
Public Key Encryption Resilient to Post-Challenge
Leakage and Tampering Attacks

Suvradip Chakraborty and C. Pandu Rangan

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, India
{suvradip,rangan}@cse.iitm.ac.in

Abstract. In this paper, we introduce a new framework for constructing public-
key encryption (PKE) schemes resilient to joint post-challenge/after-the-fact leak-
age and tampering attacks in the bounded leakage and tampering (BLT) model,
introduced by Damg̊ard et al. (Asiacrypt 2013). All the prior formulations of
PKE schemes considered leakage and tampering attacks only before the challenge
ciphertext is made available to the adversary. However, this restriction seems
necessary, since achieving security against post-challenge leakage and tampering
attacks in its full generality is impossible as shown in previous works. In this pa-
per, we study the post-challenge/after-the-fact security for PKE schemes against
bounded leakage and tampering under a restricted yet meaningful and reasonable
notion of security, namely, the split-state leakage and tampering model. We show
that it is possible to construct secure PKE schemes in this model, tolerating arbi-
trary (but bounded) leakage and tampering queries; thus overcoming the previous
impossibility results.

To this end, we formulate a new notion of security, which we call entropic
post-challenge IND-CCA-BLT secure PKE. We first define a weaker notion called
entropic restricted post-challenge IND-CCA-BLT secure PKE, which can be in-
stantiated using the (standard) DDH assumption. We then show a generic com-
piler from our entropic restricted notion to the entropic notion of security using
a simulation-extractable non-interactive zero-knowledge argument system. This
requires an untamperable common reference string as in previous works. Finally,
we demonstrate the usefulness of our entropic notion of security by giving a simple
and generic construction of post-challenge IND-CCA-BLT secure PKE scheme in
the split-state leakage and tampering model. This also settles the open problem
posed by Faonio and Venturi (Asiacrypt 2016).

Keywords: After-the-Fact, Post-challenge, Entropic PKE, Split-state, Memory Tam-
pering, Related-Key Attacks, Bounded Leakage and Tampering

1 Introduction and Related Works

Traditionally, cryptographic schemes have been analyzed assuming that an adversary
has only black-box access to the underlying functionality, and in no way is allowed to
manipulate the internal state of the functionality. In particular, the adversary has only
limited access to the cryptographic primitive/functionality via several different and well
defined (restricted) interfaces/oracle queries. The security of the primitive holds only

in this idealistic setting as long as the adversarial access is limited to those that are
defined in the security model. However, the real world physical implementation of a
cryptosystem may leak much more unintended information, which can be exploited by
an adversary to gain more insight into the system. These physical attacks can be broadly
categorized into passive and active attacks. In the passive attack, the adversary tries to
recover information via some side-channel attacks that include timing measurements,
power analysis, electromagnetic measurements, microwave attacks, memory attacks and
many more [18,21,22]. In the active attack scenario, the adversary can modify the secret
data/key of a targeted cryptographic scheme by applying various physical attacks, and
later violate the security of the primitive by observing the effect of such changes at
the output. These classes of attacks are called memory tampering attacks or related key
attacks (RKA). These kind of attacks can be launched both in software or hardware, like,
injecting faults in the device, altering the internal power supply or clock of the device,
or shooting the chip with a laser etc. For instance, the attack in [4] recovers the RSA
factors by introducing an arbitrary fault in one of two RSA signature computations. It
is also shown in [25] that it is possible to retrieve the complete 128-bit secret key of AES
with the help of only two faulty AES ciphertexts. See also [28] for the effect of optimal
induction on the memory of a device.

The formal study of security of cryptosystems, in particular block ciphers, against
related key attacks was initiated by Bellare and Kohno [3]. In their setting, the adversary
can continuously tamper with the secret key of the cryptosystem by choosing tamper-
ing functions from a restricted allowable class of functions. One might hope to provably
resist a cryptosystem against arbitrary efficiently computable tampering functions. Un-
fortunately, this type of unrestricted tampering is shown to be impossible by Gennaro
et al. [16], without making further assumptions, like self-destruct mechanism, where the
device simply blows up and erases all its intermediate values (including the secret key)
after an tampering attempt is detected by the device. One useful line of research is to
investigate the security of cryptosystems against restricted classes of tampering attacks.
In most of these schemes, it is assumed that the secret key belongs to some finite field,
and the allowed modifications consists of linear or affine functions, or all polynomial of
bounded degree applied to the secret key.

Another interesting line of research was initiated in Asiacrypt 2013 by Damg̊ard et
al [9], which is called the model of bounded tampering. In this model, the adversary is
allowed to make a bounded number of tampering queries, however, there is no further
restriction on the functions, unlike the previous works. Note that this model of bounded
unrestricted tampering is orthogonal to the model of continuous but restricted tamper-
ing model of [3]. In [9], the authors showed a construction of signature scheme (in the
random oracle model) and public-key encryption scheme (in the standard model) in the
bounded leakage and tampering (BLT) model, where, apart from bounded unrestricted
tampering, the adversary is also allowed to obtain bounded leakage from the secret key
of the cryptosystem. Faonio and Venturi [15] later improved the state-of-the-art for the
construction of signature schemes (in the standard model) and PKE scheme (without
involving pairings and zero-knowledge proofs) in the BLT model.

In all the above constructions of PKE schemes [9, 15], the adversary is allowed to
make only pre-challenge tampering queries. In other words, the adversary can specify a
bounded number (say τ) of tampering queries Ti (i ∈ [τ]) before the challenge phase, and

2

gets access to the tampered decryption oracle Dec(s̃ki, ·), where s̃ki = Ti(sk). However,
after receiving the challenge ciphertext, the adversary is not allowed to make even a sin-
gle tampering query. This severely restricts the meaning and applicability of the existing
security notions and that of the resulting constructions of the cryptographic primitives
satisfying these notions. In particular, this means that even if the adversary tampers with
the secret key/memory only once, the secrecy of all the previously encrypted messages
before that tampering attempt cannot be guaranteed. But, note that, this is not a limi-
tation of the existing security notions or the constructions. Indeed, as shown in [19,24],
tolerating post-challenge (also called after-the-fact) tampering in it full generality is im-
possible. In particular, the adversary could simply overwrite the secret key depending on
the bit b that is encrypted in the challenge ciphertext c∗, and thus gain some advantage
in guessing the value of b by asking additional decryption queries. We refer the reader
to [9, Section 4.4] for the detailed attack. The above impossibility result holds even if the
adversary is allowed to make even a single post-challenge tampering query followed by
a single decryption query (with respect to the original secret key). Similar impossibility
result is known to hold for the setting of leakage as well, in the sense that even if the
adversary obtains a single bit of leakage in the post-challenge phase, this is enough to
completely break the security of the PKE scheme. This is because the adversary can sim-
ply encode the decryption function with the challenge ciphertext and the two challenge
messages in the leakage function and obtain exactly the bit b that the challenger tries to
hide.

Halevi and Lin [19] addressed this issue of after-the-fact leakage, and defined an ap-
propriate security model, namely the split-state leakage model (more on this below), and
showed how to construct semantically-secure PKE scheme under this restricted secu-
rity model. This was later extended to handle CCA-security under the same split-state
leakage model in [7,30]. However, note that, for the case of tampering, there are no suit-
able security notions or definitions to handle post-challenge tampering. This definitional
problem was acknowledged in the prior works [9, 15]. However, no solution to this issue
was offered. Indeed it is mentioned in [15] that “it remains open how to obtain CCA
security for PKE against “after-the-fact” tampering and leakage, where both tampering
and leakage can still occur after the challenge ciphertext is generated”.

1.1 Our Contributions and Techniques

In this work, we study post-challenge/after-the-fact leakage and tampering attacks in
the context of public-key encryption. As discussed above, achieving resilience to post
challenge tampering attack in its most general form is impossible. To this end, we for-
mulate an appropriate security model that avoids the impossibility result shown in [9],
and at the same time enables secure and efficient construction of PKE schemes in our
new model. Our approach to the solution is modular in nature and is also surprisingly
simple. In particular, we show how to effectively (and in a non-trivial way) combine to-
gether the appropriate works from the domain of leakage and tamper-resilience to arrive
at our current solution. We discuss more on this below.

Split-state leakage and tampering model: We draw the motivation of our work
from that of Halevi and Lin [19]. To take care of after-the-fact leakage, the authors
in [19] considered the split-state leakage model, where the secret key of the cryptosystem

3

is split into multiple disjoint parts, and the adversary can observe (arbitrary) bounded
leakage from each of these parts, but in an independent fashion. In order to take care of
leakage and tampering jointly, we consider the split-state leakage and tampering model.
Similar to the split-state leakage model, this model also considers the case where the
secret key is also split into multiple disjoint parts (in our case only two, and hence
optimal) and the adversary can obtain independent leakages from each of these parts. In
addition, the adversary is also allowed to tamper each of the secret key components/parts
independently. Note that, the split-state tampering model is already a very useful and
widely used model and it captures bit tampering and block-wise tampering attacks, where
the adversary can tamper each bit or each block of the secret key independently. The split-
state tampering model is also well studied in the context of non-malleable codes [1,12,14],
where similar type of impossibility results hold. We then proceed to construct our PKE
scheme in this model. Lastly, one may note that, in the post-challenge setting in the
context of a PKE scheme, the adversary may specify a tampering function to be an
identity function and get the challenge ciphertext decrypted under the original secret
keys (even in split-state model), and trivially win the security game. To avoid this, we
enforce the condition that, when the adversary queries the (tampered) decryption oracle
with the challenge ciphertext, the tampered keys need to different from the original
secret key. In other words, the post-challenge tampering functions must not be identity
functions with respect to the challenge ciphertext 1.

Entropic Restricted post-challenge IND-CCA-BLT PKE: We first formulate
a new notion of entropic restricted post-challenge IND-CCA-BLT-secure PKE scheme.
Our notion can be seen as an entropic version of the notion of restricted (pre-challenge)
IND-CCA-BLT secure PKE of Damg̊ard et al. [9], augmented with post challenge leak-
age and tampering queries. The definition of restricted IND-CCA-BLT-security [9] says
that the adversary is given access to a restricted (faulty) decryption oracle, i.e., it is
allowed to query only valid ciphertexts to the tampered decryption oracles (as opposed
to any arbitrary ciphertexts as in the full fledged IND-CCA-BLT security game). Note
that, in the definition of [9], the adversary is allowed to make only pre-challenge leakage
and tampering queries. Our notion of entropic restricted post-challenge IND-CCA-BLT
security captures the following intuition: Suppose we sample a message M from a high
min-entropy distribution. Given a ciphertext encrypting M , and even given (bounded)
leakage from the secret key and access to a restricted (tampered) decryption oracle (even
if both leakage and tampering happens after observing the challenge ciphertext), the mes-
sage M still retains enough min-entropy in it. We then show that the cryptosystem of
Boneh et al. [5] (referred to as BHHO cryptosystem) satisfies our entropic restricted
notion. The main idea of our construction is the leakage to tamper reduction for the
BHHO cryptosystem as shown in [9]. Note that, using leakage to simulate tampering
is non-trivial, since for each tampered secret key the adversary can make polynomially
many (tampered) decryption oracle queries. Hence the amount of key-dependent infor-
mation that the adversary receives cannot be simulated by a small amount of (bounded)
leakage. However, as shown in [9], in case of BHHO cryptosystem for each (pre-challenge)
tampering query it is possible to simulate polynomially many decryption queries under it

1 However, note that, the tampering functions may be identity functions with respect to cipher-
texts c 6= c∗, where c∗ is the challenge ciphertext. This also emulates access to the (original)
decryption oracle to the adversary.

4

by just leaking a single group element, thus reducing tampering to leakage. We use sim-
ilar ideas as above and show that the BHHO cryptosystem with appropriate parameters
satisfy our entropic restricted notion of security, even if leakage and tampering is allowed
in the post-challenge phase. Also, note that, in our entropic notion of security we do not
need the split-state leakage and tampering restriction. Instead, the adversary can query
any arbitrary (but bounded) number of pre- and post-challenge leakage and tampering
queries on the entire secret key. The reason this does not violate the impossibility result
of [9] is due to the entropic restriction (please refer to Section 3 for the detailed model).
We note that, the work of Faonio and Venturi [15] gives a comparatively efficient con-
struction of IND-CCA-BLT secure PKE scheme compared to the work of Damg̊ard et
al [9]. Both these constructions rely on projective almost-universal hash-proof system
(HPS) as a common building block, and we observe that on a high level, our entropic
post-challenge BLT security relies on the statistical soundness property of the HPS. How-
ever, we choose to start with the construction of Damg̊ard et al. [9] due to its simplicity.

Entropic post-challenge IND-CCA-BLT PKE: Next, we show how to upgrade
the entropic restricted post-challenge IND-CCA-BLT security to entropic post-challenge
IND-CCA-BLT security. In the entropic notion, the adversary can query arbitrary ci-
phertexts to the (tampered) decryption oracles, as opposed to the entropic restricted
notion, where the adversary can only query well-formed (valid) ciphertexts to the or-
acle. The adversary also has access to the normal (non-tampered) decryption oracle
Dec(sk, ·) both in the pre- and post-challenge phase as in the IND-CCA security game.
The transformation follows the classical paradigm of converting a CPA-secure PKE to a
CCA-secure one by appending to the ciphertext a zero knowledge argument proving the
knowledge of the plaintext. Similar transformation was shown in [9] for converting a re-
stricted IND-CCA-BLT secure PKE scheme to a full fledged IND-CCA-BLT secure PKE
scheme in the context of pre-challenge leakage and tampering. We observe that the same
transformation goes through in the context of post-challenge leakage and tampering as
well, and also when the PKE scheme is entropic.

Upgrading to full fledged (non-entropic) security: We then show how to compile
such an entropic post-challenge IND-CCA-BLT secure PKE scheme to a full-fledged
post-challenge IND-CCA-BLT secure PKE scheme. For this, we resort to our split-state
leakage and tampering restriction2. On a high level, our construction bears similarity
with the construction of [19], although the PKE scheme of [19] was only proven to be
CPA secure against leakage attacks. We appropriately modify their construction to prove
our scheme to be CCA-secure and resilient to joint leakage and tampering attacks. To
make the construction more modular, we first show how to construct post-challenge IND-
CCA-BLT secure key encapsulation mechanism (KEM) and later show how to compile
it to a full-fledged PKE scheme.

On a high level, to generate an encapsulated symmetric key, we generate a key pair
(vk, sk) of a strong one-time signature (OTS) scheme. We then use two instances of
the entropic scheme to encrypt two random strings x1 and x2 independently, with the
verification key vk as the label/tag to generate two ciphertexts c1 and c2 respectively.
The ciphertext c = (c1, c2) is then signed using the OTS scheme to generate a signature,
say, σ. Finally, we apply a seedless 2-source extractor to both x1 and x2 to generate

2 For our construction the secret key is split into only two parts/splits, which is the optimal.

5

the encapsulated key. We then output the final ciphertext c = (vk, c1, c2, σ). On a high
level, the security of the entropic scheme guarantees that both the strings x1 and x2 still
retain enough average min-entropy even after chosen-ciphertext leakage and tampering
attacks (even in the post-challenge phase). In addition, the split-state model ensures that
the strings are independent. At this point, we can use an average-case seedless 2-source
extractor to extract a random encapsulation key from both the strings. The trick of
generating a key pair of an OTS and setting the verification key vk as a tag/label while
encrypting, ensures that, a tag cannot be re-used by an adversary in a decryption or
tampering query, hence preventing “mix-and-match” attacks (In fact, to re-use that tag,
the adversary essentially has to forge a signature under vk).

Compiling to a post-challenge IND-CCA-BLT PKE: Finally, we show how to
construct a IND-CCA-BLT secure PKE from a IND-CCA-BLT secure KEM as above.
One natural idea to achieve this is to use standard hybrid encryption technique, where
a symmetric-key encryption (SKE) scheme is used to encrypt the message using the
derived encapsulation key. However, we point out, that unlike in standard PKE or even
in leakage-resilient PKE settings, this transformation needs a little careful analysis in the
context of tampering. This is because the adversary can also ask decryption queries with
respect to the tampered keys, and the security of the challenge ciphertext should hold
even given these tampered decryption oracle responses. This is not directly guaranteed
by standard hybrid encryption paradigm. However, we leverage on the security guarantee
of our KEM scheme and show that it is indeed possible to argue the above security. In
particular, our KEM scheme guarantees that the average min-entropy of the challenge
KEM key K∗ is negligibly close to an uniform distribution over the KEM key space,
even given many tampered keys K = (K̃1, · · · , K̃t). So, in the hybrid, we can replace
the key K∗ with a uniform random key. This implies that, with very high probability,
K∗ is independent of the tampered key distribution, and hence any function of the
tampered keys (in particular decryption function). We can then rely on the (standard)
CCA security of the SKE to argue indistinguishability of the challenge messages.

Finally, combining all the above ideas together, we obtain the full construction of a post-
challenge IND-CCA-BLT secure PKE scheme, thus solving the open problem posed by
Faonio and Venturi [15] (Asiacrypt 2016).

Lastly, we note that, it is instructive to compare our approach of constructing post-
challenge leakage and tamper-resilient PKE construction with that of Liu and Lysyan-
skaya [23]. We observe that the framework of [23] instantiated with a non-malleable ex-
tractor, would already produce a scheme with security against post-challenge tampering.
However, their model is not comparable with ours in the following sense. In particular,
the framework of [23] considers securing any (deterministic) cryptographic functional-
ity against leakage and tampering attacks, where the leakage and tampering functions
apply only on the memory of the device implementing the functionality, and not on its
computation. This is because the construction of [23] relies on a (computationally se-
cure) leakage-resilient non-malleable code, which allow only leakage and tampering on
the memory of the device. However, in our model, we allow the adversary to leak from
the memory and also allow to tamper with the internal computations (modeled by giving
the adversary access to tampered decryption oracles). In this sense, our model is more
general, as it also considers tampering with the computation. However, a significant fea-
ture of the framework of [23] is that, it considers the model of continual leakage and

6

tampering (in split-state), whereas our model considers bounded leakage and tampering
(as in [9]) in split-state.

1.2 Organization

The rest of the paper is organized as follows. In section 2, we provide the necessary
preliminaries required for our constructions. In section 3, we give our definition of entropic
post-challenge IND-CCA-BLT secure PKE schemes and its restricted notion. In section
3.2, we show our construction of entropic restricted post-challenge IND-CCA-BLT secure
PKE and show the transformation from the entropic restricted notion to the entropic
notion in section 3.3. In section 4, we present the security definition of post-challenge
IND-CCA-BLT secure KEM scheme and show a generic compiler from entropic post-
challenge IND-CCA-BLT secure PKE scheme to a post-challenge IND-CCA-BLT secure
PKE scheme in the standard model. Section 5 shows the generic transformation from
such a KEM scheme to a full fledged IND-CCA-BLT secure PKE scheme secure against
post-challenge leakage and tampering attacks. Finally section 6 concludes the paper.

2 Preliminaries

2.1 Notations

For n ∈ N, we write [n] = {1, 2, · · · , n}. If x is a string , we denote |x| as the length

of x. For a set X , we write x
$←− X to denote that element x is chosen uniformly at

random from X . For a distribution or random variable X, we denote x← X the action
of sampling an element x according to X. When A is an algorithm, we write y ← A(x)
to denote a run of A on input x and output y; if A is randomized, then y is a random
variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is
probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗;
the computation of A(x; r) terminates in at most poly(|x|) steps. For a set S, we let
US denote the uniform distribution over S. For an integer α ∈ N, let Uα denote the
uniform distribution over {0, 1}α, the bit strings of length α. Throughout this paper,
we denote the security parameter by κ. Vectors are written in boldface. Given a vector
x = {x1, · · · , xn}, and some integer a, we write ax to denote the vector (ax1 , · · · , axn).
Let D1 and D2 be two distributions on a finite set S. We denote by

∣∣D1 − D2

∣∣ the
statistical distance between them. We denote a distribution supported on {0, 1}n with
min-entropy k to be an (n, k)-source.

2.2 Basics of Information Theory.

Here we give some basic results related to information theory that will be needed through-
out the paper.

Basic definitions related to Min-entropy

Definition 1. (Min-Entropy). The min-entropy of a random variable X, denoted as

H∞(X) is defined as H∞(X)
def
= − log(maxx Pr[X = x]). This is a standard notion of

entropy used in cryptography, since it measures the worst-case predictability of X.

7

Definition 2. (Average Conditional Min-Entropy). The average-conditional min-
entropy of a random variable X conditioned on a (possibly) correlated variable Z, denoted

as H̃∞(X|Z) is defined as

H̃∞(X|Z) = - log
(
Ez←Z [maxx Pr[X = x|Z = z]

)
= - log

(
Ez←Z [2−H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X by an adversary that may observe a
correlated variable Z.

We will make use of the following properties of average min-entropy.

Lemma 1. [11] Let A,B,C be random variables. Then for any δ > 0, the average condi-

tional min-entropy H∞(A|(B = b)) is at least H̃∞(A|B)− log(1
δ) with probability at least

1− δ over the choice of b.

Lemma 2. [11] For any random variable X, Y and Z, if Y takes on values in {0, 1}`,
then

H̃∞(X|Y, Z) ≥ H̃∞(X|Z)− ` and H̃∞(X|Y) ≥ H̃∞(X)− `.

Lemma 3. Let X be a discrete random variable which is independent from the sequence
of random variables {Y1, Y2, · · · , Yn}, i,e., H̃∞(X |Y1, Y2, · · · , Yn) = H̃∞(X). Then for
arbitrary functions f1, f2, . . . , fn we also have

H̃∞(X |Z1, Z2, · · · , Zn) = H̃∞(X), where Zi = fi(Yi).

Lemma 4. [19] Let X be a random variable with domain X , and Z the random vari-
able describing a uniformly sampled element from X ; and let Y be a random variable
independent of X. For any ε ∈ [0, 1], if

∣∣(X,Y)− (Z, Y)
∣∣ ≤ ε, then

H̃∞(X|Y) ≥ − log

(
1

|X |
+ ε

)
We also need the following fact about independent random variables.

Lemma 5. [13] Let A, B be independent random variables. Consider a sequence (V1, · · · , Vm)
of random variables, where for some function φ, Vi = φ(V1, · · · , Vi−1, Ci), where Ci is
either A or B. Then A and B are independent conditioned on V1, · · · , Vm.

Definition 3. (Universal Hash Functions and the Leftover Hash Lemma). A
family of functions {Hx : Y → {0, 1}`}x∈X is universal if for all (n, k)-sources Y, all
a 6= b ∈ Y, Prx∈X [Hx(a) = Hx(b)] = 2−`. Then, the leftover hash lemma states that, for
any random variable W , and for a negligible ε we have :∣∣(HX(W), X)− (U`, X)

∣∣ ≤ 1

2

√
2−H∞(W)2`, where ` ≤ k − 2 log(

1

ε
) + 2.

8

2.3 Hash Proof Systems.

A hash-proof system (HPS) can be viewed as a key encapsulation mechanism (follow-
ing [20,24]), in which the ciphertexts can be generated in two modes– valid and invalid.
Given a public key and a valid ciphertext, the encapsulation key is well defined, and can
be decapsulated using the secret key. Moreover, generating a valid ciphertext requires a
witness corresponding to it. In contrast, invalid ciphertext essentially contains no infor-
mation about the encapsulated key, i.e., given the public key and an invalid ciphertext,
the distribution of the encapsulated key (output by the decapsulation algorithm) is sta-
tistically close to uniform. In addition, the HPS satisfies subset membership problem, i.e,
the distribution of valid and invalid ciphertexts are computationally indistinguishable,
even given the public key.

An ε-universal hash proof system HPS [20,24] HPS = (Genhps,Pub,Priv) has the follow-
ing syntax: (i) Algorithm Genhps takes as input the security parameter κ, and outputs
a set of public parameters pub := (aux, C,V,K,SK,PK, Λ(·) : C → K, µ : SK → PK),
where aux might contain additional structural parameters, Λsk is a hash function and,
for any sk ∈ SK, the function µ(sk) defines the action of Λsk over the subset V of valid
ciphertexts (i.e., Λsk is projective). Moreover the function Λsk is ε-almost universal:

Definition 4. A projective hash function Λsk is ε-almost universal, if for all pk, C ∈
C \ V, and for all K ∈ K, it holds that Pr(Λsk(C) = K |PK = pk, C) ≤ ε, where SK is
uniform on SK conditioned on PK = µ(SK)

(ii) Algorithm Pub takes as input a public key pk = µ(sk), a valid ciphertext C ∈ V, and
a witness w for C ∈ V, and outputs the value Λsk(C). (iii) Algorithm Priv take as input
the secret key sk and a ciphertext C ∈ C, and outputs the value Λsk(C).

Definition 5. A hash proof system HPS is ε-almost universal if the following holds:

– For all sufficiently large κ ∈ N, and for all possible outcomes of Genhps, the underlying
projective hash function is ε-almost universal.

– The underlying set membership problem is hard. Specifically, for any PPT adversary
ASMP the following quantity is negligible:

Advsmp
HPS,ASMP

(κ) :=
∣∣Pr[A(C,V, C0) = 1|C0

$←− V]− Pr[A(C,V, C1) = 1|C1
$←− C \ V]

The lemma below directly follows from the definition of hash-proof system and the notion
of min-entropy.

Lemma 6. Let Λ(·) be an ε-almost universal. Then for all pk and C ∈ C \ V it holds

that H̃∞(ΛSK(C)|PK = pk,C) ≥ − log ε, where SK is uniform over SK conditioned on
PK = µ(SK).

2.4 Two source Extractors.

In this section, we give an overview of two-source extractors [8,27,29] and their general-
ization, which will be required for our work.

9

Definition 6. (Seedless 2-source Extractor). A function Ext2 : {0, 1}n × {0, 1}n →
{0, 1}m is a seedless 2-source extractor at min-entropy k and error ε if it satisfies the
following property: If X and Y are independent (n, k)-sources, it holds that:∣∣ (Ext2(X,Y)− Um)

∣∣ < ε, where Um refer to a uniform m-bit string.

Definition 7. (Average-case Seedless 2-source Extractor). A function Ext2 : {0, 1}n×
{0, 1}n → {0, 1}m is an average-case seedless 2-source extractor at min-entropy k and
error ε if it satisfies the following property: If for all random variables X,Y ∈ {0, 1}n
and Z, such that, conditioned on Z, X and Y are independent (n, k)-sources, it holds
that

∣∣ ((Ext2(X,Y), Z)− (Um, Z))
∣∣ < ε.

It is also known that a worst-case 2-source extractor is also an average-case two-source
extractor [19].

Lemma 7. [19] For any δ > 0, if Ext2 : {0, 1}n × {0, 1}n → {0, 1}m is a (worst-
case) (k − log 1

δ , ε)- 2-source extractor, then Ext2 is an average-case (k, ε+ 2δ)-2-source
extractor.

2.5 CCA-secure Symmetric-key Encryption

A symmetric-key encryption (SKE) scheme ϕ = (SKE .KG,SKE .Enc,SKE .Dec) consist of
the key generation, encryption and decryption algorithms. We require perfect correctness
to hold. We also want (standard) CCA-security to hold for the SKE scheme as defined
in terms of a game between a challenger and an adversary.

1. The challenger samples K
$←− SKE .KG(κ).

2. The adversary can make polynomially many decryption queries related to K. On
input a ciphertext C, the challenger runs SKE .Dec(K,C), and returns the answer to
the adversary.

3. In the challenge phase, the adversary outputs two messages m0,m1 of equal length.
The challenger chooses randomly a bit b← {0, 1}, computes C∗ ← SKE .Enc(K,mb),
and returns C∗ to the adversary.

4. The adversary may continue to ask decryption queries C as long as C 6= C∗.

5. Finally, the adversary outputs a bit b′ as a guess for the bit b.

We define the advantage of the adversaryASKE in the above experiment as AdvSKEϕ,ASKE
(κ) =

Pr[b′ = b]− 1
2 .

2.6 Strong One-time signatures

A signature scheme SS = (SS.Gen,SS.Sig,SS.Ver) is said to be strongly unforgeable
against one-time chosen message attack, if no adversary with access to the signing oracle
(with respect the verification key vk) only once, is able to come up with a message-
signature pair (m∗, σ∗), such that SS.Ver(m∗, σ∗) = 1 and (m∗, σ∗) is not queried to
the signing oracle, except with negligible probability. We refer the reader to [26] for
construction of strong one-time signature scheme from one-way functions.

10

2.7 True Simulation Extractable Non-interactive Zero Knowledge
Argument System

In this section, we recall the notion of (same-string) true-simulation extractable non-
interactive zero knowledge argument system (tSE-NIZK) first introduced in [10] and also
its extension to support labels/ tags. This notion is similar to the notion of simulation-
sound extractable NIZKs [17] with the difference that the adversary has oracle access to
simulated proofs only for true statements, in contrast to any arbitrary statement as in
simulation-sound extractable NIZK argument system.

Let R be an efficiently computable binary relation. For pairs (y, x) ∈ R, we call y the
statement and x the witness. Let L = {y | ∃ x s.t. (y, x) ∈ R} be the language consisting
of statements in R. A NIZK argument system consists of three algorithms (Gen,P,V)
such that: (1) Algorithm Gen takes as input 1κ and generates a common reference string
crs, a (simulation) trapdoor tk and an extraction key ek; (2) Algorithm P takes as input
the statement-witness pair (y, x), crs and a label L, and outputs a proof π such that
(y, x) ∈ R; (3) Algorithm V takes as input crs, a statement y, a label L and a purported
proof π and output 1, if the proof is acceptable and 0 otherwise. We require (Gen,P,V)
to satisfy the regular completeness, adaptive soundness and (composable) zero-knowledge
properties. We denote the zero-knowledge simulator by Sim, which takes as input a label
L, a statement y (and not the witness x) and the simulation trapdoor tk, and produces
a simulated proof π.

Strong True-simulation Extractability: We start by defining the simulation oracle
SIMtk(., .). A query to the simulation oracle consists of a statement-witness pair (y, x),
and a label L. The oracle checks if (y, x) ∈ R. If true, it outputs a simulated argument
Sim(L, tk, y), otherwise it outputs ⊥. There exists a PPT algorithm Ext(L, y, π, ek) such
that for all PPT adversaries P∗, we have Pr[P∗ wins| ≤ negl(κ) in the following game.

1. The challenger samples (crs, tk, ek)← Gen(1κ), and gives crs to P∗.
2. P∗SIMtk(.,.) can adaptively access the simulation oracle SIMtk(., .).

3. Finally, the adversary P∗ outputs a tuple (y∗, L∗, π∗).

4. The challenger runs x∗ ← Ext(L∗, y∗, π∗, ek)

5. P∗ wins if (a) (y∗, L∗, π∗) 6= (y, L, π) for all pairs (y, L, π) returned by the simulation
oracle SIMtk(.); (b) V(crs, L∗, y∗, π∗) = 1 and (c) (y∗, x∗) /∈ R.

For our purpose, it is sufficient to rely on the (weaker) notion of one-time strong true
simulation extractability, where the adversary can query the simulation oracle SIMtk(.)
only once. Dodis et al. [10] showed how to generically construct tSE-NIZK argument
systems supporting labels starting from any (labeled) CCA-secure PKE scheme and a
(standard) NIZK argument system.

3 Entropic Post-Challenge IND-CCA-BLT secure PKE

In this section, we introduce the definition of entropic post-challenge IND-CCA-secure
PKE resilient to both pre- and post-challenge bounded leakage and tampering (BLT)
attacks. In section 3.1, we define a relaxation of our entropic notion, which we call en-
tropic restricted post-challenge IND-CCA BLT secure PKE. We show that a variant
of the cryptosystem of Boneh et al. [5] with appropriate parameters, satisfies our en-
tropic restricted notion of security (see section 3.2). Finally, in section 3.3, we show a

11

generic transformation from our entropic restricted notion to the full-fledged entropic
post-challenge IND-CCA-BLT secure PKE scheme. Before defining these notions, we
explain the working of the leakage oracle and the tampering oracle.

The Leakage Oracle. In order to model key leakage attacks, we assume that the
adversary may access a leakage oracle Oλsk(.), subject to some restrictions. The adversary
can query this oracle with arbitrary efficiently computable (poly-time) leakage functions
f and receive f(sk) in response, where sk denotes the secret key. The restriction is
that the the output length of f must be less than |sk|. Specifically, following the works
of [2, 10], we require the output length of the leakage function f to be at most λ bits,
which means the entropy loss of sk is at most λ bits upon observing f(sk). Formally,
we define the bounded leakage function family Fbbd(κ). The family Fbbd(κ) is defined
as the class of all polynomial-time computable functions: f : {0, 1}|sk| → {0, 1}λ, where
λ < |sk|. We then require that the leakage function submitted by the adversary should
satisfy that f ∈ Fbbd(κ).

The Tampering Oracle. To model related key attacks, the adversary is given access
to a tampering oracle. Let TSK denote the class of functions from SK to SK, where SK
is the secret key space. The adversary may query the tampering oracle with arbitrary
functions of its choice from TSK and the number of such queries is bounded (say t ∈ N).
In the ith tampering query (i ∈ [t]), the adversary chooses a function Ti ∈ TSK and gets

access to the (tampered) decryption oracle Dec(s̃ki, ·), where s̃ki = Ti(sk). The adversary
may ask polynomially many decryption queries with respect to the tampered secret key

s̃ki. In other words, the adversary gets access to information through decryption oracle
executed on keys related to the original secret key, where the relations are induced by the
tampering functions. If the encryption scheme supports labels, i.e., it is a labeled encryp-

tion scheme, the adversary gets access to the (tampered) decryption oracle Dec(s̃ki, ·, ·),
where the third coordinate is a placeholder for labels. Also, the adversary gets access to
the (tampered) decryption oracle both in the pre- and post-challenge phases. Another
(obvious) restriction that is imposed on the tampering functions is that: In the post-
challenge phase, when the adversary gets access to the (tampered) decryption oracles
with respect to the challenge ciphertext c∗, it should be the case that Ti(sk) 6= sk, i.e.,
the post-challenge tampering functions Ti should not be identity functions with respect
to the challenge ciphertext.3.

Definition 8. (Entropic Post-Challenge IND-CCA-BLT secure PKE)

Our definition of entropic post-challenge IND-CCA-BLT secure PKE can be seen as an
entropic version of the notion of IND-CCA-BLT secure PKE introduced in [9], aug-
mented with post challenge leakage and tampering queries. Informally, our definition
captures the intuition that if we start with a message M with high min-entropy, the
message M still looks random to an adversary who gets to see the ciphertext, some leak-
age information (even if this leakage happens after observing the ciphertext), and access
to the tampering oracle (both in pre- and post-challenge phase) as defined above.

3 When Ti(sk) = sk, and the adversary gets access to the tampering oracle with respect to c∗,
it is emulating the scenario when it gets decryption oracle access with respect to sk on c∗,
which is anyway disallowed in the IND-CCA-2 security game.

12

Formally, we define two games- “real” game and a “simulated” game. For simplicity,
we assume the message is chosen from Uk, i.e, the uniform distribution over k bit strings.
In general, it can be chosen from any arbitrary distribution as long as the message has
min-entropy k. Let (λpre, λpost) and (tpre, tpost) denote the leakage bounds and the number
of tampering queries allowed in the pre- and post-challenge phases respectively.

The “real” game. Given the parameters
(
k, (λpre, λpost), (tpre, tpost)

)
and a labeled en-

cryption scheme E-BLT = (E-BLT.SetUp,E-BLT.Gen,E-BLT.Enc,E-BLT.Dec), the real
game is defined as follows:

0. Sampling: The challenger chooses a random message m
$←− Uk.

1. SetUp: The challenger runs params← E-BLT.SetUp(1κ) and sends params to the
adversary A. The public parameters params are taken as (implicit) input by all other
algorithms.

2. Key Generation: The challenger chooses (sk, pk) ← E-BLT.Gen(params) and
sends pk to A. Set Lpre = Lpost = 0.

3. Pre-Challenge Leakage: In this phase, the adversary A makes a pre-challenge
leakage query, specifying a function fpre(.). If Lpre + |fpre(sk)| ≤ λpre, then the chal-
lenger replies with fpre(sk), and sets Lpre = Lpre + |fpre(sk)|. Otherwise, it ignores
this query.

4. Pre-Challenge Tampering queries: The adversary A may adaptively ask at most
tpre number of pre-challenge tampering queries. In the ith tampering query (i ∈
[tpre]), the adversary chooses Ti ∈ TSK , and gets access to the decryption oracle

E-BLT.Dec(s̃kθ, ·, ·)4 (where 1 ≤ θ ≤ i). In other words, the decryption oracle may be
queried with any of the tampered keys obtained till this point. We assume that, the
total number of decryption oracle queries be q(k), for some polynomial q(k). Note
that, when Tθ(sk) = sk, A gets access to the (normal) decryption oracle.

5. Challenge: In this phase, the adversary submits a label (as a bit-string) L∗. The
challenger encrypts the message m chosen at the beginning of the game as c∗ ←
E-BLT.Enc(pk,m,L∗) and sends c∗ to A.

6. Post-Challenge Leakage: In this phase, the adversary A makes a post-challenge
leakage query, specifying a function fpost(.). If Lpost + |fpost(sk)| ≤ λpost, then the
challenger replies with fpost(sk), and sets Lpost = Lpost + |fpost(sk)|. Otherwise, it
ignores this query.

7. Post-Challenge Tampering queries: The adversary A may adaptively ask tpost
number of post-challenge tampering queries. In the jth tampering query (j ∈ [tpost]),

the adversary chooses Tj ∈ Tsk, and gets access to the decryption oracle E-BLT.Dec(s̃kρ, ·, ·)
(1 ≤ ρ ≤ j). We assume that, the total number of decryption oracle queries be
q′(k), for some polynomial q′(k). However, here we impose the restriction that:
A is not allowed to query the pair (c∗, L∗) to the (tampered) decryption oracle(s)

E-BLT.Dec(s̃kρ, ·, ·).

Note that all these queries can be made arbitrarily and adaptively in nature. We de-
note the message m chosen at the onset of this game as M rl to emphasize that it

4 Recall when we write Dec(s̃kθ, ·, ·), the second coordinate is the placeholder for ciphertexts
input by the adversary; whereas the third coordinate is the placeholder for labels.

13

is used in the real game. Let the sets Qpre and Qpost contain the tuples of the form{
(m̃i1 , (ci1 , Li1)), · · · , (m̃iq(κ) , (ciq(κ) , Liq(κ)))

}tpre
i=1

and
{

(m̃j1 , (cj1 , Lj1)), · · · , (m̃jq(κ) , (ciq′(κ) , Liq′(κ)))
}tpost
j=1

respectively, for some polynomials q(κ) and q′(κ). Let Lpre and Lpost be the random vari-
ables corresponding to the pre- and post-challenge leakages. We define the view of the
adversary A in the real game as Viewrl

E-BLT,A(κ) = (rand,Lpre, Qpre, c
∗,Lpost, Qpost), where

rand denotes the random coins used by the adversary in the game. Finally, we denote by
(M rl,Viewrl

E-BLT,A) the joint distribution of the message M rl and A’s view in a real game

with M rl.

The “simulated” game: In the simulated game, we replace the challenger from above
by a simulator Simu that interacts with A in any way that it sees fit. Simu gets a
uniformly chosen message Msm as input and it has to simulate the interaction with
A conditioned on M sm. We denote the view of the adversary in the simulated game
by Viewsm

Simu,A(κ) = (randsm,Lsm
pre, Q

sm
pre, c

sm,Lsm
post, Q

sm
post). Now, we define what it means

for the encryption scheme ER-BLT to be entropic restricted post-challenge (bounded)
leakage and tamper-resilient.

Definition 9. (Entropic restricted post-challenge IND-CCA-BLT security).
Let

(
k, (λpre, λpost), (tpre, tpost)

)
be parameters as stated above, let TSK be the family of

allowable tampering functions. A public key encryption scheme is said to be entropic
restricted post-challenge IND-CCA-BLT secure with respect to all these parameters if
there exists a simulator Simu, such that, for every PPT adversary A the following two
conditions hold:

1. (M rl,Viewrl
E-BLT,A(κ)) ≈c (Msm,Viewsm

Simu,A(κ)), i.e, the above two ensembles (indexed
by the security parameter) are computationally indistinguishable.

2. The average min-entropy of the message M sm given Viewsm
Simu,A(κ) is

H̃∞(M sm | Viewsm
Simu,A(κ)) ≥ k − λpost −F(tpost).

where F(tpost) denotes the entropy loss due to post-challenge tampering queries, and the
tampering functions come from the class TSK .5

Intuitively, even after the adversary sees the encryption of the message, pre- and post-
challenge leakages and the output of the (tampered) decryption oracle both in the pre-
and post-challenge phase, the message M sm still retains its initial entropy, except for the
entropy loss due to post-challenge leakage and tampering.

3.1 Entropic Restricted Post-Challenge IND-CCA-BLT secure PKE

We now define the notion of entropic restricted post-challenge IND-CCA-BLT secure
PKE (denoted by ER-BLT), which is a relaxation of the notion of the entropic post-
challenge IND-CCA-BLT secure PKE. The difference between the two notions is with

5 In our construction, we will show that F(tpost) = tpost log p, i.e., for each post-challenge tam-
pering query we have to leak only one element of the base group G of prime order p. This
single element is sufficient to simulate polynomially many (modified) decryption queries with
respect to each tampering query.

14

respect to the working of (tampered) decryption oracle, as defined in the real game in
def. 8. In particular, in our entropic restricted notion of security, the adversary cannot
make pre- and post-challenge decryption queries with respect to the original secret key
(unlike the entropic notion in Section 3) and working of the (tampered) decryption oracle
is modified as follows:

Modified Decryption Oracle: In the restricted post-challenge IND-CCA-BLT secu-
rity game, the adversary is not given full access to the tampering oracle. Instead, the
adversary is allowed to see the output of the (tampered) decryption oracle for only those
ciphertexts c, for which he already knows the plaintext m and the randomness r used to
encrypt it (using the original public key). This restricts the power of the adversary to
submit only “well-formed” ciphertexts to the tampering oracle. In particular, in the ith

tampering query the adversary chooses a function Ti ∈ TSK and gets access to a (mod-

ified) decryption oracle ER-BLT.Dec∗(s̃ki, ·, ·), where s̃ki = Ti(sk). This oracle answers
polynomially many queries of the following form: Upon input a pair (m, r) ∈ M × R,
(whereM and R are the message space and randomness space of the PKE respectively),

compute c ← ER-BLT.Enc(pk,m; r) and output a plaintext m̃ = ER-BLT.Dec(s̃ki, c)
under the current tampered key.

The real and simulated game for the above entropic restricted post-challenge IND-CCA-
BLT game, apart from the above restrictions, is identical to the real and simulated
games of the entropic post-challenge IND-CCA-BLT secure PKE as defined in def 8. In
particular, using the same notations from def. 8, we denote the view of the adversary in
the entropic restricted game as Viewrl

ER-BLT,A(κ) = (rand,Lpre, Qpre, c
∗,Lpost, Qpost), where

Qpre and Qpost contain answers to the (tampered) decryption oracle queries as described
above with respect to the tampered secret keys.

3.2 Construction of entropic restricted post-challenge IND-CCA-BLT
secure PKE

In this section, we show how to construct a CCA-2 secure entropic restricted post-
challenge PKE secure against bounded leakage and tampering (BLT) attacks. We show
that a variant of the encryption scheme proposed by Boneh et al. (referred to as BHHO
cryptosystem from herein) [5] is entropic restricted post-challenge IND-CCA-BLT secure.
It was shown in [9] that the (modified) BHHO cryptosystem is a restricted (pre-challenge)
IND-CCA-BLT secure PKE. However, we observe that the same variant of the BHHO
cryptosystem with the parameters appropriately modified satisfies our new notion of
entropic security, even when the adversary is given post-challenge leakage and access to
(restricted) tampering oracle (even in the post-challenge phase).

– ER-BLT.SetUp(1κ) : Choose a group G of prime order p with generator g. Set
params := (G, g, p). All the algorithms take params as implicit input.

– ER-BLT.Gen(params) : Sample random vectors x, α ∈ Z`p; compute gα = (g1, · · · , g`),
and h =

∏`
i=1 g

xi
i . Set sk := x = (x1, · · · , x`) and pk := (h, gα)

– ER-BLT.Enc(pk,m) : Sample r ← Zp, and return c := (gr1, · · · , gr` , hr ·m)

– ER-BLT.Dec(sk, c) : Parse c as (c1, · · · , c`, d) as sk as (x1, · · · , x`)., and outputs

m← d/
∏`
i=1(gri)

xi

15

It is easy to verify the correctness of the above cryptosystem.

Theorem 1. Let κ ∈ N be the security parameter, and assume that the DDH assumption
holds in group G. The BHHO cryptosystem is entropic restricted post-challenge IND-
CCA-

(
k, (λpre, λpost), (tpre, tpost)

)
-BLT secure, where

λpre + λpost ≤
(
`− 2− tpre − tpost

)
log p− ω(log κ) and (tpre + tpost) ≤ `− 3.

Proof. Before proceeding with the proof of the above theorem, we prove a lemma (Lemma
8) that essentially shows that the BHHO cryptosystem is entropic leakage-resilient with
respect to pre- and post-challenge leakage, i.e., it satisfies the notion of entropic restricted
post-challenge IND-CCA-

(
k, (λpre

′, λpost
′), (0, 0)

)
-BLT security (the adversary has no ac-

cess to the tampering oracle), for appropriate choice of parameters. We then prove the
above theorem by using Lemma 8 and showing a leakage to tamper reduction to take
care of pre- and post-challenge tampering queries.

Lemma 8. The BHHO cryptosystem described above is entropic restricted post-challenge
IND-CCA-

(
k, (λpre

′, λpost
′), (0, 0)

)
-BLT secure, where

λ′pre + λ′post ≤
(
`− 2

)
log p− ω(log κ)

Proof. To prove Lemma 8 we need to describe a simulator, whose answers to the ad-
versary are indistinguishable from the real game, and at the same time leave enough
min-entropy in the message m. The main idea of the proof follows from the observation
that the BHHO cryptosystem can be viewed as a hash proof system, with DDH-like tu-
ples as valid ciphertexts, and non-DDH tuples as invalid ciphertexts. In the real game,
the challenger samples a valid ciphertext (along with a witness) and proceeds as in
the original construction, whereas in the simulated game a random invalid ciphertext
is sampled. The indistinguishability of the the real and simulated games is implied by
the subset membership problem. The left-over hash lemma then guarantees uniformity
of the challenge message. For details of the proof, please refer to Appendix A.1.

We now proceed to prove our main theorem. Let us assume that there exists an adver-
saryA that breaks the entropic restricted post-challenge IND-CCA

(
k, (λpre, λpost), (tpre, tpost)

)
-

BLT security with non-negligible advantage. We construct an adversary A′ against the
entropic restricted post-challenge IND-CCA

(
k, (λpre

′, λpost
′), (0, 0)

)
-BLT security, with

the same advantage. The main idea behind this proof is leakage to tamper reduction.
For each tampering query made by the adversary, the reduction simply leaks a single
group element from Zp, and simulates polynomially many decryption queries under that
tampered key using the leaked element. Hence, the reduction has to leak (tpre+tpost) log p
bits in all. We appropriately set the parameters of BHHO to ensure that the message
still has enough min-entropy, even given the responses of the tampering oracle. Due to
space constraints, we refer the reader to Appendix A.2 for the detailed proof.

3.3 The General transformation

In this section, we show a general transformation from an entropic-restricted post-
challenge IND-CCA-BLT secure PKE to an entropic post-challenge IND-CCA-BLT se-
cure PKE scheme (see Fig. 1). Let ER-BLT = (ER-BLT.SetUp,

16

ER-BLT.Gen,ER-BLT.Enc,ER-BLT.Dec) be an entropic restricted post-challenge IND-
CCA-

(
k, (λpre, λpost), (tpre, tpost)

)
-BLT secure PKE scheme, and let Π = (Gen,P,V) be

a one-time strong tSE-NIZK argument system supporting labels for the following rela-
tion:

RER-BLT = {(m, r), (pk, c) | c = ER-BLT.Enc(pk,m; r)}

Let E-BLT = (E-BLT.SetUp′,E-BLT.Gen′,E-BLT.Enc′,E-BLT.Dec′) be an entropic post-
challenge IND-CCA-BLT secure PKE.

Define the encryption scheme E-BLT as follows:

1. E-BLT.SetUp′(1κ): Obtain params←ER-BLT.SetUp(1κ), and sample (crs, tk, ek) ←
Gen(1κ). Set params′ := (params, crs)

2. E-BLT.Gen′(params′): Obtain (pk, sk)←ER-BLT.Gen(params), and set pk′ = pk, sk′ =
sk.

3. E-BLT.Enc′(pk,m, L): On input the public key pk, a message m ∈ M and a label L ,

sample r
$←− R, and compute c ← ER-BLT.Enc(pk,m; r), π ← P(crs, L, (m, r), (pk, c)).

Output c′ = (c, π)

4. E-BLT.Dec′(sk, c′, L): Parse c′ as c′ = (c, π). Check if V(crs, L, (pk, c), π) = 1. If not
output ⊥, else output m = ER-BLT.Dec(sk, c)

Fig. 1. Entropic post-challenge IND-CCA-BLT PKE scheme E-BLT

Theorem 2. Let ER-BLT be an entropic-restricted post-challenge IND-CCA-
(
k, (λpre, λpost),

(tpre, tpost)
)
-BLT secure PKE scheme, Π be a one-time strong tSE NIZK argument system

supporting label for the relation RER-BLT, then the above encryption scheme E-BLT is an
entropic post-challenge IND-CCA-

(
k, (λpre, λpost), (tpre, tpost)

)
-BLT secure PKE scheme.

Proof Sketch. We now give an intuitive proof sketch of the above theorem. Informally, the
zero-knowledge argument enforces the adversary to submit to the (tampered) decryption
oracle only valid ciphertexts, for which he knows the corresponding plaintext (and the
randomness used to encrypt it). The plaintext-randomness pair (m, r) (which acts as a
witness) can then be extracted using the extraction trapdoor of the tSE-NIZK argument
system, thus allowing to reduce entropic IND-CCA BLT security to entropic restricted
IND-CCA BLT security. Since the extraction trapdoor is never used in the real encryption
scheme, the adversary neither gets any leakage from it, nor gets to tamper with it. This
essentially makes the (tampered) decryption oracle useless and the adversary learns no
additional information from the decryption oracle access. The proof also relies on the
fact that the CRS is untamperable, a notion that is used in all the previous works [9,15].
This can be achieved by (say) hard-coding the CRS in the encryption algorithm. We
refer the reader to Appendix B for the detailed proof of this theorem.

4 Post-challenge IND-CCA-BLT secure KEM in Split-State
Model

In this section, we present a formal definition of post-challenge IND-CCA-BLT secure Key
Encapsulation Mechanism (KEM) in the (bounded) split-state leakage and tampering

17

model. Note that, achieving security against post-challenge leakage and tampering in its
most general form is impossible as already shown in [9,19,24], even if a single bit of leakage
is allowed or the adversary is allowed to ask even a single tampering query after receiving
the challenge ciphertext. To this end, we resort to the split-state leakage and tampering
restriction. Here, the the secret key of the cryptosystem is split into multiple disjoint
parts (in our case only two), and the adversary can ask arbitrary leakage and tampering
queries on each of these two parts independently, but not leak or tamper on the secret
key parts jointly. However, the adversary is allowed to adaptively ask leakage/tampering
functions depending on the answers of the previous queries. Before proceeding, we give
the definition of 2-split-state tampering functions.

Definition 10. (Split-state (leakage/tampering) functions) A function f :{0, 1}2n→
{0, 1}2n is said to be a 2-split-state function if f(x)=(f1(x1), f2(x2)), for some functions
f1, f2 :{0, 1}n → {0, 1}n, where x1, x2 are the first n and last n bits of x respectively.
The functions f1 and f2 act independently on the bit strings x1 and x2. When this
split-state functionality is used as leakage/tampering functions, we call them 2-split-state
leakage/tampering functions.

Definition 11. (Split state IND-CCA-BLT secure KEM). A 2-split state IND-
CCA-BLT secure KEM scheme KEM = (KEM.Setup,KEM.Gen,KEM.Encap,
KEM.Decap) consists of the following algorithms:

– KEM.Setup(1κ): The setup algorithm takes as input the security parameter, and out-
put the public parameters par, which is taken as (implicit) input by all the algorithms.

– KEM.Gen(par): The key generation algorithm comprises of two subroutines namely,
KEM.Gen1 and KEM.Gen2. The subroutine KEM.Geni (i ∈ {1, 2}) generates the
ith public-secret key pair, i.e, (pki, ski) ← KEM.Geni(par, ri); where ri ∈ {0, 1}∗.
The public key consists of the pair pk = (pk1, pk2) and the secret key consists of the
pair sk = (sk1, sk2).

– KEM.Encap(pk): The (randomized)encapsulation algorithm takes as input a public
key pk = (pk1, pk2), and outputs a ciphertext-key pair (c, k).

– KEM.Decap(sk= (sk1, sk2), c): The decapsulation algorithm consists of two partial
decapsulation subroutines KEM.Decap1, KEM.Decap2, and a combining subroutine
KEM.Comb. The decapsulation subroutine KEM.Decapi (i ∈ {1, 2}) takes as input
the ciphertext c, the secret key split ski and outputs a partial decryption ti, i.e.,
ti ← KEM.Decapi(ski, c). Finally, KEM.Comb takes the ciphertext c and the pair
(t1, t2) to recover the encapsulation key k, i.e., k ← KEM.Comb(c, t = (t1, t2)).

The correctness requirement of KEM states that ∀par ← KEM.Setup(1κ), (pki, ski)←
KEM.Geni(par) (i ∈ {1, 2}),∀(c, k) ← KEM.Encap(pk = (pk1, pk2)), KEM.Decap

(
sk =

(sk1, sk2), c
)

= K holds with probability 1.

We now define the notion of CCA security of KEM schemes in the presence of after-the-
fact split-state (bounded) memory leakage and tampering attacks.

Definition 12. (Post-Challenge IND-CCA-BLT security for KEM in split-
state) Let κ ∈ N be the security parameter. Let λpre(κ) and λpost(κ) be the upper bound on
the amount of memory leakage before and after the challenge phase respectively. Also, let
tpre(κ) and tpost(κ) be the maximum number of pre- and post-challenge tampering queries

18

that can be asked by the adversary before and after the challenge phase respectively. A
2-split-state KEM scheme KEM = (KEM.Setup,KEM.Gen,KEM.Encap,KEM.Decap)
is post-challenge IND-CCA-

(
k, (λpre, λpost), (tpre, tpost)

)
-BLT secure if for all PPT adver-

saries BKEM, the advantage AdvAFL-IND-CCA-BLT
BKEM,KEM (κ) defined below is at most 1

2 + negl(κ).

1. Key Generation: The challenger chooses r1, r2
$←− {0, 1}∗, and compute (pki, ski)←

KEM.Geni(par, ri) (i ∈ {1, 2}) and sends pk = (pk1, pk2) to the adversary, and keeps
sk = (sk1, sk2) to itself. Also, it initializes two lists L1

pre = L2
pre = 0, where Lipre de-

notes the random variable quantifying the amount of leakage from the ith split ski
of the secret key sk (i ∈ {1, 2}).

2. Pre-Challenge Leakage: The adversary makes an arbitrary number of leakage
queries (fpre1,i , f

pre
2,i) adaptively, where fpre1,i and fpre2,i act independently on the secret

key components sk1 and sk2 respectively. Upon receiving the ith leakage query the
challenger sends back (fpre1,i (sk1), fpre2,i (sk2)), provided L1

pre + |fpre1,i (sk1)| ≤ λpre(κ) and

L2
post + |fpre2,i (sk2)| ≤ λpre(κ). It updates L1

pre = L1
pre + |fpre1,i (sk1)|, and L2

post = L2
post +

|fpre2,i (sk2)|.
3. Pre-Challenge Tampering: The adversary is allowed to make at most tpre number

of pre-challenge tampering queries (T pre
1,i , T

pre
2,i) (i ∈ [tpre]) adaptively. Each of the

tampering functions T pre
1,i and T pre

2,i acts independently on the secret key splits sk1 and
sk2 respectively. For each of the tampering query, the adversary BKEM gets access to

the tampered decapsulation oracles KEM.Decap(s̃k1,β , ·) and KEM.Decap(s̃k2,β , ·),
where s̃kω,β = T pre

ω,β(skω) (where 1 ≤ β ≤ i, and ω ∈ {1, 2}). In other words, the
decapsulation oracle may be queried with any of the tampered keys obtained till this
point. We assume that, the total number of queries on the decapsulation oracles are
polynomial. Note that, when (T pre

1,β(sk1), T pre
2,β(sk2)) = (sk1, sk2), BKEM gets access

to the (normal) decapsulation oracle in the pre-challenge phase.

4. Challenge: In this phase, the challenger computes (c∗, k∗) ← KEM.Encap(pk). It

then flips a uniform coin b
$←− {0, 1}. If b = 0, the challenger returns (c∗, k∗) to the

adversary; otherwise it picks a key k∗ uniformly at random, and sends sends (c∗, k∗)
to the adversary.

5. Post-Challenge Leakage: The adversary makes an arbitrary number of leakage
queries (fpost1,j , f

post
2,j) adaptively, where fpost1,j and fpost2,j act independently on the secret

key components sk1 and sk2 respectively. Upon receiving the jth leakage query, the
challenger sends back (fpost1,j (sk1), fpost2,j (sk2)), provided L1

post + |fpost1,j (sk1)| ≤ λpost(κ)

and L2
post + |fpost2,j (sk2)| ≤ λpost(κ). It updates L1

post = L1
post + |fpost1,j (sk1)|, and L2

post =

L2
post + |fpost2,j (sk2)|.

6. Post-Challenge Tampering: The adversary BKEM is allowed to make at most
tpost number of post-challenge tampering queries Tj = (T post

1,j , T
post
2,j) for j ∈ [tpost],

where BKEM gets access to the tampered decapsulation oracles KEM.Decap(s̃k1,γ , .)

and KEM.Decap(s̃k2,γ , .) respectively (1 ≤ γ ≤ j), as before. However, in the
post-challenge phase, we impose an additional restriction that the adversary does

not get access to the (tampered) decapsulation oracle(s) KEM.Decap(s̃k1,γ , c
∗) and

KEM.Decap(s̃k2,γ , c
∗) with respect to the challenge ciphertext c∗.

19

7. Guess: Finally, the adversary BKEM outputs a bit b′ for a guess of the bit b chosen
the challenger. If b′ = b, output 1, else output 0.

We define the advantage of the adversary BKEM in the above experiment as:

AdvAFL-IND-CCA-BLT
BKEM,KEM (κ) =

∣∣Pr[b′ = b]− 1

2

∣∣.
4.1 Construction of Post-Challenge IND-CCA-BLT secure KEM

We now show the construction of our post-challenge/after-the-fact IND-CCA-BLT secure
KEM scheme KEM = (KEM.Setup,KEM.Gen,KEM.Encap,KEM.Decap) (see Fig. 2).

The main ingredients required for our construction are as follows:

– An entropic post-challenge IND-CCA-BLT-secure PKE scheme E-BLT = (E-BLT.Setup,
E-BLT.Gen,E-BLT.Enc,E-BLT.Dec), that encrypts ν bit messages, and supports la-
bels. Also, assume that E-BLT is entropic with respect to parameters (λpre, λpost, tpre,
tpost) (refer to Def 8).

– A (ϑ, ε) average-case (seedless) 2-source extractor Ext2 : {0, 1}ν × {0, 1}ν → {0, 1}u,
with ε = 2−u−ω(log κ) (see Section 2.4 for its definition).

– A strong one-time signature (OTS) scheme SS = (SS.Gen,SS.Sig,SS.Ver), with
message space poly(κ).

Design Rationale: On a high level, to generate an encapsulated symmetric key, first
we generate a key pair (vk, sk) of a one-time signature (OTS) scheme. We then use
an entropic post-challenge IND-CCA-BLT secure PKE scheme (E-BLT) to encrypt two
random strings x1 and x2 independently with the verification key vk as the label/tag,
and generate a signature on both the ciphertexts c1 and c2. The security of E-BLT
guarantees that both the strings x1 and x2 still have enough average min-entropy after
chosen-ciphertext leakage and tampering attacks (even in the post-challenge phase). In
addition, the split-state model ensures that the two strings are independent. Hence, we
can use an average-case seedless 2-source extractor to extract a random encapsulation
key from both the strings. The trick of generating a key pair of an OTS and setting
the verification key vk as a tag/label while encrypting, ensures that, a tag cannot be
re-used by an adversary in a decryption or tampering query (In fact, to re-use that tag,
the adversary essentially has to forge a signature under vk). The formal proof of our
construction will follow this intuition, expect for one condition related to adaptivity of
the adversary. The adversary may chose leakage and tampering functions from the two
parts of the secret key after it saw the encapsulated key which was itself derived from the
two parts, hence causing a circularity in the argument. This leap is handled in our proof
using complexity leveraging. In particular, if the size of the extracted encapsulation key
has u bits, then the adaptivity can only increase the advantage of the adversary by a
factor at most 2u. We set our parameters appropriately to handle this gap

Theorem 3. Let E-BLT be an entropic post-challenge IND-CCA-BLT-secure PKE scheme
with parameters (λpre, λpost, tpre, tpost) and encrypting ν bit messages and supporting la-
bels. Also, let Ext2 be a (ϑ, ε) average-case (seedless) 2-source extractor with parameters

20

mentioned above, and let SS be a strong one-time signature scheme supporting polyno-
mial sized message space. Then the KEM scheme KEM is IND-CCA secure with respect
to pre- and post-challenge leakage λ′pre and λ′post respectively, and pre- and post-challenge
tampering t′pre and t′post respectively, in the bounded split-state leakage and tampering
model, as long as the parameters satisfy the following constraints:

λ′pre ≤ λpre, λ′post ≤ min(λpost − u, ν − t′post log p− ϑ− 1), t′pre ≤ tpre and t′post ≤ tpost

Define the key encapsulation scheme KEM as follows:

1. KEM.Setup(1κ) : On input 1κ, run E-BLT.SetUp to get params. Set par := params.

2. KEM.Gen(par) : The key generation consists of two subroutines–

KEM.Gen1 and KEM.Gen2, where KEM.Genj on input par, samples (pkj , skj) ←
E-BLT.Gen(par), for j = 1, 2. It outputs the public key as pk = (pk1, pk2), and the
secret key is sk = (sk1, sk2).

3. KEM.Encap(pk) : On input the public key pk, do the following:

– Run (vk, ssk) ← SS.Gen(1κ), where vk and ssk are the verification and signing
keys of the strong OTS scheme respectively.

– Choose x1, x2
$←− {0, 1}ν and compute c1 ← E-BLT.Enc(pk1, x1, vk) and c2 ←

E-BLT.Enc(pk2, x2, vk), where vk is the label.

– Compute σ ← SS.Sign(ssk, (c1, c2)) and k = Ext2(x1, x2).

Output the ciphertext-key pair (c = (vk, c1, c2, σ), k)

4. KEM.Decap(sk, c) : On input the secret key sk and the ciphertext c do:

– Parse c as c = (vk, c1, c2, σ) and sk = (sk1, sk2).

– Run SS.Ver(vk, (c1, c2), σ). If the verification fails, the ciphertext is invalid and
return ⊥.

– Run xj ← E-BLT.Decj(skj , cj) for j = {1, 2}.
– Run KEM.Comb(x1, x2): Compute k = Ext2(x1, x2).

Fig. 2. Post-Challenge IND-CCA-BLT-secure KEM scheme KEM.

Proof. Let us denote the adversary for KEM by BKEM and let Simu be the entropic
simulator for the underlying scheme E-BLT. We need to show that no PPT adversary
wins the post-challenge IND-CCA-BLT security game, except with negligible probability.
In order to show this, we define a sequence of hybrids {Hybridi}{0≤i≤3}, and show that
the views of the adversary when interacting with these hybrids are computationally
indistinguishable.

Before defining the hybrids, we assume that in the key generation phase, the challenger
always first chooses a one-time signature key pair (vk∗, ssk∗)← SS.Gen(1κ) and proceeds
as in the hybrids described below. Then, in the challenge phase, instead of generating a
OTS key pair (vk, ssk) ← SS.Gen(1κ), the challenger uses (vk∗, ssk∗) generated in the
key generation phase.

21

Hybrid 0. This corresponds to the real game, expect with the (syntactical) modifi-

cation as mentioned above. In particular, it chooses x∗1, x
∗
2

$←− {0, 1}ν . Then it com-
putes c∗i ← E-BLT.Enc(pki, x

∗
i , vk

∗) (for i ∈ {1, 2}), σ∗ ← SS.Sign(ssk∗, (c∗1, c
∗
2)) and

k∗ = Ext2(x∗1, x
∗
2). It then chooses a random bit b ∈ {0, 1}. If b = 0, the encapsulated key

is set to k∗; otherwise the challenger samples a random key k∗
$←− {0, 1}u, and returns

the challenge ciphertext-key pair (c∗ = (vk∗, c∗1, c
∗
2, σ
∗), k∗) to BKEM.

Hybrid 1. In this game, the challenger proceeds as in the Hybrid0, except that if the
adversary BKEM submits a (normal) decapsulation query (vk, c1, c2, σ), with vk = vk∗,
then it outputs ⊥. As argued in Lemma 9, Hybrid 0 and Hybrid 1 are indistinguishable
by the strong unforgeability property of the one-time signature scheme SS.

Lemma 9. For all PPT adversaries BKEM there exists a negligible function ν0,1 such

that
∣∣AdvAFL-IND-CCA-BLT

BKEM,Hybrid0
(κ)− AdvAFL-IND-CCA-BLT

BKEM,Hybrid1
(κ)
∣∣ ≤ ν0,1(κ).

Proof. We observe that the views of the adversary BKEM in Hybrid0 and Hybrid1 are
identical, except for an event F , which happens when BKEM submits a (normal) decap-
sulation query (vk, c1, c2, σ) with vk = vk∗. If BKEM submits such a valid decapsulation
query in the pre-challenge phase, it trivially breaks the strong unforgeability of the OTS
scheme. On the other hand, if BKEM comes up with such a query in the post-challenge
phase, it must be the case that c 6= c∗, where c∗ is the challenge ciphertext, thus con-
tradicting the unforgeability of OTS again. The detailed proof of this lemma is shown
below.

We will show that F happens with negligible probability, assuming the strong unforge-
ability property of the signature scheme SS. In other words, if event F happens, we can
construct a forger F against SS. F simulates the environment for BKEM as follows.

F receives the verification key vk∗ from the SS challenger (and hence F does not
know ssk∗). In the pre-challenge phase, if F receives a decapsulation query of the form
(vk∗, c1, c2, σ) such that SS.Ver(vk∗, (c1, c2), σ) = 1, or a pre-challenge tampering query
of the form (vk∗, ci,1, ci,2, σi) (with respect to the ith tampered secret key) such that
SS.Ver(vk∗, (ci,1, ci,2), σi) = 1, then F returns ⊥ to the adversary BKEM and outputs
((c1, c2), σ) or (ci,1, ci,2, σi) as the forgery. Otherwise, F proceeds as in Hybrid0.
In the challenge phase, F chooses x∗1, x

∗
2 uniformly at random and computes c∗1 ←

E-BLT.Enc(pk1, x
∗
1, vk

∗), c∗2 ← E-BLT.Enc(pk2, x
∗
2, vk

∗). Then, it queries the signing ora-
cle of SS for a signature σ∗ on the message (c∗1, c

∗
2)6. It then chooses b← {0, 1} randomly.

If b = 0, it computes k∗ = Ext2(x∗1, x
∗
2). Otherwise it chooses a string k∗

$←− {0, 1}u uni-
formly at random. Finally, F returns (c∗, k∗) to BKEM.

In the post-challenge phase, if the adversary asks a decapsulation query of the form
(vk∗, c1, c2, σ) such that SS.Ver(vk∗, (c1, c2), σ) = 1 and (vk∗, c1, c2, σ) 6= (vk∗, c∗1, c

∗
2, σ
∗),

or a post-challenge tampering query of the form (vk∗, cj,1, cj,2, σj) (with respect to the
jth tampered secret key) such that SS.Ver(vk∗, (cj,1, cj,2), σj)
= 1 and (vk∗, cj,1, cj,2, σj) 6= (vk∗, c∗1, c

∗
2, σ
∗), then F outputs ⊥ to BKEM and returns

((c1, c2), σ) or ((cj,1, cj,2), σj) as the forgery, thus contradicting the strong-unforgeability
property of the OTS SS. ut
6 Note that the signing oracle is queried only once.

22

Hybrid 2. In this game, the challenger proceeds as in the Hybrid1, except that it uses
the entropic simulator Simu to answer the first part of all the queries, i.e, to generate
the ciphertext c∗1, and answering leakage and tampering queries related to the secret key
split sk1. In more details the challenger does the following:

Key Generation: The challenger chooses x∗1 and x∗2 at random, then generates (pk2, sk2)
using the key generation algorithm of E-BLT, but it receives pk1 by running Simu(x∗1).

Pre-Challenge Leakage: When the adversary BKEM makes pre-challenge leakage queries
(fpre1,i , f

pre
2,i), the challenger forwards the first part of the query fpre1,i to Simu and gets the

answer from it. The challenge computes fpre2,i (sk2) by itself, and returns both the answers
to BKEM.

Pre-Challenge Tampering: The pre-challenge tampering queries (T pre
1,i , T

pre
2,i) made by

BKEM are also answered similarly, i.e., T pre
1,i is forwarded to Simu, and the challenge

itself can compute s̃k2,i = T2,i(sk2). When the adversary makes a decapsulation query

(vk, c1,i, c2,i, σi) with respect to the ith tampered secret key s̃ki = (s̃k1,i, s̃k2,i), the
challenger outputs ⊥ if vk = vk∗. Otherwise, it first checks whether σ is a valid signature
on (c1,i, c2,i) with respect to vk. If this is not the case, it outputs ⊥. Otherwise, it

asks Simu to decrypt c1,i under s̃k1,i, and receives the answer x̃1,i. The challenger then

computes x̃2,i ← KEM.Decap(s̃k2,i, c2,i) itself. Finally, it computes k̃i ← Ext2(x̃1,i, x̃2,i),

and returns k̃i to BKEM.

Challenge: In the challenge phase, the challenger asks Simu for the first ciphertext c∗1
under the label vk∗ (chosen earlier), computes the second ciphertext c∗2 ← KEM.Encap(
pk2, x

∗
2, vk

∗), and σ∗ ← SS.Sign
(
ssk∗, (c∗1, c

∗
2)
)
. Next, the challenger makes a direct

post-challenge leakage query toKEM.Decap, with the function f1(sk1) = Ext2
(
KEM.Decap

(sk1, c
∗
1), x∗2

)
(with output length u bits). Getting some answer k′, the challenger just

discards that answer, and instead computes k∗ = Ext2(x∗1, x
∗
2) by itself. It then chooses

a random bit b. If b = 0, the challenger sends (c∗ = (vk∗, c∗1, c
∗
2, σ
∗), k∗) to the adversary

BKEM; otherwise it chooses k uniformly at random and sends
(
c∗ = (vk∗, c∗1, c

∗
2, σ
∗), k

)
to BKEM.

In the post-challenge phase, the leakage and tampering queries are handled identically
as in the pre-challenge phase, with the challenger asking Simu for the first part of the
answer (for queries related to sk1) and answering the second part of the answer (queries
related to sk2) itself. Also, in the post-challenge phase, none of the decapsulation queries
(with respect to the original secret key) should be equal to the challenge ciphertext c∗.

Note that the simulator Simu does not use the answers of the direct post-challenge leakage
queries while computing the challenge ciphertext c∗. The reason that the challenger still
makes them is to ensure that the entropic simulator see the same queries in this game
as in the reductions shown below. One consequence of this query is that the entropic
simulator has to answer more leakage queries than what is asked by the adversary BKEM.
More precisely, Simu has to answer extra u bits, hence we have λ′post ≤ λpost − u.

We now prove that the event b′=b holds in the above hybrids (Hybrid 1 and 2) with
essentially the same probability as in the real game, by reducing to the indistinguisha-
bility property of the entropic simulator of E-BLT.

Lemma 10. For all PPT adversaries BKEM there exists a negligible function ν1,2 such

that
∣∣AdvAFL-IND-CCA-BLT

BKEM,Hybrid1
(κ)− AdvAFL-IND-CCA-BLT

BKEM,Hybrid2
(κ)
∣∣ ≤ ν1,2(κ).

23

Proof. At a high level, the essential difference between these two hybrids is that: In
Hybrid2, the entropic simulator is used to simulate the first part of all the adversary’s
queries. However, unlike the challenger in Hybrid 2, the reduction here cannot discard
the responses of the direct post-challenge leakage queries, since it does not know x∗1,
and hence cannot compute k∗ by itself. To argue indistinguishability by reducing to the
security of our entropic scheme E-BLT, we must show that the responses of the post-
challenge leakage queries are consistent in both Hybrid 2 and also in the reduction here.
We do this by constructing two distinguishers DEnt

1 and DEnt
2 and prove that at least one

of them has an advantage α/2. The detailed proof of the lemma is shown below.
Assume that the event b′ = b holds in the Hybrid1 with a probability that is larger

than that in Hybrid2 by a noticeable amount, sayα. We describe an entropic adversary
AEnt and two distinguishers DEnt

1 and DEnt
2 and prove that at least one of them has an

advantage α/2.AEnt, DEnt
1 and DEnt

2 proceed as follows:

– The entropic adversary AEnt on input the public key pk1, chooses (pk2, sk2) and x2 in
the same way as in Game 2, and sends (pk1, pk2) to BKEM. It then proceeds similarly
to the challenger in the real game, except in the challenge phase. More precisely, once
AEnt receives c∗1 from the external oracle, it computes c∗2 ← E-BLT.Enc(pk2, x

∗
2, vk

∗) and
creates a signature σ∗ ← SS.Sign(ssk∗, (c∗1, c

∗
2)). Then it makes a direct post-challenge

leakage query asking for k′ = f1(sk1) = Ext2(KEM.Decap(sk1, c
∗
1), x∗2). As AEnt does

not know x∗1, it does not discard the answer; but instead uses k′ (in case b = 0).

– The first distinguisher DEnt
1 gets the view of AEnt, which includes x∗2 and k′ and also

the string x∗1 (which is supposed to be encrypted in c∗1). DEnt
1 simply verifies if k′

?
=

Ext2(x∗1, x
∗
2). It outputs 1 if this verifies, else it outputs 0.

– The second distinguisher DEnt
2 gets the view of AEnt, which includes b and b′, and

outputs 1 if they are equal and 0 otherwise.

If the oracle of AEnt is the real entropic post-challenge IND-CCA-BLT secure PKE
E-BLT, the value c∗1 is indeed a proper encryption x∗1 and the value k′ is also equal
to Ext2(x∗1, x

∗
2). Now, if the oracle of AEnt is the simulator Simu, there can be two

possible cases: the event k′ 6= Ext2(x∗1, x
∗
2) happens with probability at least α/2 or

with probability less than α/2. In the first case, clearly the distinguisher DEnt
1 has an

advantage α/2. In the second case, we will show that DEnt
2 has advantage at least α/2.

Note that, in the second case, both the hybrids are identical except for an event that
happens with probability less than α/2. Since the probability of b′ = b in the real game
is larger by α than this probability in Hybrid2, then it is larger by more than α than this
probability in the interaction with AEnt. Hence the distinguisher DEnt

2 has advantage
more than α/2. This proves that k′ = k, except with negligible probability. ut

Hybrid3. This game is identical to Hybrid2, except that, now both parts of the game
are handled by the entropic simulator. The challenger runs Simu(x∗1) and Simu(x∗2)
to generate the public keys pk1 and pk2, answer the leakage, tampering and decryp-
tion queries, and generate the challenge ciphertext. In the challenge phase, the chal-
lenger now makes direct post-challenge leakage queries to both copies of the simulator,
asking the first for k′ = f1(sk1) = Ext2(KEM.Decap(sk1, c

∗
1), x∗2) and the second for

k′′ = f2(sk2) = Ext2(x∗1,
KEM.Decap(sk2, c

∗
2)). It then ignores both of the answers, and computes k∗ = Ext2(x∗1, x

∗
2).

24

Finally, it chooses a random bit b and depending on b sends either (c∗ = (vk∗, c∗1, c
∗
2, σ
∗), k∗)

(in case b = 0) or (c∗ = (vk∗, c∗1, c
∗
2, σ
∗), k) (in case b = 1) to the adversary BKEM as in

Hybrid2.

Lemma 11. For all PPT adversaries A there exists a negligible function ν1,2 such that∣∣AdvAFL-IND-CCA-BLT
BKEM,Hybrid2

(κ)− AdvAFL-IND-CCA-BLT
BKEM,Hybrid3

(κ)
∣∣ ≤ ν2,3(κ).

Proof. The proof of indistinguishability between Hybrid2 and Hybrid3 proceeds essen-
tially in the same way as the proof of indistinguishability between Hybrid1 and Hybrid2.

ut

Advantage in Hybrid3: We now estimate the advantage of BKEM in Hybrid3.

Lemma 12. The advantage of the adversary BKEM in Hybrid3 is

AdvAFL-IND-CCA-BLT
BKEM,Hybrid3

(κ) ≤ ε · 2u.

For proving the above lemma, let us consider another related mental experiment:

Hybrid3: This proceeds exactly as Hybrid3, except that in the challenge phase, the
challenger instead of sending (c∗ = (vk∗, c∗1, c

∗
2, σ
∗), k∗) sends c∗ = (vk∗, c∗1, c

∗
2, σ
∗), and

defers sending k∗ until after the post-challenge leakage and tampering phase.

Note that Hydrid3 is distinguishable from Hybrid3. However, the following lemma shows
that the difference only affects the advantage of the adversary by at most a multiplicative
factor of 2u.

Lemma 13. AdvAFL-IND-CCA-BLT
BKEM,Hydrid3

(κ) ≤ AdvAFL-IND-CCA-BLT
B̃KEM,Hybrid3

(κ) · 2u

Proof. The proof of this lemma follows from standard complexity leveraging techniques.

For every adversary BKEM in Hybrid3, we present an adversary B̃KEM for Hydrid3. The
adversary B̃KEM internally incorporates BKEM and forwards all the messages from BKEM
to Hybrid3 challenger, except in the challenge phase, where B̃KEM randomly chooses a

string k∗
$←− {0, 1}u and sends it to BKEM. Later when B̃KEM receives the real k∗ from its

challenger, it aborts if it guessed wrong, otherwise it proceeds just like BKEM. Since the
guess of B̃KEM was correct with probability 1/2u, the statement in Lemma 13 follows.

ut

We now show that the advantage of adversary B̃KEM in Hydrid3 is ε.

Lemma 14. The advantage of an adversary B̃KEM in Hydrid3 is:

AdvAFL-IND-CCA-BLT
B̃KEM,Hydrid3

(κ) ≤ ε

The proof of this follows from entropic security of E-BLT, and the fact that the adversary
does not learn k∗, except with negligible advantage. The split-state model then ensures
that both x∗1 and x∗2 are independent, and hence the average-case (seedless) 2-source
extractor Ext2 guarantees that the output is ε-close to uniform.

25

Proof. Let Γ denote the transcript of messages that B̃KEM received in Hydrid3 till the
end of the post-challenge phase. We parse Γ = (Γ1, Γ2, Γ3), where Γ1 contains the public
key pk1, the simulated encryption c∗1 of x∗1, and all the leakage and tampering queries
and responses on sk1. Γ2 contains the public key pk2, the simulated encryption c∗2 of x∗2,
and all the leakage and tampering queries and responses on sk2. Finally, Γ3 contains the
result of all the decryption oracle queries and responses (with respect to the original key).

By the entropic property of E-BLT, we have H̃∞(x∗1|(Γ1, Γ3)) ≥ ν − λ′post − t′post log p− 1

and H̃∞(x∗1|(Γ2, Γ3)) ≥ ν−λ′post−t′post log p−1. Recall, that we set the parameter λ′post ≤
ν− t′post log p−ϑ−1. So we get, H̃∞(x∗1|(Γ1, Γ3)) ≥ ϑ. Moreover, as the random variables

x1 and Γ2 are independent conditioned on Γ1, and Γ3, we also have H̃∞(x∗1|(Γ2, Γ3)) ≥ ϑ.

Similarly, we get H̃∞(x∗2|Γ) ≥ ϑ

At this point, we can argue that the encapsulation key k∗ is unpredictable, even given
the public key, the challenge ciphertext and the answers to all the pre- and post-challenge
leakage and tampering queries. Intuitively, after Hybrid 3 both c∗1 and c∗2 are simulated
and hence by the entropic security of the underlying PKE scheme, both x∗1 and x∗2 (the
underlying messages) retain high min-entropy, even conditioned on the pre- and post-
challenge decryption, leakage and tampering queries, as shown above. Hence, at this
stage, we can use the property of the 2-source extractor Ext2 to argue that the encapsu-
lated key k∗ has high min-entropy even given all these information. More formally, we
show that:

Lemma 15. H̃∞(k∗|Γ) ≥ log(1
1
2u+ε

), where Γ = (Γ1, Γ2, Γ3) is the transcript of mes-

sages that B̃KEM received in Hydrid3 till the end of the post-challenge phase, as defined
above.

Proof. The claim follows directly from the uniformity property of the average-case (seed-

less) 2-source extractor Ext2. In particular, as shown above H̃∞(x∗1|Γ) ≥ ϑ, and H̃∞(x∗2|Γ) ≥
ϑ. Hence, by the (ϑ, ε) property of the extractor Ext2, it follows that the value k∗ has

almost u bits of min-entropy. Specifically, by Lemma 4, we have that H̃∞(k∗|Γ) ≥
log(1

1
2u+ε

).

Parameter Setting. In the work of [6], it is shown how to construct a seedless (2, t)-
non-malleable extractor for the following choice of the parameters:

Theorem 4 ([6]). There exists a constant γ < 1/2 and a polynomial time computable
function Ext : {0, 1}t × {0, 1}t → {0, 1}u′

that is a (ϑ, varepsilon)-2-source extractor at
min-entropy ϑ = γt with error ε = 2Ω(u′), and u′ = Ω(t).

According to Lemma 7, this is already an average-case extractor as needed. If we choose
a length u′ that is large enough than u, we can get ε ≤ 2−u−ω(log κ). Then we can
truncate the output to length u without increasing the statistical distance, thus getting
the parameters that we need.

26

5 Post-challenge IND-CCA-BLT secure PKE in Split-State
Model

In this section, we present our construction of post-challenge IND-CCA-BLT secure PKE
scheme in split-state model, starting from a post-challenge IND-CCA-BLT secure KEM
scheme (as shown in Section 4.1) and a (one-time) symmetric-key encryption scheme.
The security model of post-challenge IND-CCA-BLT secure PKE scheme in split state
model is similar to the model of post-challenge IND-CCA-BLT secure KEM scheme in
split state as described in Section 4, with the only difference that the encapsulation and
the decapsulation algorithms are replaced by the encryption and decryption algorithms
respectively. The secret key of the PKE is also split into two parts, as in the KEM scheme,
and the adversary can query ask arbitrary pre- and post-challenge leakage and tamper-
ing queries, provided they act independently on the secret key parts and are bounded in
length or number as before. Besides, he can ask arbitrary pre- and post-challenge decryp-
tion queries, with the obvious restriction that in the post-challenge phase the decryption
queries are never asked on the challenge ciphertext. The challenge phase is replaced by
the standard indistinguishability style definition for PKE scheme. The PKE scheme BLT
consists of the following algorithms BLT = (BLT .Setup,BLT .Gen,BLT .Enc,BLT .Dec).
We refer the reader to Appendix C for the detailed model.

5.1 Construction of Post-Challenge IND-CCA-BLT secure PKE

We now show the construction of our post-challenge/after-the-fact IND-CCA-BLT secure
PKE scheme BLT = (BLT .Setup,BLT .Gen,BLT .Enc,BLT .Dec). The main ingredients
of our construction are:
1. A 2-split-state IND-CCA-

(
k, (λpre

′, λpost
′), (t′pre, t

′
post)

)
-BLT secure KEM KEM =

(KEM.Setup,KEM.Gen,KEM.Encap,KEM.Decap) (please refer to Definition 12)
with output space {0, 1}∗ × {0, 1}u.

2. (One-time) symmetric encryption scheme ϕ = (SKE .KG,SKE .Enc,SKE .Dec) en-
crypting ω bit messages, with key space {0, 1}u.

Construction: The construction of our 2-split-state PKE scheme BLT proceeds as
follows:

1. BLT .Setup(1κ) : Run par← KEM.Setup(1κ). Set params := par.

2. BLT .Gen(params) : Run (pk, sk)← KEM.Gen(par). Recall that pk = (pk1, pk2) and
sk = (sk1, sk2). Set pk′ = pk and sk′ = sk.

3. BLT .Enc(pk′,m) : On input a message m ∈ {0, 1}ω, run (c0, k)← KEM.Encap(pk′).
Then it computes c1←SKE .Enc(k,m), and output the ciphertext c=(c0, c1).

4. BLT .Dec(sk′, c) : Parse c = (c0, c1). Run k ← KEM.Decap(sk′, c0), and outputs the
message m = SKE .Dec(k, c1).

Theorem 5. The encryption scheme BLT is post-challenge IND-CCA-
(
k, (λ′′pre, λ

′′
post),

(t′′pre, t
′′
post)

)
-BLT secure as long as the parameters satisfies:

λ′′pre ≤ λpre
′, λ′′post ≤ λpost

′ and t′′pre ≤ t′pre, t′′post ≤ t′post

27

Proof Sketch. We now sketch the main ideas for proving the above theorem. The proof
follows mainly from the security of our KEM scheme KEM, and the CCA-security of the
SKE scheme ϕ. In particular, the leakage and tampering queries of the SKE adversary is
handled by the leakage and tamper resilience of our KEM scheme. However, the adversary
may also ask additional decryption queries with respect to the tampered keys, even on the
challenge ciphertext. For this, we resort to the entropic property ofKEM. The IND-CCA-
BLT security of KEM guarantees that the challenge KEM key k∗ is close to uniform, even
given the tampered keys. In the intermediate hybrid, we sample k∗ uniformly at random,
and show that if the adversary can distinguish between the real game and this hybrid,
it can break the IND-CCA-BLT security of KEM. Now the KEM key is independent of
the tampered keys. When the SKE adversary queries the decryption oracle with respect
to the tampered keys, the reduction asks for the corresponding tampered keys from
the KEM challenger, and then it can answer the decryption queries by itself. Since the
reduction can simulate the responses of the decryption oracle(s) by itself, the min-entropy
of k∗ is preserved. At this point, we use the (standard) IND-CCA security of our SKE
scheme ϕ to argue indistinguishability of the challenge ciphertext. We refer the reader
to Appendix D for the detailed proof.

6 Conclusion

In this work, we study after-the-fact leakage and tampering in the context of public-key
encryption schemes. To this end, we define an entropic post-challenge IND-CCA-BLT
security and show how to construct full-fledged post-challenge IND-CCA-BLT secure
PKE schemes under the split-state restriction. It is interesting to find other meaningful
and realizable after-the-fact definitions of security for leakage and tampering. Besides,
it will be interesting to define an appropriate framework for after-the-fact continuous
leakage and tampering attacks, and port our construction in this setting.

References

1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and appli-
cations. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing. pp. 459–468. ACM (2015)

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptogra-
phy against memory attacks. In: Theory of Cryptography Conference. pp. 474–495. Springer
(2009)

3. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: Rka-prps, rka-prfs,
and applications. In: International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 491–506. Springer (2003)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-
graphic computations. Journal of cryptology 14(2), 101–119 (2001)

5. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from deci-
sion diffie-hellman. In: Annual International Cryptology Conference. pp. 108–125. Springer
(2008)

6. Bourgain, J.: More on the sum-product phenomenon in prime fields and its applications.
International Journal of Number Theory 1(01), 1–32 (2005)

28

7. Chakraborty, S., Paul, G., Rangan, C.P.: Efficient compilers for after-the-fact leakage: from
cpa to cca-2 secure pke to ake. In: Australasian Conference on Information Security and
Privacy. pp. 343–362. Springer (2017)

8. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing 17(2), 230–261 (1988)

9. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: How to go
beyond the algebraic barrier. In: Advances in Cryptology–ASIACRYPT 2013: 19th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013. pp. 140–160. Springer (2013)

10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in
the presence of key leakage. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 613–631. Springer (2010)

11. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from bio-
metrics and other noisy data. In: International conference on the theory and applications
of cryptographic techniques. pp. 523–540. Springer (2004)

12. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extrac-
tors. In: Advances in Cryptology–CRYPTO 2013, pp. 239–257. Springer (2013)

13. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: Foundations of Com-
puter Science, 2007. FOCS’07. 48th Annual IEEE Symposium on. pp. 227–237. IEEE (2007)

14. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS. pp. 434–452 (2010)
15. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage and tamper

resilience. In: Advances in Cryptology–ASIACRYPT 2016: 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I 22. pp. 877–907. Springer (2016)

16. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic tamper-proof
(atp) security: Theoretical foundations for security against hardware tampering. In: Theory
of Cryptography Conference. pp. 258–277. Springer (2004)

17. Groth, J.: Simulation-sound nizk proofs for a practical language and constant size group
signatures. In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 444–459. Springer (2006)

18. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A.,
Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot attacks on en-
cryption keys. Communications of the ACM 52(5), 91–98 (2009)

19. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Theory of Cryptog-
raphy Conference. pp. 107–124. Springer (2011)

20. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction paradigm for
hybrid encryption. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 590–609. Springer (2009)

21. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology-
CRYPTO99. pp. 388–397. Springer (1999)

22. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In: Advances in CryptologyCRYPTO96. pp. 104–113. Springer (1996)

23. Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In:
Advances in Cryptology–CRYPTO 2012, pp. 517–532. Springer (2012)

24. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM Journal on
Computing 41(4), 772–814 (2012)

25. Piret, G., Quisquater, J.J.: A differential fault attack technique against spn structures, with
application to the aes and khazad. In: International Workshop on Cryptographic Hardware
and Embedded Systems. pp. 77–88. Springer (2003)

26. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: Pro-
ceedings of the twenty-second annual ACM symposium on Theory of computing. pp. 387–
394. ACM (1990)

29

27. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random sources.
Journal of Computer and System Sciences 33(1), 75–87 (1986)

28. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: International work-
shop on cryptographic hardware and embedded systems. pp. 2–12. Springer (2002)

29. Vazirani, U.V.: Strong communication complexity or generating quasi-random sequences
from two communicating semi-random sources. Combinatorica 7(4), 375–392 (1987)

30. Zhang, Z., Chow, S.S., Cao, Z.: Post-challenge leakage in public-key encryption. Theoretical
Computer Science 572, 25–49 (2015)

30

SUPPLEMENTARY MATERIALS

A Detailed proof of Theorem 1

A.1 Proof of Lemma 8

Lemma 7: The BHHO cryptosystem described in Section 3.2 is entropic restricted post-
challenge IND-CCA-

(
k, (λpre

′, λpost
′), (0, 0)

)
-BLT secure, where

λ′pre + λ′post ≤
(
`− 2

)
log p− ω(log κ)

Proof. To prove Lemma 8 we need to describe a simulator, whose answers to the ad-
versary are indistinguishable from the real game, and at the same time leave enough
min-entropy in the message m.

The BHHO encryption scheme can be viewed as a hash proof system with the space of
all ciphertext and valid ciphertexts defined as follows:

C = {(gr11 , · · · , g
r`
`) : r1, · · · , r` ∈ Zp}

V = {(gr1, · · · , gr`) : r ∈ Zp}
The public and the private evaluation algorithms are as follows:

Pub(pk, c, w) = Pub(h, gα, r) = hr =
∏̀
i=1

(
gxii
)r

Priv(sk, c = (c1, · · · , c`︸ ︷︷ ︸
c′

, d)) = Priv(sk = x, c′ = (gr1, · · · , gr`)) =
∏̀
i=1

(gri)
xi = hr

Also note, that hardness of the subset membership problem between the valid and invalid
ciphertexts follows easily from the DDH assumption.

Real game: In the real game, the challenger generates the public parameters params
and the public-secret key pair (pk = (h, gα), sk = x) using the algorithms ER-BLT.SetUp
and ER-BLT.Gen respectively. It then gives params and pk to the adversary. The answers
to pre- and post-challenge leakage queries are answered by the challenger using the secret
key sk. Note that the adversary does not ask any tampering query in this game. In the
challenge phase, the challenger constructs the challenge ciphertext c∗ as in the BHHO

construction. In other words, it chooses a valid ciphertext c∗ ∈ V by sampling r
$←− Zp,

and computing c′ = (gr1, · · · , gr`), and c∗ = (c′,Pub(h, gα, r) ·m) = (c′, hr ·m), where m
is the message chosen by the challenger at the onset of the entropic game. Finally, its
outputs c∗ to the adversary.

Simulated game: In our case, the simulator proceeds identically as the challenger in
the real game, except in the generation of the challenge ciphertext, it chooses an invalid

ciphertext c∗ ∈ C\V, i.e., it samples r1, · · · , r`
$←− Zp, and compute c′ = (gr11 , · · · , g

r`
`),

and c∗ = (c′,Priv(x, c′) ·m), where Priv(x, c′) =
∏`
i=1(grii)xi . Finally it outputs c∗ to the

adversary.

It follows directly from the hardness of the subset membership problem of the above
hash proof system that the real game is indistinguishable from the simulated game. It
only remains to show that the min-entropy of the message is preserved, even given pre-
and post-challenge leakage.

31

Note that the min-entropy of the secret key sk(= x) is ` log p (since each xi ∈ Zp), and
hence the average min-entropy of sk given the public key pk and pre-challenge leakage
is:

H̃∞(x |pk,Lpre) ≥ ` log p− log p− λ′pre ≥ log p+ ω(log κ) + λ′post

where the last equation follows from our choice of ` ≥ 2 +
λ′
pre+λ

′
post+ω(log κ)

log p .

Therefore, the leftover hash lemma guarantees that with overwhelming probability over
the choice of c′ = (c1, · · · , c`) ∈ C\V, where ci = grii , it holds that Λsk(c′) =

∏`
i=1 c

xi
i is

ε-close to the uniform distribution over G, even given h =
∏`
i=1 g

xi
i , and any leakage of

λ′pre bits. We refer the reader to [5] for more detailed discussion of the application of the
leftover hash lemma in this context. This proves the ε-smoothness property of the hash
proof system. Hence the message m has almost log p-bits of entropy. In particular it has
at least log(1

1
|Zp|

+ε
) bits of min-entropy. Note that, for application of the leftover hash

lemma, it is sufficient if the average conditional min-entropy of the secret key sk, given
h and the pre-challenge leakage is at least log p+ ω(log κ). Next, by relying on the fact
that the post challenge leakage is bounded by λ′post bits, we get:

H̃∞(x|pk,Lpre,Lpost) ≥ log p+ ω(log κ) + λ′post − λ′post ≥ log p+ ω(log κ)

Hence, even after the pre- and post-challenge leakage, the secret key retains enough min-
entropy. So, the leftover hash lemma can again be applied in this context and hence the
value Λsk(c′) is ε-close to uniform distribution over G, even given h, and pre- and post-
challenge leakages of λ′pre and λ′post bits respectively. Hence the message m also retains a
high min-entropy. This completes the proof of Lemma 8. ut

A.2 Proof of Theorem 1 continued:

Proof. Let us assume there exists an adversaryA that breaks the entropic restricted post-
challenge IND-CCA

(
k, (λpre, λpost), (tpre, tpost)

)
-BLT security, with probability greater

than 1/p(κ), for some polynomial p(κ). We can construct an adversary A′ against the
entropic restricted post-challenge IND-CCA(
k, (λpre

′, λpost
′), (0, 0)

)
-BLT security, with the same advantage. This leads to a contradic-

tion of Lemma 8, which we just proved above. The reduction follows the steps described
below:

1. The adversary A′ receives params and (pk = (h, gα) from its challenger, and for-
wards (params, pk) to A. The challenger also chooses a message m← Uk, and keeps
it with itself.

2. The leakage queries asked by A, both in the pre- and post-challenge phase, are
answered by A′ by forwarding the leakage queries to its leakage oracle, and returning
the answer to A.

3. The way that A′ answers to the pre- and post-challenge tampering queries of A are
as follows:

On input a tampering query Ti ∈ Tsk, A′ submits a leakage query in order to retrieve

the value h̃i =
∏`
i=1 g

−x̃j,i
j , where x̃i = Ti(x) = (x̃1,i, · · · , x̃`,i) is the ith tampered

32

secret key. When A makes a decryption query of the form (m, r)7, A′ returns m̃ =

(hr ·m)h̃ri . Note that this is a perfect simulation, since A′ produces a distribution
which is identical to the one which A expects. This is shown below.

m̃ = (hr ·m)h̃ri = d

(
·
∏̀
j=1

g
−x̃j,i
j

)r
= d/

∏̀
j=1

(grj)
x̃j,i where d = hr ·m

This perfectly simulates the answers of the (modified) decryption oracle Dec∗(s̃ki, ·, ·),
that A is supposed to receive.

4. In the challenge phase, A′ asks its challenger for the challenge ciphertext c∗. It then
returns c∗ to A.

5. Finally, A′ outputs whatever A outputs.

Note that in the above reduction, all the pre- and post-challenge tampering queries of
A are handled by A′ by leaking one group element for each tampering query. Hence we
have,

λpre + λpost =
(
λ′pre + λ′post

)
− tpre log p− tpost log p ≤

(
`− 2− tpre − tpost

)
log p− ω(log κ)

where tpre and tpost are the number of pre- and post-challenge tampering queries made
by A. This concludes the proof of Theorem 1. ut

B Proof of Theorem 2

Theorem 2. Let ER-BLT be an entropic-restricted post-challenge IND-CCA-
(
k, (λpre, λpost),

(tpre, tpost)
)
-BLT secure PKE scheme, Π be a one-time strong tSE NIZK argument system

supporting label for the relation RER-BLT, then the above encryption scheme E-BLT is an
entropic post-challenge IND-CCA-

(
k, (λpre, λpost), (tpre, tpost)

)
-BLT secure PKE scheme.

Proof. Let SER and SE denote the entropic simulators of the entropic restricted and the
entropic post-challenge IND-CCA-BLT PKE respectively. According to Definition 9 we
need to show that on one hand SE answers queries from the adversary in an indistin-
guishable way from real game and on the other hand leaves the challenge message with
high min-entropy.

Setup and Key Generation: The simulator SE on input a uniformly chosen message
m∗ invokes the simulator SER(m∗), and receives the public parameters params and the
public key pk from it. SE then runs (crs, tk, ek)← Gen(1κ), sets params′ = (params, crs).
Further, it also sets pk′ = pk. It then sends (params′, pk′) to the adversary, and keeps
the trapdoor informations (tk, ek) for the NIZK with itself.

Phase 1: In this phase the adversary A makes the following queries to SE:

– Leakage queries: Here, the adversary asks for a leakage from the secret key by spec-
ifying a polynomial time computable function fpre(.). If the output length of fpre is
no more than λpre bits, the challenger forwards this to SER, returns the answer ans
to A. It also sets Lpre := Lpre + |ans|. Otherwise, it ignores the query.

7 Note in the entropic restricted game the adversary has access only to the modified tampering
oracle, defined in section 3.1.

33

– Tampering queries: The adversary may ask pre-challenge tampering queries Ti ∈ Tsk,
where i ∈ [tpre]. The challenger forwards Ti to SER. When A asks a decryption query
c′i = (ci, πi, Li) with respect to the ith tampered secret key8, the challenger SE checks
if the proof πi is accepting with respect to the label Li. If it accepts, it runs the
extractor of the tSE-NIZK to output (mi, ri), i.e., (mi, ri)← Ext(Li, (pk, ci), πi, ek),
and forwards the pair (mi, ri) to its challenger9, which returns m̃i. SE then returns
m̃i to A.

– Decryption queries: The adversary can make polynomially many decryption queries
with respect to the original secret key. On a decryption query c′ = (c, π, L), SE

checks if the proof π is accepting with respect to L. If it accepts, it runs (m, r) ←
Ext(L, (pk, c), π, ek), and returns the message m to A.

Challenge: In this phase, the adversary submits a bit-string L∗ as a label. SE asks for
a challenge ciphertext from its challenger, and receives c∗ in response. It then generates
a simulated proof by using the zero-knowledge simulator, i.e., π∗ ← Sim(L∗, (pk, c∗), tk).
It then returns the ciphertext c′∗ = (c∗, π∗) to the adversary A.

Phase 2: In this phase, the adversary A also makes leakage, tampering and decryption
queries, similar to phase 1.

– Leakage queries: Here, the adversary asks for a leakage from the secret key by speci-
fying a polynomial time computable function fpost(.). If the output length of fpost is
no more than λpost bits, the challenger forwards this to SER, returns the answer ans
to A. It also sets Lpost := Lpost + |ans|. Otherwise, it ignores the query.

– Tampering queries: The adversary may also ask post-challenge tampering queries
Tj ∈ Tsk, where j ∈ [tpost]. The way the tampering queries of A are answered is
similar to phase 1.

– Decryption queries: The decryption queries are also answered by SE similar to phase
1, if (c, L) 6= (c′∗, L∗), else it outputs ⊥.

Next, we show that the view of the adversary Viewsm
SE,A(κ) in the simulated game above is

indistinguishable from the real view, even given the message m∗. We define a sequence of
hybrids {Hybi}i∈[3], and show that the adversary cannot distinguish between them, ex-
cept with negligible probability. The last hybrid Hyb3 is identical to the simulated game,
and hence the view of the adversary produced by Hyb3 will be identically distributed to
the view Viewsm

SE,A(κ) generated by the simulator SE.

Hybrid Hyb1: Hybrid 1 proceeds identically as the real game, except that in the challenge
ciphertext the proof π∗ is simulated. It immediately follows from the (composable) zero-
knowledge property of Π, that Hyb1 is indistinguishable from the real game (where the
proof is not simulated).

Hybrid Hyb2: Hybrid 2 proceeds as Hybrid 1, except that all the pre- and post-challenge
decryption (with respect to original secret key) and tampering queries are answered by
running the extractor Ext.

8 Recall that, corresponding to each tampered key, A can make polynomially many decryption
queries.

9 Note that the challenger for the entropic restricted game expects a decryption query of the
form (m, r).

34

It follows from the extractability property of the one-time strong tSE-NIZK that Hyb1

and Hyb2 are indistinguishable. This is true because the adversary only gets to see a
single simulated argument of a true statement (pk, c′∗), and therefore cannot produce
any new statement-argument pair (c′i, πi) for which the argument πi verifies, but the
extractor fails to extract the correct mi.

Hybrid Hyb3: Hybrid 3 proceeds as Hybrid 2, except that Hybrid 3 uses the entropic
simulator SER to generate the ciphertext c∗. It follows from the semantic property of
ER-BLT in the presence of pre- and post-challenge leakage and tampering queries that
the view of the adversary in both Hyb2 and Hyb3 are computationally indistinguishable,
even given the message m∗, leakage and answer to tampering queries.

Note that the description of Hybrid 3 is identical to the working of the simulator SE.
Thus we have shown that Viewsm

SE,A(κ), i.e the view of the adversary A in the simulated
game is computationally indistinguishable from the real game (even given the message
m∗). We now show that the message m∗ retains high min-entropy, given the simulated
view. We construct an adversary AER against the entropic restricted scheme ER-BLT.
AER internally invokes A, and proceeds identically to SE, except that it interacts with the
entropic simulator SER to generate the challenge ciphertext c′∗, and to answer leakage and
tampering queries. Hence, the view of adversary AER consists of the view of adversary
A and some additional information Γ , which consist of the trapdoors of the NIZK and
the internal randomness used to create the proof π∗. So, we have:

H̃∞
(
m∗ |Viewsm

SER,AER(κ)
)

= H̃∞
(
m∗ |Viewsm

SE,A(κ), Γ
)

= H̃∞
(
m∗ |Viewsm

SE,A(κ)
)

≥ k − λpost − tpost log p.

where the second equation follows from the fact that m∗ and Γ are independent condi-
tioned on Viewsm

SE,A(κ). The last equation follows from the entropic property of ER-BLT.
This completes the proof of Theorem 2. ut

C Security model for split-state IND-CCA-BLT secure PKE

In this section, we give the detailed security model for IND-CCA-BLT secure PKE tol-
erating post-challenge leakage and tampering attacks.

Definition 13. (Split state IND-CCA-BLT secure PKE). A 2-split state IND-
CCA-BLT secure PKE scheme BLT = (BLT .Setup,BLT .Gen,BLT .Enc,
BLT .Dec) consists of the following algorithms:

– BLT .Setup(1κ): The setup algorithm takes as input the security parameter, and out-
put the public parameters params, which is taken as input by all the algorithms.

– BLT .Gen(params): The key generation algorithm comprises of two subroutines namely,
BLT .Gen1 and BLT .Gen2. The subroutine BLT .Geni (i ∈ {1, 2}) generates the ith

public-secret key pair, i.e, (pk′i, sk
′
i)← BLT .Geni(params, ri) where ri ∈ {0, 1}∗. The

public key consists of the pair pk′ = (pk′1, pk
′
2) and the secret key consists of the pair

sk′ = (sk′1, sk
′
2).

35

– BLT .Encpk′(m): The (randomized) encryption algorithm takes as input a message
m, a public key pk′ = (pk′1, pk

′
2), and outputs a ciphertext C.

– BLT .Dec(C, sk′ = (sk′1, sk
′
2)): The decryption consists of two partial decryption sub-

routines BLT .Dec1, BLT .Dec2, and a combining subroutine BLT .Comb. The de-
cryption subroutine BLT .Deci (i ∈ {1, 2}) takes as input the ciphertext C, the secret
key split sk′i and outputs a partial decryption t′i, i.e., t′i ← BLT .Deci(C, sk

′
i). Finally,

BLT .Comb takes the ciphertext C and the pair (t′1, t
′
2) to recover the plaintext m,

i.e., m← BLT .Comb(C, t′ = (t′1, t
′
2)).

We want the usual correctness requirement to hold for BLT , i.e., ∀params← BLT .Setup(1κ),
(pk′i, sk

′
i) ← BLT .Geni(params) (i ∈ {1, 2}),∀m ∈ M, we require that BLT .Dec

(
sk′ =

(sk′1, sk
′
2), C = BLT .Encpk′(m)

)
= m holds with probability 1.

We now define the notion of CCA security of PKE schemes in the presence of after-the-
fact split-state memory leakage and tampering attacks.

Definition 14. (Post-Challenge IND-CCA-BLT security in split-state) Let κ ∈ N be
the security parameter. Let λpre(κ) and λpost(κ) be the upper bound on the amounts of
memory leakage before and after the challenge phase respectively. Also, let tpre(κ) and
tpost(κ) be the bounds on the number of pre- and post-challenge tampering queries asked
by the adversary before and after the challenge phase respectively. A 2-split-state PKE
scheme BLT = (BLT .Setup,BLT .Gen,
BLT .Enc,BLT .Dec) is post-challenge IND-CCA-

(
k, (λpre, λpost), (tpre, tpost)

)
-BLT secure

if for all PPT adversaries B, the advantage AdvAFL-IND-CCA-BLT
B,BLT (κ) defined below is at

most 1
2 + negl(κ).

1. Key Generation: The challenger chooses r1, r2
$←− {0, 1}∗, and compute (pk′i, sk

′
i)←

BLT .Geni(1
κ, ri) (i ∈ {1, 2}) and sends pk′ = (pk′1, pk

′
2) to the adversary, and keeps

sk′ = (sk′1, sk
′
2) to itself. Also, it initializes two lists L1

pre = L2
pre = 0, where Lipre

denotes the random variable quantifying the amount of leakage from the ith split sk′i
of the secret key sk′ (i ∈ {1, 2}).

2. Pre-Challenge Leakage: The adversary makes an arbitrary number of leakage
queries (fpre1,i , f

pre
2,i) adaptively, where fpre1,i and fpre2,i acts independently on the secret

key components sk′1 and sk′2 respectively. Upon receiving the i-th leakage query
the challenger sends back (fpre1,i (sk

′
1), fpre2,i (sk

′
2)), provided L1

pre + |fpre1,i (sk
′
1)| ≤ λpre(κ)

and L2
post + |fpre2,i (sk

′
2)| ≤ λpre(κ). It updates L1

pre = L1
pre + |fpre1,i (sk

′
1)|, and L2

post =

L2
post + |fpre2,i (sk

′
2)|.

3. Pre-Challenge Tampering: The adversary is allowed to make at most tpre number
of pre-challenge tampering queries (T pre

1,i , T
pre
2,i) for i ∈ [tpre], where T pre

1,i and T pre
2,i

acts independently on the secret key components sk′1 and sk′2 respectively. In more
detail, for each of the tampering query Ti = (T pre

1,i , T
pre
2,i), the adversary B gets access

to the tampered decryption oracles BLT .Dec(s̃k
′
1,ψ, ·) and BLT .Dec(s̃k

′
2,ψ, ·), where

s̃k
′
j,ψ =T pre

j,ψ(sk′j) (where 1 ≤ ψ ≤ i, and j ∈ {1, 2}). In other words, the decryption
oracle may be queried with any of the tampered keys obtained till this point. We
assume that, the total number of queries on the decryption oracles are polynomial.

36

Note that, when (T pre
1,ψ(sk′1), T pre

2,ψ(sk′2)) = (sk1, sk2), B gets access to the (normal)
decryption oracle in the pre-challenge phase.

4. Challenge: In this phase, B gives two challenge messages m0 and m1, and the the

challenger chooses b
$←− {0, 1}, computes C∗ = BLT .Encpk(mb) and gives it to B.

5. Post-Challenge Leakage: The adversary makes an arbitrary number of leakage
queries (fpost1,j , f

post
2,j) adaptively, where fpost1,j and fpost2,j act independently on the secret

key components sk′1 and sk′2 respectively. Upon receiving the jth leakage query, the
challenger sends back (fpost1,j (sk′1), fpost2,j (sk′2)), provided L1

post + |fpost1,j (sk′1)| ≤ λpost(κ)

and L2
post + |fpost2,j (sk′2)| ≤ λpost(κ). It updates L1

post = L1
post + |fpost1,j (sk′1)|, and L2

post =

L2
post + |fpost2,j (sk′2)|.

6. Post-Challenge Tampering: The adversary is allowed to make at most tpost num-
ber of pre-challenge tampering queries (T post

1,j , T
post
2,j) for j ∈ [tpost], where T post

1,j and

T post
2,j act independently on the secret key components sk′1 and sk′2 respectively. In

more detail, for each of the tampering query Tj = (T post
1,j , T

post
2,j), the adversary B is

allowed to ask polynomial number of decryption queries, in which case B gets access

to the tampered decryption oracles BLT .Dec(s̃k
′
1,ς , .) and BLT .Dec(s̃k

′
2,ς , .) respec-

tively (1 ≤ ς ≤ j), as before. However, in the post-challenge phase, an additional
restriction is imposed on the tampering functions Tς : When the adversary asks tam-

pering functions Tς , and gets access to the decryption oracles BLT .Dec(s̃k
′
1,ς , C

∗)

and BLT .Dec(s̃k
′
2,ς , C

∗) with respect to the challenge ciphertext C∗, it should hold

that s̃k
′
1,ς 6= sk1 and s̃k

′
2,ς 6= sk2.

7. Guess: Finally, the adversary outputs a bit b′ for a guess of the bit b chosen the
challenger. If b′ = b, output 1, else output 0.

We define the advantage of the adversary B in the above experiment as:

AdvAFL-IND-CCA-BLT
B,BLT (κ) =

∣∣Pr[b′ = b]− 1

2

∣∣.
D Proof of Theorem 5

Theorem 6. The encryption scheme BLT is post-challenge IND-CCA-
(
k, (λ′′pre, λ

′′
post),

(t′′pre, t
′′
post)

)
-BLT secure as long as the parameters satisfies:

λ′′pre ≤ λpre
′, λ′′post ≤ λpost

′ and t′′pre ≤ t′pre, t′′post ≤ t′post.

Proof. We need to show that the advantage of any PPT adversary B in the AFL-IND-
CCA-BLT secure game for the PKE scheme BLT is negligible. For this, we introduce an
intermediate hybrid experiment Hyb1, and show that if the adversary B can distinguish
the real game from Hyb1, then it can break the AFL-IND-CCA-BLT security of the KEM
scheme KEM. Finally, we show that the advantage of the adversary in Hyb1 is upper
bounded by the advantage of an adversary BSKE against the symmetric-key encryption
scheme ϕ.

37

Hyb1 : In this hybrid,the challenger proceeds as in the real game, except for two main
differences: Firstly, the challenger generates the challenge ciphertext c∗ = (c∗0, c

∗
1) as

(c∗0, k
∗) ← KEM.Encap(pk′), and encrypting the message mb in c∗1 using a randomly

chosen encapsulation key k ∈ {0, 1}u. Secondly, when the adversary submits a ciphertext
of the form c = (c∗0, c1) to the decryption oracle or the tampering oracle, if c 6= c∗, the
challenger does not run the KEM.Decap algorithm to obtain the encapsulated symmetric
key; instead, it uses the key k to decrypt. Let us denote the adversary for KEM by BKEM

Claim.
∣∣AdvAFL-IND-CCA-BLT

B,BLT (κ)− AdvAFL-IND-CCA-BLT
B,Hyb1 (κ)

∣∣ ≤ negl(κ)

Proof. Suppose, for contradiction, there exists some polynomial p(κ), and κ ∈ N such
that the advantage of B in distinguishing the real game from Hybrid 1 is at least 1/p(κ).
We then show that the adversary BKEM can break AFL-IND-CCA-BLT security of KEM
with non-negligible advantage using B as a black-box. The adversary BKEM proceeds as
shown below:

1. In the key generation phase BKEM receives as input the public key pk′ = (pk′1, pk
′
2)

from the external challenger C of the KEM scheme. It then returns pk′ to B.

2. In the pre-challenge phase, when B makes leakage queries fi = (fpre1,i , f
pre
2,i), BKEM

forwards fi to C. It then gets the answer from C and forwards it to B.

3. When B makes a tampering query Ti = (T pre
1,i , T

pre
2,i), forward Ti to C, and get the

tampered key k̃i.

4. When B asks decryption queries c = (c0, c1) with respect to the ith tampered key
(say), BKEM first checks if i ∈ [t]. If so, it checks if it has the ith tampered key. If

not, it makes the ith tampering query to C to get k̃i. It then runs SKE .Dec(k̃i, c1) to
return the resulting message to B.

5. When B asks a decryption query c = (c0, c1) with respect to the original secret key,
BKEM forwards c0 to the challenger C, gets the answer k. It then runs SKE .Dec(k, c1),
and returns back the resulting message to B.

6. In the challenge phase, when B submits two messages m0,m1 of equal length, BKEM
asks the external challenger C for a ciphertext-key pair (c∗0, k

∗). It then randomly
chooses a bit b, and computes the ciphertext c∗1 = SKE .Enc(k∗,mb). It then sends
c∗ = (c∗0, c

∗
1) to B.

7. In the post-challenge phase, the leakage, tampering and decryption queries are han-
dled identically as in pre-challenge phase, except that when B asks a decryption
query on c = (c∗0, c

∗
1), BKEM uses the key k∗ to decrypt.

8. Finally BKEM outputs whatever B outputs.

For the analysis, note that, when the external challenger C generates a ciphertext-key
pair using (c∗0, k

∗) ← KEM.Encap(pk′), BKEM acts identically as in real game. On the
other hand, if C chooses the encapsulation key k∗ uniformly at random, this corresponds
to hybrid Hyb1. Also, note that, since k∗ is uniformly and randomly chosen from the
distribution of encapsulation key space (bit strings of length u), the min-entropy of

k∗ even given the tampered keys k̃ = (k̃1, · · · , k̃t) is H̃∞(k∗| (pk′, c∗, k̃)) = H̃∞(k∗) =
− log(2−u) = u. Hence by Lemma 3, we have:

38

H̃∞(k∗| (pk′, c∗,Dec(k̃1, ·), · · · ,Dec(k̃t, ·))) = H̃∞(k∗| (pk′, c∗, k̃ = (k̃1, · · · , k̃t))) = u

Thus, we get:

AdvAFL-IND-CCA-BLT
BKEM,BLT (κ) =

1

2

∣∣AdvAFL-IND-CCA-BLT
B,BLT (κ)− AdvAFL-IND-CCA-BLT

B,Hyb1 (κ)
∣∣ ≥ 1

2p(κ)
.

In the next claim we show that the advantage of any PPT adversary in Hyb1 is negligible.

Claim. AdvAFL-IND-CCA-BLT
B,Hyb1 (κ) ≤ AdvSKEϕ,B (κ)

Proof. We now describe an adversary ASKE for the symmetric key encryption scheme ϕ.
ASKE proceeds identically as in Hyb1, except that all of the symmetric key operations are
forwarded to the external SKE challenger ϕ. In more details ASKE proceeds as follows:

1. In the key generation phase,ASKE generates two key pairs (pk1, sk1) and (pk2, sk2) by
invoking the algorithm KEM.Gen. It then forwards pk′ = (pk1, pk2) to the adversary
B.

2. In the pre-challenge phase, when B makes leakage queries fi = (fpre1,i , f
pre
2,i), ASKE

computes (fpre1,i (sk1), fpre1,i (sk2)) and returns the answers to B, as long as the leakage
bounds are respected.

3. When B makes a tampering query Ti = (T pre
1,i , T

pre
2,i), compute the tampered secret

keys s̃ki = (T pre
1,i (sk1), T pre

2,i (sk2). On input a decryption query c = (c0, c1) under the

tampered key s̃ki (say), ASKE decrypts c0 under s̃ki to get an encapsulation key k̃i,

and then it runs SKE .Dec(k̃i, c1), returning the result to B.

4. When B asks a decryption query c = (c0, c1) with respect to the original secret key
sk′,ASKE decrypts c0 itself to get an encapsulated key k, and then runs SKE .Dec(k, c1),
returning the result to B.

5. In the challenge phase, when B submits two messages m0,m1, ASKE generates a
ciphertext-key pair (c∗0, k). It then submits m0,m1 to the challenger of ϕ and get
back the ciphertext c1∗ (under some key k∗). ASKE then returns c∗ = (c∗0, c

∗
1) to B.

6. In the post-challenge phase, the leakage, tampering and decryption queries are han-
dled identically as in pre-challenge phase, except that if B asks a decryption query
c = (c∗0, c1) 6= c∗, ASKE asks the challenger of ϕ to decrypt c1.

7. Finally, ASKE outputs whatever B outputs.

From the above simulation, we get that AdvAFL-IND-CCA-BLT
B,Hyb1 (κ) ≤ AdvSKEϕ,B (κ) . Since

ϕ is a CCA-secure SKE scheme, it follows that AdvSKEϕ,B (κ) is negligible (in κ). Thus,

AdvAFL-IND-CCA-BLT
B,Hyb1 (κ) is also negligible in κ.

Finally, combining the above two claims, we get the proof of Theorem 5. ut

39

	Public Key Encryption Resilient to Post-Challenge Leakage and Tampering Attacks

