
PASTA: PASsword-based Threshold Authentication

Shashank Agrawal1, Peihan Miao∗2, Payman Mohassel1, and Pratyay Mukherjee1

1Visa Research
{shaagraw,pmohasse,pratmukh}@visa.com

2University of California, Berkeley
peihan@berkeley.edu

Abstract

Token-based authentication is commonly used to enable a single-sign-on experience
on the web, in mobile applications and on enterprise networks using a wide range of open
standards and network authentication protocols: clients sign on to an identity provider
using their username/password to obtain a cryptographic token generated with a master
secret key, and store the token for future accesses to various services and applications.
The authentication server(s) are single point of failures that if breached, enable attackers
to forge arbitrary tokens or mount offline dictionary attacks to recover client credentials.

Our work is the first to introduce and formalize the notion of password-based thresh-
old token-based authentication which distributes the role of an identity provider among
n servers. Any t servers can collectively verify passwords and generate tokens, while no
t − 1 servers can forge a valid token or mount offline dictionary attacks. We then intro-
duce PASTA, a general framework that can be instantiated using any threshold token
generation scheme, wherein clients can “sign-on” using a two-round (optimal) protocol
that meets our strong notions of unforgeability and password-safety.

We instantiate and implement our framework in C++ using two threshold message
authentication codes (MAC) and two threshold digital signatures with different trade-offs.
Our experiments show that the overhead of protecting secrets and credentials against
breaches in PASTA, i.e. compared to a näıve single server solution, is extremely low
(1-5%) in the most likely setting where client and servers communicate over the internet.
The overhead is higher in case of MAC-based tokens over a LAN (though still only a few
milliseconds) due to public-key operations in PASTA. We show, however, that this cost
is inherent by proving a symmetric-key only solution impossible.

1 Introduction

Token-based authentication is arguably the most common way we obtain authorized access
to resources, services, and applications on the internet and on enterprise networks.

Open standards such as JSON Web Token (JWT) [jwt] and SAML [sam] are widely
used to facilitate single-sign-on authentication by allowing clients to initially sign on using
a standard mechanism such as username/password verification to obtain and locally store a
token in a cookie or the local storage. The token can then be used for all future accesses to
various applications without client involvement, until it expires.

∗Work done as an intern at Visa Research.

1



A similar mechanism is used, via open standards such as OAuth [oau] and OpenID [ope],
by many companies including Google, Facebook and Amazon [goo, fac, ama] to enable their
users to share information about their accounts with (or authenticate themselves to) third
party applications or websites without revealing their passwords to them.

Finally, network authentication protocols such as Kerberos [ker] are commonly used by
enterprises (e.g. Active Directory in Windows Servers) to, periodically but infrequently,
authenticate clients with their credentials and issue them a ticket-granting ticket (TGT) that
they can use to request access to various services on the enterprise network such as printers,
internal web and more.

It is therefore no surprise that most software-based secret management systems provide
tokens as a primary method for authenticating clients. For example, consider the following
statement from the popular open source solution Vault by Hashicorp [vau]:

“The token auth method is built-in and is at the core of client authentication. Other
auth methods may be used to authenticate a client, but they eventually result in the
generation of a client token managed by the token backend.”

In all these cases, the authentication flow is effectively the same. A client signs on with
its username/password, typically by sending hash of its password to an identity provider.
The identity server who stores the username along with its hashed passwords as part of a
registration phase, verifies the client’s credential by matching the hash during the sign-on
process before issuing an authentication token using a master secret key (see Figure 1). The
token is generated by computing a digital signature or a message authentication code (all the
above-mentioned standards support both digital signatures and MACs) on a message that
can contain client’s information/attributes, expiration time and a policy that would control
the nature of access. The token is later verified by an application server which holds the
verification key (for MACs this is equal to the master secret key). See Figure 2 for a sample
JWT authenticated using HMAC [FIP02]. Note that the only secret known to the client is
its password, and the device the client uses for access stores the temporary authentication
token on its behalf. Besides this temporary (and often restricted) token, client devices do
not store any long term secrets that are used to authenticate the client.

However, such an identity provider is a single point of failure that if breached, enables an
attacker to (i) recover the master secret key and forge arbitrary tokens that enable access to
arbitrary resources and information in the system and (ii) obtain hashed passwords to use as
part of an offline dictionary attack to recover client credentials.

Security against server breach. We propose the notion of Password-based Threshold
Authentication (PbTA), for distributing the role of the identity provider among n servers
who collectively verify clients’ passwords and generate authentication tokens for them (see
Figure 3 for a generic flow). PbTA enables any t (2 ≤ t ≤ n) servers to authenticate the
client and generate valid tokens while any attacker who compromises at most t − 1 servers
cannot forge valid tokens or mount offline dictionary attacks, thus providing very strong
unforgeability and password-safety properties.

1.1 Our Contributions

We formally introduce the notion of Password-based Threshold Authentication (PbTA) with
the goal of making password-based token generation secure against server breaches that could
compromise both long-term keys and user credentials. Our contributions are as follows:

2



Client Identity provider

Service provider

2. If (usr, h) & (usr, h′)

matches then generate a

token, otherwise return Fail

(msk, usr, h)

(vk)

1. usr, h′ = H(pwd′)

3. token/Fail

4. token 5. Succ/Fail

Figure 1: The generic flow diagram of commonly used password-based token generation solutions.
The figure shows only the sign-on phase which is preceded by a one-time registration phase (not
shown) where the client stores its username (usr) and the hash (h) of its password with the identity
provider. msk is the secret key used for generating tokens and vk is used for verifying them.

Figure 2: A sample JSON Web Token [jwt] that uses HMAC. The base64 encoded token on the left
is what is sent and stored. When decoded, it contains a header with algorithm and token type, a
payload that includes various attributes and a HMAC of header/payload.

3



Client

ID Server-1

ID Server-2

ID Server-3

2. Store: rec1usr

2. Store: rec2usr

2. Store: rec3usr

1.
re

c
1
us
r

1. rec2usr

1. rec 3
usr

(a) Generic flow diagram of a PbTA protocol in the
registration phase.

Client

ID Server-1

ID Server-2

ID Server-3

Service provider

(msk1, rec1usr)

(msk2, rec2usr)

(msk3, rec3usr)

1.
req

1
us
r

3. token
1
us

r

1. req
2
usr

3. token2
usr

1. req 3
usr

3.
token 3

usr

2. Compute: token1
usr

2. Compute: token2
usr

2. Compute: token3
usr

4. Combine to get

tokenusr or Fail

5. tokenusr

6. Succ/Fail

(vk)

(b) Generic flow diagram of a PbTA protocol in the
sign-on phase.

Figure 3: Generic flow diagrams of a PbTA protocol. For more detailed explanation see Section 1.1.

4



Defining security for PbTA We formalize password-based threshold authentication, and
establish the necessary security requirements of token unforgeability and password-safety in
presence of an adversary who may breach a subset of the identity servers. Our game-based
definitions are strong and intuitive, and consider security in a multi-client setting where
many clients use the same identity provider. Adversary could corrupt clients in an adaptive
fashion during the game. We note that an alternative approach would be to use the Universal
Composability framework [Can01] as followed in some prior work involving password-based
authentication (e.g. [JKKX17]) . We chose to focus on game-based definitions that are much
simpler to work with but comprehensive enough to cover a very broad set of attack scenarios.

The PASTA framework We propose a general framework called PASTA, that uses as
building blocks any threshold oblivious pseudorandom function (TOPRF) and any threshold
token generation (TTG) scheme, i.e. a threshold MAC or digital signature. PASTA meets
our stringent security requirements for PbTA.

After a one-time registration phase, a client just needs to remember its password. It can
sign-on using a two-round protocol wherein the servers do not talk to each other (assuming
only that the servers communicate to the client over an authenticated channel). Thus, PASTA
requires minimal interaction.

The sign-on protocol ensures that if the client’s password is correct, he obtains a valid
authentication token: client sends a request message to a subset of the servers, and servers
respond with messages of their own. If the client password is a match, it can combine server
responses to obtain a valid token (see Figure 3) 1. Otherwise, it does not learn anything.

At the first glance, it may seem unnatural to define a general framework that works for
both symmetric-key tokens (i.e. MAC) and public-key tokens (i.e. digital signature). Though
their verification procedures are different in terms of being private or public, note that their
token generation procedures are both private. PASTA focuses on generating tokens, hence it
works for both types of tokens.

Instantiations and Implementation We instantiate and implement our framework in
C++ with four different threshold token generation schemes: block-cipher based and DDH-
based threshold MACs of Naor et al. [NPR99], threshold RSA-based signature of Shoup [Sho00]
and threshold pairing-based signature of Boldyreva [Bol03]. Each instantiation has its own
advantages and disadvantages. When instantiated with a threshold MAC, we obtain a more
efficient solution but the tokens are not publicly verifiable, i.e. vk in Figure 1 and Figure 3b
stored in the application server would be the same as the master secret key msk, since the
verifier needs the secret key for verification.2 PASTA with RSA-based and pairing-based
token generation are more expensive but are publicly verifiable. Among the signature-based
solutions, the pairing-based one is faster since signing does not require pairings but the RSA-
based solution has faster verification and produces signatures that are compatible with legacy
applications. To the best of our knowledge, our work is also the first to implement

1Note that in this setting, as opposed to the näıve solution (Figure 1), no matching takes place on the
identity provider side. In particular, an ID-server does not check against a record stored in the registration
phase, because, if it did, one can easily see that offline attacks would be possible even if a single server is
breached. See Section 2 for more details.

2To achieve better security of the secret key, the verification process can also be made distributed using a
standard threshold MAC scheme. We omit the distributed verification in the rest of this paper because it is
not our focus.

5



several of the threshold token generation schemes (not password-based) and report on their
performance.

Our experiments show that the overhead of obtaining security against server breaches
using PASTA, in the sign-on stage, is at most 5% compared to the näıve solution of using
hashed passwords and a single-server token generation, in the most likely scenario where
clients connect to servers over the internet (a WAN network). This is primarily due to the
fact that in this case, network latency dominates the total runtime for all token types. The
overhead is a bit higher in the LAN setting but the total runtime of sign-on (steps 1-4 in
Figure 3b) is still very fast, ranging from 1.3 ms for (n, t) = (3, 2) with a symmetric-key
MAC token to 23 ms for (n, t) = (10, 10) with an RSA-based token, where n is the number
of servers and t is the threshold.

Necessity of public-key operations PASTA has its largest overhead compared to the
näıve single-server solution, for symmetric-key based tokens in the LAN setting. This is be-
cause public-key operations dominate PASTA’s runtime while the näıve solution only involves
symmetric-key operations. Nevertheless, we show that this inefficiency is inherent by proving
that public-key operations are necessary to achieve our notion of PbTA in Appendix D.

1.2 Related Work

Password-based techniques are the most common methods for authenticating users. However,
the traditional approach of storing hashed passwords on the servers is susceptible to offline
dictionary attacks [WW13, Dan]. Standard remedies such as salting or more advanced reme-
dies such as memory-hard functions [Tar, ACP+17, ACK+16, DKAN, BZ17, BD16], pursued
in the recent password-hashing competition [phc], surely make the task of the attacker harder,
but do not resolve the fundamental issue of trusting a single server.

A large body of work considers distributed token generation through threshold digital sig-
natures [DF90, DDFY94, GHKR08, DK01, Bol03, AMN01, GJKR96, GGN16, Sho00, BS01]
and threshold message authentication codes [BLMR13, NPR99, MPSN+03] which can protect
the master key against t−1 breached servers. A separate line of work on threshold password-
authenticated key exchange (T-PAKE) [MSJ02, DG03, AFP05, ACFP05, CLN15, KMTG05]
aims to prevent offline dictionary attacks in standard password-authenticated key exchange
(PAKE) [BPR00, BMP00, KOY01, GK10, KV11, CHK+05, PS10, KOY03] by employing
multiple servers.

While PAKE and T-PAKE solve the problem of establishing a secret key between a server
and a client, where the client authenticates with a password, they do not solve the problem
posed in this paper of distributing trust in password-based token generation. Specifically,
PbTA generates tokens and provides token unforgeability, which T-PAKE does not deal with.
Moreover, PbTA works in a setting where multiple clients share the same token generation
set-up, and guarantees that attacks on one client do not affect the security of others. Finally,
PbTA has a per-client registration phase that further differentiates it from PAKE and T-
PAKE.

It is also worth noting that a straightforward composition of a T-PAKE followed by a
threshold signature/MAC meets neither the efficiency nor the security requirements for PbTA.
For efficiency, recall that we require minimal interaction where servers need not communicate
with each other after a one-time setup procedure, and both the password verification and
the token generation can be performed simultaneously in two rounds. The most efficient T-
PAKE schemes require at least three rounds of interaction between the client and servers and

6



additional communication among the servers (which could further increase when combined
with threshold token generation). For security, it is unclear how to make such a composition
meet our strong unforgeability and password-safety properties which we elaborate on shortly.

Another line of work focuses on constructing password-based server-aided signatures [CLNS16,
XS03, Gan95, GT11, MR03]. However, they assume that apart from the password, a client
also needs to use a secret state (e.g. a shared secret key) to generate a signature. In contrast,
we focus on a solution in which a client only needs to use a password to generate a signature
(more generally, a token).

Password-protected secret sharing (PPSS) [BJSL11, JKKX17, ACNP16, JKK14, YHCL15,
CLLN14, CLN12, CEN15, JKKX16] considers the related problem of sharing a secret among
multiple servers where t servers can reconstruct the secret if client’s password verifies. This
line of work does not meet our goal of keeping the master secret distributed at all times for
use in a threshold token generation scheme. Moreover, PPSS is commonly studied in a single
client setting where each client has its own unique secret. As we will see shortly, the multi-
client setting and the common master-key used for all clients introduces additional technical
challenges.

A very recent work of Harchol et al. [HAP18] implements and uses similar building blocks
to ours, i.e. a threshold oblivious PRF [JKKX17] and a proactive variant of threshold RSA
signature scheme [Sho00]. But it uses them for the different end goal of distributing server
secret keys and protecting client secret keys with a password in SSH implementations. As
such, it neither formalizes nor addresses the security/efficiency requirements of a password-
based token generation scheme.

2 An Overview of PASTA

We start with a plain password-based token generation protocol that is insecure against
server breaches. As mentioned in Section 1, the plain protocol works as follows. In the
registration phase, a client registers with its username/password by storing its username and
hashed password h = H(password) on the identity server. In the sign-on phase, client sends
its username and hashed password h′ to the server; server checks if h′ = h for the username.
If the check passes, server then uses a master secret key msk to compute a token authmsk(x)
and sends it to client, where auth is either a MAC or a digital signature and x is the data
to be signed. In this solution, both the master secret key msk and the hashed password h
are compromised if the server is breached. Hence clients’ passwords could be recovered using
offline dictionary attacks.

Threshold solution A natural approach for protecting the master secret key msk is to
combine the above plain solution with a threshold token generation (TTG) scheme (i.e. a
threshold MAC or threshold signature). TTG schemes enable us to secret share msk among
n servers such that any t servers can jointly generate valid tokens while any subset of up to
t − 1 servers cannot forge valid tokens or recover msk. To combine with the plain solution,
the client registers to every server by sending its username and hashed password h in the
registration phase. Then in the sign-on phase, client sends to t servers its username and
hashed password h′. Every server checks if the h = h′ for the username, and performs its
portion of the TTG scheme if the check passes. This solution guarantees the security of msk
when at most t − 1 servers are breached, but clients’ passwords are still vulnerable against
offline dictionary attacks even if a single server is breached.

7



Changing secret information stored on servers The above two näıve solutions follow
the same paradigm: server issues a token or executes the TTG scheme only if client is using
the correct password. In order to check if client is using the correct password in the sign-
on phase, server needs to store some “secret information” about client’s password in the
registration phase. In the above solutions, this secret information is the hashed password. A
fundamental problem with this is that the secret information can be computed given only the
password, hence enabling offline dictionary attacks on the password. To resolve this issue,
we make the stored secret information also depend on a server-side secret.

This can be achieved by a threshold oblivious pseudorandom function (TOPRF) [FIPR05].
In a TOPRF protocol, a secret key k for a pseudorandom function F is initially shared among
n servers. A client can obtain a PRF value of its password h = Fk(password) by interacting
with t servers, without revealing any information about its password to servers. Moreover,
the function Fk(·) is computable by any t servers, but cannot be computed by up to t − 1
servers. To this end, the PRF value h = Fk(password) serves as our new secret information
stored on servers, and the protocol is now secure against offline dictionary attacks.

From four rounds to two rounds A TOPRF protocol requires at least two rounds. Hence
the sign-on phase in the above protocol requires at least four rounds: client and servers run
the TOPRF protocol which requires two rounds for the client to obtain h; client then sends
h back to servers as a third-round message; servers verify and respond with token shares of
the TTG scheme as fourth-round messages. We would like to reduce the interaction to two
rounds because network latency is a major bottleneck in the protocol especially over WAN
networks (see Section 7.2 for details).

On the one hand, in order to prevent offline dictionary attack, we require that the “secret
information” be computed jointly by client and servers, which requires at least two rounds.
On the other hand, servers must ensure that generation of token is only performed after the
secret information is checked, which also requires two rounds, so it seems that four rounds is
necessary to achieve our goal.

We resolve this deadlock by observing that the check does not have to be done on the
server side. Instead of checking the secret information and then participating in the TTG
scheme to generate token shares, the servers generate token shares directly and encrypt them
under the secret information h using a symmetric-key encryption scheme. The ciphertexts
are sent along with the second-round message of the TOPRF protocol. Now the protocol
only has two rounds, and the check is done on the client side: only if the client has used the
correct password in the first round of TOPRF can it calculate the correct h and decrypt the
ciphertexts to obtain t token shares, and combine them to recover the final token.

Mitigating client impersonation attacks There is still a subtle security problem. Con-
sider an attacker who compromises a single server and retrieves the secret information h of
a client, and then impersonates the client to which h belongs without knowing its password
by participating in a sign-on protocol with the servers. The servers generate token shares,
encrypt them under h, and send back to the attacker. Since the attacker already knows h, it
can decrypt all the ciphertexts and combine the token shares to obtain a valid token without
ever knowing the client’s password or the master secret key. This issue occurs because when
reducing the round complexity from four to two, we make the servers generate token shares
without checking the secret information, but encrypt them using the secret information.

We address this issue by further modifying the secret information stored on servers. A

8



client who computes h in the registration phase only sends hi = H′(h, i) to server i where H′
is assumed to be a random oracle. In other words, h is never revealed to or stored by any
server, and each server only learns its corresponding hi. Later in the sign-on phase, token
shares are encrypted under the his. The client impersonation attack no longer works since
compromising certain servers only reveals the his of these servers to the attacker, while the
remaining his are still kept secret.

Multi-client security In our final protocol, we require that the only allowed attack is to
impersonate a certain client and try different passwords by participating in an online sign-on
protocol. This type of online attack is easy to detect in practice (e.g. if the same client
is trying to sign-on very frequently within a short period of time). But enforcing the same
across a large set of clients is not possible. Hence an important security requirement is that
attacking one client should not help in attacking any other client.

This is not true for the protocol we have described so far. Consider an attacker who
does not compromise any server, and performs the above online attack on one client3, trying
all possible passwords. As a result, the attacker would obtain all the PRF values h =
PRFk(password) for all possible passwords. Then the attacker impersonates another client
by participating in a single sign-on protocol with the servers. Since the attacker already
knows all possible PRF values, it could try decrypting the ciphertexts sent from servers using
the collected dictionary of PRF values (offline) to find the correct value and hence recover
the password. In other words, he can leverage his online attack against one client to perform
offline attacks (after a single online interaction) on many other clients. Note that including
client username as part of the input to the PRF does not solve the problem either since
servers have no way of checking what username the attacker incorporates in the TOPRF
protocol without adding expensive zero-knowledge proofs to this effect to the construction.

One natural idea is to have a distinct TOPRF key for every client, so that PRF values
learned from one client would be useless for any other client. This means that servers need
to generate a sufficiently large number of TOPRF keys in the global setup phase, which
is not practical. There is a simple and efficient fix: we let every client generate its own
TOPRF key and secret share it between servers in the registration phase. This yields our
final protocol which we formally prove to meet all our security requirements under the gap
TOMDH assumption [JKKX17] in the random oracle model.

3 Preliminaries

We use κ to denote the security parameter. Let Z denote the set of all integers and Zn the
set {0, 1, 2, . . . , n − 1}. Z∗n is defined as Z∗n := {x ∈ Zn| gcd(x, n) = 1}. We use [a, b] for
a, b ∈ Z, a ≤ b, to denote the set {a, a+ 1, . . . , b− 1, b}. [b] denotes the set [1, b]. N denotes
the set of natural numbers.

We use x ←$ S to denote that x is sampled uniformly at random from a set S. We use
PPT as a shorthand for probabilistic polynomial time and negl to denote negligible functions.

We use JaK as a shorthand for (a, a1, . . . , an) where a1, . . . , an are shares of a. A concrete
scheme will specify how the shares will be generated. The value of n will be clear from
context.

3A smarter attacker would distribute its online attack across many clients to avoid detection. We use the
single client in this example just to highlight the underlying multi-client security issue.

9



We use a ‘require’ statement in the description of an oracle to enforce some checks on the
inputs. If any of the checks fail, the oracle outputs ⊥.

In a security game, we use 〈O〉 to denote the collection of all the oracles defined in the
game. For e.g., if a game defines oracles O1, . . . ,O`, then for an adversary Adv, Adv〈O〉

denotes that Adv has access to the collection 〈O〉 := (O1, . . . ,O`).
Shamir’s secret sharing. Shamir’s secret sharing is a simple way to generates shares of a secret
so that a threshold of the shares are sufficient to reconstruct the secret, while any smaller
number hides it completely. We consider a slightly more general form of Shamir’s sharing
here. Let GenShare be an algorithm that takes inputs p, n, t, {(i, αi)}i∈S s.t. t ≤ n < p, p is
prime, S ⊆ [0, n] and |S| < t. It picks a random polynomial f of degree at most t − 1 over
Zp s.t. f(i) = αi for all i ∈ S, and outputs f(0), f(1), . . . , f(n).

To generate a (t, n)-Shamir sharing of a secret s ∈ Zp, GenShare is given p, n, t and (0, s)
as inputs to produce shares s0, s1, . . . , sn. Using the shorthand defined above, one can write
the output compactly as JsK. Given any t or more of the shares, say {sj}j∈T for |T | ≥ t,
one can efficiently find coefficients {λj}j∈T such that s = f(0) =

∑
j∈T λj · sj . However,

knowledge of up to t− 1 shares reveals no information about s if it is chosen at random from
Zp.

Cyclic group generator. Let GroupGen be a PPT algorithm that on input 1κ outputs (p, g,G)
where p = Θ(κ), p is prime, G is a group of order p, and g is a generator of G. We will use
multiplication to denote the group operation.

3.1 Hardness Assumption

Threshold oblivious PRF (TOPRF) was introduced by Jarecki et al. [JKKX17] in a recent
work. They propose a simple TOPRF protocol called 2HashTDH and prove that it is UC-
secure under the Gap Threshold One-More Diffie-Hellman (Gap-TOMDH) assumption in the
random oracle model. They also show that Gap-TOMDH is hard in the generic group model.

Rather than modeling TOPRF as a functionality in the UC-sense, we will explicitly
formalize two natural properties for it, obliviousness and unpredictability, in Section 4. We
will show that Jarecki et al.’s 2HashTDH protocol satisfies these properties under the same
assumption. Here, we formally state the assumption.

For q1, . . . , qn ∈ N and t′, t ∈ N where t′ < t ≤ n, define MAXt′,t(q1, . . . , qn) to be the
largest value of ` such that there exists binary vectors u1, . . . ,u` ∈ {0, 1}n such that each
ui has t − t′ number of 1’s in it and (q1, . . . , qn) ≥

∑
i∈[`] ui. (All operations on vectors

are component-wise integer operations.) Looking ahead, t and t′ will be the parameters in
the security definition of TOPRF and PbTA (t will be the threshold and t′ the number of
corrupted parties).

Definition 3.1 (Gap-TOMDH) A cyclic group generator GroupGen satisfies the Gap Thresh-
old One-More Diffie-Hellman (Gap-TOMDH) assumption if for all t′, t, n,N such that t′ <
t ≤ n and for all PPT adversary Adv, there exists a negligible function negl s.t. One-MoreAdv

(1κ, t′, t, n,N) (Figure 4) outputs 1 with probability at most negl(κ).

In this game, a random polynomial of degree t − 1 is picked but Adv gets to choose its
value at t′ points (steps 3 and 4). Adv gets access to two oracles:

− O allows it to compute xki , where ki is the value of the randomly chosen polynomial at
i, for ki that it does not know. A counter qi is incremented for every such call.

10



One-MoreAdv(1κ, t′, t, n,N):

1. (p, g,G)← GroupGen(1κ)

2. g1, . . . , gN ←$ G
3. ({(i, αi)}i∈U , st)← Adv(p, g,G, g1, . . . , gN ), where U ⊆ [n], |U| = t′

4. (k0, k1, . . . , kn)← GenShare(p, n, t, {(i, αi)}i∈U )

5. q1, . . . , qn := 0

6. ((g′1, h1), . . . , (g′`, h`))← Adv〈O〉(st)

7. output 1 iff

− ` > MAXt′,t(q1, . . . , qn),

− ∀ i ∈ [`], g′i ∈ {g1, . . . , gN} and hi = g′i
k0 , and

− ∀ i, j ∈ [`] s.t. i 6= j, g′i 6= g′j .

O(i, x):

− require: i ∈ [n] \ U , x ∈ G
− increment qi by 1

− return xki

ODDH(g1, g2, h1, h2)

− require: g1, g2, h1, h2 ∈ G
− return 1 iff ∃ a ∈ Zp s.t. g2 = ga1 and h2 = ha1

Figure 4: Gap-TOMDH game

− ODDH allows it to check if the discrete log of g2 w.r.t. g1 is the same as the discrete log
of h2 w.r.t. h1.

Intuitively, to compute a pair of the form (g, gk0), Adv should somehow get access to k0.
It clearly knows ki for i ∈ U , but shares outside U can only be obtained in the exponent,
with the help of oracle O. One option for Adv is to invoke O with (i, g) for at least t − t′
different values of i outside of U , and then combine them together along with the ki it knows
to obtain gk0 .

If Adv sticks to this strategy, it would have to repeat it entirely to compute hk0 for
a different base h. It could invoke O on different subsets of [n] for different basis, but
MAXt′,t(q1, . . . , qn) will be the maximum number of pairs of type (x, xk0) it will be able to
generate through this process.

Certainly, an adversary is not restricted to producing pairs in the way described above.
However, Gap-TOMDH assumes that no matter what strategy a PPT adversary takes, it can
effectively do no better than this.

3.2 Threshold Token Generation

A threshold token generation (TTG) scheme distributes the task of generating tokens for
authentication among a set of n servers, such that at least a threshold t number of servers
must be contacted to compute a token. TTG provides a strong unforgeability guarantee:
even if t′ < t of the servers are corrupt, any time a token on some new value x is needed, at
least t− t′ servers must be contacted.

We formally define a TTG scheme and the unforgeability guarantee associated with it

11



below.

Definition 3.2 (Threshold Token Generation) A threshold token generation scheme TTG
is a tuple of four PPT algorithms (Setup, PartEval, Combine, Verify) that satisfies the consis-
tency property below.

− Setup(1κ, n, t) → (JskK, vk, pp). It generates a secret key sk, shares sk1, sk2, . . ., skn of
the key, a verification key vk, and public parameters pp. Share ski is given to party i.
(pp will be an implicit input in the algorithms below.)

− PartEval(ski, x) → yi. It generates shares of token for an input. Party i computes the
i-th share yi for x by running PartEval with ski and x.

− Combine({i, yi}i∈S) =: tk/⊥. It combines the shares received from parties in the set S to
generate a token tk. If the algorithm fails, its output is denoted by ⊥.

− Verify(vk, x, tk) =: 1/0. It verifies whether token tk is valid for x or not using the
verification key vk. (Output 1 denotes validity.)

Consistency. For all κ ∈ N, any n, t ∈ N such that t ≤ n, all (JskK, vk, pp) generated by
Setup(1κ, n, t), any value x, and any set S ⊆ [n] of size at least t, if yi ← PartEval(ski, x) for
i ∈ S, then Verify(vk, x,Combine({(i, yi)}i∈S)) = 1.

Definition 3.3 (Unforgeability) A threshold token generation scheme TTG := (Setup,
PartEval, Combine, Verify) is unforgeable if for all PPT adversaries Adv, there exists a neg-
ligible function negl such the probability that the following game outputs 1 is at most negl(κ).

UnforgeabilityTOP,Adv(1κ, n, t):

− Initialize. Run Setup(1κ, n, t) to get (JskK, vk, pp). Give pp to Adv.

− Corrupt. Receive the set of corrupt parties U from Adv, where t′ := |U| < t. Give
{ski}i∈U to Adv.

− Evaluate. In response to Adv’s query (Eval, x, i) for i ∈ [n]\U , return yi := PartEval(ski, x).
Repeat this step as many times as Adv desires.

− Challenge. Adv outputs (x?, tk?). Check if

− |{i | Adv made a query (Eval, x?, i)}| < t− t′ and

− Verify(vk, x?, tk?) = 1.

Output 1 if and only if both checks succeed.

The unforgeability property captures the requirement that it must not be possible to
generate a valid token on some value if less than t− t′ servers are contacted with that value.

4 Threshold Oblivious Pseudo-Random Function

A pseudo-random function (PRF) family is a keyed family of deterministic functions. A
function chosen at random from the family is indistinguishable from a random function.
Oblivious PRF (OPRF) is an extension of PRF to a two-party setting where a server S holds
the key and a party P holds an input [FIPR05]. S can help P in computing the PRF value
on the input but in doing so P should not get any other information and S should not learn
P ’s input.

12



Jarecki et al. [JKKX17] extend OPRF to a multi-server setting so that a threshold number
t of the servers are needed to compute the PRF on any input. Furthermore, a collusion of at
most t − 1 servers learns no information about the input. They propose a functionality for
TOPRF and show how to realize it in a UC-secure way. We instead treat TOPRF as a set
of algorithms that must satisfy two natural properties, unpredictability and obliviousness.

4.1 Definition

Definition 4.1 (Threshold Oblivious Pseudo-Random Function) An (X ,R)-threshold
oblivious pseudo-random function (TOPRF) TOP is a tuple of four PPT algorithms (Setup,
Encode,Eval,Combine) that satisfies the consistency property below.

− Setup(1κ, n, t) → (JskK, pp). It generates n secret key shares sk1, sk2, . . ., skn and pub-
lic parameters pp. Share ski is given to party i. (pp will be an implicit input in the
algorithms below.)

− Encode(x, ρ) =: c. It generates an encoding c of x ∈ X using randomness ρ ∈ R.

− Eval(ski, c) =: zi. It generates shares of TOPRF value from an encoding. Party i com-
putes the i-th share zi from c by running Eval with ski and c.

− Combine(x, {(i, zi)}i∈S , ρ) =: h/⊥. It combines the shares received from parties in the set
S using randomness ρ to generate a value h. If the algorithm fails, its output is denoted
by ⊥.

Consistency. For all κ ∈ N, any n, t ∈ N such that t ≤ n, all (JskK, pp) generated by
Setup(1κ, n, t), any value x ∈ X , any randomness ρ, ρ′ ∈ R, and any two sets S, S′ ⊆ [n]
of size at least t, if c := Encode(x, ρ), c′ := Encode(x, ρ′), zi := Eval(ski, c) for i ∈ S, and
z′j := Eval(skj , c

′) for j ∈ S′, then Combine(x, {(i, zi)}i∈S , ρ) = Combine(x, {(j, z′j)}j∈S′ , ρ′)
6= ⊥.

Thus, irrespective of the randomness used to encode an x and the set of parties whose
shares are combined, the output of Combine does not change (as long as Combine is given the
same randomness used for encoding). We call this output the output of the TOPRF on x,
and denote it by TOP(sk, x).

Public combine. We also consider a public combine algorithm PubCombine that could
be run by anyone with access to just the partial evaluations. It would be used to check
if a purported set of evaluations can lead to the right PRF value or not. Formally, for
Z := {(i, zi)}i∈S generated in the same manner as in the consistency property, and any
arbitrary Z? := {(i, z?i )}i∈S , if PubCombine(Z) = PubCombine(Z?) then Combine(x, Z, ρ) =
Combine(x, Z?, ρ). More importantly though, if the former equality does not hold then the
later must not hold either (with high probability).

4.2 Security properties

We want a TOPRF scheme to satisfy two properties, unpredictability and obliviousness.
Unpredictability mandates that it must be difficult to predict TOPRF output on a random
value, and obliviousness mandates that the random value itself is hard to guess even if the
TOPRF output is available.

13



UnpredictabilityTOP,Adv(1κ, n, t):

− (JskK, pp)← Setup(1κ, n, t)

− U ← Adv(pp)

− x̃←$ X
− q1, . . . , qn := 0

− h? ← Adv〈O〉({ski}i∈U )

− output 1 iff TOP(sk, x̃) = h?

Oenc&eval():

− c := Encode(x̃, ρ) for ρ←$ R
− for i ∈ [n] \ U , zi ← Eval(ski, c)

− return c, {zi}i∈[n]\U

Oeval(i, c):

− require: i ∈ [n] \ U
− increment qi by 1

− return Eval(ski, c)

Ocheck(h):

− return 1 if h = TOP(sk, x̃); else return 0

Figure 5: Unpredictability game

Definition 4.2 (Unpredictability) A (X ,R)-TOPRF TOP := (Setup, Encode, Eval, Combine)
is unpredictable if for all n, t ∈ N, t ≤ n, and PPT adversaries Adv, there exists a negligible
function negl s.t.

Pr[UnpredictabilityTOP,Adv(1κ, n, t) = 1] ≤
MAX|U|,t(q1, . . . , qn)

|X |
+ negl(κ), (4.1)

where Unpredictability is defined in Figure 5.

Our unpredictability definition provides several interfaces to an adversary Adv. Oracle
Oenc&eval can be called any number of times to get different sets of partial evaluations on
the challenge input x̃, but the randomness used in this process is not revealed to Adv. If
no query is made to Oeval, so that none of the qi change, then Adv’s probability of guessing
the TOPRF output on x̃ should be negligible (see Eq. (4.1)). In other words, any number of
partial evaluations by themselves should not help at all.

Adv could, however, encode an arbitrary input itself, get partial evaluations through Oeval,
and then combine them to learn the TOPRF output. It could also check if this output is same
as the TOPRF output on the challenge input through Ocheck. Thus, by repeatedly querying
Oeval, adversary can increase its chances of making the right guess. Eq. (4.1) requires that
the probability of success should be no more than the maximum number of TOPRF outputs
Adv can learn through this process over the size of password space. In some sense, this is the
best we can hope to achieve.

Definition 4.3 (Obliviousness) An (X ,R)-TOPRF TOP := (Setup, Encode, Eval, Combine)
is oblivious if for all n, t ∈ N, t ≤ n, and all PPT adversaries Adv, there exists a negligible

14



ObliviousnessTOP,Adv(1κ, n, t):

− (JskK, pp)← Setup(1κ, n, t)

− U ← Adv(pp)

− x̃←$ X
− q1, . . . , qn := 0

− x? ← Adv〈O〉({ski}i∈U )

− output 1 iff x? = x̃

Oenc&eval():

− c := Encode(x̃, ρ) for ρ←$ R
− for i ∈ [n], zi ← Eval(ski, c)

− h := Combine(x̃, {(i, zi)}i∈[n], ρ)

− return c, {zi}i∈[n]\U , h

Oeval(i, c):

− require: i ∈ [n] \ U
− increment qi by 1

− return Eval(ski, c)

Figure 6: Obliviousness game

function negl s.t.

Pr[ObliviousnessTOP,Adv(1κ, n, t) = 1] ≤
MAX|U|,t(q1, . . . , qn) + 1

|X |
+ negl(κ), (4.2)

where Obliviousness is defined in Figure 6.

The obliviousness definition differs from unpredictability in small but crucial ways. Unlike
the unpredictability game, Adv directly gets h from Oenc&eval because our goal is not to
challenge the adversary on guessing the TOPRF output. Adv can still use Oeval to learn new
TOPRF outputs and check (by itself) it they match with h or not. Thus it can improve its
chances of guessing x̃. The bound of Eq. 4.2 differs slightly from that of Eq. 4.1 though:
there is an extra additive factor of 1 in the former case. This is to take into account that Adv
can output a guess for x̃ different from the ones it has tried in the game.

4.3 Construction

We recall here the TOPRF construction, 2HashTDH, of Jarecki et al. [JKKX17, Section 3],
for an input space X . We refer to this construction as TOP from here onwards.
− Setup(1κ, n, t). Run GroupGen(1κ) to get (p, g,G). Pick an sk at random from Zp. Let

JskK← GenShare(p, n, t, (0, sk)) be a (t, n)-Shamir sharing of sk. LetH1 : X×G→ {0, 1}κ
and H2 : X → G be hash functions. Output JskK and pp := (p, g,G, n, t,H1,H2).

− Encode(x, ρ). Output H2(x)ρ.

− Eval(ski, c). Output cski .

− Combine(x, {(i, zi)}i∈S , ρ). If |S| < t − 1, output ⊥. Else, use S to find coefficients
{λi}i∈S , compute z :=

∏
i∈S z

λi
i , and output H1(x‖zρ−1

).

15



It is easy to see that TOP is a consistent (X ,Z∗p)-TOPRF scheme.

We prove unpredictability and obliviousness of TOP in Appendix A.1 and A.2, respec-
tively.

Public combine. One can define PubCombine({(i, zi)}i∈S) for 2HashTDH to output z, the
intermediate value in Combine. Given x, z and ρ, the output of Combine is fixed. So, if
an arbitrary set of partial evaluations produces the same z, Combine would output the same
thing. Moreover, if PubCombine produces a z? different from z, then z?ρ

−1 6= zρ
−1

, and output
of Combine will be different with high probability (assuming that H1 is collision-resistant).

5 Password-based Threshold Authentication

In a password-based threshold authentication (PbTA) system, there are n servers and any
number of clients. PbTA is naturally split into four phases: (i) during a global set-up
phase, a master secret key is shared among the servers, which they later use to generate
authentication tokens, (ii) in the registration phase, a client C computes sign-up messages
(one for each server) based on its username and password and sends them to the servers.
Each server processes the message it receives and stores a unique record for that client. (iii)
in the sign-on phase, a client initiates authentication by sending a request message that
incorporates its username/password and additional information to be included in the token.
Each server computes a response using its record for the client. This response contains shares
of the authentication token the client eventually wants to obtain. If client’s password is a
match he is able to combine and finalize the token shares into a single valid token for future
accesses. (iv) The finalized token can be verified using a verification algorithm that takes a
public or private (depending on the token type) verification key to validate that the token was
generated using the unique master secret key. The verification process can also be distributed
among multiple servers (may be required for MAC-based tokens) but for simplicity we use a
centralized verification phase.

We also note that in a PbTA scheme, clients need not store any persistent secret infor-
mation. The only secret they need to sign-on is their password which would not be stored
anywhere. The device(s) a client uses to sign-on can store certain public parameters of the
system (e.g. the identities of the servers).

For simplicity, we assume that clients choose passwords uniformly at random from a space
P. Our definitions can be extended to the general case.

5.1 Algorithms

Definition 5.1 (Password-based Threshold Authentication) A PbTA scheme Π is a
tuple of seven PPT algorithms (GlobalSetup, SignUp, Store, Request, Respond, Finalize, Verify)
that satisfies the correctness requirement below.

− GlobalSetup(1κ, n, t,P) → (JskK, vk, pp). It takes the security parameter, number of
servers n, a threshold t and the space of passwords P as inputs. It outputs a secret key
sk, shares sk1, sk2, . . ., skn of the key, and a verification key vk. The public parameters
pp include all the inputs to GlobalSetup and some other information if needed.

pp will be an implicit input in the algorithms below. The n servers will be denoted by
S1, . . . , Sn. Si receives (ski, pp) and initializes a set of records reci := ∅, for i ∈ [n].

16



Registration phase.

− SignUp(C, pwd) → {(C,msgi)}i∈[n]. It takes as inputs a client id C and a password
pwd ∈ P, and outputs a message for each server.

− Store(C,msgi) =: reci,C . It takes as input a client id C and a message msgi, and outputs
a record reci,C . Si stores (C, reci,C) in its list of records reci if no record for C exists;
otherwise, it does nothing.

Sign-on phase.

− Request(C, pwd, x, T ) → (st, {(C, x, reqi)}i∈T ). It takes as inputs a client id C, a pass-
word pwd, a value x, and a set T ⊆ [n], and outputs a secret state st and request messages
{reqi}i∈T . For i ∈ T , (C, x, reqi) is sent to Si.

− Respond(ski,reci, C, x, reqi)→ resi. It takes as inputs the secret key share ski, the record
set reci, a client id C, a value x and a request message reqi, and outputs a response
message resi.

− Finalize(st, {resi}i∈T ) =: tk. It takes as input a secret state st and response messages
{resi}i∈T , and outputs a token tk.

Verification.

− Verify(vk, C, x, tk) → {0, 1}. It takes as inputs the verification key vk, a client id C, a
value x and a token tk, and outputs 1 (denotes validity) or 0.

Correctness. For all κ ∈ N, any n, t ∈ N such that t ≤ n, any password space P, all
(JskK, vk, pp) generated by Setup(1κ, n, t,P), any client id C, any password pwd ∈ P, any value
x, and any T ⊆ [n] of size at least t, if
− ((C,msg1), . . . , (C,msgn))← SignUp(C, pwd),
− reci,C := Store(C,msgi) for i ∈ [n],
− (st, {(C, x, reqi)}i∈T )← Request(C, pwd, x, T ),
− resi ← Respond(ski,reci, C, x, reqi) for i ∈ T , and
− tk := Finalize(st, {resi}i∈T ),

then Verify(vk, C, x, tk) = 1.

5.2 Security properties

We define security properties for PbTA with the help of a security game, described in Figure
7 in detail. In the security game, an adversary Adv gets access to a number of oracles, which
run PbTA algorithms and do some bookkeeping. 4

We do not allow the adversary to interfere with the registration phase. We assume
that registration happens over secure channels. In practice, a client would establish a TLS
connection with the servers over which it will send the sign-up messages. (Thus, the actual
number of rounds in registration could be several.) The sign-on phase, however, is completely
under the control of the adversary. Adversary can insert, delete or modify messages sent
between clients and servers, even if client/server is not corrupt. This is captured by providing
Adv access to three oracles for the three different algorithms of the sign-on phase (as opposed
to just one oracle for registration). Adv can give any input to these oracles.

At the start of the game, GlobalSetup is run to generate shares of the master secret,
verification key, public parameters and decryption keys. Public parameters are given to Adv.

4During a run of an oracle, if an algorithm does not produce a valid output, then the oracle stops imme-
diately and returns ⊥. We do not make this explicit in Figure 7 for simplicity.

17



SecGameΠ,Adv(1κ, n, t,P):

− (JskK, vk, pp, (SK1, . . . ,SKn))← GlobalSetup(1κ, n, t,P)

− (U , C?, stadv)← Adv(pp) # U : corrupt servers, C?: targeted client

− V := ∅ # set of corrupt clients

− PwdList := ∅ # list of (C, pwd) pairs, indexed by C

− ReqListC,i := ∅ for i ∈ [n] # token requests C makes to Si

− ct := 0, LiveSessions = [] # LiveSessions is indexed by ct

− TokList := ∅ # list of tokens generated through Ofinal

− QC,i := 0 for all C and i ∈ [n]

− QC,x := 0 for all C and x

− out← Adv〈O〉({ski}i∈U , {SKi}i∈U , stadv)

Ocorrupt(C).

− V := V ∪ {C}
− if (C, ?) ∈ PwdList, return PwdList[C]

Oregister(C).

− require: PwdList[C] = ⊥
− pwd←$ P

− add (C, pwd) to PwdList

− ((C,msg1), . . . , (C,msgn))← SignUp(C, pwd)

− reci,C := Store(C,msgi) for all i ∈ [n]

− add reci,C to reci for all i ∈ [n]

Oreq(C, x, T ).

− require: PwdList[C] 6= ⊥
− (st, {reqi}i∈T )← Request(C,PwdList[C])

− LiveSessions[ct] := st

− add reqi to ReqListC,i for i ∈ T
− increment ct by 1

− return {reqi}i∈T

Oresp(i, C, x, reqi).

− resi ← Respond(ski,reci, C, x, reqi)

− if reqi /∈ ReqListC,i, increment QC,i by 1

− increment QC,x by 1

− return resi

Ofinal(ct, {resi}i∈S).

− st := LiveSessions[ct]

− tk := Finalize(st, {resi}i∈S)

− add tk to TokList

− return tk

Overify(C, x, tk).

− return Verify(vk, C, x, tk)

Figure 7: Security game for PbTA

18



It outputs the set of servers U it wants to corrupt and the client C? it wants to target.
A number of variables are initialized before Adv is given access to the oracles. V keeps track

of clients as they are corrupted in the game, through Ocorrupt oracle. PwdList stores clients’
passwords in the form of (id, password) pairs, indexed by id, as they sign-up. ReqListC,i
stores the requests generated by C for the i-th server. These requests will not be counted
against the adversary, as we will see later.
Oreq(C, x, T ) allows Adv to start a sign-on session of C—who may not be corrupt—with

servers in T to generate a token on x. Oreq runs Request to generate request messages,
using the password of C stored in PwdList. While these messages are revealed to Adv, C’s
intermediate state st is stored in LiveSessions at position ct. Adv can resume this sign-on
session at any point in the future by invoking Ofinal with ct and any arbitrary responses from
the servers in T .
Oresp can be invoked to get responses from a server as part of the sign-on phase. Adv

can invoke Oresp with any message (C, x, reqi) of its choice. Oserver does not check if reqi
was indeed generated by C or not; a response is generated anyway, and returned to the
adversary. However, if the request reqi was not generated by C before, then this could give
some advantage to Adv in attacking C; so we increment a counter QC,i in this case. A
different counter QC,x is incremented even if reqi was generated by C. This is just to count
the number of times different servers are invoked on C and x. If this number is less than
even t−|U|, then Adv should not be able to generate a token on (C, x) except with negligible
probability (see Def. 5.3, first point).

Note that the counters Q are separate for each client. If Oserver is invoked with a certain
client id, then the counters for just that id are updated. When we define the security prop-
erties for PbTA below, only the counters for C? (the target client) are taken into account.
Thus, we consider Adv to be attacking C? only when it reveals this id to the servers. In
other words, we do not allow Adv to gain any advantage in attacking C? if it pretends to be
someone else.
Ofinal, as mentioned before, can be used to resume a sign-on session. Client’s state st is

retrieved from LiveSessions, and Finalize is run on st and the server responses given as input.
Adv can provide any arbitrary response on behalf of any server—even the ones that are not
corrupt. The token generated through Finalize is given to Adv and added to TokList. Finally,
Adv can use Overify to check if a token is valid or not.

We are now ready to formally state the two security properties we would like any PbTA
scheme to satisfy.

Definition 5.2 (Password Safety) A PbTA scheme Π is password safe if for all n, t ∈ N,
t ≤ n, all password space P and all PPT adversary Adv in SecGameΠ,Adv(1κ, n, t,P) (Figure
7), there exists a negligible function negl s.t.

Pr[C? /∈ V ∧ out = PwdList[C?] 6= ⊥] ≤
MAX|U|,t(QC?,1, . . . , QC?,n) + 1

|P|
+ negl(κ). (5.1)

To get some intuition into the above definition, consider the following attack. Adv guesses
a password for C?, generates request messages on its own (so that it knows the intermediate
state), invokes Oresp to get the corresponding responses, combines them using Finalize to get
a token, and finally checks if the token is valid or not. If the password guess was correct,
then the token would be valid by the correctness property of PbTA.

19



As such, Adv is not restricted to attacking a PbTA scheme in the above manner. However,
we require that, essentially, this is the best it can do. MAX|U|,t(QC?,1, . . . , QC?,n) in Eq. 5.1
gives a bound on the number of password attempts Adv can make through the above attack.

We do not penalize Adv for just replaying the requests generated by C itself by not
incrementing QC,i in those cases. The additive factor of 1 captures the possibility that Adv
can output a new guess at the end of the game (similar to the obliviousness property for
TOPRF, see Def. 4.3).

Definition 5.3 (Unforgeability) A PbTA scheme Π is unforgeable if for all n, t ∈ N,
t ≤ n, all password space P and all PPT adversary Adv in SecGameΠ,Adv(1κ, n, t,P) (Figure
7), there exists a negligible function negl s.t.

− if QC?,x? < t− |U|,
Pr[Verify(vk, C?, x?, tk?) = 1] ≤ negl(κ); (5.2)

− else

Pr[C? /∈ V ∧ tk? /∈ TokList ∧ Verify(vk, C?, x?, tk?) = 1] ≤
MAX|U|,t(QC?,1, . . . , QC?,n)

|P|
+ negl(κ), (5.3)

where Adv’s output out is parsed as (x?, tk?).

The security game for unforgeability is the same as password-safety (Figure 7) but Adv
produces a token tk? now. The probability of it being valid on (C?, x?) depends on several
cases. First, if the value of QC?,x? is smaller than even t− |U|, then Adv didn’t even contact
enough servers on (C?, x?). So we would like its probability of producing a valid token to be
negligible. (Eq. 5.2 also captures that querying servers on (C, x) for a different C or x than
C? and x? should not help.)

If Adv does contact enough servers and C? was corrupted, then Adv can easily generate
a valid token; so this case is not interesting. However, if C? is not corrupt but Adv is able
to guess its password, then it can also produce a valid token (with respect to C? only).
Comparing Eq. 5.3 and 5.1, one can see that unforgeability property basically requires that
this is the best Adv can do.

6 PASTA: Our Construction

In this section we present PASTA, our framework for building PbTA schemes. PASTA
provides a way to combine any threshold token generation scheme (TTG) and any threshold
oblivious PRF (TOP) in a black-box way to build a PbTA scheme that provides strong
password-safety and unforgeability guarantees. Figure 8 provides a complete description of
the framework.

PASTA uses the two main underlying primitives, TTG and TOP, in a fairly light-weight
manner. The sign-on phase, which consists of Request, Respond and Finalize, does not add
any public-key operations on top of what the primitives may have. Request runs TOP.Encode
once; Respond runs both TOP.Eval and TTG.PartEval, but only once each; and, Finalize runs
TOP.Combine and TTG.Combine once each. Even though number of decryptions in Finalize
is proportional to t, these operations are very fast symmetric-key operations. Thus, PASTA

20



makes minimal use of the two primitives that it builds on and its performance is mainly
governed by the efficiency of these primitives.

PASTA needs a key-binding symmetric-key encryption scheme so that when a ciphertext
is decrypted with a wrong key, decryption fails [Fis99]. Key-binding can be obtained very
efficiently in the random oracle model, for e.g., by appending a hash of the secret key to every
ciphertext.

For the sign-on phase, PASTA assumes that the servers communicate to clients over au-
thenticated channels so that an adversary cannot send arbitrary messages to a client on behalf
of honest servers. PASTA does not assume that these channels provide any confidentiality.
Observe that if there is an authenticated channel in the other direction, namely the servers
can identity the sender of every message they receive, then passwords are not needed, and
hence a PbTA scheme is moot.

An important feature of PASTA, especially from the point of view of proving security, is
that the use of TOP and TTG overlaps very slightly. The output of TOP is used to encrypt
the partial evaluations of TTG but, apart from that, they operate independently. Thus,
even if TTG is broken in some manner, it would not affect the safety of clients’ passwords.
Furthermore, even if TOP is broken, a threshold number of servers would still be needed to
generate a token. However, PASTA must prevent against several other attack scenarios, as
captured by the game in Figure 7. The formal security guarantee of PASTA is stated as
follows.

Theorem 6.1 (Security of PASTA) If TTG is an unforgeable threshold token generation
scheme (Def. 3.3), TOP is an unpredictable (Def. 4.2) and oblivious (Def. 4.3) TOPRF, and
SKE is a key-binding CPA-secure symmetric-key encryption scheme, then the PbTA scheme
PASTA as described in Figure 8 is password-safe (Def. 5.2) and unforgeable (Def. 5.3) when
H is modeled as a random oracle.

Password-safety and unforgeability properties are proved in Appendix B.1 and B.2 re-
spectively.

7 Performance Evaluation

We implement PASTA for four types of threshold token generation schemes: a block-cipher
based MAC [NPR99], a DDH-based (requires exponentiations) MAC [NPR99], a pairing
based signature [Bol03] and an RSA based signature [Sho00]. In this section we report on
the performance of these instantiations.

7.1 Implementation Details

PASTA is a generic construction consisting of two building blocks: a threshold oblivious
pseudo-random function and a threshold token generation scheme. We implement PASTA
with the 2HashTDH TOPRF protocol of Jarecki et al. [JKKX17] and the aforementioned
TTG schemes (see Appendix C for their descriptions) to obtain four types of tokens. To the
best of our knowledge, most of these TTG schemes were not implemented before.

We implement pseudorandom functions (PRFs) using AES-NI and hash functions using
Blake2 [bla]. The elliptic curve operations, pairing operations, and RSA operations are
implemented using the Relic library [AG]. The key length in AES-NI is 128 bits. The cyclic
group used in 2HashTDH TOPRF and the DDH based MAC is the group G1 on 256-bit

21



Ingredients.

− A threshold token generation scheme

TTG := (TTG.Setup,TTG.PartEval,TTG.Combine,TTG.Verify).

− A threshold oblivious PRF

TOP := (TOP.Setup,TOP.Encode,TOP.Eval,TOP.Combine).

− A symmetric-key encryption scheme

SKE := (SKE.Encrypt,SKE.Decrypt).

− A hash function H.

GlobalSetup(1κ, n, t,P) → (JskK, vk, pp).

− Run TTG.Setup(1κ, n, t) to get (JtskK, tvk, tpp).

− Set ski := tski for all i ∈ [n], vk := tvk and pp := (κ, n, t, P, tpp).

SignUp(C, pwd)→ ((C,msg1), . . . , (C,msgn)).

− Run TOP.Setup(1κ, n, t) to get (JkK, opp).

− Compute h := TOP(k, pwd) and hi = H(h‖i) for i ∈ [n].

− Set msgi := (ki, hi) for i ∈ [n].

Store(SKi, C,msgi) =: reci,C .

− Parse msgi as (ki, hi).

− Set reci,C := (ki, hi)

Request(C, pwd, x, T )→ ({(C, x, reqi)}i∈T , st).

− If |T | < t, output ⊥.

− Pick a ρ at random. Run TOP.Encode(pwd, ρ) to get c.

− Set reqi := c for all i ∈ [n] and st := (C, pwd, ρ, T ).

Respond(ski,reci, C, x, reqi)→ resi.

− If reci,C /∈ reci, output ⊥. Else, parse reci,C as (ki, hi).

− Run TOP.Eval(ki, reqi) to get zi.

− Run TTG.PartEval(tski, C‖x) to get yi.

− Set resi := (zi,SKE.Encrypt(hi, yi)).

Finalize(st, {resi}i∈S)→ tk.

− Parse resi as (zi, ctxti) and st as (C, pwd, ρ, T ).

− If S 6= T , output ⊥.

− Run TOP.Combine(pwd, {(i, zi)}i∈T , ρ) to get h.

− For all i ∈ T , compute hi := H(h‖i) and yi := SKE.Decrypt(hi, ctxti).

− Finally, set tk to be TTG.Combine({i, yi}i∈T ).

(If any of TOP.Combine, SKE.Decrypt or TTG.Combine fail, ⊥ is output.)

Verify(vk, C, x, tk)→ {0, 1}.
− Output TTG.Verify(tvk, C‖x, tk).

Figure 8: A complete description of PASTA

22



Barreto-Naehrig curves (BN-curves) [BN06]. Pairing is implemented on 256-bit BN-curves.
The key length in RSA based signature is 2048 bits.

In order to evaluate the performance, we implement various settings described below.
The experiments are run on a single server with 2x 24-core 2.2 GHz CPUs and 64 GB of
RAM. We run all the parties on different cores of the same server (1 core per server), and
simulate network connections using the Linux tc command: a LAN setting with 10 Gbps
network bandwidth and 0.1 ms round-trip latency; a WAN setting with 40 Mbps network
bandwidth and a simulated 80 ms round-trip latency.

7.2 Token Generation Time

Table 1 shows the total runtime for a client to generate a single token in the sign-on phase
after registration in our PASTA protocol. We show experiments for various types of tokens
in the LAN and WAN settings and different values of (n, t) where n is the number of servers
and t is the threshold. The reported time is an average of 10,000 token requests. We discuss
a few observations below.

(n, t) Sym-MAC Public-MAC Pairing-Sig RSA-Sig

LAN

(2, 2) 1.3 1.7 1.7 14.5
(3, 2) 1.3 1.7 1.7 14.5
(6, 2) 1.3 1.7 1.7 14.5
(10, 2) 1.3 1.7 1.7 14.5
(10, 3) 1.6 2.1 2.1 15.1
(10, 5) 2.3 3.0 3.0 16.8
(10, 7) 3.0 3.9 3.9 19.1
(10, 10) 4.1 5.4 5.4 22.6

WAN

(2, 2) 81.4 81.8 81.8 94.6
(3, 2) 81.4 81.8 81.8 94.6
(6, 2) 81.4 81.8 81.8 94.6
(10, 2) 81.4 81.9 81.9 94.6
(10, 3) 81.7 82.2 82.2 95.0
(10, 5) 82.4 83.1 83.1 96.9
(10, 7) 83.1 83.9 83.9 99.2
(10, 10) 84.2 85.4 85.4 102.8

Table 1: The total runtime (in milliseconds) of our PASTA protocol for generating a single token for
the number of servers n and threshold t in LAN and WAN settings.

Notice that for the same threshold t = 2 and the same type of token, different values of n
result in similar runtime. This is aligned with our construction: for a threshold t, the client
only needs to communicate with t servers, and the communication and computation cost for
every server is the same, hence the total runtime should also be the same. Therefore, the
total runtime is independent of n and only depends on the threshold t. For other values of
threshold t, we only report the runtime for n = 10; the runtime for other values of n would
be roughly the same.

Also notice that for the same (n, t) and same type of token, the runtime in the WAN
setting is roughly the runtime in the LAN setting plus 80 ms round-trip latency. This is
because in our protocol, the client sends a request to t servers and receive their responses
in parallel. The communication complexity is very small, hence the bulk of communication
overhead is roughly the round-trip latency. It is worth noting that the PASTA protocol has

23



the minimal two rounds of interaction, and hence this overhead is inevitable in the WAN
setting.

The runtime of public-key based MAC and pairing based signature are almost the same
under the same setting. This is because in our implementation, TTG schemes for public-key
based MAC and pairing based signature are both implemented on the 256-bit Barreto-Naehrig
curves (BN-curves) [BN06] in group G1. This group supports Type-3 pairing operation and
is believed to satisfy the Decisional Diffie-Hellman (DDH) assumption, hence a good fit for
both primitives.

We do not report the runtime for user registration because (i) it is done only once for
every user and (ii) it is more efficient than obtaining a token.

7.3 Time Breakdown

We show the runtime breakdown for three different (n, t) values in Table 2 in the LAN setting.
For each value of (n, t) in the table, the first row is the total runtime, and the second and
third rows are the computation time on the client side and on a single server, respectively.

Sym-MAC Public-MAC Pairing-Sig RSA-Sig

(10, 2) 1.3 1.7 1.7 14.5

Client 1.0 1.2 1.2 2.8

Server 0.2 0.4 0.4 11.4

(10, 5) 2.3 3.0 3.0 16.8

Client 1.9 2.4 2.4 5.2

Server 0.2 0.4 0.4 11.4

(10, 10) 4.1 5.4 5.4 22.6

Client 3.7 4.6 4.6 10.7

Server 0.2 0.4 0.4 11.5

Table 2: Breakdown of runtime (in milliseconds) in LAN setting.

As shown in the table, for the same token type the computation time on a single server
does not vary. On the other hand, the computation on the client grows with the threshold.
Figure 9 shows the dependence of the computation time at the client side on the threshold
t. For all four types of tokens, the computation time grows linearly in the threshold t.

7.4 Comparison with Näıve Solutions

We implement two näıve solutions to compare with our PASTA protocol:

− Plain Solution: The client signs on to a single server with its username/password. The
server verifies its credential and then issues an authentication token using a master secret
key.

− Threshold Solution: This solution utilizes a threshold token generation scheme. The
secret key shares sk1, sk2, . . ., skn of the threshold scheme are distributed among the n
servers. The client signs on with its username/password to t servers, where each server
verifies its credential and then issues a share of the token. The client combines the shares
received from the servers to generate the final token.

In the plain solution, a breached server would enable the attacker to (i) recover the master
secret key and (ii) perform offline dictionary attacks to recover users’ passwords. Comparing

24



2 4 6 8 10
0

2

4

6

8

10

12

Threshold t

C
om

p
u

ta
ti

on
ti

m
e

at
th

e
cl

ie
n
t

si
d

e
(m

s)

Sym-MAC

Public-MAC
Pairing-Sig

RSA-Sig

Figure 9: Growth of computation time (in milliseconds) at client’s side with threshold t. (n is fixed
to 10.)

our solution with the plain solution presents the extra cost of protecting both the master secret
key and users’ passwords. In the threshold solution, if up to t− 1 servers are breached, then
the master secret key stays secure, but users’ passwords are vulnerable to offline dictionary
attacks. Comparing our solution with the threshold solution gives the extra cost of protecting
users’ passwords.

(n, t) Sym-MAC Public-MAC Pairing-Sig RSA-Sig

LAN

Plain 0.1 0.4 0.4 11.3

T
h
re

sh
o
ld

(10, 2) 0.1 0.6 0.6 13.2
(10, 3) 0.1 0.6 0.6 13.3
(10, 5) 0.2 0.9 0.9 14.4
(10, 7) 0.3 1.2 1.2 16.0
(10, 10) 0.4 1.5 1.5 18.6

WAN

Plain 80.2 80.5 80.5 91.4

T
h
re

sh
o
ld

(10, 2) 80.2 80.7 80.7 93.3
(10, 3) 80.2 80.7 80.7 93.4
(10, 5) 80.3 81.0 81.0 94.5
(10, 7) 80.4 81.3 81.3 96.1
(10, 10) 80.5 81.6 81.6 98.8

Table 3: The total time (in milliseconds) it takes to generate a single token through näıve solutions,
for various settings in LAN and WAN networks.

Table 3 shows the total runtime for a client to generate a single token after registration
using the plain solution and the threshold solution for different values of (n, t). The reported
time is an average of 10,000 token requests in LAN and WAN settings. For the same setting
and the same type of token, the runtime in the WAN network is roughly the runtime in the
LAN network plus 80 ms round-trip latency, for the same reason discussed above for the
PASTA protocol. Notice that in the threshold solution, the total runtime is independent of n
and only depends on the threshold t. Hence we only report the runtime for the same n = 10

25



and different thresholds.

plain (10,2) (10,3) (10,5) (10,7) (10,10)
0
1
2
3
4

8

12

16

20

Settings of the näıve solutions

M
u
lt

ip
li
ca

ti
ve

ov
er

h
ea

d
of

ou
r

so
lu

ti
o
n LAN network

Sym-MAC

Public-MAC

Pairing-Sig

RSA-Sig

plain (10,2) (10,3) (10,5) (10,7) (10,10)
0.95

1
1.01
1.02
1.03
1.04
1.05

1.1

Settings of the näıve solutions

M
u
lt

ip
li
ca

ti
ve

ov
er

h
ea

d
of

ou
r

so
lu

ti
o
n WAN network

Sym-MAC

Public-MAC

Pairing-Sig

RSA-Sig

Figure 10: Multiplicative overhead of our solution in runtime compared to näıve solutions in LAN
and WAN networks.

We compare our solution with the two näıve solutions and show the multiplicative over-
head of our solution in Figure 10. The two figures represent the comparison in the LAN and
WAN network, respectively. Different types of tokens are represented in different colors. In
each picture, the first set of four bars represent the overhead of our solution compared to
the plain solution. Note that there is no notion of (n, t) in the plain solution, hence we pick
a setting (5, 3) for our solution to compare with the plain solution. If comparing the plain
solution with other (n, t) settings of our solution, the results would be slightly different. The
remaining five sets of bars in each figure represent the overhead of our solution compared to
the threshold solution for various values of (n, t). When comparing with those, we use the
same (n, t) setting of our solution.

In the LAN network, notice that there is nearly no overhead for the RSA-based token
generation. The overhead for public-key based MAC and pairing based signature is a small
constant. There is a higher overhead for symmetric-key based MAC. This is because the
näıve solutions only involve symmetric-key operations while our solution involves public-
key operations, which is much more expensive. This overhead is necessary as we prove in
Appendix D that public-key operations are necessary to achieve a password-based threshold
authentication (PbTA) system.

In the WAN network, since the most time-consuming component is the network latency
in our protocol as well as the näıve solutions, the overhead of our solution compared with
the näıve solutions is fairly small. As shown in Figure 10, the overhead is less than 5% in all
the settings and all token types.

References

[ACFP05] Michel Abdalla, Olivier Chevassut, Pierre-Alain Fouque, and David Pointcheval.
A simple threshold authenticated key exchange from short secrets. In Bimal K.
Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 566–584. Springer,
Heidelberg, December 2005.

26



[ACK+16] Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof
Pietrzak, and Stefano Tessaro. On the complexity of scrypt and proofs of space
in the parallel random oracle model. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 358–387.
Springer, Heidelberg, May 2016.

[ACNP16] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and David Pointcheval. Robust
password-protected secret sharing. In Ioannis G. Askoxylakis, Sotiris Ioanni-
dis, Sokratis K. Katsikas, and Catherine A. Meadows, editors, ESORICS 2016,
Part II, volume 9879 of LNCS, pages 61–79. Springer, Heidelberg, September
2016.

[ACP+17] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tes-
saro. Scrypt is maximally memory-hard. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 33–62. Springer, Heidelberg, May 2017.

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based
authenticated key exchange in the three-party setting. In Serge Vaudenay, editor,
PKC 2005, volume 3386 of LNCS, pages 65–84. Springer, Heidelberg, January
2005.

[AG] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptog-
raphy. https://github.com/relic-toolkit/relic.

[ama] Amazon OpenID. https://docs.aws.amazon.com/cognito/latest/

developerguide/open-id.html. Accessed on September 19, 2018.

[AMN01] Michel Abdalla, Sara Miner, and Chanathip Namprempre. Forward-secure
threshold signature schemes. In Cryptographers Track at the RSA Conference,
pages 441–456. Springer, 2001.

[BD16] Jeremiah Blocki and Anupam Datta. CASH: A cost asymmetric secure hash
algorithm for optimal password protection. In IEEE 29th Computer Security
Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016,
pages 371–386, 2016.

[BJSL11] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu. Password-
protected secret sharing. In Yan Chen, George Danezis, and Vitaly Shmatikov,
editors, ACM CCS 11, pages 433–444. ACM Press, October 2011.

[bla] BLAKE2 - fast secure hashing. https://blake2.net/. Accessed on September
19, 2018.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
Key homomorphic PRFs and their applications. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428.
Springer, Heidelberg, August 2013.

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using Diffie-Hellman. In Bart Preneel, editor, EU-
ROCRYPT 2000, volume 1807 of LNCS, pages 156–171. Springer, Heidelberg,
May 2000.

27

https://github.com/relic-toolkit/relic
https://docs.aws.amazon.com/cognito/latest/developerguide/open-id.html
https://docs.aws.amazon.com/cognito/latest/developerguide/open-id.html
https://blake2.net/


[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume
3897 of LNCS, pages 319–331. Springer, Heidelberg, August 2006.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signa-
tures based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt,
editor, PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Heidelberg,
January 2003.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Heidelberg, May
2000.

[BS01] Mihir Bellare and Ravi Sandhu. The security of practical two-party RSA sig-
nature schemes. Cryptology ePrint Archive, Report 2001/060, 2001. http:

//eprint.iacr.org/2001/060.

[BZ17] Jeremiah Blocki and Samson Zhou. On the depth-robustness and cumulative
pebbling cost of Argon2i. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part I, volume 10677 of LNCS, pages 445–465. Springer, Heidelberg, November
2017.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press,
October 2001.

[CEN15] Jan Camenisch, Robert R. Enderlein, and Gregory Neven. Two-server password-
authenticated secret sharing UC-secure against transient corruptions. In
Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 283–307.
Springer, Heidelberg, March / April 2015.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. Universally composable password-based key exchange. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421.
Springer, Heidelberg, May 2005.

[CLLN14] Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven. Me-
mento: How to reconstruct your secrets from a single password in a hostile
environment. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 256–275. Springer, Heidelberg, August
2014.

[CLN12] Jan Camenisch, Anna Lysyanskaya, and Gregory Neven. Practical yet univer-
sally composable two-server password-authenticated secret sharing. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 525–536.
ACM Press, October 2012.

[CLN15] Jan Camenisch, Anja Lehmann, and Gregory Neven. Optimal distributed pass-
word verification. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 15, pages 182–194. ACM Press, October 2015.

28

http://eprint.iacr.org/2001/060
http://eprint.iacr.org/2001/060


[CLNS16] Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. Virtual smart
cards: How to sign with a password and a server. In Vassilis Zikas and Roberto
De Prisco, editors, SCN 16, volume 9841 of LNCS, pages 353–371. Springer,
Heidelberg, August / September 2016.

[Dan] Daniel Sewell. Offline Password Cracking: The Attack and the
Best Defense Against It. https://www.alpinesecurity.com/blog/

offline-password-cracking-the-attack-and-the-best-defense-against-it.
Accessed on September 19, 2018.

[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a
function securely. In 26th ACM STOC, pages 522–533. ACM Press, May 1994.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg,
August 1990.

[DG03] Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-
authenticated key exchange. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 507–523. Springer, Heidelberg, May 2003.

[DK01] Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures with-
out a trusted dealer. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 152–165. Springer, Heidelberg, May 2001.

[DKAN] Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel
Neves. Argon2. https://github.com/P-H-C/phc-winner-argon2. Github
Repository: Accessed on September 19, 2018.

[fac] Facebook Login. https://developers.facebook.com/docs/facebook-login.
Accessed on September 19, 2018.

[FIP02] NIST FIPS. 198: The keyed-hash message authentication code (hmac). Na-
tional Institute of Standards and Technology, Federal Information Processing
Standards, page 29, 2002.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword
search and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005,
volume 3378 of LNCS, pages 303–324. Springer, Heidelberg, February 2005.

[Fis99] Marc Fischlin. Pseudorandom function tribe ensembles based on one-way per-
mutations: Improvements and applications. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 432–445. Springer, Heidelberg, May
1999.

[Gan95] Ravi Ganesan. Yaksha: augmenting kerberos with public key cryptography. In
1995 Symposium on Network and Distributed System Security, (S)NDSS ’95,
San Diego, California, February 16-17, 1995, pages 132–143, 1995.

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security. In Mark
Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16, volume
9696 of LNCS, pages 156–174. Springer, Heidelberg, June 2016.

29

https://www.alpinesecurity.com/blog/offline-password-cracking-the-attack-and-the-best-defense-against-it
https://www.alpinesecurity.com/blog/offline-password-cracking-the-attack-and-the-best-defense-against-it
https://github.com/P-H-C/phc-winner-argon2
https://developers.facebook.com/docs/facebook-login


[GHKR08] Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold RSA
for dynamic and ad-hoc groups. In Nigel P. Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 88–107. Springer, Heidelberg, April 2008.

[GJKR96] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
threshold DSS signatures. In Ueli M. Maurer, editor, EUROCRYPT’96, volume
1070 of LNCS, pages 354–371. Springer, Heidelberg, May 1996.

[GK10] Adam Groce and Jonathan Katz. A new framework for efficient password-based
authenticated key exchange. In Ehab Al-Shaer, Angelos D. Keromytis, and
Vitaly Shmatikov, editors, ACM CCS 10, pages 516–525. ACM Press, October
2010.

[goo] Google Identity Platform – OpenID Connect. https://developers.google.

com/identity/protocols/OpenIDConnect. Accessed on September 19, 2018.

[GT11] Kristian Gjosteen and Oystein Thuen. Password-based signatures. In Public Key
Infrastructures, Services and Applications - 8th European Workshop, EuroPKI
2011, Leuven, Belgium, September 15-16, 2011, Revised Selected Papers, pages
17–33, 2011.

[HAP18] Yotam Harchol, Ittai Abraham, and Benny Pinkas. Distributed ssh key man-
agement with proactive rsa threshold signatures. Cryptology ePrint Archive,
Report 2018/389, 2018. https://eprint.iacr.org/2018/389.

[IR90] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Shafi Goldwasser, editor, CRYPTO’88, volume 403
of LNCS, pages 8–26. Springer, Heidelberg, August 1990.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only model.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume
8874 of LNCS, pages 233–253. Springer, Heidelberg, December 2014.

[JKKX16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-
efficient and composable password-protected secret sharing (or: How to protect
your bitcoin wallet online). In IEEE European Symposium on Security and
Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pages 276–
291, 2016.

[JKKX17] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS:
Cost-minimal password-protected secret sharing based on threshold OPRF. In
Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, vol-
ume 10355 of LNCS, pages 39–58. Springer, Heidelberg, July 2017.

[jwt] JSON Web Tokens. https://jwt.io/. Accessed on September 19, 2018.

[ker] Kerberos: The Network Authentication Protocol. https://web.mit.edu/

kerberos/. Accessed on September 19, 2018.

[KMTG05] Jonathan Katz, Philip MacKenzie, Gelareh Taban, and Virgil Gligor. Two-
server password-only authenticated key exchange. In John Ioannidis, Angelos

30

https://developers.google.com/identity/protocols/OpenIDConnect
https://developers.google.com/identity/protocols/OpenIDConnect
https://eprint.iacr.org/2018/389
https://jwt.io/
https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/


Keromytis, and Moti Yung, editors, Applied Cryptography and Network Security,
pages 1–16, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-
authenticated key exchange using human-memorable passwords. In Birgit Pfitz-
mann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 475–494.
Springer, Heidelberg, May 2001.

[KOY03] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Forward secrecy in password-
only key exchange protocols. In Stelvio Cimato, Clemente Galdi, and Giuseppe
Persiano, editors, SCN 02, volume 2576 of LNCS, pages 29–44. Springer, Hei-
delberg, September 2003.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based au-
thenticated key exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of
LNCS, pages 293–310. Springer, Heidelberg, March 2011.

[MPSN+03] Keith M. Martin, Josef Pieprzyk, Rei Safavi-Naini, Huaxiong Wang, and Pe-
ter R. Wild. Threshold macs. In Pil Joong Lee and Chae Hoon Lim, editors,
Information Security and Cryptology — ICISC 2002, pages 237–252, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[MR03] Philip MacKenzie and Michael K Reiter. Networked cryptographic devices re-
silient to capture. International Journal of Information Security, 2(1):1–20,
2003.

[MSJ02] Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold
password-authenticated key exchange. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 385–400. Springer, Heidelberg, August 2002.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and KDCs. In Jacques Stern, editor, EUROCRYPT’99, volume 1592
of LNCS, pages 327–346. Springer, Heidelberg, May 1999.

[oau] The OAuth 2.0 Authorization Framework: Bearer Token Usage. https:

//tools.ietf.org/html/rfc6750. Accessed on September 19, 2018.

[ope] The OpenID Connect. http://openid.net/connect/.

[phc] Password Hashing Competition. https://password-hashing.net/. Accessed
on September 19, 2018.

[PS10] Kenneth G. Paterson and Douglas Stebila. One-time-password-authenticated
key exchange. In Ron Steinfeld and Philip Hawkes, editors, ACISP 10, volume
6168 of LNCS, pages 264–281. Springer, Heidelberg, July 2010.

[sam] SAML Toolkits. https://developers.onelogin.com/saml. Accessed on
September 19, 2018.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 207–220. Springer, Heidelberg, May
2000.

31

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
http://openid.net/connect/
https://password-hashing.net/
https://developers.onelogin.com/saml


[Tar] Tarsnap. Scrypt. https://github.com/Tarsnap/scrypt. Github Repository:
Accessed on September 19, 2018.

[vau] Vault by Hashicorp. https://www.vaultproject.io/docs/internals/token.
html. Accessed on September 19, 2018.

[WW13] Ding Wang and Ping Wang. Offline dictionary attack on password authentication
schemes using smart cards. 2014:1–16, 01 2013.

[XS03] Shouhuai Xu and Ravi S. Sandhu. Two efficient and provably secure schemes
for server-assisted threshold signatures. In Marc Joye, editor, CT-RSA 2003,
volume 2612 of LNCS, pages 355–372. Springer, Heidelberg, April 2003.

[YHCL15] Xun Yi, Feng Hao, Liqun Chen, and Joseph K. Liu. Practical threshold
password-authenticated secret sharing protocol. In Günther Pernul, Peter Y. A.
Ryan, and Edgar R. Weippl, editors, ESORICS 2015, Part I, volume 9326 of
LNCS, pages 347–365. Springer, Heidelberg, September 2015.

A TOPRF: Proofs

A.1 Unpredictability

In this section we prove output unpredictability of our construction. Suppose there exists a
PPT adversary Adv such that

Pr[UnpredictabilityTOP,Adv(1κ, n, t) = 1] ≥
MAX|U|,t(q1, . . . , qn)

|X |
+ non-negl(κ). (A.1)

We will consider two cases of Adv. In the first case, there exists k ∈ N such that when Adv
calls H1 with k distinct valid (x, y) pairs, MAX|U|,t(q1, . . . , qn) < k. In this case, we will use
Adv to break the gap TOMDH assumption. In the second case, for any k ∈ N, when Adv
calls H1 with k valid (x, y) pairs, MAX|U|,t(q1, . . . , qn) ≥ k. In this case, we will prove that
information theoretically Formula A.1 does not hold.

First Case There exists k ∈ N such that when Adv calls H1 with k distinct valid (x, y)
pairs, MAX|U|,t(q1, . . . , qn) < k. Then we construct an adversary B that breaks the gap
TOMDH assumption (see Definition 3.1).

We construct B as follows. It first receives (p, g,G, g1, . . . , gN ) from the TOMDH game
One-MoreB(1κ, t′, t, n,N), presents pp := (p, g,G, n, t,H1,H2) to Adv and gets back U . It then
generates {αi}i∈U at random, sends {(i, αi)}i∈U to the TOMDH game, and sends {αi}i∈U to
Adv. It then samples x̃ ←$ X , set L := [], set LIST := ∅, and set k := 0. Then B computes
gαi1 for i ∈ U , calls O(i, g1) to get gαi1 for all i ∈ [n] \ U , and computes y1 := gsk

1 . It adds
(g1, y1) to LIST, sets q = 1, and handles Adv’s oracle queries as follows:

− On Adv’s call to Oenc&eval(): Pick an unused gj where j ∈ [N ], set c := gj , compute
zi ← Eval(ski, c) for i ∈ U and call O(i, c) to get zi for all i ∈ [n] \ U . Use [n] to find
coefficients {λi}i∈[n] and compute yj :=

∏
i∈[n] z

λi
i . Add (gj , yj) to LIST, and increment

q by 1. Compute h := H1(x̃, yj), and return (c, {zi}i∈[n]\U , h) to Adv.

− On Adv’s call to Oeval(i, c): Call O(i, c) in the TOMDH game and return the output to
Adv.

32

https://github.com/Tarsnap/scrypt
https://www.vaultproject.io/docs/internals/token.html
https://www.vaultproject.io/docs/internals/token.html


− On Adv’s call to H1(x, y): If x /∈ L, compute H1(x, y) honestly and return to Adv.
Otherwise, let gj := L[x]. If loggj y = logg1 y1 and (gj , ?) /∈ LIST (i.e., (gj , y) is a new
valid pair), increment k by 1, add (gj , y) to LIST, and output LIST in the TOMDH game
if MAX|U|,t(q1, . . . , qn) < k. Compute H1(x, y) honestly and return to Adv.

− On Adv’s call toH2(x): If x ∈ L, return L[x]; otherwise, pick an unused gj where j ∈ [N ],
set L[x] := gj and return gj to Adv.

Adv’s view in the game UnpredictabilityTOP,Adv(1κ, n, t) is information theoretically indis-
tinguishable from the view simulated by B in the random oracle model. This can be proved
via a hybrid argument:

Hyb0: The first hybrid is Adv’s view in the real-world game UnpredictabilityTOP,Adv(1κ, n, t).
Hyb1: This hybrid is the same as Hyb0 except that in the response to Oenc&eval(), c is

randomly sampled as c←$ G. This hybrid is information theoretically indistinguishable from
Hyb0 because G is a cyclic group of prime order.

Hyb2: This hybrid is the same as Hyb1 except that the output of H2(·) is a truly random
group element in G. The indistinguishability of Hyb1 and Hyb2 follows from the random
oracle model.

Hyb3: This hybrid is Adv’s view simulated by B. It is the same as Hyb2 except that the
random group elements are replaced by gj ’s where j ∈ [N ]. Since gj ’s are also randomly
sampled from G in the TOMDH game, the two hybrids are indistinguishable.

From the construction of B, we know that

MAXt′,t(q
′
1, . . . , q

′
n) = MAX|U|,t(q1, . . . , qn) + q,

where MAXt′,t(q
′
1, . . . , q

′
n) is from the TOMDH game, and MAX|U|,t(q1, . . . , qn) is from the

unpredictability game. Since MAX|U|,t(q1, . . . , qn) < k, the output of B has the following
number of valid pairs:

|LIST| = k + q

> MAX|U|,t(q1, . . . , qn) + q

= MAXt′,t(q
′
1, . . . , q

′
n).

Therefore, B breaks the gap TOMDH assumption.

Second Case For any k ∈ N, when Adv calls H1 with k valid (x, y) pairs, MAX|U|,t(q1, . . . ,
qn) ≥ k.

We define a predicting game in Figure 11. Information theoretically we have that for any
PPT adversary Adv, there exists a negligible function negl s.t.

Pr[PredictingAdv(1κ) = 1] ≤ k

|X |
+ negl(κ).

We will use Adv to construct an adversary B that breaks the predicting game. The
construction of B is the following. It first runs Setup(1κ, n, t) to generate (JskK, pp), presents
pp to Adv and gets back U . It thens gives {ski}i∈U to Adv. It sets L := [], and then handles
Adv’s oracle queries as follows:

− On Adv’s call to Oenc&eval(): Sample c ←$ G, compute zi ← Eval(ski, c) for i ∈ [n], and
return (c, {zi}i∈[n]\U ) to Adv.

− On Adv’s call to Oeval(i, c): Return Eval(ski, c).

33



PredictingAdv(1κ):

1. for every x ∈ X : h←$ {0, 1}κ, M[x] := h

2. x̃←$ X , h̃ :=M[x̃]

3. k := 0

4. h? ← Adv〈O〉(1κ)

5. output 1 iff h? = h̃

Ocompute(x):

− increment k by 1

− return M[x]

Ocompare(h):

− return 1 if h = h̃; else return 0

Figure 11: Predicting game

− On Adv’s call to Ocheck(h): Call Ocompare(h) and return the output to Adv.

− On Adv’s call to H1(x, y):

a. If (x, y) ∈ L, let h := L[(x, y)].

b. If (x, y) /∈ L and y 6= H2(x)sk, then sample h←$ {0, 1}κ and set L[(x, y)] := h.

c. If (x, y) /∈ L and y = H2(x)sk (i.e., (x, y) is a valid pair), call Ocompute(x) to get h.
Set L[(x, y)] := h.

Return h to Adv.

− On Adv’s call to H2(x): Compute H2(x) honestly and return the output.

Adv’s view in the game UnpredictabilityTOP,Adv(1κ, n, t) is information theoretically indis-
tinguishable from the view simulated by B in the random oracle model. This can be proved
via a hybrid argument:

Hyb0: The first hybrid is Adv’s view in the real-world game UnpredictabilityTOP,Adv(1κ, n, t).
Hyb1: This hybrid is the same as Hyb0 except that in the response to Oenc&eval(), c is

randomly sampled as c←$ G. This hybrid is information theoretically indistinguishable from
Hyb0 because G is a cyclic group of prime order.

Hyb2: This hybrid is the same as Hyb1 except that the output of H1(·) is a truly random
string. The indistinguishability of Hyb1 and Hyb2 follows from the random oracle model.

Hyb3: This hybrid is Adv’s view simulated by B. It is the same as Hyb2 except that x̃
is not sampled in the game, but sampled in the predicting game PredictingB(1κ), and that
H1(x, y) for valid (x, y) pairs are sampled in predicting game. Since these values are randomly
sampled in both hybrids, they are indistinguishable.

Therefore, if Adv breaks the game UnpredictabilityTOP,Adv(1κ, n, t), then B breaks the

34



predicting game:

Pr[PredictingB(1κ) = 1]

≥
MAX|U|,t(q1, . . . , qn)

|X |
+ non-negl(κ)

≥ k

|X |
+ non-negl(κ).

This is information theoretically impossible, leading to a contradiction, and hence concludes
the proof.

A.2 Input Obliviousness

In this section we prove input obliviousness of our construction. Suppose there exists a PPT
adversary Adv such that

Pr[ObliviousnessTOP,Adv(1κ, n, t) = 1] ≥
MAX|U|,t(q1, . . . , qn) + 1

|X |
+ non-negl(κ). (A.2)

We will consider two cases of Adv. In the first case, there exists k ∈ N such that when Adv
calls H1 with k distinct valid (x, y) pairs, MAX|U|,t(q1, . . . , qn) < k. In this case, we will use
Adv to break the gap TOMDH assumption. In the second case, for any k ∈ N, when Adv
calls H1 with k valid (x, y) pairs, MAX|U|,t(q1, . . . , qn) ≥ k. In this case, we will prove that
information theoretically Formula A.2 does not hold.

First Case There exists k ∈ N such that when Adv callsH1 with k distinct valid (x, y) pairs,
MAX|U|,t(q1, . . . , qn) < k. Then we construct an adversary B that breaks the gap TOMDH
assumption (see Definition 3.1). The proof is the same as the first case in Section A.1.

Second Case Whenever Adv calls H1 with a valid (x, y) pair for the k-th time, MAX|U|,t(q1,
. . . , qn) ≥ k at that time.

We define a guessing game in Figure 12. Information theoretically we have that for any
PPT adversary Adv, there exists a negligible function negl s.t.

Pr[GuessingAdv(1κ) = 1] ≤ k + 1

|X |
+ negl(κ).

We will use Adv to construct an adversary B that breaks the guessing game. The con-
struction of B is the following. It first runs Setup(1κ, n, t) to generate (JskK, pp), presents pp
to Adv and gets back U . It thens gives {ski}i∈U to Adv. It samples h̃←$ {0, 1}κ, set L := [],
and then handles Adv’s oracle queries as follows:

− On Adv’s call to Oenc&eval(): Sample c ←$ G, compute zi ← Eval(ski, c) for i ∈ [n], and
return (c, {zi}i∈[n]\U , h̃) to Adv.

− On Adv’s call to Oeval(i, c): Return Eval(ski, c).

− On Adv’s call to H1(x, y):

a. If (x, y) ∈ L, let h := L[(x, y)].

b. If (x, y) /∈ L and y 6= H2(x)sk, then sample h←$ {0, 1}κ and set L[(x, y)] := h.

35



GuessingAdv(1κ):

1. x̃←$ X
2. k := 0

3. x? ← Adv〈O〉(1κ)

4. output 1 iff x? = x̃

Oguess(x):

− increment k by 1

− return 1 if x = x̃; else return 0

Figure 12: Guessing game

c. If (x, y) /∈ L and y = H2(x)sk (i.e., (x, y) is a valid pair), call Oguess(x). If the output
if 1, then h := h̃; otherwise sample h←$ {0, 1}κ. Set L[(x, y)] := h.

Return h to Adv.

− On Adv’s call to H2(x): Compute H2(x) honestly and return the output.

Adv’s view in the game ObliviousnessTOP,Adv(1κ, n, t) is information theoretically indistin-
guishable from the view simulated by B in the random oracle model. This can be proved via
a hybrid argument:

Hyb0: The first hybrid is Adv’s view in the real-world game ObliviousnessTOP,Adv(1κ, n, t).
Hyb1: This hybrid is the same as Hyb0 except that in the response to Oenc&eval(), c is

randomly sampled as c←$ G. This hybrid is information theoretically indistinguishable from
Hyb0 because G is a cyclic group of prime order.

Hyb2: This hybrid is the same as Hyb1 except that the output of H1(·) is a truly random
string. The indistinguishability of Hyb1 and Hyb2 follows from the random oracle model.

Hyb3: This hybrid is Adv’s view simulated by B. It is the same as Hyb2 except that x̃
is not sampled in the game, but sampled in the guessing game GuessingB(1κ). Since x̃ is
randomly sampled as x̃←$ X in both hybrids, they are indistinguishable.

Therefore, if Adv breaks the game ObliviousnessTOP,Adv(1κ, n, t), then B breaks the guess-
ing game:

Pr[GuessingB(1κ) = 1]

≥
MAX|U|,t(q1, . . . , qn) + 1

|X |
+ non-negl(κ)

≥ k + 1

|X |
+ non-negl(κ).

This is information theoretically impossible, leading to a contradiction, and hence concludes
the proof.

B PASTA: proofs

B.1 Password safety

PASTA’s password safety primarily relies on the obliviousness of TOP. Intuitively, if we use
a TOPRF on clients’ passwords, then obliviousness of TOPRF would make it hard to guess

36



them. Formally, we build an adversary B that can translate an adversary Adv’s advantage
in the password-safety game into a similar advantage in the TOPRF obliviousness game
Obliviousness (Figure 6). B will run Adv internally simulating the password-safety for it,
while playing the role of adversary externally in Obliviousness.
B can implicitly set the targeted client C?’s password to be the random value chosen

in Obliviousness. If Adv guesses the password, B can output the same guess. However, to
simulate SecGame properly for Adv, B needs to run the oracles in a way that Adv cannot
tell the difference. In particular, B needs partial TOPRF evaluations zi on the password for
Oresp, the final TOPRF value for Oregister and the randomness ρ used for encoding for Ofinal.
B can take help of the oracles Oeval and Oenc&eval provided by Obliviousness to handle the
first two problems, but there is no way to get ρ in Obliviousness.

Intermediate hybrid. We tackle the latter problem first by going through a hybrid. We
refer to the original game as Hyb0 and the new game as Hyb1. Hyb0 is described in Figure
13; it basically replaces Π in Figure 7 with PASTA. Hyb1 is described in Figure 14. In Hyb1,
several oracles behave differently for the targeted client C?. Oreq evaluates the TOPRF in
advance for C?. It stores the partial evaluations zi and the final result h in LiveSessions itself.
Importantly, it does not store ρ. When Oresp is invoked, it checks if C? generated reqi for
Si before (reqi ∈ ReqListC,i). If yes, then zi is picked up from LiveSessions. Now, whether
a zi computed in advance is used in Oresp or not makes no difference from the point of the
adversary because zi is derived deterministically from ki and reqi.

Oracle Ofinal also behaves differently for C?. First, note that if TOP.PubCombine({zi}i∈T )
is equal to TOP.PubCombine({z′i}i∈T ), then combining either set will lead to the same value.
The only difference in Hyb1 is that h was computed beforehand. Once again, for the same
reason as above, this makes no difference.

The crucial step where Hyb0 and Hyb1 differ is when the two outputs of PubCombine do
not match. While Hyb0 does not do any test of this kind, Hyb1 simply outputs ⊥. For these
hybrids to be indistinguishable, we need to argue that had the outputs of PubCombine not
matched in Hyb0, it would have output ⊥ as well (at least with a high probability).

Note that the right zi and h are well-defined for Hyb0; they can be derived from pwd and
ρ. If one were to do the public combine test in this hybrid and it fails, then h′ 6= h with
high probability. Therefore, using the collision resistance of H, one can argue that h′i 6= hi.
Now, observe that there must be an honest Sj in T , so ctxt′j could only have been generated
by Sj (recall our authenticated channels assumption). When ciphertext ctxt′j , which was
encrypted under hj , is decrypted with h′j 6= hj , decryption fails with high probability due to
the key-binding property of SKE. Thus, Hyb0 returns ⊥ just like Hyb1.

Reduction. Now that we know that absence of encoding randomness ρ would not prevent
a successful simulation of Ofinal, we come back to the task of exploiting TOPRF obliviousness
to hide the targeted client’s password. Towards this, adversary B is formally described in
Figure 15. When B outputs a message, it should be interpreted as sending the message to the
obliviousness game. Let’s now go through the differences between Hyb1 and B’s simulation
of it one by one.

Simulation of Oregister differs only for C = C?. In Hyb1, a randomly chosen password
for C? is used to compute h, while in B’s simulation, C?’s password is implicitly set to be
the random input x̃ chosen by Obliviousness and Oenc&eval is called to get h. Clearly, this
difference does not affect Adv. There is one other difference though: while all of k1, . . . , kn

37



are known in Hyb1, B knows ki for corrupt servers only. As a result, B defines reci,C? to be
(0, hi) for i ∈ [n] \ U .

Like the registration oracle, request oracle behaves differently only when C = C?. How-
ever, one can easily see that the difference is insignificant: while Hyb1 computes c, zi and h
using PwdList[C?], B invokes Oenc&eval to get them, which uses x̃.

Finally, B invokes Oeval to get zi in the simulation of Oresp (because it does not know ki
for honest servers) but it is computed directly in Hyb1. This does not make any difference
either. The important thing to note is that the counter QC?,i is incremented if and only if
the counter qi of Obliviousness is incremented. As a result, the final value of QC?,i will be
the same as qi. Therefore, B will successfully translate Adv’s probability of guessing C?’s
password to guessing x̃.

B.2 Unforgeability

First we handle the easier case of QC?,x? < t − |U|. Here C? could even be corrupt,
so Adv may know its password. Note that QC?,x? is incremented on every invocation of
Oresp(i, C?, x?, reqi) irrespective of the value of i and whether or not reqi ∈ ReqListi,C? . So if
QC?,x? < t− |U|, Adv simply doesn’t have enough shares to generate a valid token, irrespec-
tive of whether C? is corrupt or not. One can formally prove unforgeability in this case by
invoking the unforgeability of the threshold token generation scheme TTG (Definition 3.3).
We skip the details.

When QC?,x? ≥ t− |U|, unforgeability can only be expected when C? is never corrupted.
We need to show that generating a valid token for (C?, x?) for any x? effectively amounts to
guessing C?’s password. Indistinguishability of Hyb0 (Figure 13) and Hyb1 (Figure 14) still
holds because it just relies on the properties of PubCombine and authenticated channels.

We now wish to build an adversary B′ that can use an adversary Adv who breaks the
unforgeability guarantee of PASTA to break the unpredictability of TOPRF. The first natural
question to ask is whether B′ can break unpredictability of TOPRF in the same way as B
broke obliviousness. Not quite, because there are some key differences in the two settings:

− Even though both B and B′ get access to an oracle Oenc&eval that both encodes and
evaluates, B’s oracle returns the final TOPRF output h while B′’s oracle doesn’t. So it
is not clear how hi will be generated by Oregister and Ofinal for C?.

− B was able to use the output of Adv for the password-safety game directly into the
obliviousness game, but B′ cannot. Adv now outputs a token for the authentication
scheme while B′ is supposed to guess the TOPRF output h on the (hidden) password of
C?.

As a result, B′’s behavior differs from B in the following manner. At the start of the
simulation, B′ picks random numbers r1, . . . , rn and will use them instead of h1, . . . , hn in
the registration oracle. LiveSessions cannot contain h anymore, so when it is needed in the
finalize oracle, r1, . . . , rn will be used once again. If Adv queries H on h′‖i at any time, B′
will query Ocheck on h′ to check if h′ = h or not. If Ocheck returns 1, then B′ sends ri to Adv.

This also gives a way for B′ to guess h. If Adv queries H for some h′‖i and Ocheck returns
1 on h′, then B′ just outputs h′ in the unpredictability game. However, we don’t have the
guarantee that Adv will make such a query. All we know is that Adv can produce a valid
token. Hence, we must argue that Adv can produce a valid token only if it queries H on h.

Any token share sent by the i-th server is encrypted with hi. At a high level, Adv needs
to decrypt at least one token share from an honest server, say j-th, to construct a token. The

38



SecGamePASTA,Adv(1
κ, n, t,P):

− (JtskK, tvk, tpp)← TTG.Setup(1κ, n, t)

− set ski := tski for all i ∈ [n], vk := tvk and pp := (κ, n, t, P, tpp).

− (U , C?, stadv)← Adv(pp)

− V,PwdList,TokList := ∅, ReqListC,i := ∅ for i ∈ [n]

− ct := 0, LiveSessions = []

− QC,i, QC,x := 0 for all C, i ∈ [n] and x

− out← Adv〈O〉({ski}i∈U , {SKi}i∈U , stadv)

Ocorrupt(C).

− V := V ∪ {C}
− if (C, ?) ∈ PwdList, return PwdList[C]

Oregister(C).

− require: PwdList[C] = ⊥
− pwd←$ P

− add (C, pwd) to PwdList

− (JkK, opp)← TOP.Setup(1κ, n, t)

− h := TOP(k, pwd) and hi := H(h‖i) for i ∈ [n]

− reci,C := (ki, hi) for all i ∈ [n]

− add reci,C to reci for all i ∈ [n]

Oreq(C, x, T ).

− if PwdList[C] = ⊥ or |T | < t, output ⊥
− c := TOP.Encode(PwdList[C], ρ) for a random ρ

− set reqi := c for i ∈ [n]

− LiveSessions[ct] := (C,PwdList[C], ρ, T )

− add reqi to ReqListC,i for i ∈ T
− increment ct by 1

− return {reqi}i∈T

Oresp(i, C, x, reqi).

− require: i ∈ [n] \ U
− if reci,C /∈ reci, return ⊥; else, parse reci,C as (ki, hi)

− if reqi /∈ ReqListC,i, increment QC,i by 1

− zi := TOP.Eval(ki, reqi)

− yi ← TTG.PartEval(tski, C‖x)

− set resi := (zi, SKE.Encrypt(hi, yi))

− increment QC,x by 1

− return resi

Ofinal(ct, {resi}i∈S).

− st := LiveSessions[ct]

− parse resi as (z′i, ctxt
′
i) and st as (C, pwd, ρ, T ).

− if S 6= T , output ⊥
− h′ := TOP.Combine(pwd, {(i, z′i)}i∈T , ρ)

− for i ∈ T , h′i := H(h′‖i) and y′i := SKE.Decrypt(h′i, ctxt
′
i)

− set tk := TTG.Combine({i, y′i}i∈T )

− add tk to TokList

− return tk

Overify(C, x, tk).

− return TTG.Verify(tvk, C‖x, tk)

Figure 13: Hyb0: SecGame for PASTA

39



SecGamePASTA,Adv(1
κ, n, t,P):

Same as Hyb0, except the following oracles behave differently when C = C?. Below, we describe their behavior
for this case only, highlighting the differences in red. When C 6= C?, they behave in the same way as Hyb0.

Oreq(C?, x, T ).

− if PwdList[C?] = ⊥ or |T | < t, output ⊥
− c := TOP.Encode(PwdList[C?], ρ) for a random ρ

− set reqi := c for i ∈ [n]

− zi := TOP.Eval(ki, reqi)

− h := TOP.Combine(PwdList[C?], {(i, zi)}i∈T , ρ)

− LiveSessions[ct] := (C?, c, {(i, zi)}i∈T , h)

− add reqi to ReqListC?,i for i ∈ T
− increment ct by 1

− return {reqi}i∈T

Oresp(i, C?, x, reqi).

− require: i ∈ [n] \ U
− if reci,C? /∈ reci, return ⊥; else, parse reci,C? as (ki, hi)

− if reqi /∈ ReqListC?,i, increment QC?,i by 1

− if (reqi /∈ ReqListC?,i):

− zi := TOP.Eval(ki, reqi)

− else:

− let zi be the value associated with i in the entry (C?, reqi, . . . , (i, zi) . . .) in LiveSessions

− yi ← TTG.PartEval(tski, C
?‖x)

− set resi := (zi, SKE.Encrypt(hi, yi))

− increment QC?,x by 1

− return resi

Ofinal(ct, {resi}i∈S).

− (C?, c, {(i, zi)}i∈T , h) := LiveSessions[ct]

− parse resi as (z′i, ctxt
′
i)

− if S 6= T , output ⊥
− if (TOP.PubCombine({zi}i∈T ) 6= TOP.PubCombine({z′i}i∈T )):

− return ⊥

− for i ∈ T , h′i := H(h‖i) and y′i := SKE.Decrypt(h′i, ctxt
′
i)

− set tk := TTG.Combine({i, y′i}i∈T )

− add tk to TokList

− return tk

Figure 14: Hybrid Hyb1

40



BAdv(1
κ, n, t,P):

Same as Hyb1, except the following oracles are simulated differently when C = C?. Below, these oracles are
described for this case only, with the differences highlighted in red. Output whatever Adv does.

Oregister(C
?).

− require: PwdList[C?] = ⊥
− add (C?, unknown) to PwdList

− output U , get back {ki}i∈U
− query Oenc&eval to get (c, {zi}i∈[n], h)

− hi := H(h‖i) for i ∈ [n]

− for i ∈ [n] \ U , reci,C? := (0, hi)

− for i ∈ U , reci,C? := (ki, hi)

− add reci,C? to reci for all i ∈ [n]

Oreq(C?, x, T ).

− if PwdList[C?] = ⊥ or |T | < t, output ⊥
− query Oenc&eval to get (c, {zi}i∈[n], h)

− set reqi := c for i ∈ [n]

− LiveSessions[ct] := (C, c, {i, zi}i∈T , h)

− add reqi to ReqListC?,i for i ∈ T
− increment ct by 1

− return {reqi}i∈T

Oresp(i, C?, x, reqi).

− require: i ∈ [n] \ U
− if reci,C? /∈ reci, return ⊥; else, parse reci,C? as (ki, hi)

− if reqi /∈ ReqListC?,i, increment QC?,i by 1

− if (reqi /∈ ReqListC?,i):

− query Oeval(i, reqi) to get zi

− else:

− let zi be the value associated with i in the entry (C?, reqi, . . . , (i, zi) . . .) in LiveSessions

− yi ← TTG.PartEval(tski, C
?‖x)

− set resi := (zi, SKE.Encrypt(hi, yi))

− increment QC?,x by 1

− return resi

Figure 15: Adversary B

41



only way to get this key is by querying H on h‖j.
We defer a formal proof to the full version.

C Threshold Authentication Schemes

In this section, we describe the threshold authentication schemes we implemented. We im-
plemented the following schemes:

− The DDH-based DPRF scheme of Naor, Pinkas and Reingold [NPR99] as a public-key
threshold MAC (Figure 16).

− The PRF-only DPRF scheme of Naor, Pinkas and Reingold [NPR99] as a symmetric-key
MAC (Figure 17).

− The threshold RSA-signature scheme of Shoup [Sho00] as a threshold signature scheme
based on RSA assumption (Figure 18).

− The pairing-based signature scheme of Boldyreva [Bol03] as a threshold signature scheme
based on the gap-DDH assumption (Figure 19).

Ingredients: Let G = 〈g〉 be a multiplicative cyclic group of prime order p in which the DDH
assumption holds and H : {0, 1}∗ → G be a hash function modeled as a random oracle. Let
GenShare be Shamir’s secret sharing scheme.

− Setup(1κ, n, t) → (JskK, vk, pp). Sample s ←$ Zp and get (s, s1, . . . , sn) ←
GenShare(n, t, p, (0, s)). Set pp := (p, g,G), ski := si and vk := s. Give (ski, pp) to
party i. (pp will be an implicit input in the algorithms below.).

− PartEval(ski, x)→ yi. Compute w := H(x), hi := wski and output hi.

− Combine({i, yi}i∈S) =: tk/⊥. If |S| < t output ⊥. Otherwise parse yi as hi for i ∈ S and

output
∏
i∈S h

λi,S
i

− Verify(vk, x, tk) =: 1/0. Return 1 if and only if H(x)vk = tk.

Figure 16: The DDH-based DPRF construction of Naor et al. [NPR99] (public-key threshold
MAC).

D Necessity of Public-Key Operations

In both the registration phase and sign-on phase of PASTA, we instantiate the TOPRF
component with the 2HashTDH protocol of Jarecki et al. [JKKX17] which uses public-key
operations. Therefore, all the instantiations of PASTA use public-key operations even if the
threshold token generation scheme is purely symmetric-key. This could become a significant
overhead in some cases compared to the näıve insecure solutions (see Section 7.4 for details).
So the natural question is whether public-key operations can be avoided, or, put differently,
is it just an artifact of PASTA and its instantiations? In this section we prove that public-key
operations are indeed necessary to construct any secure PbTA scheme.

In more detail, we prove that if one can construct PbTA that only makes black-box use of
one-way functions, then a secure two-party key agreement protocol can also be constructed
by only making black-box use of one-way functions, which would imply P 6= NP [IR90].

42



Ingredients: Let f : {0, 1}κ × {0, 1}∗ → {0, 1}∗ be a pseudo-random function.

− Setup(1κ, n, t) → (JskK, vk, pp). Pick d :=
(

n
n−t+1

)
keys k1, . . . , kd ←$ {0, 1}κ for f . Let

D1, . . . , Dd be the d distinct (n − t + 1)-sized subsets of [n]. For i ∈ [n], let ski :=
{kj | i ∈ Dj for all j ∈ [d]} and vk := (k1, . . . , kd). Set pp := f and give (ski, pp) to
party i.

− PartEval(ski, x)→ yi. Compute hi,k := fk(x) for all k ∈ ski and output {hi,k}k∈ski .

− Combine({i, yi}i∈S) =: tk/⊥. If |S| < t output ⊥. Otherwise parse yi as {hi,k}k∈ski

for i ∈ S. Let {sk′i}i∈S be mutually disjoint sets such that ∪i∈Ssk′i = {k1, . . . , kd} and
sk′i ⊆ ski for every i. Output ⊕k∈sk′i,i∈S(hi,k).

− Verify(vk, x, tk) =: 1/0. Return 1 if and only if ⊕i∈[d](fki(x)) = tk where vk =
{k1, . . . , kd}.

Figure 17: The PRF-based DPRF of Naor et al. [NPR99] (symmetric-key threshold MAC).

Ingredients: Let GenShare be a Shamir’s secret sharing scheme and H : {0, 1}∗ → Z∗N be a
hash function modeled as a random oracle.

− Setup(1κ, n, t) → (JskK, vk, pp). Let p′, q′ be two randomly chosen large primes of equal
length and set p := 2p′ + 1 and q = 2q′ + 1. Set N := pq. Choose another large
prime e at random and compute d ≡ e−1 mod Φ(N) where Φ(·) : N → N is the Euler’s
totient function. Then (d, d1, . . . , dn) ← GenShare(n, t,Φ(N), (0, d)). Let ski := di and
vk := (N, e). Set pp := ∆ where ∆ := n!. Give (pp, vk, ski) to party i.

− PartEval(ski, x)→ yi. Output yi := H(x)2∆di .

− Combine({i, yi}i∈S) =: tk/⊥. If |S| < t output ⊥, otherwise compute z :=∏
i∈S y

2λ′i,S
i mod N where λ′i,S := λi,S∆ ∈ Z. Find integer (a, b) by Extended Euclidean

GCD algorithm such that 4∆2a+eb = 1. Then compute tk := za ·H(x)b mod N . Output
tk.

− Verify(vk, x, tk) = 1/0. Return 1 if and only if tke = H(x) mod N .

Figure 18: The threshold RSA-signature scheme of Shoup [Sho00].

Hence this gives us evidence that it is unlikely to construct PbTA using only symmetric-key
operations.

Overview We now give an overview of our proof technique. At a high level, we construct a
secure key-agreement protocol from PbTA in a black-box way. As a result, if one can construct
PbTA that only makes black-box use of one-way functions, then our construction is a secure
key-agreement protocol that only makes black-box use of one-way functions, contradicting
the impossibility result of Impagliazzo and Rudich [IR90].

To construct the secure key-agreement protocol, think of the two parties P1 and P2 in
the key-agreement protocol as a client C and the set of all servers in the PbTA protocol,
respectively. We set the password space to contain only one password pwd, which means the
password of C is known to both parties. Thus P2, which represents the set of all servers, can
run GlobalSetup and the registration phase of C on its own. Then the two parties run the
sign-on phase so that P1 obtains a token for x = 0. Since both parties know the password,

43



Ingredients: Let G = 〈g〉 be a multiplicative cyclic group of prime order p that sup-
ports pairing and in which CDH is hard. In particular, there is an efficient algorithm
VerDDH(ga, gb, gc, g) that returns 1 if and only if c = ab mod p for any a, b, c ∈ Z∗p and
0 otherwise. Let H : {0, 1}∗ → G be a hash function modeled as a random oracle. Let
GenShare be the Shamir’s secret sharing scheme.

− Setup(1κ, n, t) → (JskK, vk, pp). Sample s ←$ Z∗p and get (s, s1, . . . , sn) ←
GenShare(n, t, p, (0, s)). Set pp := (p, g,G), ski := si and vk := gs. Give (ski, pp) to
party i.

− PartEval(ski, x)→ yi. Compute w := H(x), hi := wski and output hi.

− Combine({i, yi}i∈S) =: tk/⊥. If |S| < t output ⊥. Otherwise parse yi as hi for i ∈ S and

output
∏
i∈S h

λi,S mod p
i

− Verify(vk, x, tk) =: 1/0. Return 1 if and only if VerDDH(H(x), vk, tk, g) = 1.

Figure 19: The threshold pairing-based signature scheme of Boldyreva [Bol03].

P2 can emulate the sign-on phase on its own to generate a token for x = 0. The resulting
token is the agreed key by both parties.

Notice that the generated token might not be a valid output for the key agreement proto-
col, but the two parties can apply randomness extractor to the token and obtain randomness
to generate a valid key. We omit the details here.

The security of the key-agreement protocol relies on the unforgeability of the PbTA
scheme. Intuitively speaking, if there exists a PPT adversary that outputs the agreed token
by P1 and P2 with non-negligible probability, then the adversary is able to generate a valid
token in the PbTA scheme with non-negligible probability, without making any fake requests
to the servers (thus keeping all QC,i to zero), contradicting the unforgeability property. Next
we give provide a formal proof.

Theorem D.1 A secure two-party key agreement protocol can be constructed from any PbTA
scheme in a black-box way.

Proof. Let Π = (GlobalSetup, SignUp, Request, Respond, Finalize, Verify) be a PbTA scheme.
The secure two-party key agreement protocol is presented in Figure 20.

The protocol uses PbTA in a black-box way. Since the tokens tk, tk′ are generated using
the same C, x, and secret key, they are equivalent. Hence the two parties agree on a token
(which can be used to extract randomness to generate a key). Now we show that if there
exists a PPT adversary Adv that outputs the agreed token by P1, P2 in the key-agreement
protocol, then we can construct another adversary B that breaks unforgeability of the PbTA
scheme.
B does not corrupt any server or client. It then calls Osignup(C) to obtain {msgi}i∈[n], and

calls Oserver(i, store,msgi) to register C for all i ∈ T . Then it calls Oreq(C, pwd, 0, T ) to obtain
{reqi}i∈T , and calls Oserver(i, respond, reqi) to obtain resi for all i ∈ T . B runs Adv with input
being the transcript of the key-agreement protocol, consisting of {(pp, C), {reqi}i∈T , {resi}i∈T },
and obtains an output t̃k from Adv. Then B simply outputs (C, 0, t̃k).

In the security game SecGameΠ,Adv(1κ, n, t,P) (Figure 7) for B, we have QC,i = 0 for all
i. By the unforgeability definition, there exists a negligible function negl such that

Pr[Verify(vk, C, 0, t̃k) = 1] ≤ negl(κ).

44



Let the password space be P := {pwd}, set n := 2, t := 2, let T be the set of all servers in
Πsym, and set x := 0.

1. P2 executes the following:

− Run GlobalSetup(1κ, n, t,P) → (JskK, vk, pp).

− Run SignUp(C, pwd)→ ((C,msg1), . . . , (C,msgn)).

− Set reci,C := msgi.

− Send (pp, C) to P1.

2. On receiving the first message from P2, P1 does the following:

− Run Request(C, pwd, x, T )→ ({(C, x, reqi)}i∈T , st).
− Send {reqi}i∈T to P2.

3. On receiving the message from P1, P2 does the following:

− Run Respond(ski,reci, C, x, reqi)→ resi for i ∈ T .

− Send {resi}i∈T to P1.

− Emulate the protocol:

a. Request(C, pwd, x, T )→ ({(C, x, req′i)}i∈T , st′).
b. Respond(ski,reci, C, x, req

′
i)→ res′i for i ∈ T .

c. Finalize(st′, {res′i}i∈T )→ tk′.

− Output tk′.

4. On receiving the second message from P2, P1 executes the following:

− Run Finalize(st, {resi}i∈T )→ tk.

− Output tk.

Figure 20: Secure two-party key agreement protocol

However, Adv’s token t̃k is valid with non-negligible probability, leading to a contradiction.

Combining the above theorem with the result of Impagliazzo and Rudich [IR90], we have
the following corollary:

Corollary D.2 If there exists a PbTA scheme that only makes black-box use of one-way
functions, then P 6= NP .

This corollary provides us with evidence that it is unlikely to construct PbTA schemes
that only makes black-box use of one-way functions. Notice that we did not rule out the
possibility of getting around this problem by making non-black-box use of one-way functions.
We leave that as an interesting open problem.

45


	Introduction
	Our Contributions
	Related Work

	An Overview of PASTA
	Preliminaries
	Hardness Assumption
	Threshold Token Generation

	Threshold Oblivious Pseudo-Random Function
	Definition
	Security properties
	Construction

	Password-based Threshold Authentication
	Algorithms
	Security properties

	PASTA: Our Construction
	Performance Evaluation
	Implementation Details
	Token Generation Time
	Time Breakdown
	Comparison with Naïve Solutions

	TOPRF: Proofs
	Unpredictability
	Input Obliviousness

	PASTA: proofs
	Password safety
	Unforgeability

	Threshold Authentication Schemes
	Necessity of Public-Key Operations

