
Differential cryptanalysis in ARX ciphers, Application to
SPECK

Ashutosh Dhar Dwivedi, Pawe l Morawiecki

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract

We propose a new algorithm inspired by Nested to find differential path in ARX ciphers. To enhance
the decision process of our algorithm and to reduce the search space of our heuristic nested tool,
we used the concept of partial difference distribution table (pDDT) along with the algorithm. The
algorithm is applied on reduced round variants of SPECK block cipher family. In our previous paper we
applied naive algorithm with a large search space of values and presented the result only for one block
size variant of SPECK. Our new approach in this paper provide the results within a simpler framework
and within a very short period of time (few minutes) for all bigger block size variants of SPECK. More
specifically, we report the differential path for up to 8, 9, 11, 10 and 11 rounds of SPECK32, SPECK48,
SPECK64, SPECK96 and SPECK128, respectively. To construct a differential characteristics for large
number of rounds, we divide long characteristics into short ones, say constructing a large characteristics
from two short characteristics. Instead of starting from first round we start from the middle and run
experiment in forward as well as reverse direction. Using this method we improved our results and
report the differential path for up to 9, 10, 12, 13 and 15 rounds of SPECK32, SPECK48, SPECK64,
SPECK96 and SPECK128, respectively.

Keywords: Differential path, Nested Monte-Carlo Search, ARX ciphers, SPECK Cipher, Differential
Cryptanalysis

1 Introduction

ARX (Addition/Rotation/XOR) is a class of cryptographic algorithm which uses three simple arith-
metic operations: modular addition, bitwise rotation and exclusive-OR. In both industry and academia,
ARX cipher has gained more interest and attention in last few years. By using combined linear (XOR,
bit shift, bit rotation) and non-linear (modular addition) operation and iterating them for many
rounds, ARX algorithms become more resistance against differential and linear cryptanalysis. ARX
has a lack of look-up table, associated with S-box based algorithms and therefore increase the resis-
tance against side channel attacks. Due to simplicity of operations, ARX algorithms exhibit excellent
performance, especially for software platforms.

In our analysis we focus on SPECK [2]. SPECK is a secure, flexible and light weight block cipher
designed by researchers from National Security Agency (NSA) of the USA in June 2013. It has great
performance both on software and hardware. Its design is similar to Threefish- the block cipher used
in the hash function Skein [7]. SPECK is a pure ARX cipher with a Feistel-like structure in which both
branches are modified at every round. SPECK consist of 5 variants SPECK32, SPECK48, SPECK64,
SPECK96 and SPECK128 with block sizes 32, 48, 64, 96 and 128 bits, respectively.

The cryptanalysis of ARX design is more difficult. Since a typical S-box consist of 4 or 8-bit
words, the differential or linear properties can be evaluated by computing its difference distribution
table (DDT) or linear approximation table (LAT) respectively. But in case of ARX, for a 32-bit word it
is clearly infeasible to calculate these tables. Although a partial difference distribution table (pDDT)
containing few fraction of all differentials that has a probability greater than a fixed threshold is
still possible. This is possible due to the fact that the probabilities of XOR (resp. ADD) differentials

through the modular addition (resp. XOR) operation are monotonously decreasing with the bit size
of the word.

In this paper we propose a method for finding good differential paths in ARX ciphers. Finding a
differential trail is a kind of problem where we face huge state space and there is no clear and obvious
way how we should make a next step. This kind of problem are also available in many different areas
but we were inspired with single-player games such as Morpion solitaire, SameGame and Sudoku.
The heuristics called Nested Monte-Carlo Search works very well for these games [6]. We can treat a
search for good differential paths also as a single-player game and we argue that this approach could
be a base for more sophisticated heuristics. However we modified algorithm depends on the technical
complexity of our problem but it is somehow inspired by Nested Monte-Carlo Search.

In our previous paper [1] we already applied naive approach of algorithm to all variant of SPECK
but we found good result only for one variant with smallest state size SPECK32. For bigger variants,
our algorithm was demanding to reduce the search space to enhance the random decision process and
therefore we used the the partial difference distribution table (pDDT) [3] to reduce the search space
of our algorithm.

Beside the concept of pDDT we were inspired by the highways and country roads analogy proposed
by Biryukov et al [3] [9]. We relate the problem of finding high probability differential trails in a cipher
to the problem of finding fast routes between two cities on a road map, then differentials that have high
probability (w.r.t. a fixed threshold) can be thought of as highways and conversely differentials with
low probability can be viewed as slow roads or country roads. Therefore in our algorithm firstly tries
to find a probability which has probability above the threshold probability and if such probability does
not exist then it uses the low probability values. Using this concept algorithm do not take completely
random decision in iteration and hence it improves the random decision process by using smaller
search space.

2 Related Cryptanalysis

Biryukov et al.[4] published a paper where they analyzed ARX cipher SPECK and by introducing
the concept of partial difference distribution table (pDDT) they extend Matsuis algorithm, originally
proposed for DES-like ciphers, to the class of ARX ciphers. They found differential trail of 9, 10 and
13 rounds for 3 variant SPECK32, SPECK48 and SPECK64, respectively.

Biryukov et al. [5] again presented a paper in FSE 2016 where they propose the adaptation of
Matsuis algorithm for finding the best differential and linear trails to the class of ARX ciphers. It
was based on a branch-and-bound search strategy, does not use any heuristics and returns optimal
results. They report the probabilities of the best differential trails for up to 10, 9, 8, 7 and 7 rounds
of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, respectively.

Song et al. [10] presented a paper where they develop Mouha et al.’s framework for finding differ-
ential characteristics by adding a new method to construct long characteristics from short ones. They
report the probabilities of the best differential trails of SPECK for up to 10, 11, 15, 17, and 20 rounds
of SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128, respectively.

3 Description of SPECK

SPECK is a family of lightweight block ciphers with the Fiestel-like structure in which each block is
divided in two branches and both branches are modified at every round. It has 5 variants, SPECK32,
SPECK48, SPECK64, SPECK96 and SPECK128, where a number in the name denotes a block size
in bits. Each block size is divided in two parts, left half and right half.

3.1 Round Function

SPECK uses 3 basic operations on n-bit word for each round:

– bitwise XOR, ⊕,
– addition modulo 2n,�
– left and right circular shifts by r2 and r1 bits, respectively.

Left half n-bit word is denoted by Xr−1,L and right half n-bit word is denoted by Xr−1,R to the
r-th round and n-bit round key applied in the r-th round is denoted by kr. Xr,L and Xr,R denotes
output words from round r which are computed as follows:

Xr,L = ((Xr−1,L≫ r1)�Xr−1,R)⊕ kr (1)

Xr,R = ((Xr−1,R≪ r2)⊕Xr,L) (2)

Fig. 1: The round function of SPECK

Different key size have been used by several instances of SPECK family and the total number of
rounds depends on key size. The value of rotation constant r1 and r2 are specified as: r1 = 7, r2 = 2
for SPECK32 and r1 = 8, r2 = 3 for all other variants. Parameters for all variants represented in the
Table 1.

Variant Block Size(2n) Word Size(n) Key Size Rounds
SPECK32 32 16 64 22
SPECK48 48 24 72 22

96 23
SPECK64 64 32 96 26

144 29
SPECK96 96 48 96 28

144 29
SPECK128 128 64 128 32

192 33
256 34

Table 1: SPECK Parameters

4 Calculating Differential Probabilities

In [8], Moriai and Lipmaa studied the differential properties of addition. Let xdp+(a, b → c) be the
XOR-differential probability of addition modulo 2n, with input differences a and b and the output
difference c. Moriai and Lipmaa proved that the differential (a, b→ c) is valid if and only if:

eq(a� 1, b� 1, c� 1) ∧ (a⊕ b⊕ c⊕ (b� 1)) = 0 (3)

where
eq(p, q, r) := (¬p⊕ q) ∧ (¬p⊕ r) (4)

For every valid differential (a, b→ c), we define the weight w(a, b→ c) of the differential as follows:

w(a, b→ c) = − log2(xdp+(a, b→ c)) (5)

The weight of a valid differential can then be calculated as:

w(a, b→ c) := h(¬eq(a, b→ c)), (6)

where h(x) denotes the number of non-zero bits in x, not counting x[n− 1].

A differential characteristic defines not only the input and output differences, but also the internal
differences after every round of the iterated cipher. In our analysis, we follow a common assumption
that the probability of a valid differential characteristic is equal to the multiplication of the probabili-
ties of each addition operation. The XOR operation and the bit rotation are linear in GF(2), therefore
for these two operations for every input difference there is only one valid output difference.

5 Partial Difference Distribution Tables (pDDT)

The Partial difference distribution table (pDDT) proposed by Biryukov et al. [3] is a table that
contains all XOR differentials (a, b → c) whose differential probabilities (DP) are greater than or
equal to pre-defined threshold pthres.

(a, b, c) ∈ pDDT ⇔ DP (a, b→ c) ≥ pthres (7)

To compute pDDT efficiently we will use following proposition: The differential probability of XOR
of addition modulo 2n is monotonously decreasing with the word size.

pn ≤ ≤ pk ≤ pk−1 ≤ ≤ p1 ≤ p0 (8)

where pk = DP (ak, bk → ck), n ≥ k ≥ 1, p0 = 1 and xk denotes the k LSB’s of the difference x that
is, xk = x[k−1 : 0]. The algorithm is defined in a recursive fashion. For each bit position k : n > k > 0
check if probability of partially constructed (k + 1)− bit differential is greater than threshold pthres.
If yes, then move to the next bit, otherwise go back and assign different values to a[k], b[k] and c[k].
Repeat the process until k = n and once k = n add (ak, bk → ck) to the pDDT. The initial value of k
is 0 and a0, b0, c0 = φ.

Algorithm 1 Computation of a pDDT for XOR

1: Input: n, pthres, k, pk, ak, bk, ck.
2: Output: pDDT D : (a, b, c) ∈ D : DP(a, b→ c) ≥ pthres.
3: function computepddt(n, pthres, k, pk, ak, bk, ck)
4: if n==k then
5: Add (a, b, c)←− (ak, bk, ck) to D
6: end if
7: return D
8: for x, y, z ∈ 0, 1 do
9: ak+1 ←− x|ak, bk+1 ←− y|bk, ck+1 ←− z|ck

10: pk+1 = DP (ak+1, bk+1 → ck+1)
11: if pk+1 ≥ pthres then
12: computepddt(n, pthres, k + 1, pk+1, ak+1, bk+1, ck+1)
13: end if
14: end for
15: end function

6 Nested Monte Carlo Search

Our algorithm is inspired by Nested Monte Carlo Search algorithms. The Monte Carlo method is a
heuristic based random sampling method. An application to game-tree search based on Monte Carlo
method was proposed by Remi Coulom in 2008 named as Monte Carlo Tree Search (MCTS). This
algorithm was useful to games where it is hard to formulate an evaluation function, such as the game
of Go. Later for a single player games, a variant called Nested Monte Carlo Search has been proposed
[6].

Lets take a tree like structure to understand the Nested Monte-Carlo Search algorithm. At each
step the NMCS algorithm tries all possible moves and memorizes the move associated to the best
score of the lower level searches, that is, a nested of level 1 makes a playout for every possible move
and choose to play the move of the best playout. A nested of level 2 does the same thing except that
is replaces the playout by a nested of level one.

15 10 30

20 30 10

10 30 10

Fig. 2: Nested Monte Carlo Search.

During the first iteration the initial state (root) is selected and for the selected state all legal
actions are determined (Figure 2). Therefore at level 0 it play random game for all possible moves
valid for selected state (root). Then it moves one step ahead to next level with greatest associated
score.

Therefore we changed the original NMCS algorithm to eliminate this problem for our cipher and
presented a new algorithm based on NMCS with an example in the next paragraph. Instead of trying
all possible moves, we try only one random move.

Problem of finding differential path in a cipher with high probability could be treated as the
problem of finding fast routes between two cities on the road map. Let us understand the algorithm
with this example. Our goal is to find shortest path from a city to other city. We represent all possible
paths as a tree. Root of the tree is considered as starting point while all the leaves are ending point
reached by different paths (nodes). Each edge between nodes is associated with a number which
represent distance between two nodes. Initially we have two lists named as BestPath andCurrentPath
represent the best available path from previous search and random path which is under investigation,
respectively. The last element in both the list represents total distance traveled. Both the lists are
initially empty.

Fig. 3: Different paths from the root (base node) to the destination (leaf nodes)

Initially algorithm takes a random moves from base node to leaf node and save the path in Current
Path list. Lets say random path selected by algorithm is {a, b, d, i} with distance score 18. Since initially
there was no better path available (BestPath is empty), then we save the current path and its distance
as BestPath (See Figure 4).

Fig. 4: Random path from the base node to the leaf node.

Again we move one level down in BestPath and start a new random move from the node. Therefore
in our example we will start from node b, and we found a new random path {b, e, k}. The new path score
(including the distance above b) is 10, which is better than the previous best path score. Therefore
we update BestPath by CurrentPath a, b, e, k and update the score also (See Figure 5).

Fig. 5: A random path from the b node to the leaf node.

Again in the BestPath we go one step down and repeat the same process. We play a random move
from e and find the new path is {e, j}(See Figure 6.) The score for CurrentPath is 15, which is not
better than the previous best path. Hence, we do not update BestPath.

Fig. 6: Random path from node e to leaf node.

Once we reach the leaf node we repeat the whole process again from the base node. Yet this time
BestPath would not be empty, as there would be some result from the previous search.

In this kind of problems like in our example, we often face the exploration vs. exploitation dilemma
when searching for a new path. In our algorithm by letting investigate a completely new paths (start-
ing randomly from the base node), the algorithm ‘cares’ about exploration. On the other hand, by
investigating BestPath on the subsequent levels of the tree, we exploit BestPath and hope to improve
it.

Finding differential paths in SPECK

In SPECK cipher the only source of non-linearity is modular addition and its complete differential
properties (differential distribution tables) are infeasible to calculate, therefore we used our heuristics

algorithm to circumvent this limitation and to find the best differential trails. As we described above,
the algorithm took a random decision from the search space. For larger variant of SPECK this random
property of algorithm is not enough to produce good results and therefore we decided to reduce the
search space of algorithm by introducing partial difference distribution table. We used this table in
our algorithm and instead of taking random inputs for SPECK we are taking the initial inputs from
pDDT table, which contains valid differentials above the threshold value. Each time when SPECK
start the next round, the algorithm initially check the values in pDDT table. If it does not find such
value in the pDDT set it simply calculate a valid differential output for given inputs, without any
threshold condition. In our experiment with SPECK cipher, modular addition for each round is treated
as node where we need to take decision of required output (valid differential) and the weight of a valid
differential is treated as score. Our aim is to find a differential path for a given number of round with
lower weight.

The basic FIND-BEST-PATH function just run the cipher for a given number of round. Function
check the differential values in pDDT table having probability greater than some threshold value. In
case if algorithm could not find such value in the table then it calculate a valid differential output
by XOR-ing the two inputs, which gives highest probability with given inputs (best possible path
for given differences). We have not mentioned SPECK encryption operations in the algorithm for
simplicity, it is trivial that after each round of encryption st0 and st1 changes its value and every time
we check these two values in the pDDT table list.

Algorithm 2 Function to find differential path

1: function int FIND-BEST-PATH(st0, st1, speck round)
2: while not end of the round do
3: if (st0 and st1) ∈ pDDT then
4: Add differential output and the weight to the path and weight
5: list, respectively
6: else
7: op = st1 ⊕ st0
8: wt = weight(st0, st1, op) (Calculate the weight using method described
9: in section 4)

10: Add differential output op and the weight wt to the path and weight
11: list, respectively
12: end if
13: SPECK Encryption operations
14: end while
15: return path, weight
16: end function

To calculate the differential path by our algorithm using pDDT table we are using main function
in Algorithm 3. The calculated weight from round 1 to current round is represented by weight above.
The two lists weight list and best path list saves the weight and list of path for each decision from
one round to other. Both list are empty initially and the value of weight above and best weight given
to algorithm is 0 and 9999 respectively. Every time the weight list and best path list is updated with
the newly found sequence and the best move is played. The total number of round for which we are
trying to find lowest weight is represented by speck round. The first and second half block of SPECK
cipher is represented by st0 and st1.

Algorithm 3 Finding differential paths in SPECK through Nested Monte-Carlo Search

1: function int Nested(st0, st1, speck round, best weight, weight above)
2: while round <= speck round do
3: temp path list, temp weight = FIND-BEST-PATH(st0, st1, speck round)
4: if (temp weight + weight above < best weight) then
5: best weight = temp weight + weight above
6: update best path list by temp path list (from current round to end of the
7: round)
8: update weight list by temp weight (from current round to end of the
9: round)

10: end if
11: update st0 and st1 from best path list with the decision for current speck round
12: weight above = weight from first round to current speck round
13: round = round + 1
14: end while
15: return best weight
16: end function

The algorithm can be made anytime with iterative calls:

Algorithm 4 Function for iterative calls

1: best weight = 9999, weight above = 0, speck round = 9
2: while best weight > 31 do
3: Take the ith indexed value of st0, st1 from pDDT list
4: path, best weight = Nested (st0, st1, speck round, best weight, weight above)
5: i = i+ 1
6: end while
7: PRINT best weight, path

7 Obtaining a long characteristic from two short ones

It is a well known fact that it is easier to find a short characteristic (for a small number of rounds)
instead of a long characteristic. Therefore, we use the start-in-the-middle approach to find a long char-
acteristic from two short ones. In this method, we start our algorithm from the middle of the rounds
in two directions, forward toward the end and at the same time backwards towards the beginning. In
this experiment we apply internal difference inputs from the middle of the given number of rounds.
For example, if we want to find a path for 14 rounds then we pass inputs to our algorithm and let
it run for 7 rounds forwards and 7 rounds backwards (reverse). Once we acquire the result for both
directions, we combine them together to get a long characteristic for the 14 rounds (see Figure 7).
This method also saves time by not needing to search long characteristics and in the end provides us
with a better result.

o

Fig. 7: Algorithm applying on SPECK Cipher

8 Results

In this paper we used our naive algorithm extended with the partial difference distribution table
(pDDT) for finding the best differential trails in ARX cipher SPECK. We showed the practical ap-
plication of the new method on round reduced variants of block cipher from the SPECK family. For
the 32-bit state of the cipher, it only make sense to analyse the differential paths with probability
higher than 2−32. It is because a path with lower probability would not lead to any meaningful attack,
which would be faster than exhaustive search in the 32-bit state. Similarly for SPECK48, SPECK64,
SPECK96 and SPECK128 probability should be higher than 2−48, 2−64, 2−96 and 2−128 respec-
tively. We run the experiment for long characteristics starting from the first round. We report the
differential path for up to 8, 9, 11, 10 and 11 rounds of SPECK32, SPECK48, SPECK64, SPECK96
and SPECK128 respectively. In the table left and right part of the state are denoted by ∆L and
∆R, respectively. Differences are encoded as hexadecimal numbers (Probability for a given weight is
2−weight).

Table 2: Differential trails for SPECK32, SPECK48, SPECK64
SPECK32 SPECK48 SPECK64

Round ∆L ∆R log2 p ∆L ∆R log2 p ∆L ∆R log2 p
1 0014 0800 2 100082 120000 3 08000000 00000000 1
2 2000 0000 1 901000 001000 3 00080000 00080000 2
3 0040 0040 1 008010 000010 3 00080800 00480800 4
4 8040 8140 2 100090 100010 3 00480008 02084008 6
5 0040 0542 4 801010 001090 5 0a080808 1a4a0848 9
6 8542 904a 6 109080 101400 5 12400040 c0104200 5
7 1540 546a 7 900490 10a490 8 80020200 80801206 5
8 d440 85e9 7 803494 051014 8 80001004 84008030 5
9 919020 b91080 9 80808020 a08481a4 8
10 80040124 84200c01 7
11 a0a00800 81a0680c 9
Σrpr -30 -47 -63

Table 3: Differential trails for SPECK96, SPECK128
SPECK96 SPECK128

Round ∆L ∆R log2 p ∆L ∆R log2 p
1 000000000080 000000000000 00 0000000000000060 0000000000000000 02
2 800000000000 800000000000 01 2000000000000000 2000000000000000 02
3 808000000000 808000000004 03 2020000000000000 2020000000000001 04
4 800080000004 840080000020 05 2000200000000001 2100200000000008 06
5 808080800020 a08480800124 09 2020202000000008 2821202000000049 10
6 800400008124 842004008801 09 2001000020000049 6108010020000200 10
7 a0a000008880 81a02004c88c 12 2828000020200200 2068080120201203 14
8 01008004c804 0c0180228c60 14 2040200120003201 230060082100a218 18
9 080080a288a8 680c81b6eba8 21 222020282020a22a 3a2320692825b2eb 27
10 c00481364920 80608c811463 18 1001004900059249 c118030041280510 17
11 8808020008280082 80c81a0201682804 15
Σrpr -92 -125

In the second part we also perform the experiment starting from the middle of round and run
our tool in both direction, reverse as well as forward. Using this method we improved our results and
report the differential path for up to 9, 10, 12, 13 and 15 rounds of SPECK32, SPECK48, SPECK64,
SPECK96 and SPECK128 respectively. For variant with larger block size say 96 or 128, we got better
results compared to previous results.

Table 4: Differential trails for SPECK32, SPECK48, SPECK64
SPECK32 SPECK48 SPECK64

Round ∆L ∆R log2 p ∆L ∆R log2 p ∆L ∆R log2 p
1 14ac 5209 7 020888 5a4208 7 02080888 1a4a0848 9
2 0a20 4205 5 d24000 005042 6 92480040 40184200 8
3 0211 0a04 4 008202 020012 4 008a0a00 0481a021 8
4 2800 0010 2 000090 100000 1 00489008 02084018 8
5 0040 0000 0 800000 000000 1 0a080888 1a4a0848 9
6 8000 8000 1 008000 008000 2 92400040 40104200 6
7 8100 8102 2 008080 048080 3 00820200 00001202 4
8 8000 840a 4 848000 a08400 4 00009000 00000010 2
9 850a 9520 6 a00080 a42085 7 00000080 00000000 0
10 248085 0584a8 8 80000000 80000000 1
11 80800000 80800004 3
12 80008004 84008020 5
Σrpr -31 -43 -63

Table 5: Differential trails for SPECK96, SPECK128
SPECK96 SPECK128

Round ∆L ∆R log2 p ∆L ∆R log2 p
1 a22a20200800 013223206808 14 0096492440040124 0420144304600c01 18
2 019009004800 080110030840 10 2020820a20200800 0120201203206808 14
3 0800800a0808 480800124a08 10 0100009009004800 0801000010030840 10
4 400000924000 004000001042 06 08000000800a0808 4808000000124a08 10
5 000000008202 020000000012 04 4000000000924000 0040000000001042 06
6 000000000090 100000000000 01 0000000000008202 0200000000000012 04
7 800000000000 000000000000 01 0000000000000090 1000000000000000 01
8 800000000000 008000000000 02 8000000000000000 0000000000000000 01
9 008080000000 048080000000 04 0080000000000000 0080000000000000 02
10 048000800000 208400800000 06 0080800000000000 0480800000000000 04
11 208080808000 24a084808001 10 0480008000000000 2084008000000000 06
12 248004000081 018420040088 09 2080808080000000 24a0848080000001 10
13 80a0a0000088 8c81a02004c8 12 2480040000800001 0184200400800008 10
14 00a0a00000808008 0c81a02004808048 14
15 04810080048000c8 608c018020840288 17
Σrpr -89 -127

Conclusion

By applying our algorithm based on Nested by reducing the search space using the partial difference
distribution table (pDDT) to all five instances of block cipher SPECK with 32, 48, 64, 96 and 128 bit
block sizes respectively we obtained result for all variant. Another method we tried is starting from
the middle provide more good result for bigger state sizes. By changing threshold we can increase or
decrease size of pDDT table. For a bigger threshold value pDDT size is small and speed of experiment
is fast because of smaller search space but we can miss few values which are necessary to make good
differential path, on the other hand for smaller threshold value pDDT table is large and experiment
speed is slow because of bigger search space but it might include the values which are necessary to
make the good differential path.

Acknowledgement

Project was financed by Polish National Science Centre, project DEC-2013/09/D/ST6/03918.

References

1. Pawe l Morawiecki Ashutosh Dhar Dwivedi and Sebastian Wójtowicz. Finding differential paths in arx
ciphers through nested monte-carlo search. International Journal of electronics and telecommunications,
64(2):147–150, 2018.

2. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers.
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404,
2013.

3. Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails in ARX ciphers. In Josh
Benaloh, editor, Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track at the RSA Conference
2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings, volume 8366 of Lecture Notes in
Computer Science, pages 227–250. Springer, 2014.

4. Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails in arx ciphers. In Josh
Benaloh, editor, Topics in Cryptology – CT-RSA 2014, pages 227–250, Cham, 2014. Springer International
Publishing.

5. Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search for the best trails in ARX:
application to block cipher speck. In Peyrin [9], pages 289–310.

6. Tristan Cazenave. Nested monte-carlo search. In IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 456–461, 2009.

7. N. Ferguson, B. Schneier S. Lucks, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The Skein
Hash Function Family. Submission to the NIST SHA-3 Competition (Round 2), 2009.

8. Mitsuru Matsui, editor. Fast Software Encryption, 8th International Workshop, FSE 2001 Yokohama,
Japan, April 2-4, 2001, Revised Papers, volume 2355 of Lecture Notes in Computer Science. Springer,
2002.

9. Thomas Peyrin, editor. Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science.
Springer, 2016.

10. Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential analysis of ARX block ciphers
with application to SPECK and LEA. In Joseph K. Liu and Ron Steinfeld, editors, Information Security
and Privacy - 21st Australasian Conference, ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016,
Proceedings, Part II, volume 9723 of Lecture Notes in Computer Science, pages 379–394. Springer, 2016.

