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Abstract. As one of the most prevalent SCA countermeasures, masking
schemes are designed to defeat a broad range of side channel attacks.
An attack vector that is suitable for low-order masking schemes is to
try and directly determine the mask(s) (for each trace) by utilising the
fact that often an attacker has access to several leakage points of the
respectively used mask(s). Good examples for implementations of low-
order masking schemes are the based on table re-computations and also
the masking scheme in DPAContest V4.2. We propose a novel approach
based on Independent Component Analysis (ICA) to efficiently utilise
the information from several leakage points to reconstruct the respective
masks (for each trace) and show it is a competitive attack vector in
practice.
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1 Introduction

Over the past decade, Side Channel Attacks (SCAs) have become a major threat
for various cryptographic devices. Depending on the specific attacker model,
most SCAs can be divided into two categories: profiled attacks and non-profiled
attacks. In a profiled attack, the attacker (a priori) creates direct approximations
of the device’s leakage function, and uses these in an attack. This typically results
in very efficient attacks but with the strong assumptions about the capabilities
of the attacker. Non-profiled attacks only require a proportional (or weaker)
approximation of the device’s leakage model. The canonical example of such
an attack is to approximate the device leakage with the Hamming weight of
intermediate values, and utilise correlation as a distinguisher. Attacks in both
categories often proceed via a divide and conquer strategy, which require (in the
divide step) to explicitly guess partial keys. Consequently (in a known plaintext
setting) such attacks are limited to first and last rounds of typical block cipher
constructions.

In 2017, Gao et al. proposed a new non-profiled SCA based on Indepen-
dent Component Analysis (ICA) [1]. Assuming the observed leakages follow
the weighted Hamming weight model, the ICA based attack recovers the in-
termediate states without making any explicit key guesses. In their paper, the
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authors demonstrate several applications of this approach, including a new key-
distinguisher, attacking the middle encryption rounds as well as reverse engineer-
ing. However, all previous discussions about ICA-based SCA focus on unprotect-
ed implementations. We are hence interested in investigating if ICA-based SCA
can be useful to attack protected implementations.

For ICA-based SCA to work it is imperative to have access to several leakage
points for some (targeted) intermediate value. In masked implementations, one
can often observe leakages related to the manipulation of masks in the processor.
Hence, ICA-based SCA could be a powerful tool for mask recovery in masked
implementations, in particular optimised low-order masking schemes.

Our Contribution. In this paper, we explore the potential of ICA to compro-
mise implementations of some (low order) masking schemes. Specifically, in table
re-computation schemes, the multiple XORs in the re-computation process nat-
urally provide multiple leakage observations for ICA. Compared with previous
attacks, our ICA-based mask recovery finds the n-bit random masks with only
n leakage points, whereas previous attacks take 2n points. Experiments confirm
that for smaller Sboxes (n = 4), ICA-based attack outperforms horizontal at-
takcs on smart card implementations. For the Rotating Sbox Masking (RSM)
scheme, which is used in the DPAContest V4, our analysis proves that if the
attacker chooses the leakages wisely, the random masks can be recovered as an
approximate ICA problem. Although the mask recovery becomes less accurate,
the following key recovery is hardly affected.

Paper Organization. In Section 2, we briefly review the targeted masking schemes
as well as our primary tool—ICA. Section 3 analyzes the leakage behaviour of
table re-computation schemes in details. As the XORs naturally provide multiple
leakage observations, ICA enables the attacker to determine both the random
masks and the secret key. We present another masking scheme—the masking
scheme in DPAContest V4.2—in Section 4. Although this scheme computes the
masked tables offline, the relevant random indexes in each round provide con-
siderable leakages for ICA-based SCA. Impacts of this approach and conclusions
are further presented in Section 5.

2 Preliminaries

2.1 Masking schemes

To date, masking is one of the most prevalent countermeasures for software
implementations. In general, a masking scheme conceals the cryptographic in-
termediate states with random values. As a result, the data-dependent leakage
no longer relates to the secret key. Previous studies proposed a variety of masking
schemes, such as affine masking [2], polynomial masking [3] and inner product
masking [4]. In this paper, we focus on Boolean masking, the most frequently im-
plemented approach. In a Boolean masking scheme with d-shares, an intermedi-
ate state x is split into d shares

(
x(1), x(2), ..., x(d)

)
where x(1)⊕x(2)⊕...⊕x(d) = x.
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As each leakage point only depends on one x(i), the attacker cannot learn any
useful information, unless they combine the leakages of all d shares.

For linear components P , implementing a Boolean masking is quite straight-
forward: as P (x(1) ⊕ x(2) ⊕ ...⊕ x(d)) = P (x(1))⊕P (x(2))⊕ ...⊕P (x(d)), simply
applying P to all d shares gives the expected outputs. For non-linear components
(Sboxes), things become tricker. In order to ensure the output shares satisfy
S(x(1) ⊕ x(2) ⊕ ... ⊕ x(d)) = S1(x(1)) ⊕ S2(x(2)) ⊕ ... ⊕ Sn(x(d)), at least one of
the masked Sbox Si must be related to multiple input shares. Three proposals
exist in previous studies [5]:

– Compute the Sbox arithmetically. In 2003, Ishai, Sahai and Wagner pro-
posed a provably secure higher-order masking scheme for bit-wise AND [6].
Alternatively, the whole Sbox can be computed as a bunch of masked ANDs
and masked NOTs. Compared with the unprotected implementations, this
construction significantly increases the computation cost.

– Table Re-computation. In many look-up table schemes, the masked Sbox
is computed as a look-up table [7,8,9]. In the first step, these schemes often
generate a masked table using all the shares from x(1) to x(d−1) . Then,
the output shares

(
y(1), y(2), ..., y(d)

)
can be found by simply looking up x(d)

in the masked table. The major drawback of this approach, is that the re-
computation stage is not only costly, but also exploitable. For an n-bit Sbox,
this procedure provides 2n leakage points for each data share x(i). Thus, the
attacker can collect all leakage points on the trace (“horizontally”) and use a
standard DPA style attack to recover x(i). For n = 8, this horizontal attack
is actually quite efficient for software implementations [10,11].

– Global look-up tables. Alternatively, the masked table can also be com-
puted offline [8]. In this case, a masked table is generated for each possible
mask and stored in the data RAM/ROM. Considering the enormous memory
cost, this approach is more suitable for smaller Sboxes (eg. 4-bit Sbox)1. For
larger Sboxes, it often applies in Low-Entropy Masking Schemes (LEMS),
such as the Rotating Sbox Masking (RSM) [13]. Instead of random masks,
LEMS usually uses a precomputed set of constant masks, which significantly
reduces the memory cost [13]. As a lightweight SCA countermeasure, it is
LEMS’s design philosophy to resist not all but a selection of important and
powerful attacks [13]. Results from DPA Contest v4 and v4.2 are consistent
with such statement: in the profiling case, the secret key can be found with
only one trace [14].

2.2 Independent Component Analysis

Independent Component Analysis (ICA) [15] belongs to a class of problems
called Blind Source Separation (BSS), which requires to separate a set of mixed
signals, without the aid of information about the source signals or the mixing
process. A common example is the cocktail party problem in which the challenge
of a partygoer is to pick out a single conversation when in a noisy room.

1 For specific processors, such implementation is not necessarily secure [12].
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Suppose we have n simultaneous conversations (sources) S = {s1, s2, ..., sn}
going on in the party room. Microphones are placed in different positions, record-
ing m mixtures (observations) of the original sources Y = {y1, y2, ..., ym}. As-
suming the observation yj is a linear mixture of all sources, we have

yj = aj,0 + aj,1s1 + aj,2s2 + ...+ aj,nsn

where aj,i stands for the real-valued coefficient. The overall mixing procedure
can be written as

Y = AS

where A is called the mixing matrix. In signal processing, such statistical model
is called Independent Component Analysis [15]. With additional multivariate
Gaussian noise N, the noisy ICA model is defined as

Y = AS + N

The goal of ICA, is to recover the unknown sources S from the observation
Y, without knowing the mixing matrix A or the Gaussian noise N in advance.

2.3 ICA in Side Channel Analysis

Assuming the target device’s leakage function is linear (in the bits of the inter-
mediate values), recovering the secret intermediate values in SCA is quite similar
to an ICA problem [1]. Specifically, when operating an n-bit intermediate state
x, the data-dependent leakage can be written as

L(x) = α0 + α1x1 + α2x2 + ...+ αnxn, αi ∈ R (1)

Here xi represents the i-th bit 2 of xand L is a linear leakage function. This
leakage function has the same form as one ICA observation (i.e. yj in Sect. 2.2).

However for ICA we need more than a single observation. Suppose that the
device not only computes x but also computes some other intermediate state
x′ = x⊕ c (c is a constant) at some point. Then, the attacker can also learn the
leakage of L(x′) 3. Take c = 00...01 as an example, we have:

L(x′) = L(x⊕ 00...01)

= α0 + α1x1 + α2x2 + ...+ αn(xn ⊕ 1)

= α0 + α1x1 + α2x2 + ...+ αn(1− xn)

= (α0 + αn) + α1x1 + α2x2 + ...− αnxn

It is not hard to see that such leakage can be regarded as the leakage from the
same intermediate state x, but with a different linear leakage function L′. Thus,

2 Throughout this paper, we always use subscript i as the i-th bit. Unlike tradition-
al SCA, the intermediate state x here represents the random mask, which is not
dependent on a key guess k .

3 For simplicity, we assume all leakage share the same leakage function L. However,
ICA does work with different L-s, as long as they are all linear combinations of x.



5

if the targeted implementation has some operand like x⊕ c, the attacker may be
able to manipulate c to get multiple “observations”for the intermediate state x.
Assuming the attacker can get enough observations (the number of observations
m ≥ n ), in theory, he (or she) can solve the intermediate state x as an noisy
ICA problem.

In practice, considering side channel leakage usually contains high level of
noise, the authors also proposed an specific ICA algorithm for SCA. Due to the
space limit, we omit further details: interested readers can find this part in [1].

Unlike other traditional SCAs, recovering x with ICA does not involve any
key guess. As a consequence, ICA-based SCA serves as a perfect tool for SCA
in the middle rounds or SCA-based reverse engineering [1]. Indeed, the authors
already provide realistic experiments to verify their results on certain software
implementations. On the other hand, as stated in [1], in many realistic circum-
stances, finding such XOR constant c might not be an easy task. For this reason,
to date, the applications of ICA-based SCA are restricted to unprotected cryp-
tographic implementations.

3 ICA-based Attack on a Table Re-computation Scheme

In the following, we analyse the potential application of ICA on a few masking
schemes. Perhaps surprisingly, for some masking schemes, constructing multi-
ple observations becomes much easier. The following two sections present two
case studies: for each case study, we will review its mask computation, analyze
its leakage and show how ICA-based SCA enables the recovery of the random
masks. Comparison with previous attacks and experimental verifications are also
provided in each case. We begin by studying a table re-computation scheme.

3.1 Table Re-computation Schemes

Considering the memory cost, masking schemes with global look-up table can
hardly be applied to larger Sboxes (eg. the Sbox in AES). Thus, many masking
schemes choose to generate the masked table online. In a d-shares table re-
computation scheme, (x(1),x(2),...,x(d−1)) is taken to the computation to create
a masked table T . In the last step, the implementation simply looks up x(d)

in T and returns T (x(d)) as the output shares. To ensure its security against
SCA, designers may also add some other procedures, such as refreshing T with
fresh randomness after each table look-up [9]. Meanwhile, most masked table
re-computations are rather similar: for clarity, we present a d-shares table re-
computation procedure in Algorithm 1.

3.2 Previous Attacks

Note that in Algorithm 1, line 3 always produces 2n leakages for each share. More
specifically, assume the leakage function is L, the attacker learns the leakages of
(L(x(i)), L(x(i) ⊕ 1), ..., L(x(i) ⊕ (2n − 1))). As all these leakages depend on the
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Algorithm 1 A d-shares table re-computation for an n-bit Sbox

Input: x(1),...,x(d) such that x = x(1) ⊕ x(2) ⊕ ...⊕ x(d)

Input: Shared table T such that ⊕
i
T (u)(i) = S(u)

Output: Shared table T such that ⊕
i
T
(
x(d)

)(i)

= S(x)

1: for i = 1 to d− 1 do
2: for all u ∈ {0, 1}n do

3: T ′(u) = T
(
u⊕ x(i)

)
4: end for
5: T = T ′

6: end for

same share x(i), the attacker can take a guess about x(i) and verify this guess with
Correlation Power Analysis (CPA) [16]. Unlike traditional CPA which utilises
a specific leakage point across many traces (i.e. a “vertical”attack), this attack
utilizes all the 2n leakages on the same trace (i.e. it is a “horizontal”attack).
Having recovered the masks, key recovery is trivial: since all d− 1 input shares
(random masks) are already known, a traditional vertical CPA on the leakage
of x(d) reveals the secret key. Previous studies proved that, for 8-bit Sboxes
(n = 8), such “horizontal” attack is a serious threat for table re-computation
schemes [10].

A common countermeasure for the horizontal attacks is to randomly shuffle
the constant u in line 3. Since the computation follows some random order
(ϕ(0),ϕ(1),...,ϕ(2n − 1)), x(i) alone can no longer determine all the 2n leakages.
However, for many smart card applications, generating and storing an n-bit
random permutation ϕ in memory is far too expensive. Instead, they prefer to
use some pseudo-random function ϕ that can be computed online. However,
the computation of ϕ provides new leakages for the attacker. Tunstall et al.
showed that the attacker can easily explore such leakages and recover the entire
permutation ϕ [11]. Moreover, Bruneau et al. proposed a multi-variate attack
which combines all 2n leakages on one trace into a statistic that depends on
x(i) [5]. As the combination is unordered, random shuffling does not affect the
final statistic. Although x(i) cannot be recovered, the attacker finds the secret
key through higher-order attacks, with the leakage of x(i) as well as this statistic.

3.3 ICA-based attack

Mask recovery The leakages that occur in table re-computation schemes are a
perfect match for ICA. Specifically, each bit of the intermediate state x now
becomes an independent binary source. Assuming the leakage function is linear,
the attacker can always use the leakage of x as one observation for ICA. As
stated previously, the leakage of L(x ⊕ c) can also be regarded as the leakages
of x with a different leakage function. In other words, for table re-computation
schemes, the attacker can always find 2n independent observations through 2n
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XOR constants. In fact, ICA only needs n observations for a successful recovery.
Taking noise into consideration, the formal model can be written as:

l = L(x(i)) + N

where N represents the random noise. As stated in Section 2.3, ICA-based SCA
helps to recover the secret share x(i).

Key recovery Since all d − 1 secret shares are already recovered, the following
key recovery becomes trivial. Take the last round attack of AES for instance,
assuming the corresponding ciphertext byte is c and related round key byte is
k, we have

x(d) = S−1(c⊕ k)⊕ x(1) ⊕ x(2) ⊕ ...⊕ x(d−1)

Since the attacker has the leakage of x(d), traditional CPA helps to determine
the correct key guess for k, as long as the value of x(1) ⊕ x(2) ⊕ ... ⊕ x(d−1) is
given.

Comparison with previous attacks Compared with horizontal CPAs, our ICA-
based mask recovery uses only n leakage samples. Since horizontal CPA takes
guesses about x(i), it only applies to one certain trace. In other words, the sample
size for horizontal CPA on table re-computation schemes is always 2n. Previous
studies showed that for n = 8, horizontal CPA works quite well with software
implementations [10,11]. However, for smaller Sboxes (eg. n = 4), horizontal
CPA becomes less effective [11]. This is not surprising though: as a non-profiled
attack, CPA requires several traces to achieve a stable recovery. For our ICA-
based mask recovery, smaller Sbox is hardly a problem. Since our approach
uses only n leakage points, it works well even if n = 2. Meanwhile, the mask
recovery in horizontal CPA is basically a one-dimensional attack: since each
trace has different input shares (random masks), horizontal CPA only works on
the horizontal axis. The following key recovery, on the other hand, only collects
information on the vertical axis. In Bruneau et al.’s work [5], since the horizontal
leakages are packed into one statistic, their attack mainly works on the vertical
axis. On the contrary, our approach is essentially a two-dimensional attack. Both
the multiple leakages on one trace (“horizonal”) and the leakage model shared
by all traces (“vertical”) are taken into consideration. In some cases, this two-
dimensional property becomes a limitation: if the target implementation uses
random shuffling as a countermeasure, the frequently changing random order ϕ
completely defeats our attack. Since the 2n horizontal leakages in our attack are
not packed together (like Bruneau et al.’s attack), this random order prevents
our attack to explore the vertical information. However, such protection only
works if the designers use a new ϕ for each encryption. If the random ϕ is fixed,
our attack works exactly the same way: as ICA does not require to know the
mixing matrix, we can recover x(i) without knowing ϕ. For easy comparison, we
list the attacks mentioned above with 2-shares table re-computation schemes in
Table 14.
4 A v-variate attack means it takes v leakage samples in total.
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Table 1. Comparison of attacks with 2-shares table re-computation schemes

Variate Fix shuffle Random shuffle

horizontal CPA 2n + 1
Bruneau’s attack 2n+1 + 1 X X
our approach n + 1 X

3.4 Experimental Validation

To show that our ICA-based attack works, we have implemented a 2-shares
version of Coron’s masking scheme [9] on an IC card with 8-bit microprocessor
(Atmega163). The power consumption was measured with a PicoScope 3206D
oscilloscope at a sampling rate of 1 GSa/s. The target cipher uses the 4-bit Sbox
of PRESENT [17]. Since the previous studies already proved that horizontal
CPA works well with 8-bit Sboxes, here we aim to test whether it still gives
satisfying recovery with smaller Sboxes. Our entire trace set contains 200 traces,
with 2 000 000 samples covering the Sbox computation in the last round. Results
from both horizontal CPA and our ICA-based attack are presented in Figure 1.
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Fig. 1. Mask and key recovery: horizontal CPA v.s. ICA

Clearly the small 4-bit Sbox is an issue for horizontal CPA: as there are only
16 leakage samples on each trace, mask recovery becomes less reliable. In our
experiments, only 30% of the random masks are successfully recovered. As most
recovered masks are incorrect, further key recovery becomes less effective. On
the other hand, our ICA-based mask recovery finds over 90% of the random
masks correctly with only 40 traces Figure 1 shows such attack is quite efficient:
the key recovery becomes stable after only 20 traces.
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4 ICA-based Attack on DPAContest v4.2

As table re-computation schemes produce the leakages of (x(i), x(i)⊕ 1, ..., x(i)⊕
2n − 1), recovering the random masks with ICA seems quite straightforward.
In the following, let us consider a more subtle example: the masking scheme in
DPAContest v4.2.

4.1 The Rotating Sbox Masking Scheme

Unlike typical table re-computation schemes, the masking scheme in DPACon-
test v4 uses global look-up tables, where the masked tables are pre-computed
offline. As stated previously, for larger Sboxes (like AES), storing all possible
masked tables is impossible for many commonly used encryption devices. In-
stead, DPAContest v4 uses Rotating Sbox Masking (RSM) [13], which uses a set
of constant masks rather than completely random masks. More specifically, in
the latest version (DPAContest v4.2) [18], the implementation uses the following
mask set:

M [0 : 15] = {0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f, 0x66, 0x69,

0x96, 0x99, 0xa0, 0xaf, 0xc5, 0xca, 0xf3, 0xfc}

Before any encryption, 16 masked tables (MSi) are pre-computed and stored
in memory:

MSi (x) = S(x⊕M [i])⊕M [(i+ 1) mod 16]

In each encryption, the encryption device randomly pick a 16 elements offset
array O[0 : 15], where each O[i] is a 4-bit random offset. According to the mask
set, the initial 128 bit mask is

Mask(0) = {M [O[0]],M [O[1]], ...,M [O[15]]}

At the end of one encryption round, each mask byte is “rotated” right for
one position in the masking set. Thus, in the (r + 1)-th round, the input mask
is:

Mask(r) = {M [(O[0] + r)mod16],M [(O[1] + r)mod16], ...,M [(O[15] + r)mod16]}

Algorithm 2 describes the masked round function of AES-128 in detail.

In addition, considering the threat of higher-order SCA, random shuffling is
applied to the first/last round. Since the Sbox computation order is not given,
the attacker can hardly combine leakages from multiple traces and learn the
secret key from conventional vertical SCA.
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Algorithm 2 Masked round function of AES-128 in DPAContest v4.2

Input: masked input state X = {X[0], X[1], ..., X[15]}
Input: random mask index array O = {O[0], O[1], ..., O[15]}
Input: subkey RK = {RK[0], RK[1], ..., RK[15]}
Output: masked output state X = {X[0], X[1], ..., X[15]}
1: X = X ⊕RK . AddRoundKey
2: for i = 0 to 15 do
3: Xi = MS(O[i]+r)mod 16 (X[i]) . Masked Sbox
4: end for
5: X = ShiftRow(X)
6: X = MixColumn(X)
7: X = X ⊕MixColumn (ShiftRow (Mask(r + 1)))⊕Mask(r + 1) .

Mask Compensation

4.2 Previous Attacks

Although there are many attacks in the hall of fame of DPAContest V4.2, fewer
participants give detailed descriptions of their attacks. As a result, we can only
present a brief overview of the current results. Apparently, profiling attacks work
well with DPAContest v4.2. Most profiling attack recovers the secret key with a
few traces, whereas the best one works with only one trace. On the other hand,
most non-profiled attacks use much more traces. To date, the best non-profiled
attack existed is due to Zeyi Liu et al [14]. According to the hall of fame, their
attack takes only 14 traces, whereas all other non-profiled attacks need a few
hundreds traces.

In theory, horizontal CPA still works for this scheme. Denote the 4-bit O[0]
as x, in each Sbox computation, the processor needs x to decide which masked
table should be used. Algorithm 3 presents the assembly codes of the Sbox
computation in DPAContest v4.2.

Algorithm 3 ASM codes of the masked Sbox computation in DPAContest v4.2

1: ldi YH,hi8( offset ) . point to the offset array location
2: ldi YL,0x00
3: ld offset, Y . load offset x
4: ldi ZH, hi8(aes sbox0)
5: add offset,I2 . x = x + r
6: andi offset,0x0F . x = x mod 16
7: add ZH, offset . Determine the masked table
8: clr ZL
9: mov ZL, ST11 . Table look up

10: clr ST11
11: lpm ST11, Z

As we can see in line 5-6, in the table look-up procedure, the attacker finds
the leakage of (x+ r) mod 16. Although the first/last round Sbox computa-
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tion is shuffled, the rest 8 rounds in the middle still provide exploitable leak-
ages. Specifically, the data-dependant leakages for round 2-9 can be written as
{L ((x+ 1) mod 16) , L ((x+ 2) mod 16) , ..., L ((x+ 8) mod 16)}. In this case,
the attacker can guess x and verify his guess with horizontal CPA. Nonetheless,
considering there are only 8 leakage samples available, recovering the random
masks with horizontal CPA seems to be a difficult task.

4.3 ICA-based Attack

Apparently, applying ICA in this scheme is not as straightforward as table re-
computation schemes. Following the previous construction, the random mask
index x can be regarded as 4-bit binary sources. However, as the leakages here
depend on (x+ r) mod 16, the “XOR-constant ”method [1] no longer provides
multiple observations. Nonetheless, in round 9, we have

(x+ 8) mod 16 = x⊕ 8

As a result, the leakage of round 9 forms a valid ICA observation. Similarly, the
Boolean function of y = (x+ 4) mod 16 can be written as:

y1 = x1 ⊕ x2
y2 = x2 ⊕ 1

y3 = x3

y4 = x4

Clearly, the least significant 3 bits have the same expressions as x ⊕ 4. The
only difference lies in the most significant bit y1. Since ICA is a linear5 procedure,
the linear mixture of x can never express x1⊕x2. As a consequence, in ICA, the
leakage of y1 can be regarded as random noise. More specifically, in round 5,

l = L (y) + N

= α0 + α1y1 + α2y2 + α3y3 + α4y4 + N

= α0 + α2 − α2x2 + α3x3 + α4x4 + N + α1 (x1 ⊕ x2)

= L′ (x) + N′

In other words, the leakages in round 5 can be regarded as a noisier obser-
vation of x with an equivalent leakage function where α1 = 0. Similar proper-
ty holds for the leakages of (x+ 2) mod 16 and (x+ 1) mod 16, although the
signal-to-noise-ratio (SNR) will be further reduced. As a result, attackers can re-
cover the offset O[0] with the leakages from round (2, 3, 5, 9). With the random
masks recovered, the following key recovery becomes much easier. Unlike the
Sbox, the MixColumn computations in the first round are not shuffled. There-
fore, attackers can explore the leakages of MixColumn and learn the secret key
through conventional vertical SCA.

5 Here linear means linear on real values, rather than GF2n .
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4.4 Experimental Validation

We show how our ICA-based attack can be applied here with the EM traces
provided by DPAContest [14]. In our experiments, the leakage of offset O[0]
appears not only in the Sbox computations, but also in the MixColumn compu-
tations. For better recovery, in each round, our ICA-based analysis takes both
observations as its inputs. As a result, in the mask recovery stage, our analysis
uses 8 observations to retrieve 4 sources. Even with these extra leakages, our
mask recovery is not as good as the previous section. As we can see in Figure 2,
the success rate for our ICA-based mask recovery is around 80%. Nonetheless,
the following key-recovery proves that 80% accuracy is still good enough for key
recovery: the correct key is almost determined after only 30 traces. On the other
hand, in our experiment, 8 leakages can hardly support a horizontal CPA: only
10% of the recovered masks are correct and thus key recovery becomes infeasible.
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Fig. 2. Mask and key recovery: horizontal CPA v.s. ICA

5 Conclusion

In 2017, Gao et al. have proposed a novel side channel analysis based on inde-
pendent component analysis (ICA) [1]. As this ICA-based SCA does not take
a “guess-and-determine” procedure, this approach is quite useful for attacking
the middle rounds or reverse engineering. However, previous work only studied
unprotected implementations.

In this paper, we demonstrated the potential of ICA to defeat some masking
schemes: table re-computation and the RSM masking scheme in DPAContest
V4.2. Our analysis shows that, assuming the attacker can choose the leakage
samples wisely, the random masks in both schemes can be effectively recovered.
Compared with the previous attacks, our mask recovery requires fewer leakages.
For masking scheme designers, our attack is another warning: horizontal attack-
s are indeed serious practical threats. If the same (or relevant) mask appears
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multiple times during the computation, the attacker may learn considerable in-
formation about the mask, even if it never mixes with any masked intermediate
state.

6 Acknowledgements

This work has been funded in part by the National Key R&D Program of
China(2018YFB0904900, 2018YFB0904901) and EPSRC under grant agreement
EP/N011635/1 (LADA).

References

1. Gao, S., Chen, H., Wu, W., Fan, L., Cao, W., Ma, X.: My Traces Learn What You
Did in the Dark: Recovering Secret Signals Without Key Guesses. In Handschuh,
H., ed.: Topics in Cryptology — CT-RSA 2017: The Cryptographers’ Track at the
RSA Conference 2017, San Francisco, CA, USA, February 14-17, 2017, Proceed-
ings. Springer International Publishing, Cham (2017) 363–378

2. von Willich, M.: A Technique with an Information-Theoretic Basis for Protecting
Secret Data from Differential Power Attacks. In Honary, B., ed.: Cryptography
and Coding: 8th IMA International Conference Cirencester, UK, December 17-19,
2001 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg (2001) 44–62

3. Roche, T., Prouff, E.: Higher-order glitch free implementation of the AES using
Secure Multi-Party Computation protocols. Volume 2. (2012) 111–127

4. Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and Practice of a
Leakage Resilient Masking Scheme. In Wang, X., Sako, K., eds.: Advances in
Cryptology — ASIACRYPT 2012: 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg (2012) 758–
775

5. Bruneau, N., Guilley, S., Najm, Z., Teglia, Y.: Multi-variate High-Order Attacks
of Shuffled Tables Recomputation. In Güneysu, T., Handschuh, H., eds.: Crypto-
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