left-hand side distributions for all vector x not orthogonal to y are identical (since
u hides the information about the inner-product) and so do all vector x orthogonal to y. This immediately
proves the above statement and thus proves the lemma. ut

Lemma 9 (Game2. j−1.2 ≈c Game2. j−1.3). There exists adversary B2 with Time(B2) ≈Time(A) such that

|Adv2. j−1.3(λ)−Adv2. j−1.2(λ) | ≤Adv
SD

G2
B3 7→B3,B2

B2
(λ).
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Proof. This follows from the SD
G2
B3 7→B3,B2

assumption stating that

[t ← span(B3)]2 ≈c [t ← span(B2,B3)]2 given [B1]2, [B2]2, [B3]2,basis(B∥
1),basis(B∥

2,B∥
3).

On input [B1]2, [B2]2, [B3]2,basis(B∥
1),basis(B∥

2,B∥
3) and [t]2, the adversary B2 works as follows:

Setup. Sample α←Zp , w1, . . . ,wn ←Z
1×(2k+1)
p . Implicitly sample u by picking

u(1) ← span(B∥
1

>
) and u(23) ← span((B∥

2|B∥
3)>)

using basis(B∥
1) and basis(B∥

2,B∥
3), respectively.

Key Queries. On the κth query y = (y1, . . . , yn), output

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ←


span(B1,B2) κ< j ;

t+ span(B1) κ= j ;

span(B1) κ> j ;

using [B1]2, [B2]2, and [t]2.
Ciphertext. On input (x0,x1,m0,m1) with m0 = m1, pick b ← {0,1} and output

x1,b ·u(1) +x1,1−b ·u(23) +w1, . . . , xn,b ·u(1) +xn,1−b ·u(23) +wn , [α]2 ·m0.

Observe that, when t is uniformly distributed over span(B3), the simulation is identical to Game2. j−1.2;
otherwise, when t is uniformly distributed over span(B2,B3), the simulation is identical to Game2. j−1.3. This
proves the lemma. ut

Lemma 10 (Game2. j−1.3 ≡Game2. j−1.4). Adv2. j−1.3 =Adv2. j−1.4.

Proof. The proof is identical to that for Lemma 8 (Game2. j−1.1 ≈c Game2. j−1.2). ut

Lemma 11 (Game2. j−1.4 ≈c Game2. j−1.5). There exists adversary B3 with Time(B3) ≈Time(A) such that

|Adv2. j−1.5(λ)−Adv2. j−1.4(λ) | ≤Adv
SD

G2
B1 7→B1,B3

B3
(λ).

Proof. The proof is analogous to that for Lemma 7 (Game2. j−1 ≈c Game2. j−1.1), except that: on the j th query
y = (y1, . . . , yn), we output

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← t+ span(B2) .

using [B2]2 and [t]2. ut

3.6 Lemmas for Public-key IPE

Let Advx be the advantage function with respect to A in Gamex . We prove the following lemma for the game
sequence in Section 3.4.

Lemma 12 (Game0 ≡Game1). There exists adversary B0 with Time(B0) ≈Time(A) such that

|Adv1(λ)−Adv0(λ) | ≤AdvMDDHk

B0
(λ).

Proof. This follows from the MDDHk assumption stating that

[c ← span(A)]1 ≈c [c ←Zk+1
p ] given [A]1.

On input [A]1 and [c]1, the adversary B0 works as follows:
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Setup. Sample k ←Zk+1
p , U,W1, . . . ,W ←Z

(k+1)×(2k+1)
p and B1 ←Z

(2k+1)×k
p . Output

([A>]1, [A>U]1, [A>W1]1, . . . , [A>Wn]1, [A>k]T )

using [A]1.

Key Queries. On query y = (y1, . . . , yn), output

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1).

Ciphertext. On input (x0,x1,m0,m1) with m0 = m1, pick b ← {0,1} and output

[c>]1, [c>(x1,b ·U+W1)]1, . . . , [c>(xn,b ·U+Wn)]1,e([c>]1, [k]2) ·m0.

Observe that, when c is uniformly distributed over span(A), the simulation is identical to Game0; otherwise,
when c is uniformly distributed over Zk+1

p , the simulation is identical to Game1. This proves the lemma. ut

Lemma 13 (Advantage in Game1). There exists adversary B with Time(B) ≈Time(A) such that

Adv1(λ) ≤AdvIPE*
B (λ).

Proof. We construct the adversary B as below:

Setup. Sample (A,c) ← Z
(k+1)×k
p ×Zk+1

p and compute T =
(

A>
c>

)−1
. Since (A|c) is full-rank which occurs with

high probability, T is well-defined. Pick

Ũ,W̃1, . . . ,W̃n ←Zk×(2k+1)
p and k̃ ←Zk

p

and output

mpk= ( [A>]1, [Ũ]1, [W̃1]1, . . . , [W̃n]1, [k̃]T ).

Key Queries. On input y, adversaryB forwards the query to its environment and receives (K0,K1). Compute

K̃0 = [k̃]2 · ((y1 ·W̃1 +·· ·+ yn ·W̃n)¯K0)

and output

sky =
(

T¯
K̃0

K0

 , K1
)
.

Ciphertext. On input (x0,x1,m0,m1), adversary B sends query (x0,x1,1,1) to its environment and receives
(C1, . . . ,Cn ,C ). Create the challenge ciphertext as

[c>]1, [C1]1, . . . , [Cn ]1,e([1]1,C ) ·m0.

The adversary B outputs A’s guess bit. By the observation in Section 3.4, mpk is simulated perfectly; if
(K0,K1) is a private-key IPE secret key, secret keys we computed is for our public-key IPE; if (C1, . . . ,Cn ,C ) is
a private-key IPE ciphertext for b = 0, the ciphertext we created is a public-key IPE ciphertext for b = 0; this
also holds for b = 1. This readily proves the lemma. ut

4 Construction from XDLIN assumption

In this section, we improve the IPE scheme presented in Section 3 by the optimization technique in [16].
As in Section 3, we will first develop a private-key IPE from that in Section 3.2 and then compile it into the
public-key setting.

18



4.1 Correspondence

Applying the technique in [16] to our private-key IPE in Section 3.2, we basically overlap span(B1) and
span(B3) so that the total dimension decreases. Technically, we work with basis

B1 ←Z
`×`1
p , B2 ←Z

`×`2
p , B3 ←Z

`×`3
p , B4 ←Z

`×`4
p

where `1,`2,`3,`4 ≥ 1 and ` := `1 +`2 +`3 +`4, and follow the correspondence:

Sec 3.1 this section

B1 7→ (B1 | B4)

B2 7→ B2

B3 7→ (B3 | B4)

(10)

saying that B1 and B3 used in Section 3 are replaced by (B1|B4) and (B3|B4), respectively, whose spans
interact at span(B4). Analogous to Section 3.1, we can define its dual basis (B∥

1,B∥
2,B∥

3,B∥
4) and decompose

w ∈Z1×`
p as w(1) +w(2) +w(3) +w(4).

Assumptions. With the correspondence (10), the assumption SD
G2
B1 7→B1,B3

used in Section 3.3 will be replaced

by SD
G2
B1,B4 7→B1,B3,B4

defined as follows.

Lemma 14 (MDDH`1+`4,`1+`3+`4 ⇒ SD
G2
B1,B4 7→B1,B3,B4

). Under the MDDH`1+`4,`1+`3+`4 assumption in G2, there

exists an efficient sampler outputting random ([B1]2, [B2]2, [B3]2, [B4]2) along with base basis(B∥
2) and

basis(B∥
1,B∥

3,B∥
4) (of arbitrary choice) such that the following advantage function is negligible in λ.

Adv
SD

G2
B1,B4 7→B1,B3,B4

A
(λ) := |Pr[A(G,D, [t0]1) = 1]−Pr[A(G,D, [t1]1) = 1] |

where

D := ( [B1]2, [B2]2, [B3]2, [B4]2,basis(B∥
2),basis(B∥

1,B∥
3,B∥

4) ),

t0 ← span(B1,B4), t1 ← span(B1,B3,B4).

The proof is analogous to that for Lemma 1 (cf. [13]).
Also, we replace SD

G2
B3 7→B3,B2

assumption in Section 3.3 with external subspace decision assumption

XSD
G2
B3,B4 7→B2,B3,B4

defined as below.

Assumption 3 (XSD
G2
B3,B4 7→B2,B3,B4

) We say that XSD
G2
B3,B4 7→B2,B3,B4

assumption holds if there exists an efficient

sampler outputting random ([B1]2, [B2]2, [B3]2, [B4]2) along with base basis(B∥
1),basis(B∥

4) and [basis(B∥
2,B∥

3)]1

(of arbitrary choice) such that the following advantage function is negligible in λ.

Adv
XSD

G2
B3,B4 7→B2,B3,B4

A
(λ) := |Pr[A(G,D, [t0]1) = 1]−Pr[A(G,D, [t1]1) = 1] |

where

D := ( [B1]2, [B2]2, [B3]2, [B4]2,basis(B∥
1), [basis(B∥

2,B∥
3)]1,basis(B∥

4) ),

t0 ← span(B3,B4), t1 ← span(B2,B3,B4).

We note that we do not give out basis(B∥
2,B∥

3,B∥
4) as usual; instead, basis(B∥

4) on Zp and [basis(B∥
2,B∥

3)]1

on G1 are provided. We then prove the following lemma saying that, for a specific set of parameters, the
assumption is implied by XDLIN assumption.
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Lemma 15 (XDLIN ⇒ XSD
G2
B3,B4 7→B2,B3,B4

). Under the external decisional linear assumption (XDLIN) [1] (cf.

Section 2.2), the XSD
G2
B3,B4 7→B2,B3,B4

assumption holds for parameter `2 = `3 = `4 = 1.

Proof. For any PPT adversary A, we construct an algorithm B with Time(B) ≈Time(A) such that

Adv
XSD

G2
B3,B4 7→B2,B3,B4

A
(λ) ≤AdvXDLIN

B (λ).

On input ([a1, a2, a3, a1s1, a2s2]1, [a1, a2, a3, a1s1, a2s2]2,T ) where a1, a2, a3, s1, s2 ← Zp and T is either
[a3(s1 + s2)]2 or uniformly distributed over G2, algorithm B works as follows:

Programming B1,B2,B3,B4 and B∥
1,B∥

2,B∥
3,B∥

4. Sample B̃ ← GL3+`1 (Zp ) and define

(B1,B2,B3,B4) = B̃



I`1

1 a3 a3

a2

a1

 and (B∥
1,B∥

2,B∥
3,B∥

4) = B̃∗



I`1

1

−a3a−1
2 a−1

2

−a3a−1
1 a−1

1


Algorithm B can simulate [B1,B2,B3,B4]2 using [a1, a2, a3]2.

Simulating basis(B∥
1),basis(B∥

4). We define

basis(B∥
1) = B̃∗

I`1

0

 and basis(B∥
4) = B̃∗(a−1

1 e3+`1 )a1 = B̃∗e3+`1 ,

both of which can be simulated using B̃∗.
Simulating [basis(B∥

2,B∥
3)]1. We define

basis(B∥
2,B∥

3) = B̃∗



0

1

−a3a−1
2 a−1

2

−a3a−1
1


 a1

a1a3 a2

= B̃∗



0

a1

1

−a3


such that [basis(B∥

2,B∥
3)]1 (over G1) can be simulated using B̃∗ and [a1, a3]1.

Simulating the challenge. Output the challenge 

[0]2

T

[a2s2]2

[a1s1]2

 .

Observe that if T = [a3(s1 + s2)]2, the output challenge is uniformly distributed over [span(B3,B4)]2;
otherwise, if T is uniformly distributed over G2, the output challenge is then uniformly distributed over
[span(B2,B3,B4)]2. This readily proves the lemma. ut

4.2 Step One: A Private-key IPE from XDLIN Assumption

Our second private-key IPE is described as follows, which is translated from the private-key IPE in
Section 3.2 with the correspondence (10). Here we employ the basis defined in Section 4.1 with parameter
(`1,`2,`3,`4) = (1,1,1,1).
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– Setup(1λ,n): Run G = (p,G1,G2,GT ,e) ← G(1λ). Sample B14 = (B1|B4) ← Z4×2
p and pick u,w1, . . . ,wn ←

Z1×4
p , α←Zp . Output

msk= (G,α,u,w1, . . . ,wn ,B14 ).

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈Zn
p . Sample r ←Z2

p and output

sky = (K0 = [α+ (y1 ·w1 +·· ·+ yn ·wn)B14r]2, K1 = [B14r]2 )

– Enc(msk,x,m): Let x = (x1, . . . , xn) ∈Zn
p and m ∈GT . Output

ctx = (C1 = [x1 ·u+w1]1, . . . , Cn = [xn ·u+wn]1, C = [α]T ·m )

– Dec(ctx,sky): Parse ctx = (C1, . . . ,Cn ,C ) and sky = (K0,K1) for y = (y1, . . . , yn) ∈Zn
p . Output

m′ =C ·e(y1 ¯C1 · · · yn ¯Cn ,K1) ·e([1]1,K0)−1.

Compared with the construction in Section 3.2, we now have ciphertexts over G1 instead of Zp and the
bilinear map is required for decryption procedure. However the total dimension `= 4 is smaller than that in
Section 3.1 when k = 2 (corresponding to DLIN assumption), which is `= 5.

Correctness. For all x,y ∈Zn
p satisfying 〈x,y〉 = 0, we have

e(y1 ¯C1 · · · yn ¯Cn ,K1) ·e([1]1,K0)−1

= e([y1 · (x1 ·u+w1)+·· ·+ yn · (xn ·u+wn)]1, [B14r]2) · [α+ (y1 ·w1 +·· ·+ yn ·wn)B14r]−1
T

= [〈x,y〉 ·uB14r]T · [(y1 ·w1 +·· ·+ yn ·wn)B14r]T · [α]−1
T · [(y1 ·w1 +·· ·+ yn ·wn)B14r]−1

T = [α]−1
T

where the last equality follows from the fact that 〈x,y〉 = 0. This readily proves the correctness.

4.3 Security

We will prove the following theorem.

Theorem 3. Under the XDLIN assumption, the private-key IPE scheme described in Section 4.2 is adaptively
secure and fully attribute-hiding (cf. Section 2.1).

As before, we only need to prove the following lemma for m0 = m1.

Lemma 16. For any adversary A that makes at most Q key queries and outputs m0 = m1, there exists
adversaries B1,B2,B3 such that

AdvIPE*
A (λ) ≤Q ·AdvSD

G2
B1,B4 7→B1,B3,B4

B1
(λ)+Q ·AdvXSD

G2
B3,B4 7→B2,B3,B4

B2
(λ)+Q ·AdvSD

G2
B1,B4 7→B1,B3,B4

B3
(λ)

and Time(B1),Time(B2),Time(B3) ≈Time(A).

Game sequence. With the correspondence in Section 4.1, the proof for lemma 16 is almost the same as that
for Lemma 2 presented in Section 3. Here we only give the game sequence, summarized in Fig 4.

– Game0 is the real game in which the challenge ciphertext for xb = (x1,b , . . . , xn,b) is of the form

[x1,b ·u+w1]1, . . . , [xn,b ·u+wn]1, [α]T ·m0.

Here b ← {0,1} is a secret bit.
– Game1 is identical to Game0 except that the challenge ciphertext is

[x1,b ·u(134) + x1,1−b ·u(2) +w1]1, . . . , [xn,b ·u(134) + xn,1−b ·u(2) +wn]1, [α]T ·m0.

We claim that Game1 ≡Game0. The proof is analogous to that for Game1 ≡Game0 in Section 3.3.
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Game ct κ-th sk (d ← span(?)) Remark

?(14) +w(14)
i ?(2) +w(2)

i ?(3) +w(3)
i κ< j κ= j κ> j

0 xi ,b ·u B1,B4 real game

1 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B4 statistical argument: analogous to Fig 3

2. j −1 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B2,B4 B1,B4 B1,B4 Game2.0 =Game1, Game2. j =Game2. j−1.5

2. j −1.1 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B2,B4 B1,B3,B4 B1,B4 SD
G2
B1,B4 7→B1,B3,B4

: given basis(B∥
2),basis(B∥

1,B∥
3,B∥

4),
[span(B1,B4)]2 ≈c [span(B1,B3,B4)]2

2. j −1.2 xi ,b ·u xi ,1−b ·u xi ,1−b ·u B1,B2,B4 B1,B3,B4 B1,B4 statistical argument: analogous to Fig 3

2. j −1.3 xi ,b ·u xi ,1−b ·u xi ,1−b ·u B1,B2,B4 B1,B2,B3,B4 B1,B4 XSD
G2
B3,B4 7→B2,B3,B4

: given [basis(B∥
2,B∥

3)]1, basis(B∥
1),

basis(B∥
4), [span(B3,B4)]2 ≈c [span(B2,B3,B4)]2

2. j −1.4 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B2,B4 B1,B2,B3,B4 B1,B4 statistical argument: analogous to Game2. j−1.2

2. j −1.5 xi ,b ·u xi ,1−b ·u xi ,b ·u B1,B2,B4 B1,B2,B4 B1,B4 SD
G2
B1,B4 7→B1,B3,B4

: analogous to Game2. j−1.1

3 xi ,0 ·u0 +xi ,1 ·u1 xi ,b ·u B1,B2,B4 u0,u1 ←Z
1×(2k+1)
p ; change of basis

4 xi ,0 ·u0 +xi ,1 ·u1 B1,B2,B4 statistical argument: analogous to Game1

Fig. 4. Game sequence for Private-key IPE based on XDLIN. The gray background highlights the difference between adjacent games.

– Game2. j for j ∈ [0, q] is identical to Game1 except that the first j secret keys are

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1,B2,B4) .

We claim that Game2. j−1 ≈c Game2. j for j ∈ [q] and give a proof sketch later.
– Game3 is identical to Game2.q except that the challenge ciphertext is

[ x1,0 ·u(124)
0 +x1,1 ·u(124)

1 +x1,b ·u(3) +w1]1, . . . , [ xn,0 ·u(124)
0 +xn,1 ·u(124)

1 +xn,b ·u(3) +wn]1, [α]T ·m0.

where u0,u1 ← Z
1×(k+1)
p . We claim that Game2.q ≡ Game3. The proof is analogous to that for Game2.q ≡

Game3 in Section 3.3 using “change of basis” technique [23, 28], except that we now work with subspace
span(B1,B2,B4) corresponding to span(B1,B2) there (cf. Section 4.1).

– Game4 is identical to Game3 except that the challenge ciphertext is

[ x1,0 ·u0 +x1,1 ·u1 +w1]1, . . . , [ xn,0 ·u0 +xn,1 ·u1 +wn]1, [α]T ·m0

We claim that Game3 ≡ Game4 and the adversary has no advantage in guessing b in Game4. The proof
for the former claim is similar to that for Game1 ≡Game0.

Proving Game2. j−1 ≈c Game2. j . We now proves Game2. j−1 ≈c Game2. j which completes the proof for
Lemma 16. For all j ∈ [q], we employ the following game sequence, which has been included in Fig 4.

– Game2. j−1.1 is identical to Game2. j−1 except that the j th secret key is

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1,B3,B4) .

We claim that Game2. j−1.1 ≈c Game2. j−1. This follows from the SD
G2
B1,B4 7→B1,B3,B4

assumption with a
reduction analogous to that for Game2. j−1.1 ≈c Game2. j−1 in Section 3.3.

– Game2. j−1.2 is identical to Game2. j−1.1 except that the challenge ciphertext is

[x1,b ·u(14) +x1,1−b ·u(2) + x1,1−b ·u(3) +w1]1, . . . , [xn,b ·u(14) +xn,1−b ·u(2) + xn,1−b ·u(3) +wn]1, [α]T ·m0.
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We claim that Game2. j−1.2 ≡Game2. j−1.1. The proof is analogous to that for Game2. j−1.2 ≡Game2. j−1.1 in
Section 3.3.

– Game2. j−1.3 is identical to Game2. j−1.2 except that the j -th secret key is

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1,B2,B3,B4) .

We claim that Game2. j−1.3 ≈c Game2. j−1.2. This follows from the XSD
G2
B3,B4 7→B2,B3,B4

assumption. The proof
is analogous to that for Game2. j−1.3 ≡Game2. j−1.2 in Section 3.3. Note that, in the reduction, we simulate

the challenge ciphertext over G1 using [basis(B∥
2,B∥

3)]1.
– Game2. j−1.4 is identical to Game2. j−1.3 except that the challenge ciphertext is

[x1,b ·u(14) +x1,1−b ·u(2) + x1,b ·u(3) +w1]1, . . . , [xn,b ·u(14) +xn,1−b ·u(2) + xn,b ·u(3) +wn]1, [α]T ·m0.

We claim that Game2. j−1.4 ≡Game2. j−1.3. The proof is identical to that for Game2. j−1.2 ≡Game2. j−1.1.
– Game2. j−1.5 is identical to Game2. j−1.4 except that the j th secret key is

[α+ (y1 ·w1 +·· ·+ yn ·wn)d]2, [d]2 where d ← span(B1,B2,B4) .

We claim that Game2. j−1.5 ≈c Game2. j−1.4. The proof is identical to that for Game2. j−1 ≈c Game2. j−1.1.
Note that Game2. j−1.5 =Game2. j .

4.4 Step Two: From private-key to public-key

Following the “private-key to public-key” compiler [36], we transform the private-key IPE in Section 4.2 to
the following public-key IPE:

– Setup(1λ,n): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample A ←Z3×2
p ,B14 ←Z4×2

p and pick

U,W1, . . . ,Wn ←Z3×4
p and k ←Z3

p .

Output

mpk= (G, [A>]1, [A>U]1, [A>W1]1, . . . , [A>Wn]1, [A>k]T ) and msk= (k,W1, . . . ,Wn ,B14 ).

– KeyGen(msk,y): Let y = (y1, . . . , yn) ∈Zn
p . Sample r ←Z2

p and output

sky = (K0 = [k+ (y1 ·W1 +·· ·+ yn ·Wn)B14r]2,K1 = [B14r]2 )

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈Zn
p and m ∈GT . Sample s ←Z2

p and output

ctx = (C0 = [s>A>]1,C1 = [s>A>(x1 ·U+W1)]1, . . . ,Cn = [s>A>(xn ·U+Wn)]1,C = [s>A>k]T ·m )

– Dec(ctx,sky): Parse ctx = (C0,C1, . . . ,Cn ,C ) and sky = (K0,K1) for y = (y1, . . . , yn). Output

m′ =C ·e(y1 ¯C1 · · · yn ¯Cn ,K1) ·e(C0,K0)−1.

The correctness can be verified as in Section 3.4.

Security. We will prove the following theorem.

Theorem 4. Under the XDLIN assumption, the IPE scheme described above is adaptively secure and fully
attribute-hiding (cf. Section 2.1).

Concretely, we prove the following lemma, showing that the security of the above IPE is implied by that of
our private-key IPE in Section 4.2 and the MDDH2 assumption.
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Lemma 17. For any adversary A that makes at most Q key queries, there exists adversaries B0,B such that

AdvIPE
A (λ) ≤AdvMDDH2

B0
(λ)+AdvIPE*

B (λ)

and Time(B0),Time(B) ≈Time(A).

We prove Lemma 17 via the following game sequence, as in Section 3.4.

– Game0 is the real game in which the challenge ciphertext for xb = (x1,b , . . . , xn,b) is of the form

[c>]1, [c>(x1,b ·U+W1)]1, . . . , [c>(xn,b ·U+Wn)]1,e([c>]1, [k]2) ·mb where c ← span(A).

Here b ← {0,1} is a secret bit.
– Game1 is identical to Game0 except that we sample c ←Zk+1

p when generating the challenge ciphertext.
We claim that Game1 ≈c Game0. This follows from MDDH2 assumption and the proof is analogous to that
for Game1 ≈c Game0 in Section 3.4.

Analogous to Section 3.4 and Section 3.6, we can prove that adversary’s advantage in Game1 is bounded by
that against our private-key IPE in Section 4.2.
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