
Poly-Logarithmic Side Channel Rank Estimation
via Exponential Sampling

Liron David1, Avishai Wool2

School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel
1
lirondavid@gmail.com, 2

yash@eng.tau.ac.il

Abstract. Rank estimation is an important tool for a side-channel eval-
uations laboratories. It allows estimating the remaining security after an
attack has been performed, quantified as the time complexity and the
memory consumption required to brute force the key given the leakages
as probability distributions over d subkeys (usually key bytes). These
estimations are particularly useful where the key is not reachable with
exhaustive search.
We propose ESrank, the first rank estimation algorithm that enjoys prov-
able poly-logarithmic time- and space-complexity, which also achieves
excellent practical performance. Our main idea is to use exponential
sampling to drastically reduce the algorithm’s complexity. Importantly,
ESrank is simple to build from scratch, and requires no algorithmic tools
beyond a sorting function. After rigorously bounding the accuracy, time
and space complexities, we evaluated the performance of ESrank on a
real SCA data corpus, and compared it to the currently-best histogram-
based algorithm. We show that ESrank gives excellent rank estimation
(with roughly a 1-bit margin between lower and upper bounds), with a
performance that is on-par with the Histogram algorithm: a run-time of
under 1 second on a standard laptop using 6.5 MB RAM.

1 Introduction

1.1 Background

Side-channel attacks (SCA) represent a serious threat to the security of crypto-
graphic hardware products. As such, they reveal the secret key of a cryptosystem
based on leakage information gained from physical implementation of the cryp-
tosystem on different devices. Information provided by sources such as timing
[12], power consumption [11], electromagnetic emulation [21], electromagnetic
radiation [2, 9] and other sources, can be exploited by SCA to break cryptosys-
tems.

A security evaluation of a cryptographic device should determine whether
an implementation is secure against such an attack. To do so, the evaluator
needs to determine how much time, what kind of computing power and how
much storage a malicious attacker would need to recover the key given the side-
channel leakages. The leakage of cryptographic implementations is highly device-
specific, therefore the usual strategy for an evaluation laboratory is to launch a

set of popular attacks, and to determine whether the adversary can break the
implementation (i.e., recover the key) using “reasonable“ efforts.

Most of the attacks that have been published in the literature are based on a
“divide-and-conquer” strategy. In the first “divide” part, the cryptanalyst recov-
ers multi-dimensional information about different parts of the key, usually called
subkeys (e.g., each of the d = 16 AES key bytes can be a subkey). In the “con-
quer” part the cryptanalyst combines the information all together in an efficient
way via key enumeration [19, 23, 6]. In the attacks we consider in this paper, the
information that the SCA provides for each subkey is a probability distribution
over the N candidate values for that subkey, and the SCA probability of a full
key is the product of the SCA probabilities of its d subkeys.

A security evaluator knows the secret key and aims to estimate the number
of decryption attempts the attacker needs to do before he reaches to the cor-
rect key, assuming the attacker uses the SCA’s probability distribution. Clearly
enumerating the keys in the optimal SCA-predicted order is the best strategy
the evaluator can follow. However, this is limited by the computational power of
the evaluator. This is a worrying situation because it is hard to decide whether
an implementation is “practically secure”. For example, one could enumerate the
250 first keys for an AES implementation (in the optimal order) without finding
the correct key, and then conclude that the implementation is practically secure
because the attacker needs to enumerate beyond 250 number of keys. But, this
does not provide any hint whether the concrete security level is 251 or 2120. This
makes a significant difference in practice, especially in view of the possibility of
improved measurement setups, signal processing, information extraction, etc.,
that should be taken into account for any physical security evaluation, e.g., via
larger security margins.

In this paper, we introduce a new method to estimate the rank of a given
secret key in the optimal SCA-predicted order. Our algorithm enjoys simplicity,
accuracy and provable poly-logarithmic time and memory efficiency and excellent
practical performance.

The rank estimation problem: Given d independent subkey spaces each of
size N with their corresponding probability distributions P1, ..., Pd such that Pi

is sorted in decreasing order of probabilities, and given a key k∗ indexed by
(k1, ..., kd), let p∗ = P1(k1) ·P2(k2) · ... ·Pd(kd) be the probability of k∗ to be the
correct key. The evaluator would like to estimate the number of full keys with
probability higher than p∗, when the probability of a full key is defined as the
product of its subkey’s probabilities.

In other words, the evaluator would like to estimate k∗’s rank: the position
of the key k∗ in the sorted list of Nd possible keys when the list is sorted
in decreasing probability order, from the most likely key to the least. If the
dimensions, or k∗’s rank are small, one can easily compute the rank of the
correct key by a straightforward key enumeration. However, for a key with a
high rank r, any optimal-order key enumeration requires Ω(r) time — which may
be prohibitive, and the currently-best optimal-order key enumeration algorithm
[23] requires Ω(Nd/2) space, which again may be prohibitive. Hence developing

2

fast and low-memory algorithms to estimate the rank without enumeration is of
great interest.

1.2 Related work

The best key enumeration algorithm so far, in terms of optimal-order, was pre-
sented by Veyrat-Charvillon, Gérard, Renauld and Standaert in [23]. However,
its worst case space complexity is Ω(Nd/2) when d is the number of subkey
dimensions and N is the number of candidates per subkey - and its space com-
plexity is Ω(r) when enumerating up to a key at rank r ≤ Nd/2. Thus its space
complexity becomes a bottleneck on real computers with bounded RAM in re-
alistic SCA attacks.

Since then several near-optimal key enumeration were proposed [4, 18, 20,
26, 3, 10, 6, 15, 13, 14, 17, 22]. However, none of these key enumeration algorithms
enumerate the whole key space within a realistic amount of time and with a
realistic amount of computational power: enumerating an exponential key space
will always come at an exponential cost. Hence the need for efficient and accurate
rank estimation for keys that have a high rank.

The first rank estimation algorithm was proposed by Veyrat-Charvillon et
al. [24]. They suggested to organize the keys by sorting their subkeys accord-
ing to the a-posteriori probabilities provided, and to represent them as a high-
dimensional dataspace. The full key space can then be partitioned in two vol-
umes: one defined by the key candidates with probability higher than the correct
key, one defined by the key candidates with probability lower than the correct
key. Using this geometrical representation, the rank estimation problem can be
stated as the one of finding bounds on these “higher” and “lower” volumes. It
essentially works by carving volumes representing key candidates on each side
of their boundary, progressively refining the lower and upper bounds on the key
rank. Refining the bounds becomes exponentially difficult at some point.

A number of works have investigated solutions to improve upon [24]. In par-
ticular, Glowacz et al. [10] presented a rank estimation algorithm that is based
on a convolution of histograms and allows obtaining tight bounds for the key
rank of (even large) keys. This Histogram algorithm is currently the best rank
estimation algorithm we are aware of. The space complexity of this algorithm is
O(dB) where d is the number of dimensions and B is a design parameter con-
trolling the number of the histogram bins. A comparable result was developed
independently by Bernstein et al. [3].

Martin et al. [18] used a score-based rank enumeration, rather than a prob-
ability based rank estimation. They mapped the rank estimation to a knapsack
problem, which can be simplified and expressed as path counting. Subsequently,
in [16] Martin et al. show that their algorithm [18] is mathematically equiv-
alent to the Histogram algorithm [10] for a suitable choice of their respective
discretization parameter, thus they can both be equally accurate. Since the two
algorithms are equivalent we compared our algorithm’s performance only to that
of the Histogram algorithm [10].

3

Ye et al. investigated an alternative solution based on a weak Maximum
Likelihood (wML) approach [26], rather than a Maximum Likelihood (ML) one
for the previous examples. They additionally combined this wML approach with
the possibility to approximate the security of an implementation based on “easier
to sample” metrics, e.g., starting from the subkey Success Rates (SR) rather
than their likelihoods. Later Duc et al. [7] described a simple alternative to the
algorithm of Ye et al. and provided an “even easier to sample” bound on the
subkey SR, by exploiting their formal connection with a Mutual Information
metric. Recently, Wang at al. [25] presented a rank estimation for at dependent
score lists.

Choudary et al. [5] presented a method for estimating Massey’s guessing
entropy (GM) which is the statistical expectation of the position of the correct
key in the sorted distribution. Their method allows to estimate the GM within a
few bits. However, the actual guessing entropy (GE), i.e., the rank of the correct
key, is sometimes quite different from the expectation. In contrast, our algorithm
focuses on the real GE.

1.3 Contribution

In this paper we propose a simple and effective new rank estimation method
called ESrank, that is fundamentally different from previous approaches. We
have rigorously analyzed its accuracy, time and space complexities. Our main
idea is to use exponential sampling to drastically reduce the algorithm’s com-
plexity. We prove ESrank has a poly-logarithmic time- and space-complexity:
for a design parameter 1 < γ < 2 ESrank has O(d

2

4 (logγ N)2 log(logγ N)) time
and O(d logγ N+ d2

16 (logγ N)2) space, and it can be driven to any desired level of
accuracy (trading off time and space against accuracy). Importantly, ESrank is
simple to build from scratch, and requires no algorithmic tools beyond a sorting
function.

Beyond asymptotic analysis, we evaluated the performance of ESrank through
extensive simulations based on a real SCA data corpus, and compared it to the
currently-best histogram-based algorithm. We showed that ESrank gives excel-
lent rank estimation (with roughly a 1-bit margin between lower and upper
bounds), with a performance that is on-par with the Histogram algorithm: a
run-time of under 1 second, for all ranks up to 2128, on a standard laptop using
at most 6.5 MB RAM. Hence ESrank is a useful addition to the SCA evaluator’s
toolbox.

2 The ESrank Algorithm for the case d = 2

We start with describing the idea of our algorithm in case d = 2, then we shall
extend this idea for the general case d ≥ 2.

4

Algorithm 1: Exact rank.
Input: Two non-decreasing probability distributions P1, P2 of size N each, the

correct key k∗ = (k1, k2) and its probability p∗ = P1[k1] · P2[k2].
Output: Rank(k∗).

1 i = 1; j = N ; rank = 0;
2 while i ≤ N and j ≥ 1 do
3 p = P1[i] · P2[j];
4 if p ≥ p∗ then
5 rank = rank + j;
6 i = i+ 1;
7 else
8 j = j − 1;
9 return rank;

2.1 An exact rank estimation for d = 2

Definition 1 (Rank(k∗)). Let d non-increasing subkey probability distributions
Pi for 1 ≤ i ≤ d and the correct key k∗ = (k1, ..., kd) be given. Let p∗ = P1[k1] ·
... · Pd[kd] be the probability of the correct key. Then, define Rank(k∗) to be the
number of keys (x1, ..., xd) s.t. P1[x1] · ... · Pd[xd] ≥ p∗.

Definition 2. Let 2 non-increasing subkey probability distributions P1 and P2,
each of size N , the correct key k∗ = (k1, k2) and an index 1 ≤ i ≤ N be given.
Let p∗ = P1[k1] · P2[k2] be the probability of the correct key. Then define Hi to
be the number of points (i, j) such that P1[i] · P2[j] ≥ p∗, i.e.,

Hi(k
∗) = |{(i, j)|P1[i] · P2[j] ≥ p∗}|.

The idea of the algorithm is to find Hi(k
∗) for each i. The rank of the correct

key k∗ is the sum of Hi(k
∗) over 1 ≤ i ≤ N , i.e.,

Rank(k∗) =
N∑
i=1

Hi(k
∗).

The pseudo code is described in Algorithm 1. The correctness of Algorithm 1
stems from the observation that Hi ≥ Hi+1 for all 1 ≤ i ≤ N − 1. Therefore, to
find Hi+1, j starts from Hi and it is decreased until Hi+1 is found.

Proposition 1. The running time of Algorithm 1 is Θ(N).

Proof: At the beginning i = 1 and j = N . In each iteration either i is increased
by 1 or j is decreased by 1 until either i = N + 1 or j = 0. Therefore, the
number of steps is at most 2 ·N in case both i and j reach their limits, and is
at least N in case only one of them reaches it limit. Therefore, the running time
is Θ(N). ⊓⊔

5

2.2 Exponential Sampling with d = 2

To make this algorithm faster, we use sampling. Intuitively, we sample a set of
indices SI and run Algorithm 1 on the SI × SI grid. On the sampled indices
Algorithm 1 is no longer exact, but we can modify it to produce lower and upper
bounds on Rank(k∗). As we shall see, if we use exponential sampling, defined in
Section 2.3, we can bound the inaccuracy introduced by the sampling.

Given a non-increasing subkey probability distribution P of size N , the sam-
pling process returns a sampled probability distribution (SI, SP) of size Ns

where Ns = O(logN). SI contains the sampled indices and SP contains their
corresponding probabilities such that SP [i] = P [SI[i]] for all i ≤ Ns .

The goal of the exponential sampling is to maintain an invariant on the ratio
between sampled indices. Let 1 < γ ≤ 2 be given and let b be the smallest i such
that i/(i − 1) ≤ γ. The first b sampled indices are the first b indices of P . The
rest of the sampled indices are sampled from P at powers of γ. More formally,
for all i ≤ Ns − 1 the sampled indices obey:{

SI[i] = i if i ≤ b

SI[i]/SI[i− 1] ≤ γ and SI[i+ 1]/SI[i− 1] > γ otherwise.
(1)

E.g., if γ = 2 then b = 2, and for SI = {1, 2, 4, 8, . . . , N} invariant (1) holds. The
pseudo code of this sampling is described in Algorithm 2. Note that the indices
1 and N are always included in SI.

Lemma 1. If SI is the output of Algorithm 2 then for any index i ≥ b + 1 in
SI it holds that

SI[i] = ⌊γ · SI[i− 1]⌋.

and
SI[i]− SI[i− 1] = ⌊(γ − 1) · SI[i− 1]⌋.

Proof: According to Algorithm 2, it holds that

SI[i]

SI[i− 1]
≤ γ

and
SI[i] + 1

SI[i− 1]
> γ.

Therefore,
γ · SI[i− 1]− 1 < SI[i] ≤ γ · SI[i− 1].

Since SI[i] is an integer it holds

SI[i] = ⌊γ · SI[i− 1]⌋.

The difference SI[i]− SI[i− 1] obeys

(γ − 1) · SI[i− 1]− 1 < SI[i]− SI[i− 1] ≤ (γ − 1) · SI[i− 1].

6

Algorithm 2: Sampling Process.
Input: A probability distribution P of size N , b, γ.
Output: A sampled probability distribution (SI, SP).

1 for i = 1 to b do
2 SI[i] = i; SP [i] = P [i];
3 j = b; i = j + 1; c = j + 1;
4 while i < N do
5 if i/j ≤ γ and (i+ 1)/j > γ then
6 SI[c] = i; SP [c] = P [i];
7 c = c+ 1; j = i; i = i+ 1;
8 SI[c] = N ; SP [c] = P [N];
9 return (SI, SP);

The indices of SI are integers, therefore we get

SI[i]− SI[i− 1] = ⌊(γ − 1) · SI[i− 1]⌋.

⊓⊔

Proposition 2. Let Ns = |SI| be the size the sample returned by Algorithm 2.
Then b+ logγ(N/b) ≤ Ns < b+ logγ(N/(b− 1)).

Proof: Since b · rNs ≥ N and b · rNs−1 < N .

Definition 3. Let two sampled probability distributions (SI, SP1), (SI, SP2),
each of size Ns, the correct key k∗ = (k1, k2), its probability p∗ and an index
1 ≤ i ≤ Ns be given. Then define HS

i to be the number of points (i, j) s.t.
1 ≤ j ≤ N and SP1[i] · P2[j] ≥ p∗, i.e.,

HS
i (k

∗) = |{(i, j)|1 ≤ j ≤ N and SP1[i] · P2[j] ≥ p∗}|.

The difference between every two successive indices in the sampled proba-
bility distributions might be bigger than 1, i.e., SI[i + 1] − SI[i] > 1 therefore,
besides counting HS

i for each i ≤ Ns we also need to add the number of points
(i, j) such that SI[i] ≤ i ≤ SI[i + 1]. Recall that Algorithm 2 always includes
i = N in SI.

Definition 4. Let two sampled probability distributions (SI, SP1), (SI, SP2),
each of size Ns, the correct key k∗ = (k1, k2), its probability p∗ and an index
1 ≤ i ≤ Ns be given. Then define HS

a,b be the number of (i, j) s.t. 1 ≤ j ≤ N
and SI[a] < i < SI[b] and SP1[i] · P2[j] ≥ p∗, i.e.,

HS
a,b(k

∗) = |{(i, j)|1 ≤ j ≤ N and SP1[i] · P2[j] ≥ p∗ and SI[a] < i < SI[b]}|.

The idea of Algorithm 3 is to find HS
i (k

∗) for each i ∈ {1, ..., Ns} and
HS

i,i+1(k
∗) for each i ∈ {1, ..., Ns − 1}. The rank of the correct key k∗ is the

following sum:

Rank(k∗) =

Ns∑
i=1

HS
i (k

∗) +

Ns−1∑
i=1

HS
i,i+1(k

∗).

7

Algorithm 3: Calculating Upper and Lower bounds.
Input: Sampled probability distributions SP1, SP2 each of size Ns, b, the

correct key k∗ = (k1, k2) and it probability p∗.
Output: Upper and lower bounds on Rank(k∗).

1 iLast = Ns; jLast = Ns;
2 if k1 == 1 then jLast = k2;
3 if k2 == 1 then iLast = k1;
4 i = 1; j = jLast; ub = 0; lb = 0;
5 while i ≤ iLast and j ≥ 1 do
6 pCurr = SP1[i] · SP2[j];
7 if pCurr ≥ p∗ then
8 u = l = SI2[j]; uPrev = u;
9 ub = ub+ u; lb = lb+ l;

10 if i ≥ b+ 1 then
11 ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1);
12 lb = lb+ l · (SI[i]− SI[i− 1]− 1);
13 i = i+ 1;
14 else if j > 1 then
15 pNext = SP1[i] · SP2[j − 1];
16 if pNext < p∗ < pCurr then
17 u = SI[j]− 1; l = SI[j − 1]; uPrev = u;
18 ub = ub+ u; lb = lb+ l;
19 if i ≥ b+ 1 then
20 ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1);
21 lb = lb+ l · (SI[i]− SI[i− 1]− 1);
22 i = i+ 1;
23 else
24 j = j − 1;
25 else
26 j = j − 1;
27 if j < 1 and i ≤ iLast then
28 ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1);
29 return (lb, ub);

Since we are given sampled distributions, we cannot calculate the exact values
of HS

i (k
∗) and HS

i,i+1(k
∗). Instead we calculate upper and lower bounds for each

HS
i (k

∗) and HS
i,i+1(k

∗) as illustrated in Figure 1.

Definition 5. Let up(HS
i (k

∗)) be an upper bound of HS
i (k

∗) and let up(HS
i,i+1(k

∗))

be an upper bound of HS
i,i+1(k

∗), i.e.,

HS
i (k

∗) ≤ up(HS
i (k

∗)) and HS
i,i+1(k

∗) ≤ up(HS
i,i+1(k

∗)).

Definition 6. Let low(HS
i (k

∗)) be a lower bound of HS
i (k

∗) and let low(HS
i,i+1(k

∗))

be a lower bound of HS
i,i+1(k

∗), i.e.,

HS
i (k

∗) ≥ low(HS
i (k

∗)) and HS
i,i+1(k

∗) ≥ low(HS
i (k

∗)).

8

Fig. 1. The red bars represent the un-sampled Hi’s, and the black grid represents the
sampled indices in SI. For each sampled index 1 ≤ i ≤ Ns the blue circles are upper
and lower bounds on HS

i (k
∗). The yellow-shaded rectangles represent HS

i,i+1(k
∗) for

each b ≤ i ≤ Ns−1, for two different keys. Note that the yellow-shaded rectangles stop
exactly one index before the sampled indices, in both dimensions.

Therefore, it holds

Ns∑
i=1

low(Hi(k
∗)) +

Ns−1∑
i=1

low(Hi,i+1(k
∗)) ≤ Rank(k∗) ≤

≤
Ns∑
i=1

up(Hi(k
∗)) +

Ns−1∑
i=1

up(Hi,i+1(k
∗)).

(2)

2.3 Bounding the Sampled Distributions

Given two probability distributions P1 and P2, each of size N , we first sample the
indices using Algorithm 2. We get sampled probability distributions (SI, SP1)
and (SI, SP2) each of size Ns when SI is the set of sampled indices and SP1, SP2

are the corresponding sampled probabilities. Given these sampled probability
distributions, the next step is to calculate an upper bound and a lower bound
for Rank(k∗). This is done in Algorithm 3.

To do this, it keeps two variables: ub for the upper bound and lb for the lower
bound. At the beginning, both ub and lb are initialized to 0.

Definition 7. Given a key k∗, and given 1 ≤ i ≤ Ns, let ui be the value of u at
iteration i in Algorithm 3 and let li be the value of l at iteration i in Algorithm 3.

Algorithm 3 starts with i = 1 and j = Ns. It decreases j until one of the two
options happens:
(a) (line 16) We reach the highest j such that

SP1[i] · SP2[j] < p∗ < SP1[i] · SP2[j − 1].

9

In this case (i, j) ∈ HS
i (k

∗) but (i, j − 1) /∈ HS
i (k

∗), therefore

SI[j − 1] ≤ HS
i (k

∗) ≤ SI[j]− 1.

Therefore the values of li and ui become

li = SI[j − 1] and ui = SI[j]− 1, (3)

and the running totals ub and lb are updated (line 9).
(b) (line 7) We reach the highest j such that

SP1[i] · SP2[j] ≥ p∗.

In this case we have the exact value of HS
i (k

∗) which is

HS
i (k

∗) = SI[j].

Therefore the values of li and ui become

li = ui = SI[j], (4)

and the running totals ub and lb are updated (line 18).
In the next step, after finding bounds on HS

i , the algorithm moves to i+1 and
finds bounds on HS

i+1. Since HS
i ≥ HS

i+1 we start from j of the previous iteration
i.e., j s.t. SI[j−1] ≤ HS

i ≤ SI[j] and decrease it to get the corresponding bounds
on HS

i+1.
Once i ≥ b + 1 (lines 10, 19) the difference SI[i] − SI[i − 1] ≥ 1 therefore

HS
i−1,i(k

∗) ≥ 1 and it should be added. To upper bound this number we multiply
the upper bound of HS

i−1, which is uPrevi = ui−1, by the width of HS
i−1,i(k

∗),
which is (SI[i] − SI[i − 1] − 1) (lines 11, 20). To lower bound HS

i−1,i(k
∗) we

multiply the lower bound of HS
i , which is li by the width of HS

i−1,i(k
∗), (lines

12, 21); see Figure 1.

Theorem 1. Let two sampled probability distributions SP1 and SP2, which are
sampled from the probability distributions P1 and P2 respectively using Algo-
rithm 2 with γ > 1 be given and let b be the smallest i such that i/(i − 1) ≤ γ.
For a key k∗, let ub and lb be the outputs of Algorithm 3. Then ub/lb ≤ γ2.

Proof: From Equation (2) it holds that

ub =

Ns∑
i=1

up(Hi(k
∗)) +

Ns−1∑
i=1

up(Hi,i+1(k
∗)).

Since

up(HS
i (k

∗)) = ui and up(Hi,i+1(k
∗)) = ui · (SI[i+ 1]− SI[i]− 1)

we get

ub =

Ns∑
i=1

ui +

Ns−1∑
i=1

ui · (SI[i+ 1]− SI[i]− 1).

10

Since SI[i + 1] − SI[i] = 1 for all 1 ≤ i ≤ b − 1, the first b − 1 elements of the
second sum are 0.

ub =

Ns∑
i=1

ui +

Ns−1∑
i=b

ui · (SI[i+ 1]− SI[i])− 1)

b−1∑
i=1

ui +

Ns−1∑
i=b

(
ui + ui · (SI[i+ 1]− SI[i]− 1)

)
+ uNs

b−1∑
i=1

ui +

Ns−1∑
i=b

ui · (SI[i+ 1]− SI[i])) + uNs

Separating the b’th term from the second sum we get

ub ≤
(b−1∑

i=1

ui

)
+ub · (SI[b+1]−SI[b])+uNs +

Ns−1∑
i=b+1

ui · (SI[i+1]−SI[i]). (5)

Similarly from Equation (2) it holds that

lb =

Ns∑
i=1

low(Hi(k
∗)) +

Ns−1∑
i=1

low(Hi,i+1(k
∗)).

Since

low(HS
i (k

∗)) = li and low(Hi,i+1(k
∗)) = li+1 · (SI[i+ 1]− SI[i]− 1)

(Note the shift in indices where the multiplication is by the lower bound of i+1)
we get

lb =

Ns∑
i=1

li +

Ns−1∑
i=1

li+1 · (SI[i+ 1]− SI[i]− 1).

Again the first b− 1 elements of the second sum are 0, therefore

lb =

Ns∑
i=1

li +

Ns−1∑
i=b

li+1 · (SI[i+ 1]− SI[i]− 1).

By shifting index i by 1 in the second sum, we get

lb =

Ns∑
i=1

li +

Ns∑
i=b+1

li · (SI[i]− SI[i− 1]− 1)

=

b∑
i=1

li +

Ns∑
i=b+1

(
li + li · (SI[i]− SI[i− 1]− 1)

)
=

b∑
i=1

li +

Ns∑
i=b+1

li · (SI[i]− SI[i− 1])

≥
b∑

i=1

li +

Ns−1∑
i=b+1

li · (SI1[i]− SI1[i− 1]).

(6)

11

In order to show ub/lb ≤ γ2, we prove the following two Lemmas (in the
Appendix):

Lemma 2.(Ns−1∑
i=b+1

ui · (SI[i+ 1]− SI[i])

)
/

(Ns−1∑
i=b+1

li · (SI[i]− SI[i− 1])

)
≤ γ2

Lemma 3.((b−1∑
i=1

ui

)
+ ub · (SI[b+ 1]− SI[b]) + uNs

)
/

(b∑
i=1

li

)
≤ γ2.

3 The general case d > 2

Given d > 2 sampled probability distributions (SI1, SP1), ..., (SId, SPd), and
the correct key k∗ = (k1, ..., kd), we now follow the intuition of the d = 2 case
to solve the general case. To do so, we organize the d distributions into pairs,
merge the pairs into d/2 joint distributions, sub-sample the joint distributions,
and continue in the same way until we get to a single pair of distributions
sampled from the Nd/2-dimensioned half-keys. We achieve this via a sequence
of algorithms described below.

3.1 Merging two sampled distributions into a joint distribution

Given two sampled non-increasing probability distributions (SI1, SP1), (SI2, SP2),
each of size Ns, we wish to merge them into one non-increasing distribution, and
compute lower and upper bounds on the ranks of the points. Algorithm 4 im-
plements this task.

First, the algorithm goes over the grid of N2
s points (i, j) such that 1 ≤ i ≤ Ns

and 1 ≤ j ≤ Ns. For each point (i, j) it calculates the point’s probability SP1[i] ·
SP2[j]. Then, we sort these points in decreasing order of their probabilities.

Given two consecutive points (i1, j1) and (i2, j2) in the sorted order such
that Prob(i1, j1) ≥ Prob(i2, j2), all the points whose probability is greater than
Prob(i1, j1) are also greater than Prob(i2, j2), therefore, all the points in the
rank of (i1, j1) are contained in the rank of (i2, j2). Relying on this observation,
if we know the order of the N2

s points according to their probabilities, we can
bound the accumulative rank of these points while going over them from the
most likely point to the least. In this way, the upper-bound of the rank of the
current point (ic, jc) is the upper bound of the previous point (ip, jp) plus the
following expressions:

+ (SI[jp + 1]− SI[jp]) · (SI[ip + 1]− SI[ip]− 1)

+ SI[jp + 1]− SI[jp]− 1

+ 1

= (SI[jp + 1]− SI[jp]) · (SI[ip + 1]− SI[ip]).

(7)

12

Algorithm 4: Calculating the joint probability distribution.
Input: Sampled probability distributions SP1, SP2 each of size Ns.
Output: Joint probability distribution.

1 r = 1;
2 for i = 1 to Ns do
3 for j = 1 to Ns do
4 Y (r, 1) = SP1[i] · SP2[j]; Y (r, 2) = (i, j);
5 r = r + 1;
6 Y = Sort(Y) in decreasing order of Y (r, 1) ;
7 ub(1, 1) = 1; ub(1, 2) = SP1[1] · SP2[1];
8 lb(1, 1) = 1; lb(1, 2) = SP1[1] · SP2[1];
9 for r = 2 to N2

s do
10 (ic, jc) = Y (r, 2); (ip, jp) = Y (r − 1, 2);
11 ub(r, 1) = ub(r − 1, 1) + (SI(jp + 1)− SI(jp)) · (SI(ip + 1)− SI(ip);
12 lb(r, 1) = lb(r − 1, 1) + (SI(jc)− SI(jc − 1)) · (SI(ic)− SI1(ic − 1);
13 ub(r, 2) = lb(r, 2) = Y (r, 2);
14 return (ub, lb);

The first term in (7), (SI[jp + 1]− SI[jp]) · (SI[ip + 1]− SI[ip]− 1), represents
the number of points that might come after the previous point and before the
current point, which are not on the SI grid. I.e., these are the points (i, j) s.t.

SI[ip] < i < SI[ip + 1] and SI[jp] ≤ j < SI[jp + 1].

SI[jp + 1] is not included since we haven’t reached that point yet.
The second term in (7), SI[jp + 1] − SI[jp] − 1, represents the number of

points that might come after the previous point and before the current point
which are on the SI grid. I.e., these are the points (i, j) s.t.

i = SI[ip] and SI[jp] < j < SI[jp + 1].

SI[jp] is not included since the point (SI[ip], SI[jp]) is the previous point and
it was already included and SI[jp + 1] is not included since we haven’t reached
that point yet.

The last addition in (7) is 1, accounting for the current point itself.
The resulting expression can be seen in Algorithm 4 (line 11). A similar

derivation can be done for the lower bound (omitted).
Note that Algorithm 4 does not require the one-dimensional ranks or even

knowing upper or lower bounds on the one-dimensional ranks.

3.2 Sampling the joint probability distribution

The output of Algorithm 4 is a distribution over N2
s elements. We now show

that we can sub-sample this distribution, via exponential sampling, using the
same parameters b and γ used to create the one-dimension samples. Theorem 2
below shows that a sub-sampling with the same b and γ always exists.

13

Algorithm 5: Sub-Sampling the joint distribution.
Input: A joint probability distribution (inSI, inSP) of size N2

s , b, γ.
Output: A sampled probability distribution (SI, SP).

1 for i = 1 to b do
2 SI[i] = inSI[i]; SP [i] = inSP [i];
3 j = b; i = j + 1; c = i+ 1;
4 while i < N2

s do
5 if inSI[i]/inSI[j] ≤ γ and inSI[i+ 1]/inSI[j] > γ then
6 SI[c] = inSI[i]; SP [c] = inSP [i];
7 c = c+ 1; j = i;
8 SI[c] = inSI[N2

s]; SP [c] = inSP [N2
s];

9 return (SI, SP);

We would like to sample this joint probability distribution using Algorithm 2,
using b and γ, except now instead of the 1-dimensional ranks we sample using
the rank-upper/lower-bounds, See Algorithm 5.

For this, we shall prove in Lemma 5 that the first b indices of the joint
probability distribution are 1, ..., b and we shall prove in Theorem 2 that the
ratio between any two successive ranks is at most γ.

Lemma 4. For any index i ≥ b+ 1 in SI it holds that

SI[i]− SI[i− 1] ≤ (γ − 1) · SI[i− 1].

Lemma 5. Given two sampled probability distributions (SI1, SP1) and (SI2, SP2)
that are sampled by Algorithm 2 merged by Algorithm 4. The first b upper ranks
in the upper joint probability distribution are the integers 1, .., b and the first b
lower ranks in the lower joint probability distribution are the integers 1, .., b.

Proof: According to the sampling process in Algorithm 2 it holds: ∀i ≤ b
SI1[i] = i and SI2[i] = i. Therefore, the joint probability contains the indices of
(i, j) ∈ {1, ..., b} × {1, ..., b}. Since the first b points with the highest probabili-
ties are somewhere in the square: {1, ..., b} × {1, ..., b} . The rank of the first b
composed only from points in this square, therefore for i ≤ b, the upper bound
and lower bound of the i’th element in the joint distribution are equal to each
other and equal to i.

Theorem 2. Given the joint probability distribution of the sampled probability
distributions (SI1, SP1), (SI2, SP2), The ratio between any two consecutive upper
(lower) ranks is at most γ, where 1 < γ ≤ 2.

Proof: Let up(ic, jc) be the upper bound on the rank of point (ic, jc) as in
Algorithm 4. As can be seen in Algorithm 4 the difference between the upper
ranks of any two consecutive points (ic, jc) and (ip, jp) is

up(ic, jc)− up(ip, jp) = (SI2(jp + 1)− SI2(jp)) · (SI1(ip + 1)− SI1(ip)).

14

By Lemma 4 it holds that

SI2(jp + 1)− SI2(jp) ≤ SI2(jp) · (γ − 1)

SI1(ip + 1)− SI1(ip) ≤ SI1(ip) · (γ − 1).

Therefore,
up(ic, jc)− up(ip, jp) ≤ SI2(jp) · SI1(ip) · (γ − 1)2

The trivial lower bound of rank(ip, jp) is the multiplication of its index, therefore

up(in, jn)− up(ip, jp) ≤ up(ip, jp) · (γ − 1)2

Since 1 < γ ≤ 2, it holds (γ − 1)2 ≤ (γ − 1), therefore

up(ic, jc)− up(ip, jp) ≤ up(ip, jp) · (γ − 1)

and we get
up(ic, jc) ≤ up(ip, jp) · γ.

Similarly, as can be seen in Algorithm 4 the difference between the lower ranks
of any two successive points (in, jn) and (ip, jp) is

up(ic, jc)− up(ip, jp) = (SI2(jc)− SI2(jc − 1)) · (SI1(ic)− SI1(ic − 1)).

A similar argument shows that low(ic, jc) ≤ low(ip, jp) · γ.
Theorem 2 shows that in the joint Ns × Ns distribution, the upper (lower)

bounds of every two consecutive points (in sorted order) obey the invariant
ub(ic, jc) ≤ γ · ub(ip, jp).

Corollary 1. The sample produced by Algorithm 5 on an input distribution of
size N2

s consists of O(Ns) ranks.

3.3 The ESrank Algorithm: Putting it all together

Given d > 2 sampled probability distributions (SI1, SP1), ..., (SId, SPd), and the
correct key k∗ = (k1, ..., kd), we first merge the d sampled probability distribu-
tions into d/2 sampled joint distributions, so that we get d/2 sampled upper- and
lower-bounded distributions. Now, We take the d/2 upper-bounded distributions
and merge them into d/4 sampled upper-bounded distributions, and similarly
for the lower bounded distribution. We continue in the same way until we get
two pairs of joint distributions: one pair of upper sampled joint distributions and
one pair of lower sampled joint distributions. Now, we apply Algorithm 3 on the
upper pair sampled joint distribution to get the upper bound of Rank(k∗) and
again, we apply Algorithm 3 on the lower pair sampled joint distribution to get
the lower bound of Rank(k∗). Algorithm 6 shows the complete pseudo-code for
ESrank.

15

Algorithm 6: ESrank: Calculating the upper and lower bounds for d > 2.
Input: The probability distributions P1, ..., Pd, the correct key k∗ = (k1, ..., kd),

b and γ.
Output: Upper and lower bounds of rank(k∗).

1 for i = 1 to d do
2 (SIi, SPi) = Alg2(Pi, b, γ) ; // Sample the input distributions

3 dim = d;
4 while dim ̸= 2 do
5 for i = 1 to dim/2 do
6 (ubi, lbi) = Alg4((SI2i−1, SP2i−1), (SI2i, SP2i)) ; // Merge

7 (SIi, SPi) = Alg5(ubi) ; // Sub-Sample

8 dim = dim/2;
9 (ub′, lb′) = Alg3((SI1, SP1), (SI2, SP2)) ; // Calculate upper bound

10 dim = d;
11 while dim ̸= 2 do
12 for i = 1 to dim/2 do
13 (ubi, lbi) = Alg4((SI2i−1, SP2i−1), (SI2i, SP2i)) ; // Merge

14 (SIi, SPi) = Alg5(lbi) ; // Sub-Sample

15 dim = dim/2;
16 (ub′′, lb′′) = Alg3((SI1, SP1), (SI2, SP2)) ; // Calculate lower bound

17 return (ub′, lb′′);

3.4 Theoretical Performance

Time complexity At each level of Algorithm 6 it uses Algorithm 4 to merge
the sampled distributions received from the previous level. Algorithm 4 goes over
N2

s pairs, calculates their probabilities using Θ(N2
s) time, and sorts them using

Θ(N2
s · logNs) time. Let T (d, γ) be the total the running time. Then

T (d, γ) ≤
log d−2∑
i=1

d

2i
(2i−1 logγ N)2 log (2i−1 logγ N)2

≤ d2

4
(logγ N)2 log(logγ N).

I.e., we see that ESrank has a poly-logarithmic time complexity (in N).

Accuracy Assume the correct key is k∗ = (k1, ..., kd). For a key (ki, ki+1) and
(SIi, SPi), (SIi+1, SPi+1) let ki,i+1 be the real rank of (ki, ki+1). At the lowest
level Theorem 1 and Algorithm 3 give that up(ki, ki+1) ≤ γ2ki,i+1. In the next
level, each rank in the sampled joint distribution is multiplied by at most γ2,
therefore each term in the sum that composes up(γ2ki,i+1, γ

2ki+2,i+3) is mul-
tiplied by at most γ4. Hence up(γ2ki,i+1, γ

2ki+2,i+3) ≤ γ4up(ki,i+1, ki+2,i+3) ≤
γ4γ2ki,i+1,i+2,i+3 = γ6ki,i+1,i+2,i+3. We continue in the same way, and get

up(Rank(k∗))/Rank(k∗) ≤ γ
∑log d

i=1 2i = γ2d−2.

16

Fig. 2. The accuracy (log2 of the ratio between the upper- and lower-bounds) for the
ESrank algorithm as a function of log2(Rank(k∗)) for different parameter settings:
γ = 1.05 (green), γ = 1.033 (blue), γ = 1.025 (yellow).

Since rank(k∗) might be any value in [low(Rank(k∗), up(Rank(k∗)], we get

accuracy(d, γ) = up(Rank(k∗))/low(Rank(k∗)) ≤ γ2d−2.

E.g., for AES-128 with a preprocessing step of merging the 16 8-bit distributions
into d = 8 16-bit distributions we get 2d− 2 = 14.

Space complexity In the first step we need to store d distributions of size
logγ N from Algorithm 4. In order to merge each pair of distributions into one,
we need addition memory of (logγ N)2. After merging 2 distributions each of size
(logγ N), we get one sampled distribution of size (logγ N

2) which is 2(logγ N).
Since we do not need the original pair any more, we can overwrite this space of
size 2(logγ N) and store the new distribution into it. In the same way, in order to
merge two distributions of size logγ N

2 we need additional space of (logγ N2)2,
and the merged distribution will overwrite the original pair. In the last step,
we need to merge 4 distributions, each of size Nd/4, therefore the maximum
additional space we need is (logγ Nd/4)2. In total we get d logγ N +(logγ N

d/4)2

which is

space(d, γ) = d logγ N +
d2

16
(logγ N)2.

4 Empirical Evaluation

We evaluated the performance of the ESrank algorithm through an extensive
simulation study. We compared the our algorithm to the currently best rank
estimation algorithm: the Histogram algorithm of [10]. We implemented both in
Matlab. We ran both algorithms on a 2.80GHz i7 PC with 8GB RAM running
Microsoft windows 7, 64bit.

17

Time Space Accuracy < 1 bit
(Seconds) (MB) (%)

γ = 1.025 0.59 6.48 100
γ = 1.033 0.3 3.68 100
γ = 1.05 0.16 1.60 99.83
γ = 1.065 0.05 0.96 56.95
B = 50K 0.62 3.20 100
B = 35K 0.29 2.24 100
B = 20K 0.12 1.28 100
B = 5K 0.01 0.32 99.83

Table 1. Performance summary of the ESrank and Histogram algorithms. The Ac-
curacy column indicates the percentage of traces for which the difference between the
upper- and lower-bounds of the estimated ranks was below 1 bit.

For the performance evaluation we used the data of [8]. Within this data
corpus there are 611 probability distribution sets gathered from a specific SCA.
The SCA of [8] was against AES [1] with 128-bits keys running on an embedded
processor with an unstable clock. Each set represents a particular setting of the
SCA: number of traces used, whether the clock was jittered, and the values of
tunable attack parameters. The attack grouped the key bits into 16 8-bit subkeys,
and hence its output probability distributions are over these byte values. Each
set in the corpus consists of the correct secret key and 16 distributions, one per
subkey. The distributions are sorted in non-increasing order of probability, each
of length 28. We used the same technique suggested in [10]: merge the d = 16
probability lists of size N = 28 into d = 8 lists of size N = 216. We measured
the upper bound, lower bound, time and space for each trace using ESrank and
the Histogram rank estimation.

Bound Tightness Figure 2 shows that the analytical performance of section 3.4
indeed agrees with the empirical results. For different values of γ we get accuracy
which corresponds to at most γ14: e.g., when γ = 1.05 Figure 2 shows a margin of
at most 0.9 bits. We can see that as γ becomes closer to 1, the accuracy becomes
closer to 0. As we expected, the maximum gap between the upper bound and
the lower bound happens for ranks around 100−120 since the difference between
any two successive indices in the sampled set becomes greater when the indices
becomes greater.

Time and Space Analysis Table 1 shows the time, the space and the percent-
age of the traces for which the accuracy is better than 1 bit, for ESrank with
γ = 1.025, 1.033, 1.05, 1.065 and for Histogram [10] with B =50,000, 35,000,
20,000, 5,000. As we can see, the two algorithms, using the described param-
eters - all take less than 0.6 seconds and use under 6.5 MB of memory. In a
practical sense ESrank is on-par with the Histogram algorithm: both exhibit a

18

run-time of under 1 second using less than 6.5 MB, to get a 1-bit margin of
uncertainty in the rank for all ranks up to 2128.

5 Conclusion

In this paper we proposed a simple and effective new rank estimation method.
We have rigorously analyzed its accuracy, and its time and space complexities.
Our main idea is to use exponential sampling to drastically reduce the algo-
rithm’s complexity. We proved ESrank has a poly-logarithmic time- and space-
complexity, and it can be driven to any desired level of accuracy (trading off
time and space against accuracy). Importantly, ESrank is simple to build from
scratch, and requires no algorithmic tools beyond a sorting function.

We evaluated the performance of ESrank through extensive simulations based
on a real SCA data corpus, and compared it to the currently-best histogram-
based algorithm. We showed that ESrank gives excellent rank estimation (with
roughly a 1-bit margin between lower and upper bounds), with a performance
that is practically on-par with the Histogram algorithm: a run-time of under 1
second, for all ranks up to 2128, on a standard laptop. Hence ESrank is a useful
addition to the SCA evaluator’s toolbox.

Acknowledgement Liron David was partially supported by The Yitzhak and
Chaya Weinstein Research Institute for Signal Processing.

References

1. FIPS PUB 197, advanced encryption standard (AES), 2001. U.S. Department of
Commerce/National Institute of Standards and Technology (NIST).

2. D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The EM side-channel(s).
In Cryptographic Hardware and Embedded Systems-CHES 2002, pages 29–45. 2003.

3. Daniel J Bernstein, Tanja Lange, and Christine van Vredendaal. Tighter, faster,
simpler side-channel security evaluations beyond computing power. IACR Cryp-
tology ePrint Archive, 2015:221, 2015.

4. Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and
Marc Witteman. Fast and memory-efficient key recovery in side-channel attacks.
In Selected Areas in Cryptography (SAC), 2015.

5. Marios O Choudary and PG Popescu. Back to massey: Impressively fast, scalable
and tight security evaluation tools. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 367–386. Springer, 2017.

6. L. David and A. Wool. A bounded-space near-optimal key enumeration algorithm
for multi-subkey side-channel attacks. In Proc. RSA Conference Cryptographers’
Track (CT-RSA’17), LNCS 10159, pages 311–327, San Francisco, February 2017.
Springer Verlag.

7. Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking
security proofs concrete. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 401–429. Springer, 2015.

19

8. D. Fledel and A. Wool. Sliding-window correlation attacks against encryption
devices with an unstable clock. In Proc. 25th Conference on Selected Areas in
Cryptography (SAC), Calgary, August 2018.

9. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic anal-
ysis: Concrete results. In Cryptographic Hardware and Embedded Systems—CHES
2001, pages 251–261. Springer, 2001.

10. Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schueth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for side-
channel security assessment. In Fast Software Encryption, pages 117–129, 2015.

11. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO’99, pages 388–397. Springer, 1999.

12. Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Advances in Cryptology—CRYPTO’96, pages 104–113, 1996.

13. Yang Li, Xiaohan Meng, Shuang Wang, and Jian Wang. Weighted key enumera-
tion for em-based side-channel attacks. In 2018 IEEE International Symposium on
Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Elec-
tromagnetic Compatibility (EMC/APEMC), pages 749–752. IEEE, 2018.

14. Yang Li, Shuang Wang, Zhibin Wang, and Jian Wang. A strict key enumeration
algorithm for dependent score lists of side-channel attacks. In International Con-
ference on Smart Card Research and Advanced Applications, pages 51–69. Springer,
2017.

15. Jake Longo, Daniel P. Martin, Luke Mather, Elisabeth Oswald, Benjamin Sach,
and Martijn Stam. How low can you go? using side-channel data to enhance brute-
force key recovery. Cryptology ePrint Archive, Report 2016/609, 2016. https:

//eprint.iacr.org/2016/609.
16. Daniel P Martin, Luke Mather, and Elisabeth Oswald. Two sides of the same coin:

counting and enumerating keys post side-channel attacks revisited. In Cryptogra-
phers Track at the RSA Conference, pages 394–412. Springer, 2018.

17. Daniel P Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam. Character-
isation and estimation of the key rank distribution in the context of side channel
evaluations. In International Conference on the Theory and Application of Cryp-
tology and Information Security, pages 548–572. Springer, 2016.

18. Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn Stam.
Counting keys in parallel after a side channel attack. In Advances in Cryptology–
ASIACRYPT 2015, pages 313–337. Springer, 2015.

19. Jing Pan, Jasper GJ Van Woudenberg, Jerry I Den Hartog, and Marc F Witte-
man. Improving dpa by peak distribution analysis. In International Workshop on
Selected Areas in Cryptography, pages 241–261. Springer, 2010.

20. Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple key
enumeration (and rank estimation) using histograms: an integrated approach. In
Proc. 18th Cryptographic Hardware and Embedded Systems–CHES 2016, pages 61–
81. Springer, 2016.

21. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In Smart Card Programming and
Security, pages 200–210. Springer, 2001.

22. Dan Shepherd. Quantum key search with side channel advice. In Selected Areas
in Cryptography–SAC 2017: 24th International Conference, Ottawa, ON, Canada,
August 16-18, 2017, Revised Selected Papers, volume 10719, page 407. Springer,
2018.

20

23. Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In International Conference on Selected Areas in Cryptography,
pages 390–406. Springer, 2012.

24. Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Advances in Cryptology–EUROCRYPT
2013, pages 126–141. Springer, 2013.

25. Shuang Wang, Yang Li, and Jian Wang. A new key rank estimation method to
investigate dependent key lists of side channel attacks. In 2017 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST), pages 19–24. IEEE, 2017.

26. Xin Ye, Thomas Eisenbarth, and William Martin. Bounded, yet sufficient? how
to determine whether limited side channel information enables key recovery. In
Smart Card Research and Advanced Applications (CARDIS), pages 215–232. 2014.

Appendix: Proofs

Proof of Lemma 2:(Ns−1∑
i=b+1

ui · (SI[i+ 1]− SI[i])

)
/

(Ns−1∑
i=b+1

li · (SI[i]− SI[i− 1])

)
≤ γ2 (8)

We shall prove that for all b+ 1 ≤ i ≤ Ns − 1

ui · (SI[i+ 1]− SI[i])/li · (SI[i]− SI[i− 1]) ≤ γ2

and that will prove Equation (8). From Equation (3) and Equation (4) either
li = SI[j − 1], ui = SI[j]− 1 or l1 = ui = SI[j], therefore

ui/li ≤ γ,

and we only need to prove

(SI[i+ 1]− SI[i])/(SI[i]− SI[i− 1]) ≤ γ. (9)

From Lemma 1, it holds that

SI[i+ 1]− SI[i] = ⌊(γ − 1) · SI[i]⌋

and
SI[i]− SI[i− 1] = ⌊(γ − 1) · SI[i− 1]⌋

therefore Equation (9) is

SI[i+ 1]− SI[i]

SI[i]− SI[i− 1]
=

⌊(γ − 1) · SI[i]⌋
⌊(γ − 1) · SI[i− 1]⌋

≤ (γ − 1) · SI[i]
⌊(γ − 1) · SI[i− 1]⌋

.

By Lemma 1 Equation (9) is

=
(γ − 1) · ⌊γ · SI[i− 1]⌋
⌊(γ − 1) · SI[i− 1]⌋

=
(γ − 1) · ⌊γ · SI[i− 1]⌋

⌊γ · SI[i− 1]− SI[i− 1]⌋
.

21

Since SI[i− 1] is an integer it holds

=
(γ − 1) · ⌊γ · SI[i− 1]⌋

⌊γ · SI[i− 1]⌋ − ⌊SI[i− 1]⌋
= γ − 1 +

(γ − 1) · ⌊SI[i− 1]⌋
⌊γ · SI[i− 1]⌋ − ⌊SI[i− 1]⌋

= γ − 1 +
(γ − 1) · SI[i− 1]

⌊γ · SI[i− 1]− SI[i− 1]⌋
= γ − 1 +

(γ − 1) · SI[i− 1]

⌊(γ − 1) · SI[i− 1]⌋
≤ γ.

⊓⊔
Proof of Lemma 3:((b−1∑

i=1

ui

)
+ ub · (SI[b+ 1]− SI[b]) + uNs

)
/

(b∑
i=1

li

)
≤ γ2. (10)

We can write this equation in the following way:(∑b−1
i=1 ui

)
+ ub · (SI[b+ 1]− SI[b]) + uNs∑b

i=1 li
=

∑b
i=1 ui∑b
i=1 li

+
ub · (SI[b+ 1]− SI[b]− 1) + uNs∑b

i=1 li
.

Since ui/li ≤ γ, Equation (10) is upper bounded by

≤ γ +
ub · (SI[b+ 1]− SI[b]− 1) + uNs∑b

i=1 li
.

By Lemma 1 and since l1 ≥ l2 ≥ ... ≥ lb and ub ≥ uNs
, we get

≤ γ +
ub · ((γ − 1) · SI[b]− 1) + ub

b · lb
.

Since SI[b] = b and ui/li ≤ γ

≤ γ +
γ · lb · (γ − 1) · b

b · lb
= γ + γ · (γ − 1) = γ2.

⊓⊔

22

