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Abstract. Following up mass surveillance and privacy issues, modern secure

communication protocols now seek for more security such as forward secrecy

and post-compromise security. They cannot rely on any assumption such as syn-

chronization, predictable sender/receiver roles, or online availability. At EURO-

CRYPT 2017 and 2018, key agreement with forward secrecy and zero round-trip

time (0-RTT) were studied. Ratcheting was introduced to address forward secrecy

and post-compromise security in real-world messaging protocols. At CSF 2016

and CRYPTO 2017, ratcheting was studied either without 0-RTT or without bidi-

rectional communication. At CRYPTO 2018, it was done using key-update prim-

itives, which involve hierarchical identity-based encryption (HIBE).
In this work, we define the bidirectional asynchronous ratcheted key agreement

(BARK) with formal security notions. We provide a simple security model with

a pragmatic approach and design the first secure BARK scheme not using key-

update primitives. Our notion offers forward secrecy and post-compromise secu-

rity. It is asynchronous, with random roles, and 0-RTT. It is based on a cryptosys-

tem, a signature scheme, and a collision-resistant hash function family without

key-update primitives or random oracles. We further show that BARK (even uni-

directional) implies public-key cryptography, meaning that it cannot solely rely

on symmetric cryptography.

1 Introduction

In standard communication systems, protocols are designed to provide messaging ser-

vices with end-to-end encryption that provides security for the users.

In bidirectional two-party secure communication, participants alternate their role

as a sender and a receiver. Essentially, secure communication reduces to continuously

exchanging keys, because each message requires a new key.

The modern instant messaging protocols are substantially asynchronous. In other

words, for a two-party communication, the messages should be transmitted (or the key

exchange should be done) even though the counterpart is not online. Moreover, to be

able to send the payload data without requiring online exchanges is a major design goal

called zero round trip time (0-RTT). Finally, the moment when a participant wants to

send a message is undefined, meaning that participants use random roles (sender or

receiver) without any synchronization. Namely, they could send messages at the same

time. Being asynchronous, with 0-RTT, and random roles make the formalism more

difficult and tedious.



Even though many systems were designed for the privacy of their users, they were

rapidly faced with security vulnerabilities caused by the compromises of the partici-

pants’ states. In this work, compromising a participant means to obtain some of its

internal information. We will call it an exposure.

The desired security notion is that compromised information should not uncover

more than possible by trivial attacks. For instance, the compromised state of partic-

ipants should not allow to decrypt past communication. This is called forward se-

crecy. Typically, forward secrecy is obtained by updating states with a one-way function

x→ H(x)→ H(H(x))→ ... and deleting old entries. It is used, for instance, in RFID

protocols [11, 12]. One mechanical technique to allow to move forward and to prevent

from moving backward is to use a ratchet. In secure communication, ratcheting also

includes the use of randomness in every state update so that a compromised state is

not enough to decrypt future communication as well. This is called future secrecy or

backward secrecy or post-compromise security or even self-healing.

One thesis of the present work is that healing after an active attack is not a nice

property. We show that it implies insecurity. Clearly, if communication self-heals after

compromising a state of one participant to impersonate him, it means that some ad-

versary can make a trivial attack which is not detected. We also show other insecurity

cases. Hence, we rather mandate communication to cut after active attacks.

Our goal is to obtain ratcheting security. To define it, we must exclude passive at-

tacks which trivially exploit leakages. With active attacks, it is not clear how to mark

messages which are safe otherwise. In this work, we adopt a very easy-to-understand

rule: messages which are acknowledged by the legitimate receiver are consider safe (un-

less trivial passive attacks). This way, as soon as a sender is confirmed that his message

was well received, he has strong guarantees that his message is safe and will remain so.

Previous work. The security of key exchange was studied by many authors. The promi-

nent models are the CK and eCK models [3, 10].

Techniques for ratcheting first appeared in real life protocols. It appeared in the

Off-the-Record (OTR) communication system by Borisov et al. [2]. The Signal proto-

col designed by Open Whisper Systems [14] later gained a lot of interest from message

communication companies. Today, the WhatsApp messaging application reached bil-

lions of users worldwide [17]. It is using Signal.

A broad survey about various techniques and terminologies was made at S&P 2015

by Unger et al. [15].

At CSF 2016, Cohn-Gordon et al. [5] studied bidirectional ratcheted communication

and proposed a protocol. However, their protocol does not offer 0-RTT and requires

synchronized roles.

At EuroS&P 2017, Cohn-Gordon et al. [4] formally studied Signal.

At CRYPTO 2017, Bellare et al. [1] gave a secure ratcheting key exchange protocol.

Their protocol is unidirectional and does not allow receiver exposure. They further con-

struct secure communication (i.e. authentication and encryption) from key agreement

and symmetric authenticated encryption.

At CRYPTO 2018, Poettering and Rösler [13] studied bidirectional asynchronous

ratcheted key agreement and presented a protocol which is secure in the random oracle
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model. Their solution further relies on a hierarchical identity-based encryption (HIBE)

but offers a stronger security than what we aim at, leaving the room to better protocols.

At the same conference, Jaeger and Stepanovs [9] did similar things but focused

on secure communication rather than key agreement. They proposed another proto-

col relying on HIBE. In both results, HIBE is used to construct encryption/signature

schemes with key-update security. This is a rather new notion allowing forward secrecy

but is expensive to achieve. In both cases, it was claimed that the depth of HIBE is re-

ally small. However, when participants are disconnected but send several messages, the

depth grows up quite fast. Consequently, HIBE needs unbounded depth.

0-RTT communication with forward secrecy has got recent coverage in conferences.

For asymmetric communication, this is made by puncturable encryption by Günther

et al. at EUROCRYPT 2017 [8]. At EUROCRYPT 2018, Derler et al. made it quite

practical by using Bloom filters [6].

Our contributions. We give a definition for a bidirectional asynchronous key agreement

(BARK) and an asynchronous ratcheted communication with associated data (ARCAD)

along with security properties. We give the appropriate definitions (such as matching

status) then identify all cases leading to trivial attacks. We split them into direct and

indirect leakages. Then, we define security with the KIND game (privacy). We also

consider the resistance to forgery (impersonation) and the resistance to attacks which

would heal after active attacks (RECOVER security). We use these two notions as a

helper to prove KIND-security. We finally construct a secure protocol.

Contrarily to previous work, we define KIND security in a very comprehensive way,

based on a cleanness predicate which captures all trivial attacking ways.

We separate two types of exposures: the exposure of the state (that is kept in an in-

ternal machinery of a participant) and the exposure of the key (which is produced by the

key agreement and given to an external protocol). This is because states are (normally)

kept secure in our protocol while the generated key leaves to other applications which

may leak for different reasons. Contrarily to other works [1, 9], we do not consider

exposure of the random coins. Those random coins are supposed to be generated just

before usage and destroyed right after usage. Bellare et al. [1] allow to leak the random

coins just after usage. Jaeger and Stepanovs [9] allow to leak it just before usage only.

We find it artificial and arbitrary.

In the same line as previous works, the adversary in our model can see the entire

communication between participants with exchanged information. Scheduling commu-

nications is under the control of the adversary. This means that the time when a partic-

ipant sends or receives messages is decided by the adversary. Moreover, the adversary

is capable of making exposures to a participant of his choice. Using the result from

exposure allows the adversary to be quite active, e.g. by impersonating the exposed

participant. However, the adversary is not allowed to use exposures to mount a trivial

attack. Identifying such trivial attacks is not easy. As a design goal, we adopt not to

forbid more than what the intuitive notion of ratcheting captures. We do forbid a bit

more than Poettering and Rösler [13] and Jaeger and Stepanovs [9], though, allowing

lighter building blocks. Namely, we need no key-update primitives. We argue that this

is a reasonable choice enabling ratchet security as we define it: unless trivial leakage, a

message is private as long as it is acknowledged for reception in a subsequent message.
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In the BARK protocol, the correctness implies that both participants generate same

keys. We define the stages matching status, direct leakage, indirect leakage. We aim to

separate trivial attacks and forgeries from non-trivial cases with our definitions. Direct

and indirect leakages define the times when the adversary can deduce the key generated

due to the exposure of a participant who can either be the same participant (direct) or

their counterpart (indirect). Such leakages cause trivial victory of the adversary.

We construct a secure unidirectional protocol (uniARK) and a secure (bidirectional)

BARK protocol. Our BARK are made from ARCAD. We build our constructions on top

of a cryptosystem and a signature scheme and achieve strong security, without key-

update primitives or random oracles. We further show that a secure unidirectional BARK

implies public-key cryptography.

Notations. We have two characters: Alice and Bob. Whenever we need an abbreviation,

they are represented as A and B respectively. We have two parties in our protocol.

When P designates a participant, P refers to P’s counterpart. We use the roles send and

rec for sender and receiver respectively. We define send = rec and rec = send. When

participants A and B have exclusive roles (like in unidirectional cases), we call them

sender S and receiver R.

Structure of the paper. In Section 2, we define our BARK protocol along with correct-

ness definition, and security of key indistinguishability, unforgeability, and unrecover-

ability. In Section 3, we build a secure unidirectional protocol (uniARK). In Section 4,

we give our BARK construction transformed from secure uniARK. Appendix A recalls

definitions for underlying primitives. In Appendix C, we make some comments and

comparison with the results of Bellare et al. [1], Poettering-Rösler [13], and Jaeger-

Stepanovs [9].

2 Bidirectional Asynchronous Ratcheted Communication

2.1 BARK Definition and Correctness

A two-party ratcheted communication protocol consists of three protocols: Init, an initial

state generation protocol between two communicating parties, called Alice and Bob;

Send, a sender algorithm that is run when Alice (or Bob) wants to send a message to its

counterpart; Receive, a receiver algorithm that is run whenever a participant receives a

message.

Definition 1 (BARK and ARCAD). A bidirectional asynchronous ratcheted key agree-

ment (BARK) consists of the following algorithms:

– Init(1λ)
$
−→ (stA,stB,z): The initial state generation protocol Init inputs a security

parameter λ and outputs a tuple (stA,stB,z) which are initial states for both Alice

and Bob and some public information z.

– Send(stP)
$
−→ (st ′P,upd,k): The algorithm inputs a current state stP for P ∈ {A,B}.

It outputs a tuple (st ′P,upd,k) with an updated state st ′P, a message upd, and a key

k.
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– Receive(stP,upd)→ (acc,st ′P,k): The algorithm inputs (stP,upd) where P∈ {A,B}.

It outputs a triple consisting of a flag acc ∈ {true, false} to indicate an accept or re-

ject of upd information, an updated state st ′P, and a key k i.e. (acc,st ′P,k).

An asynchronous ratcheted communication with associated data (ARCAD) similarly

consists of the following algorithms:

– Init(1λ)
$
−→ (stA,stB,z) (as for BARK).

– Send(stP,ad,pt)
$
−→ (st ′P,ct): it takes as input a plaintext pt and some associated

data ad and produces a ciphertext ct.

– Receive(stP,ad,ct)→ (acc,st ′P,pt): it takes as input a ciphertext ct and some as-

sociated data ad and produces a plaintext pt.

An ARCAD implicitly defines a BARK by using BARK.Init = ARCAD.Init,

BARK.Send(stP):

1: pick k

2: ARCAD.Send(stP,⊥,k)→ (st ′P,upd)

3: return (st ′P,upd)

and BARK.Receive(stP,upd) = ARCAD.Receive(stP,⊥,upd). Hence, we will implicitly

consider ARCAD like BARK.

A unidirectional asynchronous ratcheted key agreement (uniARK) is a BARK in

which Alice (called the sender S) only uses Send and Bob (called the receiver R) only

uses Receive. We similarly define uniARCAD as a unidirectional ARCAD.

In what follows, we concentrate on correctness and security definitions for BARK but

protocols will be defined from ARCAD. Definitions for ARCAD could be adapted but

will not be necessary.

In practice, it is convenient to consider Init algorithms which are splittable:

Definition 2 (Splittable Init). We say that the Init algorithm of a BARK (resp. ARCAD)

is splittable if there exists some algorithms GenA, GenB, fA, and fB such that Init is

defined by

Init(1λ):

1: GenA(1λ)→ (skA,pkA)

2: GenB(1
λ)→ (skB,pkB)

3: pick r

4: stA← (skA,fA(pkA,pkB,r))

5: stB← (skB,fB(pkA,pkB,r))

6: z← (pkA,pkB)

7: return (stA,stB,z)

This way, private keys can be generated by their holders and there is no need to rely on

an authority, except for authentication of pkA and pkB.

We consider bidirectional completely asynchronous communications. We can see,

on Fig. 1, Alice and Bob running some sequences of Send and Receive operations

without any prior agreement. Their time scale can be completely different. This means

that Alice and Bob run algorithms in an asynchronous way. We define the scheduling

by a sequence of users (Alice and Bob). Reading the sequence tells who executes a

new step of the protocol. In our model, scheduling is controlled by the adversary. For

the time being, we assume that the order of transmitted messages is preserved in each
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direction. If two messages arrive in different order or one was lost or replayed, it must

be due to the attacks.

The protocol also uses random roles. Alice and Bob can both send and receive

messages. They take their role (sender or receiver) in a sequence, but the sequence

of roles of Alice is not necessarily synchronized. Sending/receiving is refined by the

RATCH(P, role, [upd]) call in Fig. 2. In the correctness notion, sent messages by partic-

ipants are buffered and delivered in the same order to the counterpart. So, both partici-

pants can send messages at the same time.

Correctness. We say that a ratcheted communication protocol functions correctly if the

receiver accepts the update information upd and generates the same key as its coun-

terpart who generated upd. We formally define the correctness in Fig. 2. In gray, we

put some instructions which are not necessary for the game itself. They define some

variables that we will use later. receivedPkey (respectively sentPkey) keeps a list of secret

keys that are generated by P when running Receive (respectively, Send). Similarly,

receivedPmsg (respectively sentPmsg) keeps a list of upd information that are received (re-

spectively sent) by P and accepted by Receive. We stress that the received sequences

only keep values for which acc = true. (This will be important in the security game.)

(TInit)ALICE BOBreceivedAlice
keysentAlice

key receivedBob
key sentBob

key

Send

(T0)

Send

(T1)

Receive

(T2)

Send

(T3)

Receive

(T4)

...

Send

(T5)

Send

(T6)

Send

(T7)

Receive

(T8)

Send

(T9)

Receive

(T10)

Receive

(T11)

k0

k1

k2

k4

k3

k2

k3

k5

k0

k6

k1

k4

Fig. 1: The message exchange between Alice and Bob.

For two communicating parties Alice and Bob, we run Init to set up the states, and

then run the correctness game in Fig. 2. The scheduling is defined by a sequence sched

of tuples of form either (P,send) (saying that P must run Send and send) or (P, rec)

(saying that P must run Receive with whatever is received). In this game, communica-

tion between the participants uses a waiting queue for messages in each direction. Each
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participant has a queue of incoming messages and is pulling them in the order they have

been pushed in.

Definition 3 (Correctness of BARK). We say that BARK is correct if for all sequence

sched, the correctness game of Fig. 2 never aborts. Namely, at all time, for each P,

receivedPkey is prefix of sentPkey
1 and each RATCH(., rec, .) call accepts.

Oracle RATCH(P, rec,upd)

1: (acc,st ′P ,kP)← Receive(stP ,upd)

2: if acc then

3: updP ← upd

4: stP ← st ′P
5: append kP to receivedPkey

6: append updP to receivedPmsg

7: end if

8: return acc

Oracle RATCH(P,send)

9: (st ′P ,updP ,kP)← Send(stP)

10: stP ← st ′P
11: append kP to sentPkey

12: append updP to sentPmsg

13: return updP

Game Correctness(sched)

1: (for uniARK only) if ∃i (schedi = (A, rec)) ∨

(schedi = (B,send)) then abort

2: set all sent∗∗ and received∗∗ variables to ∅

3: Init(1λ)
$
−→ (stA,stB,z)

4: i← 0

5: loop

6: i← i+1

7: (P, role)← schedi
8: if role = rec then

9: if no incoming message to P then terminate

10: pull upd from incoming messages to P

11: acc← RATCH(P, rec,upd)

12: if acc = false then abort

13: else

14: upd← RATCH(P,send)

15: push upd to incoming messages to P

16: end if

17: if receivedAkey not prefix of sentBkey then abort

18: if receivedBkey not prefix of sentAkey then abort

19: end loop

Fig. 2: The correctness game.

The correctness implies that the decryption keys for the receiver have been gen-

erated same as encryption keys of the sender in the correct order. See Fig. 1 for the

ordering of encryption/decryption keys, e.g. sentAlice
key = receivedBob

key .

Security. We model our security notion with an active adversary who can have access to

some of the states of Alice or Bob along with access to their secret keys enabling them

to act both as a sender and as a receiver. We focus on three main security notions which

are key indistinguishability (denoted as KIND) under the compromise of states or keys,

unforgeability of upd information (FORGE) by the adversary which will be accepted,

and recovery from impersonation (RECOVER) which will make the two participants

restore secure communication without noticing a (trivial) impersonation resulting from

a state exposure. A challenge in these notions is to eliminate the trivial attacks. FORGE

and RECOVER security will be useful to prove KIND security.

1 By saying that receivedPkey is prefix of sentPkey, we mean that if n is the number of keys gener-

ated by P running Receive, then these keys are the first n keys generated by P running Send.
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2.2 KIND Security

The adversary can access four oracles called RATCH, EXPst, EXPkey, and TEST.

RATCH. This is essentially the message exchange procedure. It is defined on Fig. 2.

The adversary can call it with three inputs, a participant P, where P ∈ {A,B}; a

role of P; and an upd information if the role is rec. The adversary gets upd (for

role = send) or acc (for role = rec) in return.
EXPst. The adversary can expose the state of Alice or Bob. It inputs P ∈ {A,B} to the

EXPst oracle and it receives the full state stP of P.
EXPkey. The adversary can expose the generated key by calling this oracle. Upon in-

putting P, it gets the last key kP generated by P. If no key was generated, ⊥ is

returned.
TEST. This oracle can be called only once to receive a challenge key which is gener-

ated either uniformly at random (if the challenge bit is b = 0) or given as the last

generated key of a participant P specified as input (if the challenge bit is b = 1).

The oracle cannot be queried if no key was generated yet.

We specifically separate EXPkey from EXPst as the key k generated by BARK will

be used by the external process which may leak. Thus, EXPkey can be more frequent

than EXPst, but will harm security less.

To define security, we avoid trivial attacks. Capturing the trivial cases in a broad

sense requires a new set of definitions. All of them are intuitive. We introduce these

definitions as follows.

We use a notion of time and the value of the sequences received and sent at a given

time. The security game executes instructions on a time scale and variables are updated.

For all global variables v in the game such as receivedPmsg, kP, or stP, we denote by v(t)

the value of v at time t. For instance, receivedAmsg(t) is the sequence of upd which were

received and accepted by A when running Receive.

Definition 4 (Matching status). At a given time t, we say that a participant P is in

a matching status if there exist times t and t ′ such that 1. t ′ 6 t, 2. receivedPmsg(t) =

sentPmsg(t), and 3. receivedPmsg(t) = sentPmsg(t
′). If this is the case, we say that time t

for P originates from time t for P.

The second condition clearly states that all the received (and accepted) upd information

match the upd information sent by the counterpart of P, at some point in the past (at

time t), in the same order. The third condition similarly verifies that those messages

from P only depend on information coming from P. In Fig. 1, Bob is in a matching

status with Alice because he receives the upd information in the exact order as they

have sent by Alice (i.e. Bob generates k2 after k1 and k4 after k2 same as it has sent

by Alice). In general, as long as no adversary switches the order of messages or creates

fake messages successfully for either party, the participants are always in a matching

status. The third condition is useful to prove that kP(t) = kP(t). This will be done in

Lemma 8.

The key exchange literature often defines a notion of partnering which is simpler.

What makes the notion more complicated here is the fact that we have asynchronous

random roles.
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An easy property of the notion of matching status is that if P is in a matching status

at time t, then P is also in a matching status at any time t0 6 t. Similarly, if P is in a

matching status at time t and t for P originates from t for P, then P is in a matching

status at time t and also at any time before. Note that although t originates from t,

which itself originates from t ′, we may have t ′ 6= t.

Definition 5 (Forgery). Given a participant P in a game, we say that the forgeries

in receivedPmsg are upd messages upd1, . . . ,updn if there exist finite sequences of upd

messages (possibly empty) seq0, . . . ,seqn such that

– receivedPmsg = (seq0,upd1,seq1,upd2,seq2, . . . ,updn,seqn);

– for all i, (seq0,seq1, . . . ,seqi−1) is a prefix of sentPmsg;

– for all i, (seq0,seq1, . . . ,seqi−1,updi) is not a prefix of sentPmsg.

Here, the comma operation “,” is the concatenation of sequences and single messages

updi are taken as sequences of length 1. We call upd1 as P’s first forgery.

Lemma 6. If P is not in a matching status, either P or P has received a forgery.

Proof. If P did not receive a forgery, then receivedPmsg is a prefix of sentPmsg. Therefore,

there exists a time t such that receivedPmsg(t) = sentPmsg(t). If P is not in matching

status at time t, then receivedPmsg(t) cannot be a prefix of sentPmsg(t). This implies that

P received a forgery due to Definition 5. ⊓⊔

A secure communication protocol needs such a “matching status” since it character-

izes a normal execution of the protocol. More specifically, as we explained in previous

section (and as it will become more clear later), “recovery from impersonation” cannot

be allowed in BARK. A secure protocol should either enforce that both participants are

always in matching status or make communication between them impossible.

In a matching status, any upd received by P must correspond to an upd sent by P

and the sequences must match. This implies the following notion.

Definition 7 (Corresponding RATCH calls). Let P be a participant. We consider the

RATCH(P, rec, .) calls by P returning true. We say that the ith one corresponds to the jth

RATCH(P,send) call if i= j and P is in matching status at the time of this ith accepting

RATCH(P, rec, .) call.

Lemma 8. In a correct BARK protocol, two corresponding RATCH(P, rec,upd) and

RATCH(P,send) calls generate the same key kP = kP.

Proof. If RATCH(P, rec,upd) and RATCH(P,send) correspond to each other, then P is

in matching status. We let t be the time of the RATCH(P, rec,upd) call and t be the

time of the RATCH(P,send). We make the sequence of all RATCH calls from P until

time t and all RATCH calls from P until time t. By putting them in chronological order,

thanks to the conditions of the matching status, we define a sequence sched, and the

experiment runs as the correctness game. Due to correctness, the last calls generate the

same key k. Hence, kP(t) = kP(t). ⊓⊔
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Definition 9 (Ratcheting period of P). A maximal time interval during which there is

no RATCH(P,send) call is called a ratcheting period of P.

Consequently, a RATCH(P,send) call ends a ratcheting period for P and starts a new

one. In Fig. 1, the time between T1 and T3 or the interval T5 − T6 are called ratcheting

period of Alice and Bob respectively.

We now define the time when the adversary can trivially obtain a key generated by

P due to an exposure. We distinguish the case when the exposure was done on P (direct

leakage) and the case when the exposure was done on P (indirect leakage).

Definition 10 (Direct leakage). Let t be a time and P be a participant. We say that

kP(t) has a direct leakage if one of the following conditions is satisfied:

– There is an EXPkey(P) at a time te such that the last RATCH call which is executed

by P before time t and the last RATCH call which is executed by P before time te
are the same.

– P is in a matching status and there exists t0 6 te 6 tRATCH 6 t and t such that time

t originates from time t; time t originates from time t0; there is one EXPst(P) at

time te; there is one RATCH(P, rec, .) at time tRATCH; and there is no RATCH(P, ., .)

between time tRATCH and time t.

In the first case, it is clear that EXPkey(P) gives kP(te) = kP(t). In the second case (left-

hand side of Fig. 3), the state which leaks from EXPst(P) at time te allows to simulate

all deterministic Receive (skipping all Send) and to compute the key kP(tRATCH) =

kP(t). The reason why we can skip all Send is that they make messages which are

supposed to be delivered to P after time t, so they have no impact on kP(t).

P P

t0

(EXPst) te

tRATCH

t

tReceive

no RATCH

P P

t′

tRATCH

t

t

te (EXPst)
Send

no RATCH

Fig. 3: Direct (left) and indirect (right) leakages.
Origin of dotted arrows indicate when a time originates from.

Consider Fig. 1. Suppose t is in between time T3 and T4. According to our definition

P = A and the last RATCH call is at time T3. It is a Send, thus the second case cannot

apply. The next RATCH call is at time T4. In this case, t has a direct leakage for Alice if

there is a key exposure of Alice between T3 and T4.

Suppose now that T8 < t < T9. We have P = B, the last RATCH call is a Receive, it

is at time tRATCH = T8, and t originates from time t= T0 which itself originates from the

origin time t0 = TInit for B. We say that t has a direct leakage if there is a key exposure

between T8 − T9 or a state exposure of Bob before time T8. Indeed, with this last state

exposure, the adversary can ignore all Send and simulate all Receive to derive k0.
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Definition 11 (Indirect leakage). We consider a time t and a participant P. Let tRATCH

be the time of the last successful RATCH call and role be its input role. (We have

kP(tRATCH) = kP(t).) We say that kP(t) has an indirect leakage if P is in matching

status at time t and one of the following conditions is satisfied

– There exists a RATCH(P, role, .) corresponding to that RATCH(P, role, .) and making

a kP which has a direct leakage for P.

– There exists t ′ 6 tRATCH 6 t and t6 te such that P is in a matching status at time

te, t originates from t, te originates from t ′, there is one EXPst(P) at time te, and

role = send.

In the first case, kP(t) = kP(tRATCH) is also computed by P and leaks from there. The

second case (right-hand side of Fig. 3) is more complicated: it corresponds to an ad-

versary who can get the internal state of P by EXPst(P) then simulate all Receive with

messages from P until the one sent at time tRATCH, ignoring all Send by P, to recover

kP(t).

For example, let t be a time between T1 and T2 in Fig. 1. We take P = A. The last

RATCH call is at time tRATCH = T1, it is a Send and corresponds to a Receive at time T10,

but t originates from the origin time t= TInit. We say that t has an indirect leakage for A

if there exists a direct leakage for P = B at a time between T10 and T11 (first condition)

or there exists a EXPst(B) call at a time te (after time t = 0), originating from a time

t ′ before time T1, so te < T10 (second condition). In the latter case, the adversary can

simulate Receive with the updates sent at time T0 and T1 to derive the key k1.

Exposing the state of a participant gives certain advantages to the attacker and make

trivial attacks possible. In our security game, we avoid those attack scenarios. In the

following lemma, we show that direct and indirect leakage capture the times when the

adversary can trivially win. The proof is straightforward.

Lemma 12 (Trivial attacks). Assume that BARK is correct. For any t and P, if kP(t)

has a direct or indirect leakage, the adversary has all information to compute kP(t).

Proof. We use correctness, Lemma 8, and the explanations given after Def. 10 and

Def. 11. ⊓⊔

So far, we mostly focused on matching status cases but there could be situations

with forgeries as well. We define trivial forgeries as follows.

Definition 13 (Trivial forgery). We consider a first forgery upd received by P in a

RATCH(P, rec,upd) call. Let t be the time just before this call. Let t be a time such that

receivedPmsg(t) = sentPmsg(t). If there is any EXPst(P) call during the ratcheting period

of P which includes time t, we say that upd is a trivial forgery.

We define the KIND security game in Fig. 4. Essentially, the adversary plays with all

oracles. At some point, he does one TEST(P) call which returns either the same result as

EXPkey(P) (case b= 1) or some random value (case b= 0). The goal of the adversary is

to guess b. The TEST call can be done only once and it defines the participant Ptest = P

and the time ttest at which this call is made. It also defines updtest, the last upd which

was used (either sent or received) to carry kPtest
(ttest) from the sender to the receiver. It
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is not allowed to make this call at the beginning, when P did not generate a key yet. It is

not allowed to make a trivial attack as defined by a cleanness predicate Cclean appearing

on Step 5 in the KIND game on Fig. 4. Identifying the appropriate cleanness predicate

Cclean is not easy. It must clearly forbid trivial attacks but also allow efficient protocols.

In what follows we use the following predicates:

– Cleak: kPtest
(ttest) has no direct or indirect leakage.

– CP
trivial forge: P received no trivial forgery until P has seen updtest.

(This implies that updtest is not a trivial forgery. It also implies that if P never sees

updtest, then P received no trivial forgery at all.)
– CP

forge: P received no forgery until P has seen updtest.

– Cratchet: updtest was sent by a participant P, then received and accepted by P, then

some upd ′ was sent by P, then upd ′ was received and accepted by P.
(Here, P could be Ptest or his counterpart. This accounts for the receipt of updtest

being acknowledged by P through upd ′.)
– CnoEXP(R): there is no EXPst(R) and no EXPkey(R) query. (R is the receiver.)

Lemma 12 says that the adopted cleanness predicate Cclean must imply Cleak in all

considered games. Otherwise, no security is possible. It is however not sufficient as it

only covers trivial attacks with no forgeries.

Cratchet targets that any acknowledged sent message is secure. Another way to say is

that a key generated by one Send starting a round trip must be safe. This is the notion of

healing by ratcheting. Intuitively, we do not expect more than the security notion from

Cclean = Cleak ∧Cratchet.

Bellare et al. [1] consider uniARK with Cclean = Cleak ∧CPtest

trivial forge ∧CnoEXP(R).

(See Appendix C.) Other papers like Poettering-Rösler [13] and Jaeger-Stepanovs [9]

implicitly use Cclean = Cleak ∧CPtest

trivial forge as cleanness predicate. They show that this is

sufficient to build secure protocols but it is probably not the minimal cleanness pred-

icate. Indeed, we know that some ways to make trivial forgeries (as defined) makes

the adversary able to compute kPtest
(ttest) but there are some other ways not allowing

the adversary to do so (see Appendix B). Hence, CPtest

trivial forge forbids more attacks than

necessary.

In our construction we use the predicate Cclean = Cleak ∧CA
forge ∧CB

forge. However,

we define FORGE security (unforgeability) which implies that (Cleak ∧CA
forge ∧CB

forge)-

KIND security and (Cleak ∧CA
trivial forge ∧CB

trivial forge)-KIND security are equivalent. (See

Th. 17.) One drawback is that it forbids more than (Cleak ∧CPtest

trivial forge)-KIND secu-

rity. The advantage is that we can achieve security without key-update primitives. We

will prove in Th. 19 that this security is enough to achieve security with the predicate

Cclean = Cleak ∧Cratchet, thanks to RECOVER-security. Thus, our cleanness notion is

fair enough.

Definition 14 (Cclean-KIND security). Let Cclean be a cleanness predicate. We consider

the KINDA
b,Cclean

game of Fig. 4. We say that the ratcheted key agreement BARK is

(q,T ,ε)-Cclean-KIND-secure if for any adversary limited to q queries and time com-

plexity T , the advantage

Adv(A) =
∣

∣

∣
Pr
[

KINDA
0,Cclean

→ 1
]

−Pr
[

KINDA
1,Cclean

→ 1
]∣

∣

∣

12



Game KINDA
b,Cclean

1: Init(1λ)
$
−→ (stA,stB,z)

2: set all sent∗∗ and received∗∗ variables to ∅
3: set ttest, kA, kB to ⊥
4: b ′←ARATCH,EXPst,EXPkey,TEST(z)

5: if ¬Cclean then abort

6: return b’

Oracle EXPst(P)

1: return stP

Oracle TEST(P)

1: if ttest 6=⊥ then abort ⊲ TEST was queried

2: if kP =⊥ then abort

3: ttest← time, Ptest← P, updtest← updP
4: if b= 1 then

5: return kP
6: else

7: return random {0,1}|kP |

8: end if

Oracle EXPkey(P)

1: return kP

Fig. 4: Cclean-KIND game.

(Oracle RATCH is defined in Fig. 2.)

of A in KINDA
b,Cclean

security game is bounded by ε.

2.3 Unforgeability

Another security aspect of the key agreement BARK is to have that no upd information

is forgeable by any bounded adversary except trivially by state exposure. This security

notion is independent from KIND security but is certainly nice to have for explicit au-

thentication in key agreement. Besides, it is easy to achieve. We will use it as a helper

to prove KIND security: to reduce CP
trivial forge-cleanness to CP

forge-cleanness.

A first forgery is a upd received by a participant P making him loose his match-

ing status. Let the adversary interact with our oracles RATCH,EXPst, EXPkey in any

order. For BARK to have unforgeability, we eliminate the trivial forgeries (as defined in

Def. 13). The FORGE game is defined in Fig. 5.

Definition 15 (FORGE security). Consider FORGEA game in Fig. 5 associated to the

adversary A. Let the advantage of A in succeeding the attack in FORGEA game be the

probability of succeeding the game. We say that BARK is (q,T ,ε)-FORGE-secure if, for

any adversary limited to q queries and time complexity T , the advantage is bounded by

ε.

We can now justify why forgeries in the KIND game must be trivial for a BARK with

unforgeability.

Lemma 16. Assume that BARK resists to FORGEA game. Let A be an adversary play-

ing KINDA
b,Cclean

game. For any P and t, if there exists no trivial forgery, the probability

that P is not in matching status at a time t is negligible.

Proof. It follows from Lemma 6 and the definition of the FORGEA game. ⊓⊔
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Game FORGEA

1: Init(1λ)
$
−→ (stA,stB,z)

2: (P,upd)←ARATCH,EXPst,EXPkey(z)

3: if one (or both) participants is NOT in a matching

status then abort

4: RATCH(P, rec,upd)→ acc

5: if acc = false then abort

6: if P is in a matching status then abort

7: if upd is a trivial forgery for P then abort

8: the adversary wins

Game RECOVERA
BARK

1: win← 0

2: Init(1λ)
$
−→ (stA,stB,z)

3: set all sent∗∗ and received∗∗ variables to ∅
4: P←ARATCH,EXPst,EXPkey(z)

5: if we can parse receivedPmsg =

(seq1,upd,seq2,upd ′) for some messages

upd and upd ′ and some sequences seq1 and seq2

such that (seq1,upd ′) is prefix of sentPmsg, and

upd 6= upd ′ then win← 1

6: return win

Fig. 5: FORGE and RECOVER games.
(Oracle RATCH, EXPst, EXPkey are defined in Fig. 2 and Fig. 4.)

Theorem 17. If a BARK is FORGE-secure, then (Cleak ∧CPtest

forge)-KIND-security implies

(Cleak ∧CPtest

trivial forge)-KIND-security and (Cleak ∧CA
forge ∧CB

forge)-KIND-security implies

(Cleak ∧CA
trivial forge ∧CB

trivial forge)-KIND-security.

Proof. This is obvious, as FORGE-security implies no non-trivial forgery. ⊓⊔

2.4 Recovery from Impersonation

A priori, it seems nice to be able to restore a secure state when a state exposure of a

participant takes place. We show here that it is not a good idea.

Let A be an adversary playing as shown in Fig. 6. On the left strategy, A exposes

A with an EXPst query (Step 2). Then, the adversary A impersonates A by running

the Send algorithm on its own (Step 3). Next, the adversary A “sends” a message to B

which is accepted due to correctness because it is generated with A’s state. In Step 5,

A lets the legitimate sender to generate upd ′ by calling RATCH oracle. In this step, if

security self-restores, B accepts upd ′ which is sent by A. Hence, acc ′ = 1 in the final

step. It is clear that the strategy shown on the left side in Fig. 6 is equivalent to the

strategy shown on the right side of the same figure (which only switches Alice and the

adversary who run the same algorithm). Hence, both lead to acc ′ = 1 with the same

probability p.

The crucial point is that the forgery in the right-hand strategy becomes non-trivial,

which implies that the protocol is not FORGE-secure. In addition to this, if such phe-

nomenon occurs, we can make a KIND adversary passing the Cleak ∧CPtest

trivial forge and

Cleak ∧CPtest

trivial forge ∧CnoEXP(R) conditions. Thus, we loose KIND-security.

In general, we believe it is not reasonable to allow recoveries from impersonation as

it could serve as a discrete and temporary active attack and facilitate mass surveillance.

For this purpose, we define the RECOVER security notion with another game. Essen-

tially, in the game, we require the receiver P to accept some messages upd ′ sent by the

sender after the adversary makes successful forgeries upd. We will further use it as a

second helper to prove KIND security with Cratchet-cleanness.
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ALICE BOBADVERSARY

(EXPst)

•

•

•

•

•
(forgery)

•

acc = 1

acc = 1

acc = 1

acc = 1

acc = 1

1: · · · (normal communications)· · ·
2: EXPst(A)→ stA
3: Send(stA)→ (st′

A
,upd,kA)

4: RATCH(B, rec,upd)→ acc

5: RATCH(A,send)→ upd′

6: RATCH(B, rec,upd′)→ acc′

ALICE BOBADVERSARY

(EXPst)

•

•

•

•

•

•(forgery)

acc = 1

acc = 1

acc = 1

acc = 1

acc = 1

1: · · · (normal communications)· · ·
2: EXPst(A)→ stA
3: RATCH(A,send)→ upd

4: RATCH(B, rec,upd)→ acc

5: Send(stA)→ (st′
A

,upd′,k′

A
)

6: RATCH(B, rec,upd′)→ acc′

Fig. 6: Two recoveries succeeding with the same probability.

Definition 18 (RECOVER security). Consider RECOVERA
BARK game in Fig. 5 associ-

ated to the adversary A. Let the advantage of A in succeeding playing the game be

Pr(win = 1). We say that the ratcheted communication protocol is (q,T ,ε) RECOVER-

secure, if for any adversary limited to q queries and time complexity T , the advantage

is bounded by ε.

We will see that RECOVER-security is quite easy to achieve using a collision-resistant

hash function.

Theorem 19. If a BARK is RECOVER-secure and (Cleak∧CA
forge∧CB

forge)-KIND secure,

then it is (Cleak ∧Cratchet)-KIND secure.

Proof. Let us consider a (Cleak ∧Cratchet)-KIND game in which Cratchet holds. Let P be

the participant who sent updtest. Since updtest is a genuine message from P which is

received by P, the RECOVER security implies that P did not receive a forgery until it

received updtest (except in negligible cases). So, CP
forge holds. Similarly, since P received

a genuine upd ′ after seeing updtest, P did not receive a forgery until then (except in

negligible cases). So, CP
forge holds, except in negligible cases. ⊓⊔

2.5 uniARK Implies KEM

We now prove that a weakly secure uniARK implies public key cryptography. Namely,

we can construct a key encapsulation mechanism (KEM) out of it. We recall the KEM

definition.

Definition 20 (KEM scheme). A KEM scheme KEM consists of three algorithms: a key

pair generation Gen(1λ)
$
−→ (sk,pk), an encapsulation algorithm Enc(pk)

$
−→ (k,ct),

and a decapsulation algorithm Dec(sk,ct)→ k. It is correct if Pr[Dec(sk,ct) = k] = 1

when the keys are generated with Gen and Enc(pk)→ (k,ct).
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We consider a uniARK which is KIND-secure for the following cleanness predicate:

Cweak: the adversary makes only three oracle calls which are, in order, EXPst(S),

RATCH(S,send), and TEST(S).

(Note that R is never used.) This implies cleanness for all other considered predicates.

Hence, it is more restrictive. Our result implies that it is unlikely to construct even such

weakly secure uniARK from symmetric cryptography.

Theorem 21. Given a uniARK protocol, we can construct a KEM with the following

properties. The correctness of uniARK implies the correctness of KEM. The Cweak-KIND-

security of uniARK implies the IND-CPA security of KEM.

Proof. Assuming a uniARK protocol, we construct a KEM as follows:

KEM.Gen
$
−→ (sk,pk): run uniARK.Init

$
−→ (stS,stR,z) and set pk = stS, sk = stR.

KEM.Enc(pk)
$
−→ (k,ct): run uniARK.Send(pk)

$
−→ (.,upd,k) and set ct = upd.

KEM.Dec(sk,ct)→ k: run uniARK.Receive(sk,upd)→ (., .,k).

The IND-CPA security game with adversary A works as in the left-hand side below. We

transform A into a KIND adversary B in the right-hand side below.

Game IND-CPA:

1: KEM.Gen
$
−→ (sk,pk)

2: KEM.Enc(pk)
$
−→ (k,ct)

3: if b= 0 then set k to random

4: A(pk,ct,k)
$
−→ b ′

5: return b ′

Adversary B(z):

1: call EXPst(S)→ pk

2: call RATCH(S,send)→ ct

3: call TEST(S)→ k

4: run A(pk,ct,k)→ b ′

5: return b ′

We can check that Cweak is satisfied. The KIND game with B simulates perfectly the

IND-CPA game with A. So, the KIND-security of uniARK implies the IND-CPA security

of KEM. ⊓⊔

3 Unidirectional Ratcheted Communication Protocol

We construct a uniARK scheme which is based on a signcryption SC.2 Our scheme

is from the uniARCAD given in Fig. 7. The principle of our uniARK is quite simple:

the sender and the receiver communicate with a signcryption scheme and receive their

corresponding keys. Every time the sender sends a message, he creates a new key set

and sends the next state for the receiver. It is sent together with the key k. In this scheme,

each sending key is used only once. We note that Init is splittable in the sense of Def. 2.

The correctness of uniARK is straightforward.

We note that the protocol is not RECOVER-secure, but we will later include a tweak

in a larger protocol which enforces RECOVER-security. The technique consists of hash-

ing the sequence of messages with a collision-resistant hash function and having the

participants to agree on the hash. We didn’t include it in uniARCAD for simplicity be-

cause we do not need it.

2 The signcryption that we use is a naive combination of a public-key cryptosystem and a digital

signature scheme, as defined in Appendix A.
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uniARCAD.Init(1λ)

1: SC.GenS(1
λ)

$
−→ (skS,pkS)

2: SC.GenR(1
λ)

$
−→ (skR,pkR)

3: stS← (skS,pkR)

4: stR← (skR,pkS)

5: z← (pkS,pkR)

6: return (stS,stR,z)

uniARCAD.Send(stS,ad,pt)

1: parse stS = (skS,pkR)

2: SC.GenS(1
λ)

$
−→ (sk ′S,pk ′S)

3: SC.GenR(1
λ)

$
−→ (sk ′R,pk ′R)

4: st ′S← (sk ′S,pk ′R)

5: st ′R← (sk ′R,pk ′S)

6: pt ′← (st ′R,pt)

7: ct← SC.Enc(skS,pkR,ad,pt ′)

8: return (st ′S,ct)

uniARCAD.Receive(stR,ad,ct)

1: parse stR = (skR,pkS)

2: SC.Dec(skR,pkS,ad,ct)→ pt ′

3: if pt ′ =⊥ then

4: return (false,stR,⊥)
5: end if

6: parse pt ′ = (st ′R,pt)

7: return (true,st ′R,pt)

Fig. 7: Our uniARCAD scheme based on a signcryption SC.

Theorem 22. We assume that SC is (T +TInit +qTSend,Receive,ε)-EF-OTCPA-secure for

some q,T ,ε. Then, the uniARK protocol defined by uniARCAD from Fig. 7 is (q,T ,ε)-

FORGE-secure. (TInit and TSend,Receive denote a complexity upper bound for Init and both

Send and Receive.)

Proof. To show FORGE security, we can see that a first forgery consists of a ciphertext

upd which verifies with key pkS. For each SC.GenS execution in the game, we construct

a hybrid playing the EF-OTCPA game. This EF-OTCPA game is outsourcing the signing

key skS and simulating Init and the RATCH calls in FORGE (hence the complexity

of T + TInit +qTSend,Receive). We note that skS is kept in stS and can only be used in

signing with SC.Enc or in leaking with EXPst(S). So, we can fully outsource it in the

EF-OTCPA game, with the exception in the leakage case. If there is any EXPst(S) to

disclose stS, we make the EF-OTCPA game abort. In the FORGE game, a first forgery

which is non-trivial must correspond to a hybrid which succeeds in making a non-trivial

forgery. Since it is non-trivial, there is no EXPst(S) call which is supposed to disclose

skS. Hence, this hybrid playing EF-OTCPA wins. Due to the EF-OTCPA security of SC,

those hybrids have a probability to succeed bounded by ε. Hence, forgeries must start

by a trivial one, but for negligible cases. We deduce FORGE-security. ⊓⊔

Theorem 23. We assume that SC is (T + TInit +qTSend,Receive,ε)-IND-CCA-secure for

some q,T ,ε. Then, the uniARK protocol defined by uniARCAD from Fig. 7 is (q,T ,qε)-

(Cleak ∧CPtest

forge)-KIND-secure. (TInit and TSend,Receive denote a complexity upper bound

for Init and both Send and Receive.)

Proof. The CPtest

forge cleanness condition makes sure that Ptest receives no forgery before

the TEST query. If Ptest = R, R is thus in a matching status at time ttest. If TEST(R)

follows a RATCH(R, rec, .) which follows an EXPst(R), then we are in a direct leakage

case and it is ruled out be Cleak. Since we can simulate every RATCH(R, rec, .) following

an EXPst(R), we can thus assume without loss of generality that no RATCH(R, rec, .) is

done after any EXPst(R).

Let upd∗ be the last received message. If EXPst(R) occurs in a matching status,

the subsequent RATCH(S,send) made after the RATCH(S,send)→ upd∗ corresponding

to the last RATCH(R, rec,upd∗) make kS keys with indirect leakage. So, they are not

testable due to Cleak. Finally, keys kR generated by receiving a forgery upd or later are
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not testable due to CPtest

forge. We assume without loss of generality that the game does not

test any of these untestable keys.

In KIND security, we construct hybrids for each SC.GenR by playing the IND-CCA

game. We number each SC.GenR execution starting from 0. The one with number 0

is made by Init during the setup of the game. The one with number i > 0 is made by

the ith RATCH(S,send) call. Let Γ0 be the original KIND game. Given a game Γi−1,

we construct Γi as follows. In the ith RATCH(S,send) call, we replace the computation

upd = SC.Enc(skS,pkR,pt) by upd = SC.Enc(skS,pkR,pt ′) with a random pt ′ of same

size as pt, and we keep upd in memory. If any RATCH(R, rec,upd) call from a matching

R using the same upd from memory uses as a decryption key skR, we skip the decryption

operation and take the right pt that we had before changing to pt ′. We easily bridge Γi−1

and Γi by an IND-CCA game, unless there is an exposure revealing skR from a matching

R. If no such EXPst(R) occurs in a matching status, all bridges show negligible (ε)

difference due to IND-CCA security. Eventually, we have replaced all upd, except the

ones which are forged and the ones subsequent to upd∗ sent by S if there is an EXPst(R)

in a matching status. All testable keys are carried by a replaced upd so do not leak from

there. Hence, testable keys can only leak from EXPkey. Due to Cleak, they do not leak.

The KIND security is obtained. ⊓⊔

4 A BARK Construction

4.1 Our BARK Protocol

We construct a BARK from uniARCAD and a hash function as on Fig. 8.

The Init protocol is splittable.

For each participant, the state is a tuple st=(hk,ListS,ListR,Hsent,Hreceived) where

hk is the hashing key, Hsent is the iterated hash of all sent messages, and Hreceived is

the iterated hash of all received messages. We also have two lists ListS resp. ListR of

states. They are lists of states to be used for sending resp. receiving. Both lists are grow-

ing but start with erased entries. Thus, they can be compressed. (Typically, each list has

only its last entry which is not erased.)

The idea is that the ith entry of ListS for a participant P is associated to the ith entry

of ListR for its counterpart P. Every time a participant P sends a message, it creates a

new pair of states and sends the sending state to his counterpart P, to be used in the case

P wants to respond. If the same participant P keeps sending without receiving anything,

he accumulates some receiving states this way. Whenever a participant P who received

many messages starts sending, he also accumulated many sending states. His message

is sent using all those states. The sent message is done by onion encapsulation using

each remaining send state from ListS. Then, all but the last send state are erased, and

the message shall indicate the erasures to the counterpart P, who shall erase receiving

states accordingly.

The protocol is quite efficient when participant alternate their roles well, because

the lists are often flushed to contain only one unerased state. It also becomes more se-

cure due to ratcheting: any exposure has very limited impact. If there are unidirectional

sequences, the protocol becomes less and less efficient due to the growth of the lists.
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In practice, one might want to reuse a key k and a “symmetric ratchet” for sessions of

unidirectional sequences. This will lower security a bit but would be perfectly in line

with the current practice of “double ratchets”.

ARCAD.Init(1λ)

1: uniARCAD.Init(1λ)
$
−→ (stsend

A ,strec
B ,zA→B)

2: uniARCAD.Init(1λ)
$
−→ (stsend

B ,strec
A ,zB→A)

3: H.Gen(1λ)→ hk

4: stA← (hk,(stsend
A ),(strec

A ),⊥,⊥)
5: stB← (hk,(stsend

B ),(strec
B ),⊥,⊥)

6: z← (zA→B,zB→A)

7: return (stA,stB,z)

ARCAD.Send(stP ,ad,pt)

8: parse stP = (hk,(st
send,1
P , . . . ,st

send,u
P ),(st

rec,1
P , . . . ,st

rec,v
P ),Hsent,Hreceived)

9: uniARCAD.Init(1λ)
$
−→ (stSnew,st

rec,v+1
P ,z) ⊲ append a new receive state to the strec

P list

10: onion← (stSnew,pt) ⊲ then, stSnew is erased to avoid leaking

11: take the smallest i s.t. st
send,i
P 6=⊥ ⊲ i= u−n if we had n Receive since the last Send

12: for j= u down to i do ⊲ add encryption layers to onion and update stsend
P

13: uniARCAD.Send(st
send,j
P ,(u− j,Hsent,ad),onion)

$
−→ st

send,j
P ,onion

14: if j < u then st
send,j
P ←⊥ ⊲ flush the send state list: only st

send,u
P remains

15: end for

16: ct← (u− i,Hsent,onion) ⊲ the onion has u− i+1 layers (n+1)

17: Hsent ′←H.Eval(hk,(ad,ct))

18: st ′P ← (hk,(st
send,1
P , . . . ,st

send,u
P ),(st

rec,1
P , . . . ,st

rec,v+1
P ),Hsent ′,Hreceived)

19: return (st ′P ,ct)

ARCAD.Receive(stP ,ad,ct)

20: parse stP = (hk,(st
send,1
P , . . . ,st

send,u
P ),(st

rec,1
P , . . . ,st

rec,v
P ),Hsent,Hreceived)

21: parse ct = (n,h,onion) ⊲ the onion has n+1 layers

22: if h 6= Hreceived then return (false,stP)

23: set i to the smallest index such that st
rec,i
P 6=⊥

24: if i+n > v then return (false,stP)

25: for j= i to i+n do ⊲ peel off onion and compute the next strec
P if accepted

26: uniARCAD.Receive(st
rec,j
P ,(i+n− j,Hreceived,ad),onion)→ (acc,st ′P

rec,j
,onion)

27: if acc = false then return (false,stP)

28: end for

29: parse onion = (st
send,u+1
P ,pt) ⊲ a new send state is added in the list

30: for j= i to i+n−1 do ⊲ update strec
P stage 1: clean up

31: st
rec,j
P ←⊥

32: end for ⊲ n entries of strec
P were erased

33: st
rec,i+n
P ← st ′P

rec,i+n
⊲ update strec

P stage 2: update st
rec,i+n
P

34: Hreceived ′←H.Eval(hk,(ad,ct))

35: st ′P ← (hk,(st
send,1
P , . . . ,st

send,u+1
P ),(st

rec,1
P , . . . ,st

rec,v
P ),Hsent,Hreceived ′)

36: return (acc,st ′P ,pt)

Fig. 8: Our ARCAD Protocol.

(uniARCAD is defined on Fig. 7.)

We note that our protocol does not offer (Cleak ∧CPtest

forge)-KIND security due to the

following attack:

1: EXPst(A)→ stA
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2: EXPst(B)→ stB ⊲ this reveals sk
rec,1
B to be used later on

3: RATCH(B,send)→ CB

4: RATCH(A, rec,CB)→ true

5: RATCH(A,send)→ C

6: TEST(A)→ k

7: Send(stA)→ CA ⊲ this creates a trivial forgery

8: RATCH(B, rec,CA)→ true ⊲ this makes B out-of-sync and updates sk
rec,1
B

9: EXPst(B)→ st ′B ⊲ this reveals sk
rec,2
B and sk

rec,1
B (updated)

10: use sk
rec,1
B (original) and sk

rec,2
B to decrypt C

11: compare the result with k

Note that the trivial forgery is here to make the following EXPst(B) a non-trivial leakage

for sk
rec,2
B (sk

rec,1
B is already known).

The attack is ruled out in the (Cleak ∧CA
forge ∧CB

forge)-KIND security which does not

allow forgeries until C is received.

4.2 Security Proofs

The results in this section together with Th. 17 and Th. 19 imply that our BARK is

(Cleak ∧Cratchet)-KIND secure.

Theorem 24 (Unrecoverability). If H is a (T ,ε)-collision-resistant hash function, then

BARK is (T ,ε)-RECOVER-secure.

Proof. Each upd sent must include the hash of the previous upd sent. We call them

chained for this reason. If (seq1,upd ′) and (seq1,upd,seq2,upd ′) are two validly chained

list of messages, we can easily see that it must include a collision. This cannot happen,

thanks to collision resistance. ⊓⊔

Theorem 25 (Unforgeability). For any q,T ,ε, assuming that SC is (T ′,ε)-EF-OTCPA-

secure, then BARK is (q,T ,qε)-FORGE-secure. Here, T ′ = T + TInit + qTSend,Receive

where TInit denotes a complexity upper bound of Init and TSend,Receive denotes a com-

plexity upper bound of both Send and Receive.

Proof. We first note that a forgery for BARK corresponds to a forgery for at least one

instance of the uniARCAD protocol in the game.

Let A be an adversary playing the FORGE game against BARK. We denote this

game Γ . We assume without loss of generality that both participants are always in a

matching status during Γ (otherwise, we make Γ abort as it will be the case in the

FORGE game, eventually). Let n be the number of uniARCAD.Init calls during Γ . The

first two are done in the initialization phase of Γ . All others are made by a RATCH(.,send)

call. We define n games Γ1, . . . ,Γn which simulate Γ . We can easily trace when the ith

uniARCAD.Init is run and when the states it generates are used, evolve, and are erased.

We denote those states as stS and stR. The game Γi is playing the FORGE game against

uniARCAD with those states. It simulates the ith uniARCAD.Init call by taking the ini-

tialized states in this game, and the uniARCAD.Send and uniARCAD.Receive by using

some RATCH calls. Similarly, when stS or stR are needed in an EXPst call by Γ , we use

the corresponding EXPst call in Γi. There is only one particular simulation: when stS is
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generated, it must be onion-encrypted. Thus, we get it in Γi using EXPst(S). We call it

the extra EXPst(S) call. The simulation is clearly perfect. We have to show that for any

successful run of Γ , there exists at least one Γi which makes a forgery in uniARCAD.

Due to the FORGE-security of uniARCAD, we deduce the FORGE-security of BARK.

If we have a successful run releasing a forgery (P,upd) in Γ , we know that the

forgery is not trivial in this game.

In the first case, we assume that P received a message from P before. The last

RATCH(P, rec,upd)→ true call corresponds to a RATCH(P,send)→ upd call. Since

the forgery is non-trivial; this call starts a ratcheting session with no full exposure. This

RATCH(P,send) call defines some value u and some states st
send,u

P
and st

rec,u
P . Let i

be the index of the uniARCAD.Init call which initialized those states. This defines our

game Γi of interest. After that corresponding RATCH(P,send), the list of send states of

P is flushed and only st
send,u

P
remains. If any subsequent RATCH(P,send) call is made,

it ends by uniARCAD.Send(st
send,u

P
). After the RATCH(P, rec,upd) call, st

rec,u
P will be

the first active receive state in the list of P. The upd forgery must thus be first accepted

by uniARCAD.Receive(st
rec,u
P ). We deduce that upd must also be a forgery for Γi. We

can also observe that since it is non-trivial in Γ , it must be non-trivial in Γi as well.

(Note that the uniARCAD.Init which generated the state required an extra EXPst(S) in

Γi but this does not make the forgery trivial as there was a subsequent ratcheting with

RATCH(P,send).) Therefore, Γi succeeds to forge in uniARCAD.

In the second case, we assume that P never received anything. We proceed as before

with u= 1. This state was initialized at the beginning of Γ so requires no extra EXPst(S).

The proof is the same. ⊓⊔

Theorem 26 (KIND Security). For any q,T ,ε, assuming that SC is (T ′,ε)-IND-CCA-

secure, then BARK is (q,T ,2qε)-(Cleak ∧CA
forge ∧CB

forge)-KIND-secure. Here, T ′ = T +

TInit+qTSend,Receive where TInit denotes a complexity upper bound of Init and TSend,Receive

denotes a complexity upper bound of both Send and Receive.

Due to Th. 17, Th. 25, and Th. 26, we deduce (Cleak ∧CA
trivial forge ∧CB

trivial forge)-KIND-

security. The advantage of treating (Cleak ∧CA
forge ∧CB

forge)-KIND-security specifically

is that we clearly separate the required security assumptions for SC.

Due to Th. 19, Th. 24, and Th. 26, we deduce (Cleak ∧Cratchet)-KIND-security.

Proof. We proceed like in the KIND-security of uniARK. We take a KIND game which

we denote by Γ . The idea is that we will identify which keys generated by SC.GenR are

safe and apply the IND-CCA reduction to whatever they encrypt. This way, we hope that

the key k which is tested by TEST will be replaced by a random one and never used in

a distinguishable way. The difficulties are

– to identify which keys are safe;
– to get rid of each use of a safe skR (except for decryption) to apply the IND-CCA

game;
– to see the connection between Cclean on the one hand, and the notion of safe key on

the other hand.

We number each use of SC.GenR from Init or RATCH(.,send) with an index j.

All indices are set in chronological order. For each j, we define a list ij,1, . . . , ij,ℓj of
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length ℓj. The jth run of SC.GenR is either done on Step 2 in uniARCAD.Init (called

either by ARCAD.Init or ARCAD.Send) or on Step 3 in uniARCAD.Send (called by

ARCAD.Send). If it is done in uniARCAD.Init, we set ℓj = 0. Actually, the receive de-

cryption key skR which is generated stays local on the participant which generated it

in BARK.Send (or BARK.Init). Otherwise, skR is generated during a uniARCAD.Send

called by ARCAD.Send and it will be encrypted in an onion to be sent to the other par-

ticipant. There is at least one encryption in the generating uniARCAD.Send (on Step 7

in Fig 7) but it may be followed by more encryptions in the onion. We let ij,1, . . . , ij,ℓj be

the indices of the SC.GenR runs which generated the keys which were used to onion-

encrypt skR. (If some keys were not generated by a SC.GenR run of the game, they

are not listed.) We note that those indices are all lower than j, due to the chronological

order.

In a game, for each j we define a flag NoEXPj. The jth decryption key skR generated

by the jth run of SC.GenR appears in some strec in stA or stB. If there is no oracle call

EXPst(P) at a time when stP includes skR, we set NoEXPj to true. Otherwise, we set

it to false. Hence, NoEXPj indicates if the jth key skR is revealed by some EXPst. One

problem is that NoEXPj can only be determined for sure at the end of the game.

For each j, if ℓj = 0, we define SafeKeyj = NoEXPj. Otherwise, we define recur-

sively

SafeKeyj =
(

SafeKeyij,1 ∨ · · ·∨SafeKeyij,ℓj

)

∧NoEXPj

This is well defined because all indices are lower than j.

To understand which keys are safe, let us consider some RATCH calls:

– RATCH(P,send)→ upd1 at time t1 (uniARCAD.Init generates skR),
– RATCH(P, rec,upd1)→ true at time t̄1,
– RATCH(P,send)→ upd2 at time t̄2 > t̄1,
– RATCH(P, rec,upd2)→ true at time t2 > t1.

This is a round-trip P→ P→ P. We assume that there is no EXPst(P) between t1 and

t2. Hence, the new receive key skR generated by P in uniARCAD.Init at time t1 stays

in P. It is used to decrypt upd2 at time t2 then destroyed (actually, skR is updated into

another key generated by P). As there is no EXPst(P) to reveal skR between time t1 and

t2, this key skR is safe. As long as no EXPst(P) reveals them, the key generated by P in

uniARCAD.Send to update skR at time t2 (and in subsequent RATCH(P,send) as long

as there is no RATCH(P, rec, .)) is also safe as it is safely encrypted for the decryption

key skR.

We define hybrid games Γj starting from Γ0 = Γ . In those games, there is a flag bad

which is set to false at the beginning. Some stR states in stA or stB will include some

decryption keys skR which will be replaced by random values and clearly marked as

such. If any EXPst call reveals a state which includes such marked key, the flag bad is

set to true and the game aborts.

Given Γj−1, we look at the jth run of SC.GenR. We let pkR be the encryption key

and skR be the decryption key. We compute the flag NoEXPj and SafeKeyj in Γj−1. If

SafeKeyj = false, we set Γj = Γj−1. Otherwise, once generated, we replace skR by a

well-marked random value, but we use the right skR when it is needed in a SC.Dec exe-

cution. If the key skR is not onion-encrypted, the two games give exactly the same result

22



as NoEXPj = true and skR is only used for decryption. If the key skR is onion-encrypted,

since SafeKeyj = true, there must be one index jij,m such that SafeKeyjij,m
= true. We

can use the IND-CCA game with the key of index jij,m to show that the encryption of

the real skR or some random value are indistinguishable, up to an advantage of ε. The

probability that bad becomes true in Γj−1 and Γj cannot differ by more than ε as well.

Eventually, we obtain a game Γq in which bad is true with negligible probability

and giving an outcome which is indistinguishable from Γ . In Γq, all keys skR which are

safe are marked and replaced by a random value, so only used for decryption. Hence,

we can apply the IND-CCA game for any of the safe keys.

Now, we can analyze what happens if the key k tested with TEST(Ptest) at time ttest

is replaced by a random one, when the cleanness property of the KIND game is satisfied.

First of all, we note that the key ktest = kPtest
(ttest) is made on Ptest either by

BARK.Send together with updtest (so generated by this algorithm), or by BARK.Receive

so transmitted before through updtest. Due to the CA
forge ∧CB

forge cleanness condition,

updtest is not a forgery. So, ktest is always originally made by a BARK.Send which gen-

erated updtest. In what follows we denote by P the participant who runs this BARK.Send

and by t the time when this execution terminates. Let t̄ be the time when P ends the

reception of updtest (let t̄=∞ if it never receives it). Hence, ktest is generated by P and

sent to P. Note that Ptest may be P (so t= ttest) or P (so t= ttest). We stress that thanks

to the CA
forge ∧CB

forge assumption and Lemma 6, P is in a matching status at time t and

P is in a matching status at time t̄.

Clearly, ktest is not revealed by any EXPkey due to the assumption that there is no

direct or indirect leakage. Hence, EXPkey never uses ktest. So, ktest is only used during

onion encryption in updtest and by TEST.

Now, we can look at which flow of onion encryption followed the ktest generation

to reach the receiver P, with the cleanness assumption. The onion encryption is done

with some keys defined in st
send,u
P ,st

send,u−1
P , . . . ,st

send,i
P . We show below that ktest is

transmitted with at least one safe encryption (in the sense of the SafeKeyj flag). Hence,

we can use the IND-CCA game for this safe encryption. We deduce that ktest is only

used by TEST, so indistinguishable from random. We obtain KIND security. Therefore,

what remains to be proven is that k is encrypted by at least one safe encryption.

We start with the t̄ <∞ case: P receives updtest at some point. We recall that P must

be in a matching status, due to the above discussion. Hence, both P and P have ktest and

Ptest is one or the other. Due to the Cleak hypothesis, P has no direct leakage at time t̄.

(This is straightforward if Ptest = P, and this comes from the first condition of indirect

leakage if Ptest = P.) Since P receives updtest, the condition of no direct leakage implies

that either there is no prior EXPst or there is a round-trip communication P→ P→ P in

between the last EXPst and time t̄, hence, a message sent by P after the last EXPst and

received by P before time t. Due to our previous analysis on this round trip, this means

that updtest was encrypted with a safe encryption.

If now t̄ =∞ (P never receives upd) and there are some EXPst(P) queries, due to

the no forgery assumption, P stays in a matching status originating from a time prior

to t. The second condition of no indirect leakage implies that if te denotes the time
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of the latest EXPst(P) and t ′ denotes the time when it originates from, then there is a

RATCH(P,send)→ upd at a time t0 after time te and a corresponding RATCH(P, rec,upd)

at a time t0 between time t ′ and time t. The uniARCAD.Send in the onion sent at time

t0 generates a safe key which is used to encrypt the next sent upd from P, and updtest as

well.

We now consider the case t=∞ with no EXPst(P) query. With a similar analysis as

before, the last reception key generated for P is safe. So, updtest is safely encrypted. ⊓⊔

5 Conclusion

We give the bidirectional asynchronous ratcheted key agreement (BARK) definition

along with its security properties. In BARK security, we mark three important security

objectives: the BARK protocol should be KIND-secure; the BARK protocol should resist

to unforgeability (FORGE-security). Moreover, the BARK protocol should not self-heal

after impersonation (RECOVER-security). Our construction is based on a signcryption

scheme (a naive one based on an IND-CCA-secure cryptosystem and a one-time signa-

ture scheme) and uses no random oracle nor key-update primitives.
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A Used Definitions

Function families and collision-resistant hash functions. A function family H de-

fines an algorithm H.Gen(1λ) which generates a key hk (we may denote its length

as H.kl) and a deterministic algorithm H.Eval(hk,m) which takes a key hk and a mes-

sage m to produce a digest of fixed length (we may denote it by H.ln). We will need a

collision-resistant hash function H. It should be intractable, given a honestly generated

hashing key hk, to find two different messages m and m ′ such that H.Eval(hk,m) =

H.Eval(hk,m ′).

Definition 27 (Collision-resistant hash function). We say that a function family H

is (T ,ε)-collision resistant if for any adversary A limited to time complexity T , the

probability to win is bounded by ε.

1: H.Gen(1λ)
$
−→ hk

2: A(hk)
$
−→ (m1,m2)

3: if H.Eval(hk,m1) =H.Eval(hk,m2) and m1 6=m2 then win

Signcryption. Our construction is based on signcryption. Actually, we do not use a

strong signcryption scheme as defined by Dodis et al. [7] but rather a naive combination

of signature and encryption. We only want that it encrypts and authenticates at the same

time. We take the following definition for our naive signcryption scheme.

Definition 28 (Signcryption scheme). A signcryption scheme SC consists of four al-

gorithms: two key generation algorithms GenS(1
λ)

$
−→ (skS,pkS); and GenR(1

λ)
$
−→
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(skR,pkR); an encryption algorithm Enc(skS,pkR,ad,pt)
$
−→ ct; a decryption algorithm

Dec(skR,pkS,ad,ct)→ pt returning a plaintext or ⊥. The correctness property is that

for all pt and ad,

Pr[Dec(skR,pkS,ad,Enc(skS,pkR,ad,pt)) = pt] = 1

when the keys are generated with Gen.

This notion comes with two security notions.

Definition 29 (EF-OTCPA). A signcryption scheme (T ,ε)-resists to existential forgeries

under one-time chosen plaintext attacks (EF-OTCPA) if for any adversary A limited to

time complexity T playing the following game, the probability to win is bounded by ε.

1: GenS(1
λ)

$
−→ (skS,pkS)

2: GenR(1
λ)

$
−→ (skR,pkR)

3: A(skR,pkS,pkR)
$
−→ (st,ad,pt)

4: Enc(skS,pkR,ad,pt)
$
−→ ct

5: A(st,ct)
$
−→ (ad ′,ct ′)

6: if (ad,ct) = (ad ′,ct ′) then abort

7: Dec(skR,pkS,ad ′,ct ′)→ pt ′

8: if pt ′ =⊥ then abort

9: the adversary wins

Definition 30 (IND-CCA). A signcryption scheme is (q,T ,ε)-IND-CCA-secure if for

any adversary A limited to q queries and time complexity T , playing the following

game, the advantage Pr[IND-CCAA
0

$
−→ 1]−Pr[IND-CCAA

1
$
−→ 1] is bounded by ε.

Game IND-CCAA
b

1: challenge =⊥

2: GenS(1
λ)

$
−→ (skS,pkS)

3: GenR(1
λ)

$
−→ (skR,pkR)

4: ACh,Dec(skS,pkS,pkR)
$
−→ b ′

5: return b ′

Oracle Dec(ad,ct)

6: if (ad,ct) = challenge then abort

7: Dec(skR,pkS,ad,ct)→ pt

8: return pt

Oracle Ch(ad,pt)

1: if challenge 6=⊥ then abort

2: if b = 0 then replace pt by a random

message of same length

3: Enc(skS,pkR,ad,pt)
$
−→ ct

4: challenge← (ad,ct)

5: return ct

Clearly, we can work with the naive signcryption scheme defined by

SC.Enc(skS,pkR,ad,pt) = PKC.Enc(pkR,(pt,DSS.Sign(skS,(ad,pt))))

using an IND-CCA-secure public-key cryptosystem PKC and a EF-OTCMA-secure dig-

ital signature scheme DSS.

B CPtest

forge Forbids More Than Necessary

Let us consider SC.Enc(skS,pkR,pt)=PKC.Enc(pkR,pt) (which does not use skS/pkS),
where PKC is an IND-CCA-secure cryptosystem without the plaintext aware (PA) secu-
rity. Hence, there exists an algorithm C(pkR;r)= ct such that (pkR,r,PKC.Dec(skR,ct))
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and (pkR,r, random) are indistinguishable.3 We obtain a construction satisfying the hy-

potheses of Th. 23 so we have (Cleak ∧CPtest

forge)-KIND security. We can consider the fol-

lowing adversary:

1: EXPst(S)→ pkR
2: pick r; C(pkR;r)→ ct

3: RATCH(R, rec,ct)→ true

4: TEST(R)→ K∗

Due to the non-PA security, we do have privacy for the tested key. However, this adver-

sary is ruled out by CPtest

trivial forge. Hence, this cleanness predicate does forbid more than

necessary: we have KIND security for more attacks than allowed.

C Comparison with Bellare et al. [1]

Bellare et al. [1] consider uniARK. They consider the KIND security defined by the game

on Fig. 9 (with slightly adapted notations). This game has a single exposure oracle

revealing the state st, the key k, and also the last used coins, but for the sender only. It

also allows multiple TEST queries.

In the KIND game, the restricted flag is set when there is a trivial forgery. (It could

be unset by receiving a genuine upd but we can ignore it for schemes with RECOVER

security.) We can easily see that the cleanness notion required by the TEST queries

corresponds to Cleak ∧CPtest

trivial forge ∧CnoEXP(R).

Game KINDA
b

1: is← 0; ir← 0

2: Init(1λ)
$
−→ (stS,stR,z)

3: pick k

4: ks← k ; kR← k

5: b ′
$
←−ARATSEND,RATREC,EXP,CHSEND,CHREC(z)

6: return b ′

Oracle EXP

1: if op[is] =“ch” then return ⊥
2: op[is] =“exp”

3: return (r,stS,kS)

Oracle RATSEND

1: pick r; (st ′S,updS,kS)← Send(stS;r)

2: auth[is]← upd; is← is+1

3: return upd

Oracle RATREC(upd)

1: (acc,stR,kR)← Receive(stR,upd)

2: if not acc then return false

3: if op[ir] =“exp” then restricted← true

4: if upd = auth[ir] then restricted← false

5: ir← ir+1; return true

Oracle CHSEND

1: if op[is] =“exp” then return ⊥
2: op[is]← “ch”

3: if rkey[is] =⊥ then rkey[is]
$
←− {0,1}kl

4: if b= 1 then return ks else return rkey[is]

Oracle CHREC

1: if restricted then return kR
2: if op[ir] =“exp” then return ⊥
3: op[ir]← “ch”

4: if rkey[ir] =⊥ then rkey[ir]
$
←− {0,1}kl

5: if b= 1 then return kR else return rkey[ir]

Fig. 9: The security game in Bellare et al. [1].

Bellare et al. [1] define correctness as a game played by an adversary C. The game is

given in Fig. 10. The adversary C has no input at all, neither from the two oracles he can

access: the UP oracle which makes S send a message to R and R to receive it; and the

RATREC oracle which makes R receive an upd chosen by the adversary. They consider

3 As an example, we can start from an IND-CCA-secure PKC0 and add a ciphertext in the

public key to define PKC. PKC.Gen: PKC0.Gen→ (sk,pk0); pick x; PKC0.Enc(pk,x)→ y;

pk← (pk0,y). Set Enc and Dec the same in PKC0 and PKC. Then C(pk;r) = y. PKC is also

IND-CCA-secure and C has the required property.
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two different adversarial models in their correctness game. In the perfect correctness

case, C is unbounded and Pr[bad = false] = 1.

Game CORC

1: bad← false

2: Init(1λ)→ (stS,stR,z)

3: CUP,RATREC

4: return (bad= false)

Oracle UP

1: pick r; (stS,upd,kS)← Send(stS;r)

2: (acc,stR,kR)← Receive(stR,upd)

3: if ¬(acc = true∧kS = kR) then bad= true

4: return

Oracle RATREC(upd)

1: (acc,st ′R,k ′R)← Receive(stR,upd)

2: if acc = false ∧ (kR,stR) 6= (k ′R,st ′R) then

bad= true

3: kR← k ′R; stR← st ′R
4: return

Fig. 10: The correctness game in Bellare et al. [1].

We construct an unbounded adversary as follows:

1: pick st at random

2: run (st ′,upd,k)← Send(st)

3: call RATREC(upd)

4: call UP

To have perfect correctness, we need R to accept the message from S with probability 1,

including when stS was picked as st. This means that R would always accept a message

from S after a trivial forgery, hence recover from impersonation. We have shown in

Section 2.4 that this implies insecurity in the sense of RECOVER, FORGE, Cleak ∧

CPtest

trivial forge-KIND, or even KIND-security as on Fig. 9.

D Comparison with Poettering-Rösler [13]

Poettering and Rösler [13] have a different way to define correctness. Unfortunately,

their definition is not complete as it takes schemes doing nothing as correct [16]. In-

deed, the trivial scheme letting all states equal to ⊥ and doing nothing is correct (and

obviously secure).

The Poettering-Rösler construction allows to generate keys while treating “associ-

ated data” ad at the same time. However, their security notion does not seem to imply

authentication of ad although their proposed protocol does. Like ours, this construc-

tion method starts from unidirectional, but their uniARK is not FORGE-secure as the

state of the receiver allows to forge messages. Another important difference is that their

scheme erases the state of the receiver as soon as the reception of an upd fails, instead

of just rejecting it and waiting for a correct one. This makes their scheme vulnerable to

denial-of-services attack.

The scheme construction uses no encryption. It also accumulates many keys in

states, but instead of using an onion encryption, it does many parallel KEM and com-

bines all generated keys as input to a random oracle. They feed the random oracle with

the local history of communication as well (instead of using a collision-resistant hash

function). It uses a KEM with a special additional property which could be realized with

a hierarchical identity-based encryption (HIBE). Instead, we use a signcryption scheme.

Finally, it uses the output of the random oracle to generate a new sk/pk pair. One of the
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participants erases sk and keeps pk while the other keeps sk. In our construction, one

participant generates the pair, sends sk to the other, and erases it.

Game KINDA

b

1: for P ∈ {A,B} do

2: sP ,rP← 0
3: ⊲ number of sent and received messages
4: eP← 0
5: ⊲ eP : number of in-sync received messages
6: EPP[·]←⊥ ⊲ EPP[s]: value of eP at the sth send
7: E⊢

P
,E⊣

P
← 0

8: ⊲ E⊢

P
: number of in-sync sent acked by P

9: ⊲ E⊣

P
← 0: number of in-sync sent messages

10: adcP[·]←⊥ ⊲ list of sent (ad,upd)
11: isP← true ⊲ isP says if P is in-sync
12: kP[·]←⊥, XPP←∅ ⊲ list of s during EXPst(P)
13: TRP←∅ ⊲ list of forbidden TEST(P, . . .)
14: CHP←∅ ⊲ list of TEST(P, . . .) made
15: end for

16: Init(1λ)
$
−→ (stA,stB)

17: b′←ARATSEND,RATREC,EXPst,EXTkey,TEST()
18: if TRA∩CHA 6= ∅ or TRB∩CHB 6= ∅ then abort
19: if TRB∩CHB 6= ∅ or TRB∩CHB 6= ∅ then abort
20: return b′

Oracle RATSEND(P,ad)
1: if SP =⊥ then abort
2: (stP ,k,upd)← Send(stP ,ad)
3: if isP then

4: adcP[sP]← (ad,upd)
5: EPP[sP]← eP

6: E⊣

P
←E⊣

P
+1

7: end if

8: kP[P,eP ,sP]← k
9: sP← sP +1
10: return upd

Oracle EXPkey(P, role,e,s)

1: if kP[role,e,s]∈ {⊥,⋄} then abort ⊲ not allowed if kP is not defined
or is available from k

P

2: k← kP[role,e,s]
3: kP[role,e,s]←⋄
4: return k

Oracle RATREC(P,ad,upd)
1: if SP =⊥ then abort
2: if isP ∧adc

P
[rP] 6= (ad,upd) then ⊲ first forgery

3: isP← false

4: if rP ∈ XP
P

then ⊲ trivial forgery

5: TRP← TRP ∪ {send}× {0,1, . . .}× {sP ,sP +1, . . .}
6: TRP← TRP ∪ {rec}× {0,1, . . .}× {rP ,rP +1, . . .}
7: end if

8: end if

9: if isP then

10: E⊢

P
← EP

P
[rP]

11: eP← eP +1
12: end if

13: (stP ,k)← Receive(stP ,ad,upd)
14: if stP =⊥ then return⊥
15: if isP then k←⋄ ⊲ k is already available on P
16: kP[rec,E⊢

P
,rP]← k

17: rP← rP +1
18: return

Oracle EXPst(P)
1: TRP← TRP ∪ {rec}× {E⊢

P
, . . . ,E⊣

P
}× {rP ,rP +1, . . .}

2: if isP then

3: XPP← XPP ∪ {sP}
4: TR

P
← TR

P
∪ {send}× {E⊢

P
, . . . ,E⊣

P
}× {rP ,rP +1, . . .}

5: end if

6: return stP

Oracle TEST(P, role,e,s)
1: if kP[role,e,s]∈ {⊥,⋄} then abort
2: k← kP[role,e,s]
3: if b= 0 then k← random
4: kP[role,e,s]←⋄
5: CHP← CHP ∪ {(role,e,s)}
6: return k

Fig. 11: The KIND game of Poettering-Rösler [13].

We recall the KIND game of Poettering-Rösler [13] on Fig. 11 (with slightly adapted

notations). The adversary can make several TEST queries. Furthermore, TEST(P) queries

are not necessarily on the last active kP but can be on any previously generated kP
value. For this reason, TEST takes as input the index (a triplet (role,e,s)) of the tested

key. This does not change the security notion.

The KIND game keeps a flag isP stating if P is “in-sync”. It means that P did not

receive any forgery. This is a bit weaker than our matching status. However, assuming

that a protocol is such that participants who received a forgery are no longer able to

send valid messages to their counterparts, in-sync is equivalent to the matching status.

As we can see, a key kP produced during a reception is erased if P is in-sync, because

it is available on the P side from where it could be tested. This is one way to rule out

some trivial attacks.

The other way is to mark a TEST as forbidden in a TR list. We can see in the KIND

game (Step 2–8 in RATREC) that if P receives a trivial forgery (this is deduced by
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rP ∈ XPP), then no further TEST(P) is allowed. This means that CPtest

trivial forge is included

in the cleanness predicate of this KIND game.

We can easily check that Cleak is included in the cleanness predicate. Hence, this

KIND game looks equivalent to ours with cleanness predicate Cleak ∧CPtest

trivial forge.

This security notion does not seem to imply FORGE security.

E Comparison with Jaeger-Stepanovs [9]

We recall the AEAC game of Jaeger-Stepanovs [9] for ARCAD on Fig. 12 (with slightly

adapted notations). The RATSEND oracle implements the left-or-right challenge at the

same time. Hence, the adversary can make several challenges. Additionally, the RATREC

oracle implements a decrypt-or-silent oracle which leaks b in the case of a non-trivial

forgery. (The oracle always decrypts after a trivial forgery and never decrypts if no

forgery. Its behavior changes only in the presence of a non-trivial forgery and with no

previous trivial forgery.) Hence, FORGE security is implied by AEAC security. A nov-

elty here is that the adversary can get the next random coins to be used: zP for sending

or ηP for receiving. (Bellare et al. [1] allowed to expose the last coins.) This is managed

by all instructions in gray on Fig. 12. Extracting these coins must be followed by the

appropriate oracle query (enforced by the nextop state).

We cannot challenge P after P received a trivial forgery (due to the restrictedP
flag). Hence, we have some kind of CPtest

trivial forge condition for cleanness. Since Cleak is

necessary, we can say that this model includes the Cleak ∧CPtest

trivial forge predicate.

Game AEACA

b

1: for P ∈ {A,B} do

2: sP ,rP← 0
3: restrictedP← false ⊲ P received a trivial forgery
4: forgeP[·]← nontrivial ⊲ forgeP[r] says if rth reception could be a

trivial forgery
5: XP← 0 ⊲ challenge forbidden if rP <XP because some

EXPst(P) occurred
6: pick zP ,ηP

7: end for

8: (stA,stB)← ARCAD.Init(1λ)
9: b′←ARATSEND,RATREC,EXPst()
10: return b′

Oracle RATSEND(P,pt0,pt1,ad)
1: if nextop 6∈ {(P,send),⊥} then return⊥
2: if |pt0| 6= |pt1| then return⊥
3: if (rP <XP∨restrictedP∨chP[sP+1]= forbidden)∧pt0 6= pt1 then

return⊥
4: (stP ,ct)← ARCAD.Send(stP ,ad,ptb;zP)
5: nextop←⊥, sP← sP +1, pick zP

6: if ¬restrictedP then ctable
P
[sP]← (ct,ad)

7: ⊲ register ct if P had no trivial forgery
8: if pt0 6= pt1 then chP[sP]← done

9: ⊲ challenge was done for the sth send
10: return ct

Oracle RATREC(P,ct,ad)
1: if nextop 6∈ {(P, rec),⊥} then return⊥
2: (stP ,pt)← ARCAD.Receive(stP ,ad,ct;ηP)
3: nextop←⊥, pick ηP

4: if pt =⊥ then return⊥
5: rP← rP +1
6: if forgeP[rP] = trivial∧(ct,ad) 6= ctableP[rP] then restrictedP← true

⊲ trivial forgery
7: if restrictedP ∨(b= 0∧(ct,ad) 6= ctableP[rP]) then return pt ⊲

return pt only after trivial forgeries
8: ⊲ (b= 0 case) return pt for a non-trivial forgery
9: return⊥

Oracle EXPst(P,coins)
1: if nextop 6=⊥ then return⊥
2: if restrictedP then return (stP ,zP ,ηP)
3: if ∃i : rP < i6 s

P
∧ ch

P
[i] = done then return⊥

4: ⊲ challenge from P was done but not received yet
5: forge

P
[sP +1]← trivial, z,η←⊥, X

P
← sP +1

6: if coins = send then

7: nextop← (P,send), z← zP , X
P
← sP +2

8: forge
P
[sP +1]← trivial, chP[sP +2]← forbidden

9: else if coins = rec then

10: nextop← (P, rec), η← ηP

11: end if

12: return (stP ,z,η)

Fig. 12: The AEAC game of Jaeger-Stepanovs [9].

30


