
Towards Isogeny-Based Password-Authenticated
Key Establishment

Oleg Taraskin1, Vladimir Soukharev, David Jao, and Jason T. LeGrow

1 Waves Platform. Moscow, Russian Federation. tog.postquant@gmail.com
2 InfoSec Global. Toronto, Ontario, Canada.
vladimir.soukharev@infosecglobal.com

3 Department of Combinatorics and Optimization, University of Waterloo. Waterloo,
Ontario, Canada. {djao,jlegrow}@uwaterloo.ca

Abstract. Password authenticated key establishment (PAKE) is a cryp-
tographic primitive that allows two parties who share a low-entropy se-
cret (a password) to securely establish cryptographic keys in the ab-
sence of public key infrastructure. We propose the first quantum-resistant
password-authenticated key exchange scheme based on supersingular el-
liptic curve isogenies. The scheme is built upon supersingular isogeny
Diffie-Hellman [15], and uses the password to generate permutations
which obscure the auxiliary points. We include elements of a security
proof, and discuss roadblocks to obtaining a proof in the BPR model [1].
We also include some performance results.

1 Introduction

Many current cryptographic schemes are based on mathematical problems that
are considered difficult for classical computers, but can easily be solved using
quantum algorithms. To prepare for the emergence of quantum computers, we
aim to design cryptographic primitives which will resist quantum attacks. One
family of such primitives, proposed by Jao and De Feo [15]—commonly referred
to as SIDH—uses isogenies between supersingular elliptic curves to construct
quantum-resistant cryptographic protocols for public key cryptography. Subse-
quent work by Costache et al. [8] has shown that the security of SIDH reduces
to the Supersingular Isogeny Graph problem originally proposed by Charles et
al. [7].

Password-Authenticated Key Establishment (PAKE) is a primitive in which
parties securely establish a common cryptographic key over an insecure channel
using a password (modelled as a low-entropy secret). The first PAKE protocol
was designed by Bellovin and Merritt in 1992 [3]. Today, many protocols of
this type exist—most are based on the discrete logarithm problem in subgroups
of Z∗p or elliptic curve groups, and are not quantum-safe. Until this work, the
only PAKEs built on quantum-safe foundations are lattice-based [12, 27]. We
propose the first PAKE based on isogenies between supersingular elliptic curves.
It is derived from SIDH; notably, the additional operations required are not

prohobitively expensive (elliptic curve arithmetic) and do not require additional
rounds of communication, and the messages are the same size as in SIDH.

In particular, in SIDH, parties exchange elliptic curves which are images of a
fixed public curve under ephemeral secret isogenies; then, each party computes
the image of their peer’s curve under a related isogeny. Parties also exchange
certain points on their ephemeral curves to aid in the computation. In our PAKE
protocol, these so-called “auxiliary points” are obfuscated by transforming them
according to a certain group action, described in Section 2. The passive security
of this protocol comes from the difficulty of finding the correct points (preventing
offline dictionary attacks) or performing the computation without them, while
the active security from the fact that the adversary needs to “commit,” in a
sense, to a group element in order to actively attack the protocol (preventing all
but the most basic online dictionary attacks).

2 Background

2.1 Password-Authenticated Key Establishment

The PAKE security model of Bellare, Pointcheval, and Rogaway (BPR) [1] is very
similar to the Canetti-Krawczyk (CK) security model [5] for authenticated key
establishment. The complete model specification appears in Appendix A; here
we only point out the major differences between the two. While the CK security
model includes public-key infrastructure (i.e., each party registers a keypair, and
the public keys are published), in the BPR model there are two kinds of parties—
clients and servers—and clients choose passwords according to some distribution
on a dictionary and share them with the servers. Of course, in the real world,
passwords are low-entropy secrets; this is typically modelled by having passwords
be chosen by parties uniformly from a set called the password dictionary which is
small enough that it can be enumerated efficiently. In particular, attacks which
involve “checking all passwords” are feasible. The examples in the following
section illustrate this concept.

Two Insecure PAKEs To illustrate the consequences of the low-entropy na-
ture of passwords, we present two protocols which admit attacks that exploit it.

1. Diffie-Hellman + MAC Let MAC be a message authentication code pro-
tocol. Augment the Diffie-Hellman protocol by having each party send a
MAC tag on each of their messages, using the password as the key; have
the parties abort if any tag they receive is not consistent with the password
and incoming message. Though this is reminiscent of the SIG-DH protocol
of [5] (which is secure in the CK model), the low entropy of the password
distribution means that it is susceptible to a straightforward offline dictio-
nary attack : upon seeing a single message and tag (m, t), an adversary can
simply check whether t = MACπ(m) for each password π in the dictionary.

With overwhelming probability equality will hold for exactly one password
π∗, which is the party’s true password. Once the password is recovered, the
adversary can successfully mount a man-in-the-middle attack.

2. Randomized-base Diffie-Hellman Consider a modified version of Diffie-
Hellman in a group G = 〈g〉 of order N as follows. Let H be a hash function
which maps the password dictionary into (Z/NZ)∗. Instead of using the
fixed base g, parties use base gH(π) when constructing their messages, so
that if the ephemeral secret is a, the message is m = gaH(π). The shared
secret is constructed as in Diffie-Hellman: if the messages are m = gaH(π)

and m′ = gbH(π), the shared secret is (m′)a = gabH(π) = mb. An adversary
can attack the protocol by intercepting a message m = gaH(π) from Alice
and inserting their own message m′′ = gc. Alice will compute a shared
secret s = gac, while the adversary can compute a “potential” shared secret
s′(π′) = mcH(π′)−1

for each password π′. By issuing a password reveal query
on Alice’s session, the adversary can determine Alice’s true password from
s and the list of s′(π′).

2.2 Isogenies

We provide a brief review of the background information. For further details
on the mathematical foundations of isogenies, we refer the reader to [15, 25].
Given two elliptic curves E1 and E2 over some finite field Fq of size q, an isogeny
φ : E1 → E2 is an algebraic morphism which is a group homomorphism. The
degree of φ, denoted deg(φ), is its degree as an algebraic morphism. Two el-
liptic curves are isogenous if there exists an isogeny between them. Given an
isogeny φ : E1 → E2 of degree n, there is another isogeny φ̂ : E2 → E1 (the dual

isogeny) of degree n satisfying φ◦ φ̂ = φ̂◦φ = [n] (the multiplication-by-n map).
Thus “being isogenous” is an equivalence relation. For any n ∈ N, define the
subgroup E[n] = {P ∈ E(F̄q) : nP = ∞}. The group E[n] is isomorphic to
(Z/nZ)2 whenever gcd(n, q) = 1 [25]. We define the endomorphism ring End(E)
to be the set of all isogenies from E to itself, defined over the algebraic closure
F̄q of Fq. The endomorphism ring is a ring under the operations of point-wise
addition and functional composition. If dimZ(End(E)) = 2, then we say that
E is ordinary ; otherwise dimZ(End(E)) = 4 and we say that E is supersingu-
lar. Two isogenous curves are either both ordinary or both supersingular. All
elliptic curves used in this work are supersingular. The isogeny φ : E1 → E2

is separable if the extension Fq(E1)/φ∗(Fq(E2)) is separable; we will only con-
sider separable isogenies. An important property of a separable isogeny φ is that
| kerφ| = deg φ [25, III.4.10(c)]. The kernel uniquely defines the isogeny up to
isomorphism. Methods for computing and evaluating isogenies are given in [4,
15, 16, 26]. We use isogenies whose kernels are cyclic; in this setting, knowledge
of any single generator of the kernel allows for efficient evaluation of the isogeny
(up to isomorphism); conversely, the ability to evaluate the isogeny via a black
box allows for efficient determination of the kernel. Thus, in our application, the
following are equivalent: knowledge of the isogeny, its kernel, or any generator
of its kernel.

2.3 Isogeny-Based Cryptography

The first cryptographic construction to use supersingular elliptic curve isogenies
is the hash function construction of Charles et al. [7], based on the isogeny
graph path-finding problem. Public key cryptography based on isogenies was first
introduced by Couveignes [10] and Rostovtsev & Stolbunov [23] using ordinary
elliptic curves. Jao and De Feo [15] proposed the first public-key cryptosystem
based on supersingular elliptic curve isogenies, along with a new assumption
which was subsequently shown [8] to reduce to the path-finding assumption
originally proposed in [7]. We review here the operation of the Jao and De Feo
key exchange protocol SIDH, which is the foundation for our PAKE.

Fix a prime p of the form `eAA `eBB f±1 where `A, `B are small primes, eA, eB ∈
N such that `eAA ≈ `eBB , and f ∈ N is a small cofactor. Fix a supersingular
curve E defined over GF (p2), and bases {PA, QA} and {PB , QB} of E[`eAA]
and E[`eBB] respectively. Alice chooses mA, nA ∈R Z/`eAA Z, not both divisible
by `A, and computes an isogeny φA : E → EA with kernel 〈mAPA + nAQA〉.
Alice computes the auxiliary points {φA(PB), φA(QB)} ⊂ EA, and sends these
points to Bob along with EA. Bob proceeds analogously. Upon receipt of EB and
φB(PA), φB(QA) ∈ EB from Bob, Alice computes an isogeny φ′A : EB → EAB
with kernel 〈mAφB(PA) + nAφB(QA)〉; Bob proceeds mutatis mutandis. Alice
and Bob can then form a shared secret key using use the common j-invariant of

EAB = φ′B(φA(E)) = φ′A(φB(E)) = E/〈mAPA + nAQA,mBPB + nBQB〉.

With almost no loss in generality, private ephemeral keys with m = 1 can be
used [9]. In this work we follow that convention.

2.4 The Möbius Action and Auxiliary Point Obfuscation

For a prime ` and an integer e, we define

SL2(`, e) =
{
Ψ ∈ (Z/`eZ)2×2 : detA ≡ 1 (mod `e)

}
Υ2(`, e) = {Ψ ∈ SL2(`, e) : A is upper triangular modulo `}

to be the special linear and special reduced upper triangular groups modulo `e,
respectively. If p = `eAA `eBB f ± 1 is a prime and E is a supersingular elliptic
curve defined over GF (p2), Υ2(`A, eA) acts on E[`eAA]2 in a way analogous with

ordinary matrix-vector multiplication: if Ψ =
[
α β
γ δ

]
then Ψ [XY] =

[
αX+βY
γX+δY

]
. We

use this action to mask auxiliary points, since for any X,Y ∈ E[`eAA] and any
Ψ, Ψ ′ ∈ Υ2(`A, eA), for

[
X′

Y ′

]
= Ψ−1Ψ ′[XY] we have e(X,Y) = e(X ′, Y ′), where e

is the Tate pairing [24, Exercise 10.24]; this prevents a kind of offline dictionary
attack, which we elaborate on in Section 4.1.

In the context of isogeny computations, this (left) action of Υ2(`A, eA) induces
a new (right) action (the Möbius action) on Z/`eAA Z in the following way: if[
X′

Y ′

]
= Ψ [XY] where Ψ =

[
α β
γ δ

]
, then for any m ∈ Z/`eAA Z

E/〈X ′ +mY ′〉 = E/〈(αX + βY) +m(γX + δY)〉 = E/〈X + δm+β
γm+αY 〉;

thus we define the right action mΨ := δm+β
γm+α . The two actions are related as

above: mapping the auxiliary basis by the action of Ψ on E[`eAA]2 is equivalent to
mapping the m which defines the isogeny’s kernel by the action of Ψ on Z/`eAA Z.
This action relates to a sort of “related-key attack” on SIDH: in an unauthenti-
cated setting, an active adversary can force an honest party to compute a shared
key corresponding to an ephemeral key chosen by the adversary and the image
of the honest party’s ephemeral key under the action of a known matrix Ψ .

Note that given EA with EA = EK/〈PA + mAQA〉 and Ψ ∈ Υ2(`A, eA) it is
easy to find (EB , XB , YB), EAB,Ψ satisfying EAB,Ψ = EB/〈XB+mΨ

AYB〉; simply
set EB = EK/ kerφ for some `eBB -isogeny φ, and set [XB , YB]T = Ψ−1[φ(PB), φ(QB)]T .

2.5 Computational Assumptions

For brevity, the standard assumptions of SIDH appear in Appendix B.
As noted in Section 2.3, to compute the shared secret in SIDH the parties

must have the images of the public torsion bases under the secret isogenies.
While previous works ignored these “auxiliary points” in favour of standard
authentication methods, such as signature schemes [18] or generic transforms [14]
to add authentication, here we focus on how we can disrupt man-in-the-middle
attacks by obfuscating them. In this section we define a new computational
assumption related to computing these auxiliary points. We use the notation
of Section 2.3 for our global parameters, and define the security parameter λ =
dlog2 pe. When P is a computational problem with some global parameters (such
as the prime p and global curves and torsion points used in SIDH), we denote by
InsP (γ) the set of all instances of problem P with global parameters γ. When
A is an algorithm for a problem P and ϑ is an instance of P , A(ϑ) denotes the
(possibly randomized) output of A on input ϑ. Unif(X) denotes the uniform
distribution on a set X.

The asymmetry of the isogeny computations requires us to consider two vari-
ants of each of the computational problem: one for `eAA -isogenies, and the other
for `eBB -isogenies. For brevity we present the “Type A” problem, advantage, and
assumption here and omit the “Type B” variant, which is defined analogously.

Definition 1 (Auxillary Point Computation–A (SI-APCA)). Let φA : E →
EA be an `eAA -isogeny with kernel 〈PA+nAQA〉 for nA ← Unif(Z/`eAA Z). The su-
persingular isogeny auxiliary point computation problem (type A) is to compute
φA(PB) and φA(QB) given (E,PA, QA, PB , QB , EA).

With the notation above, we define SI-APCA((E,PA, QA, PB , QB , EA)) =
(φA(PB), φA(QB)). For algorithms A which solve SI-APCA, we define the ad-
vantages

AdvSI-APCA
p (A) = P[ϑ← InsSI-APCA

(p) : SI-APCA(ϑ) ∈ A(ϑ)], and

AdvSI-APCA
p (t) = max{AdvSI-APCA

p (A) : A runs in time t ∀ϑ ∈ InsSI-APCA
(p)}.

The SI-APC assumption is that for t and n polynomial in λ, AdvSI-APCA
p (t, n)

and AdvSI-APCB
p (t, n) are negligible in λ.

Of course, the MOV attack [20] attack using the Pohlig-Hellman algorithm
[22] can be used to solve extended discrete logarithms in supersingular elliptic
curves, and so the SI-APC problem is equivalent to asking the adversary to
find the image of any `eBA - (or `eBB -) torsion point—rather than the image of a
particular basis; this phrasing is arguably more natural. The SI-APC problem
reduces to the supersingular isogeny problem [11, Problem 5.2] by noting that
finding a generator of the kernel of an isogeny φ allows one to compute the
isogeny on the whole domain curve, by Vélu’s formulas [26], whereas SI-APC
require one to compute the isogeny on particular points (or equivalently, the
restriction φ|E[`

eA
A] or φ|E[`

eB
B].)

The hardness of Problem 1 has not been thoroughly studied; however, we
note that if the problem could be solved efficiently, the auxiliary points needed
in SIDH [11] would not have to be sent, and thus the bandwidth of SIDH could
be reduced by omitting them. So far, there are no proposals for how to do away
with auxiliary points in SIDH, and no known solutions to the SI-APC problems.
Notably, however, it is shown in [21] that, under some heuristics, SI-APC is
equivalent to the corresponding isogeny problems for some non-standard variant
SIDH parameter sets (e.g., when `eAA � `eBB , or vice versa).

3 Our Protocol

The protocol builds on the SIDH scheme of Jao and De Feo [15]. Suppose a
client A ∈ C and a server B ∈ S who share a common password πA wish to
establish a shared secret key. The setup is as follows: Fix a prime p of the form
`eAA `eBB ·f ±1 where `A and `B are small primes, eA and eB are positive integers,
and f is a (small) cofactor. Fix a supersingular curve EK defined over GF (p2),
and bases {PA, QA} and {PB , QB}. Let HA and HB be random oracles with
codomain(HA) = Υ2(`B , eB) and codomain(HB) = Υ2(`A, eA), and let KDF be
a key derivation function (modelled as a random oracle). Then:

1. A chooses an ephemeral key and a message to B. In particular, A:
(a) Chooses nA ∈ Z`eAA uniformly and sets GA = PA + nAQA;
(b) Defines EA = EK/〈GA〉 and φA to be the isogeny with kernel 〈GA〉;
(c) Defines ΨA = HA(j(EA)||πA) and sets

[
XA

YA

]
= ΨA ·

[
φA(PB)
φA(QB)

]
; and,

(d) Sends (EA, XA, YA) to B.
2. Upon receiving (EA, XA, YA) from A, B:

(a) Checks that eEA
(XA, YA) = eEK

(PB , QB)`
eA
A —if not, abort;

(b) Computes ΨAB = HA(j(EA)||πA);
(c) Chooses nB ∈ Z`eBB uniformly and sets GB = PB + nBQB ;
(d) Defines EB = EK/〈GB〉 and φB to be the isogeny with kernel 〈GB〉;
(e) Computes ΨB = HB(j(EB)||πA) and sets

[
XB

YB

]
= ΨB ·

[
φB(PA)
φB(QA)

]
;

(f) Sends (EB , XB , YB) to A; and,
(g) Constructs the key KB , which is given by

KDF((EA, XA, YA)||(EB , XB , YB)||j(EA/〈XA + n
Ψ−1

AB

B YA〉)||ΨAB ||ΨB)

3. Upon receiving (EB , XB , YB) from B, A:

(a) Checks that eEB
(XB , YB) = eEK

(PA, QA)`
eB
B —if not, abort;

(b) Computes ΨBA = HB(j(EB)||πA); and,
(c) Constructs the key KA, given by

KDF((EA, XA, YA)||(EB , XB , YB)||j(EB/〈XB + n
Ψ−1

BA

B YB〉)||ΨA||ΨBA)

From the definitions of KA and KB , the correctness of the protocol follows

if j(EA/〈XA + n
Ψ−1

AB

B YA〉) = j(EB/〈XB + n
Ψ−1

BA

B YB〉). We have

EA/〈XA + n
Ψ−1

AB

B YA〉 = (EK/ kerφA)/〈φA(PB) + nBφA(QB)〉
∼= (EK/ kerφA)/φA(kerφB)
∼= EK/〈kerφA, kerφB〉
∼= (EK/ kerφB)/φB(kerφA)
∼= (EK/ kerφB)/〈φB(PA) + nAφB(QA)〉

= EB/〈XB + n
Ψ−1

BA

A YB〉

so that j(EA/〈XA + n
Ψ−1

AB

B YA〉) = j(EB/〈XB + n
Ψ−1

BA

B YB〉) (since the j-invariant
is isomorphism-invariant [24, Proposition 1.4.(b)]), and the protocol is correct.

4 Progress Toward—and Roadblocks to—a Security
Theorem

Ideally, we would like a security theorem of the following form: for all adversaries
A which run in time t and use nS , nE , nO queries to Send, Execute, and the
random oracles respectively, we have

AdvΓΠ(A) ≤ αnS
L

+ poly(nS , nE , nO, t) · negl(λ) (1)

+
∑
j

αjAdvPj (poly(t, nS , nE , nO))

where α ≥ 1, the terms AdvPj (poly(t, nS , nE , nO)) encode the success proba-
bility in solving the underlying computational problems. Intuitively, this says
“the protocol is secure, up to terms related to an adversary’s ability to solve
the underlying computational problems plus a negligible probability, and up to
online dictionary attacks which allow α password guesses per online session on
average.”

In this section we present partial results toward a security theorem of this
form for the protocol of Section 3, and discuss the roadblocks that have prevented
us from establishing a complete security proof.

4.1 Successes

A birthday-type bound. The adversary can break the security of the protocol if,
by chance, two sessions use the same ephemeral secret key. A straightforward
birthday bound argument demonstrates that this occurs with probability at most

2(nS + nE)(nS + nE + nO + nK)

min{`eAA , `eBB }
= poly(nS , nE , nO, t) · negl(λ).

Preventing offline dictionary attacks from SIDH public key validation. The aux-
iliary points (φA(PB), φA(QB)) (respectively, (φB(PA), φB(QA))) used in SIDH
are determined by the ephemeral secret key, and hence are information-theoretically
determined by the public ephemeral curve EA (respectively, EB). In [13], the au-
thors demonstrate an attack on static-ephemeral SIDH which uses maliciously-
generated false auxiliary points to determine one party’s static public key; in
response, auxiliary point verification procedures have been developed. The most
robust known verification measure—present in [9]—ensures that the Tate pairing
of the auxiliary points is correct; that is, one checks whether

eEA
(XA, YA) = eEK

(PB , QB)`
eA
A .

This has the potential to yield an offline dictionary attack against protocols
which obfuscate auxiliary points, as follows: upon receiving (EA, XA, YA) from
a client whose password is π, the adversary constructs Ψ(π′) = HA(EA||π′) for
each password π′ in the dictionary, and then constructs each pair [RA(π′), SA(π′)]T =
Ψ(π′)−1[XA, YA] of points. Then, the adversary checks if

eEA
(RA(π′), SA(π′)) = eEK

(PB , QB)`
eA
A (2)

for each password π′. For any π′ for which Equation 2 does not hold, the adver-
sary is certain that the client’s password is not π′, since the true auxiliary points
RA(π) and SA(π) will satisfy it. This could allow the adversary to cut down the
set of “possible passwords,” without needing to launch an active attack.

Our choice of auxiliary point obfuscation method is not susceptible to this
attack since for all Ψ ′ ∈ Υ2(`A, eA) we have

eEK

(
Ψ ′−1[XA, YA]T

)
= eEK

(XA, YA)detΨ
′−1

= eEK
(XA, YA);

in particular, the pairing value is the same for each pair of points R′A(π), S′A(π).
The same argument applies to Bob’s messages, and so this particular offline
dictionary attack is thwarted.

Enforcing knowledge of the auxiliary points. In SIDH, the shared secret is j(E/ 〈GA, GB〉),
where GA and GB are the ephemeral secret kernel generators, and the (passive)
security of the protocol is predicated only on an adversary’s inability to com-
pute this quantity from the messages. Notably, the shared secret is determined
(information-theoretically) by EA and EB alone; the auxiliary points are required

only to make the computation efficient. In contrast, in order for our protocol to
be secure against offline dictionary attacks, it is necessary to assume that it is
difficult to recover not only the SIDH shared secret from EA and EB , but also
the correct auxiliary points. The most natural idea is to make the SI-APC as-
sumption as described in Section 2.5; unfortunately, if the session key depends
only on the SIDH shared secret, we cannot extract a solution to an SI-APC
instance from an adversary who wins the security game, and thus cannot relate
the security of the protocol to the SI-APC assumption directly.

The solution: we must include auxiliary point information in the keying infor-
mation. By including ΨA and ΨB as arguments to KDF, we can extract auxiliary
points from the random oracle inputs of an adversary that wins the security
game, and solve an instance of SI-APC. To solve an instance of SI-APCA we
can insert the instance into a client’s message, choosing the auxiliary points
at random. With probability [SL2(`B , eB) : Υ2(`B , eB)]−1 = (`B + 1)−1 the
randomly-chosen points are “valid” (in the sense that there exists an element of
Υ2(`B , eB) that takes the true auxiliary points to the randomly-chosen points).
Any adversary who wins the game with non-negligible advantage must make a
KDF query with the correct ΨA and ΨB values, since KDF is a random oracle;
thus any such adversary must obtain the correct ΨA and ΨB either by

1. Querying HA and HB on the correct values, or;

2. Extracting them from the publicly-available, password-related information.

In the second case we can extract solutions to SI-APCA (respectively SI-APCB),
by using the ΨA (respectively, ΨB) value from the adversary’s correct KDF query.

4.2 Roadblocks

Password information in messages. In classical PAKE protocols, the message
distribution is typically independent of the users’ passwords; in contrast, in our
protocol the password is information-theoretically determined by a given mes-
sage, but extracting the information from the messages is assumed to be difficult.
Nevertheless, the possibility of obtaining partial password information from the
messages alone cannot easily be ruled out, and so it is very difficult to quantify
the number of passwords that can be eliminated per actively-attacked session
(the α in equation (1)). Notably, some other post-quantum PAKEs, such as
RLWE-PAK and RLWE-PPK [12] also have message distributions which are
not independent of the password.4

4 In both schemes, messages are of the form m = H(π) + a · s+ 2e where (a, a · s+ 2e)
is a RLWE sample [19, Definition 3.1]. For passwords π′ 6= π, m − H(π′) is dis-
tributed uniformly, while m−H(π) is distributed according to the RLWE distribu-
tion. Though it is generally assumed that these distributions are computationally
indistinguishable [19, Definition 3.2], they are not equal ; i.e., the messages are not
statistically independent of the password.

Password guesses. A typical PAKE security argument defines the notion of
“password guess,” and then argues that at most α password guesses can be
made per session, under some computational assumption. A password guess on
password π is intuitively “a KDF query in which the messages are those mes-
sages sent in a pair of matching sessions, the shared secret is the one that would
be computed in the pair of matching sessions if the password were π, and the
other inputs to KDF are consistent with the password and (if appropriate) have
been the output of random oracle queries with password π.”

A natural-seeming notion for password guess on a client is that, for values
(E,X, Y), (E′, X ′, Y ′), j(E′′), Ψ, Ψ ′ the adversary A queries

– KDF((E,X, Y)||(E′, X ′, Y ′)||j(E′′)||Ψ ||Ψ ′);
– Send(A, i, (Initiate, B)) with output (E,X, Y);
– Send(A, i, (E′, X ′, Y ′));
– HA(j(E)||π) = Ψ and HB(j(E′)||π) = Ψ ′

where E′′ ∼= E′/〈X ′+nΨ
′−1

A Y ′〉, where nA is the secret key which yields E. This
is somewhat consistent with our intuition of what a password guess should be:
A executes the protocol with A (pretending to be B) and computes the key
that A would compute if her password were π. While this does model one form
of password guess, the asymmetry of the protocol means that there is another
form of password guess which is consistent with the messages of the protocol:
by sending (E′, X ′, Y ′) where E′ = 〈PB + nBQB〉, X ′, Y ′ are the images of
the true auxiliary points under the action of Ψ ′′ = HB(j(E′)||π′′) and then

computing sk′′ = KDF((E,X, Y)||(E′, X ′, Y ′)||E/〈X + nΨ
−1

B Y 〉||Ψ ||Ψ ′′) (where
Ψ = HA(j(E)||π′′)), the adversary can test whether Ψ ′′ is A’s true password by
revealing A’s session key sk and testing whether sk′′ = sk. This type of password
guess creates two difficulties for a security proof:

1. It is undetectable without knowledge of the ephemeral key nB , and;
2. It is difficult to formulate a computational problem whose hardness can be

used to bound the number of passwords that can be checked per session.

If the “natural” password guess were the only type, under the heuristic as-
sumption that the messages reveal no password information, we can show that
only one password can be guessed per session (and, furthermore, that the proto-
col is secure in the model of [1], under further assumptions) under the assumption
that the following computational problem (and its B-type variant) is difficult:

Definition 2 (Computational Simultaneous Group Action Problem—
(Type A) (C-SGAA)). Let φA : E → EA be an isogeny with kernel 〈PA +
mAQA〉 for mA ← Unif(Z/`eAA Z), and let Ψ1, Ψ2 ← Unif(Υ2(`B , eB)). The Com-
putational Simultaneous Group Action Problem (Type A) (C-SGAA) is to find
values (EB , XB , YB), E1, E2 which satisfy E1 = EB/〈XB + mΨ1

A YB〉 and E2 =

EB/〈XB +mΨ2

A YB〉 given (E,PB , QB) and (EA, φA(PB), φA(QB)).

5 Performance

It is clear from the protocol description in Section 3 that the message sizes in
our protocol are identical to those of SIDH [11] for the same parameter set; in
particular, the are among the smallest post-quantum message sizes at equivalent
security levels. We implemented the scheme for the two parameter sets p434 and
p503 from [14] to quantify the additional computational cost due to auxiliary
point obfuscation/unobfuscation. Table 1 contains our performance results.

Parameter Set Scheme Total Clock cycles (×106)

p434 SIDH 65
p503 SIDH 116
p434 Our Protocol 65 + 77 = 142
p503 Our Protocol 116 + 112 = 228

Table 1. Quantitative results for our protocol compared with unauthenticated SIDH.
Results measured on a machine running Ubuntu 18.04 LTS with a 1.6 GHz Intel Core
i5-8250U processor.

6 Conclusion

We have presented a proposal for an isogeny-based password-authenticated key
establishment protocol based on supersingular isogeny Diffie-Hellman. Of par-
ticular interest is that our protocol explicitly makes use of the auxiliary points
for security, rather than efficiency. We hope that the partial results presented
here can serve as a stepping stone on the path to provably-secure isogeny-based
PAKE.

References

1. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In Bart Preneel, editor, Advances
in Cryptology — EUROCRYPT 2000, pages 139–155, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

2. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In Douglas R. Stinson, editor, Advances in Cryptology — CRYPTO ’93, pages
232–249, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

3. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In IEEE Symposium On Research In
Security And Privacy, pages 72–84, 1992.

4. Reinier Bröker, Denis Charles, and Kristin Lauter. Evaluating large degree iso-
genies and applications to pairing based cryptography. In Proceedings of the 2nd
International Conference on Pairing-Based Cryptography, pages 100–112, 2008.

5. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, EUROCRYPT, volume
2045 of Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

6. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology—
EUROCRYPT 2001, pages 453–474, Berlin, Heidelberg, 2001. Springer.

7. Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash
functions from expander graphs. Journal of Cryptology, 22:93–113, 2009.

8. Anamaria Costache, Brooke Feigon, Kristin Lauter, Maike Massierer, and Anna
Puskas. Ramanujan graphs in cryptography. Research Directions in Num-
ber Theory: Women in Numbers IV, AWM Springer Series (to appear), 2019.
https://eprint.iacr.org/2018/593.

9. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for super-
singular isogeny diffie-hellman. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I,
pages 572–601, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

10. Jean-Marc Couveignes. Hard homogeneous spaces, 2006.
http://eprint.iacr.org/2006/291/.

11. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. J. Math. Cryptol., 8:209–247,
2014.

12. Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV, and Michael Snook.
Provably secure password authenticated key exchange based on rlwe for the post-
quantum world. In Helena Handschuh, editor, Topics in Cryptology – CT-RSA
2017, pages 183–204, Cham, 2017. Springer.

13. Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the
security of supersingular isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, pages 63–91, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

14. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Ubanik.
Supersingular isogeny key encapsulation. Technical report, NIST Post-Quantum
Cryptography Standardization Process, 2019.

15. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In Bo-Yin Yang, editor, PQCrypto, volume
7071 of Lecture Notes in Computer Science, pages 19–34. Springer, 2011.

16. David Jao and Vladimir Soukharev. A subexponential algorithm for evaluating
large degree isogenies. In Algorithmic number theory, volume 6197 of Lecture Notes
in Comput. Sci., pages 219–233. Springer, Berlin, 2010.

17. Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of au-
thenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
Provable Security: First International Conference, pages 1–16, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

18. Jason LeGrow. Post-quantum security of authenticated key establishment proto-
cols. Master’s thesis, University of Waterloo, 2016.

19. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010, pages 1–23, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg.

20. Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Trans. Inform. Theory,
39(5):1639–1646, 1993.

21. Christophe Petit. Faster algorithms for isogeny problems using torsion point im-
ages. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, pages 330–353, Cham, 2017. Springer International Publishing.

22. S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over
and its cryptographic significance (corresp.). IEEE Trans. Inf. Theor., 24(1):106–
110, September 2006.

23. Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies, 2006. http://eprint.iacr.org/2006/145/.

24. Joseph H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate
Texts in Mathematics. Springer, New York, 1986.

25. Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1992.

26. Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B,
273:A238–A241, 1971.

27. Jiang Zhang and Yu Yu. Two-round pake from approximate sph and instantia-
tions from lattices. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology—ASIACRYPT 2017, pages 37–67, Cham, 2017. Springer.

Acknowledgements. This research was undertaken thanks in part to funding from
the Canada First Research Excellence Fund, CryptoWorks21, NSERC, Public
Works and Government Services Canada, and the Royal Bank of Canada.

A The Security Model

PAKE security is commonly proved in the model of Bellare, Pointcheval, and
Rogaway [1], which we briefly review here.

Protocols. Fundamentally, a protocol Π is a probabilistic algorithm which maps
strings (in this context, concatenations of passwords, randomness, and protocol-
specific messages and parameters) to strings (keys).

Parties and Party Identifiers. Participants in protocols are called parties. Parties
are either clients C or servers S. In this model, protocols are initiated by clients
and responded to by servers. All clients are served by all servers. Each party
P ∈ CtS is uniquely identified by a string a fixed length; if P is a party, we will
also use P to refer to P ’s identifier string as needed.

Passwords. We work in the symmetric password model: each client A ∈ C has a
password πA, and each server has a collection {πA}A∈C.

Password Initialization. In models of authenticated key establishment, parties
establish public-key/private-key pairs and securely publish their public keys
(e.g., [2, 6, 17]) in a pre-protocol “initialization” phase. Similarly, in this model
there is a pre-protocol initialization phase where users generate passwords and
“install” them on servers (i.e., servers get the passwords) securely.

Party Instances. Associated to each party U ∈ C t S is a collection of party

instances {Ω(n)
U }n∈N. When the adversary interacts with a party he may be

required to specify an instance. These instances model parties establishing keys
at different times and with different partners, and these different key-establishing
sessions may be attacked differently (or not at all) by the adversary.

Acceptance and Termination. A party instance “accepts” when they compute a
session key, and “terminates” when it will send no more messages. In our proto-
col, acceptance is always followed immediately by termination, but termination
may occur without acceptance (e.g., in the case of ill-formed incoming messages).

The Security Experiment. Informally, in the security experiment, a new entity
(the adversary) attempts to break semantic security of the protocol after inter-
acting with the parties and one additional “formal” party who “administrates”
the game (the challenger). The security experiment proceeds in three stages

1. Initialization: The adversary chooses disjoint sets C and S of client and
server identifiers. Each client A ∈ C generates a password according to a
probability distribution on their password-space: πA ← PA ∀A ∈ C; then,
each server B ∈ S receives all client passwords. Password-generation happens
out-of-view of the adversary, though the adversary knows each PA.

2. Information Gathering: The adversary performs computations and in-
teracts with the parties and challenger. The computational power of the
adversary is not fixed in the model, but his interactions are limited to:
(a) Send(U, n,msg): Message M is sent to Ω

(n)
U . As a result, Ω

(n)
U ’s internal

state is updated according to Π.

(b) Reveal(U, n): The instance Ω
(n)
U reveals its session key sk

(n)
U (if it exists).

(c) Execute(A,n,B,m): If A ∈ C, B ∈ S, and neither Ω
(n)
A nor Ω

(m)
B has

been used, the challenger C instructs Ω
(n)
A to execute Π with Ω

(n)
B . The

transcript of this execution is then provided to A.
(d) Corrupt(U): If U ∈ C, return πU . If U ∈ S, return {πUA}A∈C.
(e) Test(U, n): The challenger C chooses b ∈ {0, 1} uniformly at random; if

b = 0, the challenger reveals sk
(n)
U , while if b = 1, the challenger chooses

a string uniformly at random and reveals it.

Remark 1. Our definition of Corrupt in item (d) above is known as the
weak corruption model [1, Remark 3]. In the strong corruption model, a

Corrupt(U) query also reveals the state of each oracle Ω
(n)
U , n ∈ N; this

presents another way by which a secret session key can become known to
the adversary, and the definition of freshness (Definition 4) would have to
be modified. [1, Remark 7].

3. The Game: To begin, we must define what it means for an oracle Ω
(n)
U to

be fresh, which itself requires that we define partnered sessions:

Definition 3 (Partnered Oracles). A pair of oracles Ω
(n)
A and Ω

(m)
B are

called partnered if all of the following are true:

(a) A ∈ C and B ∈ S, or A ∈ S and B ∈ C.

(b) Ω
(n)
A and Ω

(m)
B have both accepted.

(c) Ω
(n)
A ’s peer is B, and Ω

(m)
B ’s peer is A (that is, A believes she is estab-

lishing a key with B, and vice versa).

(d) Ω
(n)
A and Ω

(m)
B have the same message transcript and session key.

(e) No other oracle Ω
(k)
U accepts with the same message transcript.

Definition 4 (Fresh Oracle). An oracle Ω
(n)
U is called fresh (or, to empha-

size that we are explicitly considering forward secrecy in the weak corruption
model, weak forward secrecy fresh) if none of the following is true:
(a) Reveal(U, n) has been issued.

(b) Reveal(V,m) has been issued, where Ω
(m)
V is the partner to Ω

(n)
U .

(c) Corrupt(V, i) was issued for some V ∈ C t S and Send(U, n,M) was
issued for some M ∈M.

Now, at any point during the protocol, A may make a Test(U, n) query. If

Ω
(n)
U is not fresh or this is not the first Test query of the game, A loses

the game; otherwise, the challenger answers the query appropriately. The
game continues, and eventually A makes a guess b′ at the value of b that the
challenger chose in response to the Test query; the adversary wins if b′ = b
and loses otherwise. We define the adversary’s advantage to be

AdvΠΓ (A) = 2P[A wins the game Γ with protocol Π]− 1.

B Computational Assumptions of SIDH

In this section we present the SIDH and SSI problems [11, Problems 5.1–5.4],
whose presumed hardness underlies the security of SIDH (and, by extension, our
protocol).

Definition 5 (Computational Supersingular Isogeny Diffie-Hellman Prob-
lem (SIDH)). Let φA : E → EA be an isogeny with kernel 〈PA+nAQA〉 for nA ←
Unif(Z/`eAA Z). Let φB : E → EB be an isogeny with kernel 〈PB + nBQB〉 for
nB ← Unif(Z/`eBB Z). The Computational Supersingular Diffie-Hellman prob-
lem (SIDH) is to find the j-invariant of EAB = E/〈PA + nAQA, PB + nBQB〉
given(

(E,PA, QA, PB , QB), (EA, φA(PB), φA(QB)), (EB , φB(PA), φB(QA))
)
.

If ((E,PA, QA, PB , QB), (EA, φA(PB), φA(QB)), (EB , φB(PA), φB(QA)))
is a valid SIDH instance under the notation of Definition 5, we write EAB =
SIDH((E,PA, QA, PB , QB),(EA, φA(PB), φA(QB)),(EB , φB(PA), φB(QA))).

When the global parameters and auxiliary points are clear from context, we
abbreviate this as EAB = SIDH(EA, EB). We also define variants of SIDH:

– For EA = E/〈PA +mAQA〉, say SIDHA(EA, E
′, X ′, Y ′) = E′/〈X ′ +mAY

′〉

– For EB = E/〈PB +mBQB〉, say SIDHB(E′, EB , X
′, Y ′) = E′/〈X ′ +mBY

′〉

These arise in SIDH by considering messages which are not well-formed.
For an algorithm A which, given a valid SIDH instance, produces a list of

candidate solutions to the instance, define its advantage as

AdvSIDH
p (A) = P[ϑ← Unif(InsSIDH(p)) : A(ϑ) = SIDH(ϑ)]

where InsSIDH(p) is the set of all valid SIDH instances defined over GF (p2).
Also define

AdvSIDH
p (t) = max{AdvSIDH

p (A) : A runs in time t for all ϑ ∈ InsSIDH(p)}.

Intuitively, this quantity measures the maximum probability of solving a ran-
domly chosen SIDH instance in time t if you are allowed to make n guesses. The
SIDH assumption is that for t, n = poly(λ), AdvSIDH

p (t, n) = negl(λ).
As in Section 2.5, the asymmetry the isogeny computations requires us to

consider there are really two variants of each of the following computational
problem: one for `eAA -isogenies, and the other for `eBB -isogenies. For brevity we
present the “Type A” problem and advantage and omit the analogous “Type B”
variant.

Definition 6 (Supersingular Isogeny Problem–A (SSIA)). Let φA : E →
EA be an isogeny with kernel 〈PA+nAQA〉 for nA ← Unif(Z/`eAA Z). The super-
singular isogeny problem (type A) (SSIA) is, given E,EA, φA(PB), and φA(QB),
to find a generator of ker φA.

The SIDH problem reduces to both the Type A and type B variants of
Problem 6 by noting that knowledge of kerφA, φB(PA) and φB(QA) allows one
to map EB to EAB , and the knowledge of kerφB , φA(PB) and φA(QB) allows
one to map EA to EAB similarly. Recent work due to Costache et al. [8, Theorem
3.2] reduces the SIDH problem to the more general isogeny-graph path-finding
problem of [7] in a similar fashion.

