
Lightning Factories
Alejandro Ranchal Pedrosa

EIT Digital Master School
Sorbonne Université, Paris, France
CEA LIST, PC 174, Gif-sur-Yvette,

91191, France
alejandro.ranchal_pedrosa@etu.

upmc.fr

Maria Potop-Butucaru
Sorbonne Université, CNRS,

Laboratoire d’Informatique de Paris 6,
LIP6, Paris, France

maria.potop-butucaru@lip6.fr

Sara Tucci-Piergiovanni
CEA LIST, PC 174, Gif-sur-Yvette,

91191, France
sara.tucci@cea.fr

ABSTRACT
Bitcoin, the most popular blockchain system, does not scale even
under very optimistic assumptions. Lightning networks, a layer on
top of Bitcoin, composed of one-to-one lightning channels make it
scale to up to 105 Million users. Recently, Duplex Micropayment
Channel factories have been proposed based on opening multiple
one-to-one payment channels at once. Duplex Micropayment Chan-
nel factories rely on time-locks to update and close their channels.
This mechanism yields to situation where users funds time-locking
for long periods increases with the lifetime of the factory and the
number of users. This makes DMC factories not applicable in real-
life scenarios.

In this paper, we propose the first channel factory construction,
the Lightning Factory that offers a constant collateral cost, indepen-
dent of the lifetime of the channel and members of the factory. We
compare our proposed design with Duplex Micropayment Channel
factories, obtaining better performance results by a factor of more
than 3000 times in terms of the worst-case constant collateral cost
incurred when malicious users use the factory. The message com-
plexity of our factory is n where Duplex Micropayment Channel
factories need n2 messages where n is the number of users. More-
over, our factory copes with an infinite number of updates while in
Duplex Micropayment Channel factories the number of updates is
bounded by the initial time-lock.

Finally, we discuss the necessity for our Lightning Factories of
BNN, a non-interactive aggregate signature cryptographic scheme,
and compare it with Schnorr and ECDSA schemes used in Bitcoin
and Duplex Micropayment Channels.

CCS CONCEPTS
• Computer systems organization → Peer-to-peer architectures;
Dependable and fault-tolerant systems and networks;

KEYWORDS
Bitcoin, Blockchain, Scalability, Lightning Network.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC’19, April 8-12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Alejandro Ranchal Pedrosa,Maria Potop-Butucaru, and Sara Tucci-Piergiovanni.
2019. Lightning Factories. In Proceedings of ACM SAC Conference (SAC’19).
ACM,NewYork, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Bitcoin blockchain aims at becoming the main system for e-
commerce. However, it has a big problem: it does not scale. The
way Bitcoin works at the time of writing, all (full) nodes need to
know all bitcoin transactions ever made. Following this approach,
the Bitcoin Network will need to generate more than 1TB of trans-
actions per day to reach VISA’s peak transaction rate [14]. Even
if the network achieved such numbers, becoming a Bitcoin node
would be a very resource-consuming task. This hinders the use of
standard computational resources, which in turn, leads to a central-
ized network of a few powerful nodes, thus threatening its trustless
nature.

It is, therefore, reasonable to considerways of creating blockchain-
enforceable information, without actually bloating the network.
This approach is similar to that of the judicial system: citizens (mem-
bers of the network) sign contracts constantly (court-enforceable
information), but they do not enforce these contracts unless there
is a dispute in which the counter-party does not cooperate. This is
actually the idea of payment channels, i.e. blockchain-enforceable
contracts, whose content is the balance of involved parties. Opening
and closing the contract takes place in the blockchain, but from
the moment parties open the channel till the moment they close it,
they can perform transactions with each other without publishing
them in the blockchain, unless there is a dispute, to enforce the
correct transaction. Let us note that this approach, called often
Layer2 of the blockchain, does not only improve scalability, but
offers a number of advantages for end-users. First, members of a
payment channel can perform payments without paying any fees, if
they have an open channel, or with some fees determined by relay
nodes in the path, instead of a blockchain fee. Second, the payments
performed within a payment channel, provided all participants are
online and responsive, take place at the speed of their communica-
tion protocol. Third, the possibility to perform fast, free of charge
payments opens Bitcoin’s way into a new set of applications based
on micropayments.

Recently the idea of payment channels has been further improved
by the use of intermediate nodes that can also route payments, creat-
ing a network of payment channels, such as Lihgtning Network [14].
However, as pointed out by Poon et al. [14], Lightning Networks
do not scale well enough. Even under the very generous assump-
tion that each user only publishes 3 transactions per year (to open

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SAC’19, April 8-12, 2019, Limassol, Cyprus A. Ranchal Pedrosa et al.

and/or close channels), the network scales to only 35 million users,
far from covering the world’s population. For this reason, Burchert
et al. [5] propose Channel Factories. Channel factories allow for
various users to simultaneously open independent channels in one
single transaction, reducing drastically the number of blockchain
hits required. Their solution bases on Duplex Micropayment Chan-
nels (DMCs) [7], in which closing transactions rely on timelocks
relative to the funding transaction entering the blockchain. The
timelock makes the transaction invalid until an amount of time
in the blockchain elapses (either actual time in seconds, or block-
depth). This mechanismmakes DMCs simple to setup and track, but
it shows an important trade-off between the lifetime of the channel
and the worst-case temporary lock-in of funds. On the one hand, a
higher locktime will reduce the number of blockchain hits. On the
other hand, if one party goes unresponsive, the counterparty will
have to wait for the entire locktime before retrieving their funds.
In contrast to DMCs, Lightning Channels tackle this trade-off ef-
ficiently, leading to a constant worst-case locktime independent
of the lifetime of the channel – for this reason we propose in this
paper a factory solution based on Lightning Channels instead of
DMCs.

The contributions of our work is as follows. To the best of our
knowledge, we propose the first Lightning Factory, solving the
trade-off between the lifetime of the factory and the risk of funds
lock-in. We compare our Lightning Factories with DMC Factories
(the current state of the art). We show that Lightning Factory offers
a constant collateral cost, independent of the lifetime of the channel
andmembers of the factory, enabling actual applicability of factories
for scalability, besides disincentivizing frauds by penalization. We
obtain better performance results by a factor of more than 3000
times with respect to DMC Factories. From a cryptographic point
of view, our solution requires for multi-signatures a non-interactive
aggregate signature scheme. Maxwell et al. [10] recently proposed
a scheme for Schnorr Multi-signatures with applications to Bitcoin.
This scheme is however, interactive, not non-interactive, as we
require. For this reason, we apply the BNN [1] non-interactuve
scheme for our Lightning Factory, instead of Schnorr and ECDSA,
used in Bitcoin and DMCs, and we compare them.

The remaining of this document is structured as follows: in
Section 2 we discuss related work, while in Section 3 we introduce
the necessary background and basic notions on payment channels;
Section 4 shows our Lightning Factory construction; in Section 5
we compare Lightning Factories with state of the art, and finally
we conclude in Section 6.

2 RELATEDWORK
Decker et al. [7] firstly introduced Duplex Micropayment Chan-
nels (DMCs), with the usage of decreasing timelocks to update the
channel. Poon and Dryja’s Lightning Network and channel con-
struction [14] followed, gaining popularity as the most promising
proposal for a payment channel network. Decker et al. [6] recently
proposed eltoo, a proposal for removing incentives to updates for
the updating phase of Lightning channels. Prihodko et al. [13] pro-
posed FLARE, a routing algorithm for the Lightning Network.

An important aspect of the Lightning Network not yet exten-
sively studied is its overall usage and impact, i.e. how the fees will

be, how scalable the routing will really be, the impact it can gener-
ate on the blockchain, etc. Zohar et al. [4] studied this in two rather
simple, static Lightning Network topologies.

Other proposals focused onmore versatile blockchains. Poon and
Vitalik released Plasma [12], a specification of off-chain childchains
for Ethereum, as an intermediate layer between Lightning and the
rootchain. Miller et al. [11] considered improvements in terms of
collateral cost of HTLC-based routing for Ethereum, wile Khalil et
al. [9] proposed a rebalancing protocol for exhausted channels.

Because payment channels do not scale well enough by them-
selves [14], Burchert et al. [5] firstly suggested setting up multiple
channels at once in what they referred to as a DMC factory. Decker
et al. [6] shortly mentioned that their eltoo approach can be ex-
tended to factories. However, they did not provide a protocol. While
eltoo-based approach speaks of Lightning penalizations as toxic,
the absence of penalizations for fraud in an eltoo-based factory can
lead to all users committing to each valid state that maximizes their
benefit, bloating the network and causing tension and distrust in
the network, which can be more toxic when scaling to multiple
parties than penalizing fraudsters. Additionally, the diversity of
options for a second layer in Bitcoin required a common notation
of them, which has not been yet performed for Bitcoin, though it
has for state channel networks [8].

3 PAYMENT CHANNELS AND FACTORIES
In this section, we sketch the functioning of payment channels and
factories.

3.1 Channels
A payment channel between n parties, also called n-party channel,
consists of a funding transaction that locks up funds, and a sequence
of update transactions that deterministically specify how the locked
funds are split among participants/users. The structure of a generic
transaction is introduced below.
Transaction. Each transaction TS is a data structure specifying an
agreement among a set of subscribers S to move funds among
accounts. TS has the following fields: TS .out : the set of outputs of
the transaction, i.e., a set of elements of type oj , where oj indicates
the fund o to transfer to the account ai ; TS .in: the set of inputs of
the transaction. Each element of this set is an output of another
transaction T ′S ′ .out , i.e. an amount spendable in the transaction
TS ; TS .conds: the set of conditions for the transaction TS to be
valid. A valid transaction makes the outputs of the transactions
TS spendable (needed signatures, locktimes, etc.). Figure 1 shows
the chaining of two transactions through their inputs and outputs.
From the bottom to the top, the transactionT 1

B moves an amount of
20 from the B’s account to the C’s one, i.e. T 1

B .out = {(20,C)}. The
relationship between theT 1

B ’s input andT
0
A’s output (represented by

an arrow in the figure) creates a dependency between transactions,
we say in this case that T 1

B spends (fully or partially1) the output
of the transaction T 0

A. Note that each transaction is executed when
registered in the blockchain and that by construction T 1

B cannot be
registered before T 0

A since T 1
B refers to T 0

A outputs.
1Usually if the total referred amount is not used, as in this case, an additional transfer
from B to himself is added to fully spend the referred output. For sake of conciseness,
in the paper this additional transfer is not explicitly represented.

Lightning Factories SAC’19, April 8-12, 2019, Limassol, Cyprus

A:50, B:0, C:0
T 0
A T 0

A .out = (50,B)

A:0, B:50, C:0
T 1
B

A:0, B:30, C:20

T 1
B .in = T

0
A .out

T 1
B .out = (20,C)

Figure 1: Example of a chain of transactions moving funds
from A to B and from B to C. On the left-hand side of the
picture, the state of balances before and after the execution
of each transaction.

Two-party Channels. Channels have two types of transactions: a
funding transaction, that opens the channel, and subsequent refund
transactions. Note that specific protocols can instantiate these trans-
actions in a specific way and/or add other types of transactions.
We give an intuition about general principles of channels before
deepening into the details of the Lightning channels.
Funding Transaction. Any payment channel is initialized with a
funding transaction T 0

i, j that creates a common account for the
participants i and j . The the set of inputs refers to input transactions
spendable separately by ui and uj ; the output specifies instead an
output moving funds to an account shared by ui and uj ; conditions
refers to the fact that to spend the common output the spending
transaction must by signed by both ui and uj .
Refunding transaction. After locking up funds with the funding
transaction T 0

i, j , each subsequent transaction will represent a two-
party agreement on a new redistribution of funds, i.e. a refunding
transaction. This means that any refunding transaction T ki, j with
k ≥ 1 has T ki, j .in = T

0
i, j .out , and outputs move funds back to i and

j on independent accounts ai and aj . This means that spending
transactions can spends T ki, j outputs only be signed by ui or uj ,
depending on the output referred, either oi or oj .

Let us note that transactions are created by participants by fol-
lowing a message-passing protocol to open a channel (creating the
fund and the first refund transaction) and to update the channel
(creating the subsequent refund transactions). Figure 2 shows a
protocol to open a channel among Alice and Bob. Transactions are
exchanged through messages that must be signed, i.e., T 0

.. indicates
nobody signed yet. Once the transaction is created and fully signed,
it can be sent to the blockchain. Let us note that each refund trans-
action spends the same locked funds, this means that only one of
them can really hit the blockchain, otherwise a double spending
would occur. In this respect, we say that a transaction is on-chain
when the transaction is registered in the blockchain in a confirmed
block. We then refer to an off-chain transaction as a transaction
ready to be published on-chain, i.e. it is blockchain-enforceable, but
not yet sent to the blockchain.

Once the fund transaction is created as well as the first refunding
transaction, other refund transactions T k can be created off-chain.
In the reminder of the paper we will interchangeably use the term
refund transaction T k and channel at state k , where at each state k
the users of the channel have balances determined by the execution
of the transaction T k . Let us note that in this context, a malicious

BobAlice

T 1
ABT 1

AB

Blockchain

T0B.o
ut

T 0
.. ,T 1

A.

T0.B,
T1AB

T 0A
B

Figure 2: Example of opening a channel by exchaning mes-
sages. The funding transaction and the first refund transac-
tions are created and the funding transaction is sent to the
blockchain.

party may want to publish on-chain an old balance (if this balance
favors him), in this case we say that the malicious party commits a
fraud. Moreover, a party can go unresponsive either maliciously or
involuntarily.

As already mentioned, a payment channel is implemented by
a message-passing protocol among participants. Any protocol to
correctly implement a payment channel must be fraud-resistant
and cope with unresponsive behavior. Honest parties should always
own enough transactions to be able to get back at least an amount
of funds equivalent to the last agreed-upon balance (no-steal). More-
over, if a new update cannot be fully singed due to an unresponsive
behavior of one of the party, then the other party must get back the
initial fund published with the f undinд transaction (no-lock). For
instance, in Figure 2 the first update transaction is signed before
the fund transaction, to guarantee no-lock.

Underlying mechanisms of current proposals. Depending on the
update mechanism, we list here three different channels. Duplex
Micropayment Channels[7] (DMCs) update by creating new trans-
actions with decreasing timelocks for each update, achieving the
determinism of the updates. New updates are locked for less time,
thus replacing the older ones. Note that in this protocol frauds
cannot be commited under the assumption that the blockchain
well-behaves. Eltoo Channels[6] update by creating a set of transac-
tions that invalidate previous refund transactions when creating
the new update. New updates invalidate old ones, but frauds can be
committed. In this case the protocol can recover to the correct state
under the assumption that the fraud is detected. Lightning Chan-
nels[14] follow eltoo channels approach, but with the additional
feature of penalizing parties that commits frauds.

3.2 Factories
A channel factory is an n-party channel which creates a funding
transaction among n nodes, i.e. all of them sign the funding transac-
tion. Further, instead of having an update consisting of a refunding

SAC’19, April 8-12, 2019, Limassol, Cyprus A. Ranchal Pedrosa et al.

transaction signed by all the parties, a special Allocation transaction
create funding transactions for 2-party channels. The update of the
factory consists in updating the allocation transaction. The channel
factory concept has been introduced in [5] in which the funding
transaction to open the factory is called Hook transaction and the
first allocation transaction has an associated timelock. Updating
the factory means opening/closing channels, by creating a new allo-
cation transaction with lower locktime. Finally, closing the factory
means publishing the lastly signed allocation transaction (with the
lowest locktime), or else cooperating to sign a last agreed-upon
transaction with no locktime.
4 FROM LIGHTNING CHANNELS TO

LIGHTNING FACTORIES
In this section we present the Lightning Factory construction. We
first detail the Lightning channels then introduce the cryptographic
scheme needed to cope with the challenges of extending lightning
channels to n parties. Furthermore, we explain the protocol for
opening, updating and closing a Lightning Factory.

4.1 Lightning Channels
A Lightning channel is opened by creating a funding transaction
and a first refund transaction, as shown in Figure 2 . To align to
Lightning we will denote the funding transaction as FAB . For the
channel update in Lightning, outdated states are invalidated by
creating specific transactions that we detail in the following. These
specific transactions, if a malicious party commits a fraud, allow
the honest one to remedy by publishing a specific transaction that
gets back all the funds to the honest party – a proof of fraud. The set
of created transactions and their dependency are shown in Figure 3.
Let us note that all the transactions have now a subscript indicating
the party that, once the transaction is created, stores the transaction
locally. The figure shows two so-called Commitments transactions:
Ck,AAB that only Alice can send to the blockchain, andCk,BAB that only
Bob can send to the blockchain. In case of unresponsive party or
because one partywants to unilaterally close a channel, funds can be
retrieved byA thanks to a so-called Revocable Delivery transactions
RDk,A

AB after a timelock (by B through RDk,B
AB , respectively). During

the creation ofRDk,A
AB the protocol makes sure to create as wellDk,A

AB
which refunds B immediately (no time-locks). Proofs-of-frauds can
be achieved through the Breach Remedy transactions BRk,AAB , BRk,BAB ,
respectively. These transactions spend the same outputs as RDk,A

A,B

and RDk,B
A,B , but without a timelock and they give all the balance to

the counterparty.
In the proposed scheme, if B (the same applies to A) gets unre-

sponsive, funds can be retrieved unilaterally by A thanks to RDk,A
AB ,

but only after a timelock, this way no-lock is preserved. Moreover,
if one of the two party sends to the blockchain a stale state, the
timelock allows for B to react and send a breach remedy.

4.2 Cryptographic Scheme
Lightning Factories do not extend as straightforwardly from Light-
ning Channels as DMC Factories do from DMCs. Let us note that in
a two-party Lightning Channel both participants sign everything
because every change in the Lightning Channel involves them,

FAB

Ck,AAB Ck,BAB

Dk,A
AB Dk,B

AB

RDk,A
AB BRk,AAB RDk,B

ABBRk,BAB

Figure 3: Channel state k between Alice and Bob.

and an ejection of one of them implies closing the channel. For
this reason, a two-party Lightning Channel works perfectly with
a 2-of-2 multisignature, in which both participants sign the same
messagem, which represents the last balance. Lightning Factories
to be effective need to take into account ejection of participants in
the factory. Moreover, participants in a Lightning Factory sign and
share a part of a transaction, so that each user can later reconstruct
transactions as needed. This requires for a cryptographic scheme
based on aggregate signatures. As detailed by Boneh et al. [2], an
Aggregate Signature (AS) scheme is a digital signature scheme with
the additional property that a sequence of signatures σ1, ...,σn of
some messagemi under some public key pki can be condensed into
a single, compact aggregate signature σ that simultaneously vali-
dates the fact thatmi has been signed under pki for all i = 1, ...,n.
The verification process takes input (pk1,m1), . . . , (pkn ,mn), and
accepts or rejects. Boneh et al. [2] propose an aggregate signature
scheme based on BLS [3], called BGLS. Bellare et al. [1] improve this
scheme by removing the per-signer distinct messages restriction to
BGLS in a new scheme, BNN.

Using a non-interactive aggregated signature scheme, such as
BNN, Alice, Bob and Carol sign a part of a transaction each, instead
of the full transaction. A part of a transaction can be considered
similar to a partially signed transaction with the sighash-single flag,
or a partially signed n-of-n multisig. Typically, this is referred to
as an aggregate signature. We will also refer to the signed message
that needs to be aggregated with others to form a full transaction
as a transaction fragment. As such, an n-of-n aggregate signature
needs n transaction fragments signed by n different users (each
user signs one), in order to get a fully signed transaction.

4.3 Lightning Factory Protocol
Actions of users. In order to depict the Lightning Factory protocol,
we define a set of actions that a user can perform. The protocol
will decide the rules for the actions to be taken and the kind of
transactions to build.
• createi (T): the transaction T is created by ui and stored
locally at ui ;
• siдni (T): the transaction T is signed by the user ui ;
• broadcasti (T): the transaction is sent to all n-channel partic-
ipants;,
• deliver

j
i (T): the transaction T is delivered by ui from uj ;

Lightning Factories SAC’19, April 8-12, 2019, Limassol, Cyprus

• publishi (T): the transaction T is published on-chain by ui
and stored in the blockchain, if and only if the transaction is
valid (correct signatures and timelocks expired).

Note that the party ui can store the transactionT if and only if they
have created it or another party uj shared it with i , i.e. ui delivered
from uj .

In the following for each protocol phase we detail the types of
transaction built and we detail the corresponding protocol.

4.3.1 Opening a Lightning Factory. Lightning Factory sets up funds
by locking them up into a n-of-n aggregated output, by means of
a hook transaction. A Lightning Factory extends the concept of
a Lightning Channel to Factories trough the equivalent of an Al-
location transaction Ak

{ui }
, i.e. a set of Allocation Commitment

transactions {Ck, j
{mi }
}n−1j=0 , one per user per state to ascribe blame,

same way we defined commitment transactions Ck,AAB ,C
k,B
AB as the

equivalent of a refund transactions. The Allocation Commitment
under the aggregate signature scheme is Ck, j

{mi }
n−1
i=0
=

∑n−1
i=0 C

k, j
mi ,

where k is the state number, j is the user that owns this commitment
transaction, and {mi } indicates all required messages are aggre-
gated. The input of this transaction is the output of the hook. The
output of this transaction points at a revocable allocation transac-
tion RA

k, j
{mi }

n−1
i=0
=
∑n−1
i=0 RA

k, j
mi , with a lock-time relative from the

inclusion of Ck, j
{mi }

in the blockchain.
Specifically, a transaction fragment is a tuple< P,S,T ,I,O,St >.
Following, we explain each of the parts of the tuple, with an

example of the fragment Bob signs for the Alice’s commitment
transaction at the initial state, C1,A

mB : P is the issuer of the message
(e.g. Alice in the case of C1,A

mB);S is signer of the message (e.g. Bob
in C1,A

mB); T is the type of the message: either timelocked or not.
In the case of C1,A

mB T is no locktimed; I is the input for this frag-
ment’s transaction. The H {ui }n−1i=0

channel hook (funding) output
for the fragment the transaction belongs to; O is the output for
this fragment’s transaction. For C1,A

mB this output is the input of the
Revocable Allocation; St is state identifier for which this message
is valid. In the case of C1,A

mB , state is 1.
Notice that only P and St are newly proposed fields for Bitcoin.

P, the issuer, can be simply a one bit flag indicating that the signer
of this fragment is not the issuer. St can be defined in some of the
remaining bits still unspecified in the sequence_no field 2.

All users need to agree and sign for the state, so that they cannot
reuse a fragment for a future state. Therefore, the aggregated Allo-
cation Commitment transactionC1,A

{mi }
=
∑n−1
i=0 C

1,A
mi would contain

the following extra fields: S is σi , ∀C1,A
mi ; T is No locktime in the

aggregated message inC1,A
{mi }

; O is one aggregate signature output,
C1,A
{mi }
.o.

Let us note that, for this application, we require only one output
for the commitment transaction (as detailed above). The output
represents the balance that this message commits to. It can only
be relative to the signer, i.e. Bob can only sign the amount Bob
receives from the factory.
2https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki

Analogously, one can also extend the concept of a revocable allo-
cation transaction into a set of transaction fragments {RA1,A

mi } that,
aggregated, create a valid transactionRA1,A

{mi }
=
∑n−1
i=0 RA1,A

mi spend-
ing the outputs ofC1,A

{mi }
. As such, provided that Alice already com-

mitted to this state by broadcastingC1,A
{mi }

, an aggregated revocable
allocation message for her, RA1,A

{mi }
=
∑n−1
i=0 RA1,A

mi , would result in
each part of the aggregated tuple RA1,A

{mi }
=< P,S,T ,I,O,St >:

P is any, ∀RA1,A
A,mi

; S is σi , ∀RA1,A
mi ; T is relative locktime for

all, ∀RA1,A
A,mi

, dependent on when the corresponding commitment
transaction was published; I is C1, j

{uj }
, regardless of the j (simi-

lar to SIGHASH_NOINPUT); O is one aggregate signature output,
O=oRA1

i , ∀RA1,A
mi ; St is 1, ∀RA1,A

mi .
Notice that

∑n
i=0 o

RA1
i = B, being B the total amount locked

at setup (the total balance). oRA1
i act as the output of a funding

transaction, used as input for each refunding transaction of two-
party channels. In order to allow each signer to specify with which
output to aggregate, we use output indices. Also, each transaction
fragment signs in its fragment the output indices with a list of
signatures that can aggregate to this output, in order to prevent an
outsider to lock funds of a channel by including their signature in
the output. 3.

Notice how, the same way inputs are aggregated as needed (ini-
tially all need to aggregate their key), outputs are as well. Each user
needs to sign also for which output indexes they want to sign, in
order to add its key to the output (and, thus, require its signature
in order to spend it). In the case of the hook, each transaction frag-
ment Hmi signs only the inputT−1i .o, which only requires user ui ’s
key, and the output n-of-n aggregated output H .o, which requires
all other users. As for the revocable allocation fragments RAmi ,
the outputs user ui signs are only those that are used as inputs
in channels that involve ui . We provide the protocol to open the
factory LFsetup() in Figure 4a).

4.3.2 Updating a Lightning Factory. Updating to state k+1 requires
a two-step process:

(1) sign and share transaction fragments for the new commit-
ment and revocable allocation transactions for state k+1,
Ck+1,A
{mi }

=
∑n−1
i=0 C

k+1,A
mi and RAk+1,A

{mi }
=
∑n−1
i=0 RAk+1,Ami

(2) invalidate the previous state k, creating Proofs-of-Fraud.
Invalidation of Alice’s transaction for state k means for Alice

to create and share a Breach Remedy transaction fragment, BRk,AmA ,
that spends from Ck,A

{uj }
without a timelock, same as the fragment

Ck,Ami does with a timelock ∆t . More in detail, BR1,AmA ’s transaction
fragment fields are as follows: BR1,AmA =< P=any, S=Alice, T=no
locktime, I=C1,A

{mi }
>, commitment transaction of Alice, St= 1, O=

∅.
This way, if Alice publishes the previous state, Bob or Carol can

prove fraud, and restore the channel without requiring Alice’s sig-
nature anymore. Notice this requires for the transaction fragments

3This requirement is no different from how other works require different ways of
representing outputs [10] for further scalability)

https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki

SAC’19, April 8-12, 2019, Limassol, Cyprus A. Ranchal Pedrosa et al.

{Ck,Amj }j,A to be only valid for the particular state k . This is why
St is required as part of the transaction fragment.

There are two possible options when proving fraud with Breach
Remedy transaction fragments, we will refer to them as Breach Rem-
edy Restoration (BRR) and Breach Remedy Closing (BRC) transac-
tions. Both can be signed and transferred during the update protocol,
but only one of them is required to guarantee the invalidation of
previous states and, therefore, correctness of the factory.
BRRs: Proof-of-Fraud to expel fraudster. BRR is used to expel
a fraudster upon committing to a fraud, but leave the rest of the
factory intact. The output of a PoF in a BRR is simply a new (n-1)-
(n-1) aggregated signature, that removes the fraudster. This way,
since the fraudster’s fragments are not required anymore (nor are
they accepted), then the Commitment and Revocable Allocation
transactions will not take them into account. This means the key
of the fraudster will not figure in the outputs that the fraudster
signed for in its Revocable Allocation fragment. Hence, every 2-
of-2 multisig output that funded a channel for this fraudster with
someone else becomes a single-sig output for the counter-party,
effectively giving all funds in the channel to the counter-party. In
this sense, The BR acts as a new hook for a new Lightning Factory
without the fraudster.

In order for BRRs to be reproducible, we also introduce idle
transaction fragments (Is). That is, each participant signs one and
gives it to all the rest, once for the entire lifetime of the factory. This
fragment simply adds the key of the signer for the input and the
output of the Proof-of-Fraud, making sure a non-fraudster is still
part of the factory, whereas the BR only adds the key to the input.
Therefore, when a fraudster tries to commit fraud by publishing
an invalid Commitment Transaction, any participant must create a
BRR transaction by aggregating the BR of the fraudster with the
idle transaction fragments of the rest of the factory members.
BRCs: Proof-of-Fraud to close factory. To close the factory
while proving fraud, one can create a BRC transaction, made out of
Breach Remedy and Revocable Allocation transaction fragments.
The challenge here, as for BRRs, is to point at the proper outputs.
Note that a BRC might be at the same time a fraud in itself by a
second fraudster, and a third honest party must be able to proof
two nested frauds (i.e. it must be reproducible). This is why this
Proof-of-Fraud is revocable, as opposed to previous cases. BRRs
already tackle this problem, since the factory is restored, not closed.
Update Protocol. Figure 4b shows the update protocol, regardless
of how BRs are used (as part of a BRR or a BRC). Notice that this
protocol does not generate a new state if one user is offline, which
can be exploited to retrieve all required signatures for a new state,
without sharing them, affecting the correctness. For this reason,
any update that does not fully succeed paralyzes the money-flow
in the factory, leaving it stale, until a further update/close event
finishes. We refer to this as a stale factory, and a stale factory attack.
However, a stale attack does not have a big performance impact
for Lightning Factories, as detailed in section 5. It is nevertheless
possible to select an ordering of the users and require users to share
keys one by one only when receiving one key. A protocol like this
would require ⌈n2 ⌉ users to collude in order to successfully achieve
a stale situation.

Nonetheless, a stale attack can be suspected any time an update
is not fully finished, and, given the trustless-oriented nature of
blockchains, one should always assume that the rest of users of the
factory might be colluding to steal one’s funds. Furthermore, this
protocol performs significantly faster than ordering and sharing
the fragments one by one with one particular user at a time, since
all fragments are delivered to all.

4.3.3 Closing a Lightning Factory. In order for user uj to properly
close a Lightning Factory, being lf − 1 the last state of the factory,
they add the proper last Allocation Commitment fragments into an
Allocation Commitment transaction Ck, j

{mi }
n−1
i=0
=
∑n−1
i=0 C

k, j
mi . Then,

after waiting for the timelock ∆t , any user uj ′, including uj , can
publish RAk, j ′

{mi }
n−1
i=0

in order to close the factory. Notice that, should
all users agree, they can create a last state lf , not revocable, that
directly outputs into the accounts they agree upon, instead of setting
up the channels of the factory when closing the factory.

5 COMPLEXITY, RESILIENCE AND
PERFORMANCE ANALYSIS

5.1 Complexity Analysis
In this section we compare the complexity and security perfor-
mances of our Lightning Factory versus DMC Factories.

Worst-case lock-in time DMC Factories’ worst-case lock-in
time is t1, where t1 being A1

{ui }
(tlock : t1). Lightning Factories

have a constant worst-case lock-in time of ∆t . Notice that ∆t =
cδt , c ∈ R, and ∆t << t1.

Blockchain check time DMC Factories only have to check the
blockchain at t1 − (lf − 1)δt , where (lf − 1) being A

lf −1
{ui }

the lastly
signed state. Lightning Factories have to periodically check the
status of the blockchain at least every ∆t , in order to have enough
time to prove fraud.

Memory footprint DMC Factories simply need to store the
lastly signed Alf −1

{ui }
. Lightning Factories need to store, for Alice’s

case, {Clf −1,A
{ui }

,RA
lf −1,A
{ui }

} alongwith all {Imi }i,A and the last {BRlf −1,imi }i,A,
since the last Breach Remedy fragments can make use of
SIGHASH_NOINPUT to match previous old states. However, if
memory is a constraint, Breach Remedy fragments can also be
aggregated, and Idle transaction fragments are not necessary for
the correctness of the factory, requiring ultimately the size of 3
transactions, compared to that of 1 for DMC Factories. Recall that,
at the moment of writing, DMC Factories have been proposed with
Schnorr signatures, whose size is twice as much as our proposed
BLS signatures, resulting in a final 3/2 ratio of size required for
Lightning Factories compared to DMC Factories.

Number of updates DMC Factories are upper-bounded in the
number of updates by ⌊ t1δt ⌋, where t1 beingA

1
{ui }
(tlock : t1). Light-

ning Factories have an unlimited amount of updates.
Message complexity The protocol proposed by Burchert et

al. [5] requires exchanging n2 messages for each update. Lighting
Factory requires 2n messages, being ordered in two sets. A first
set of n allocation commitment and revocable allocation fragments
that are broadcast in an indistinct order, and a second set of n

Lightning Factories SAC’19, April 8-12, 2019, Limassol, Cyprus

Function LFsetup();

//assign indices
...
//share outputs {T −1j .o }
...
//set up channels {Cuj ,uk }
...
upon event channelsSetUp()

RA1
∅
← <P = any, S = ui , T = t1,
I = {C1

{ui }
.o }, O = RA1

{ui }
.oui , St = 1>

C1
∅
← <P = any but ui , S = ui , T = ∅,
I = {H .o }, O = C1

{ui }
.o, St = 1>

{RA1
mi , C

1
mi } ← signi {RA

1
∅
, C1
∅
}

broadcast ({C1
mi , RA

1
mi })

———————————————————————
upon event deliveri(C1

mj , RA
1
mj) do

store({C1
mj , RA

1
mj })

if allReceived(St = 1) then
//start with hook
H∅ ← <P = any, S = ui , T = ∅,
I = {T −1i .o }, O = H .o, St = ∅>
Hmi ← signi(H∅)
broadcast (Hmi)

(a) Opening a Lightning Factory. The initial comments
refer selecting an ordering, sharing outputs to be spent,
and setting up 2-party channels inside the factory.

Function LFupdate(Ck
{uj }

, RAk
{uj }

);

//set up, update channels {Fuj ,uk } ...
upon event channelsUpdated()

Ck+1,i
∅

← <P = i, S = ui , T = ∅, I = {H{uj } .o },
O = Ck+1

{uj }
.o, St = 1>

RAk+1
∅
← <P = any, S = ui , T = t1, I = {Ck+1{uj }

.o },

O = RAk+1
{uj }

.oui , St = k + 1>

Ck+1
∅
← <P = any but ui , S = ui , T = ∅, I = {H{uj } .o },

O = Ck+1
{uj }

.o, St = k + 1>

{Ck+1,imi , RAk+1mi , C
k+1
mi } ← signi ({C

k+1,i
∅

, RAk+1
∅

, Ck+1
∅
})

broadcastk+10 ({Ck+1mi , RA
k+1
mi })

———————————————————————
upon event deliveri({Ck+1mj , RA

k+1
mj }) do

store({Ck+1mj , RA
k+1
mj })

if allReceived(St = k + 1) then //start with breach remedy
BRk,i ← <P = any, S = ui , T = ∅, I = {C1,i .o }, O = ∅, St = k }
BRk,i
∅
← createi (BR)

BRk,imi ← signi(BR
k, i
∅
)

broadcasti(BR
k,i
mi)

———————————————————————
upon event timeout_protocol do

if notAllReceived(St = k + 1) then
//publish lastly valid one (no breach remedy issued)
publishi(

∑j−1
j=0 C

k,i
mj)

(b) Updating a Lightning Factory.

Figure 4: Left: Lightning Factory setup protocol. Right: Lightning Factory update protocol.

breach remedy fragments that are broadcast afterwards. Note that
fragments and their signatures are smaller in size to the transactions
and signatures reported in DMC Factories. That is, BLS signatures
are half as big as Schnorr.

5.2 Resilience Analysis
Previous work [5] suggested a mechanism for splicing out unre-
sponsive/malicious parties which attempts against the correctness
of the factory. The authors suggest the redirection of inner-chanel
outputs to a new factory. We have the evidence that this splicing
out mechanism is vulnerable to broken factory attack, which cracks
the no-steal correctness property.

Using Lightning Factories, there is no risk for a counter party
going unresponsive, since the factory can be closed uncooperatively
with a small locktime ∆t to allow for disputes, instead of a period
of time representative of the lifetime of the factory t1, where t1
the timelock for the first state, as with DMC. This means that the
trade-off between locktime and lifetime of the factory is addressed,
being possible to have unlimited lifetime with constant locktime.
Also, malicious parties are disincentivized to try fraud, since any
other member of the factory can publish a Proof-of-Fraud, and
make them lose all funds.

Furthermore, the attacks possible in a channel factory make it
difficult for DMC factories to tackle their trade-off, since the proper-
ties of long-lasting channels/factories (high number of updates) and
low worst-case lock-in time of funds are in direct conflict. However,
in a Lightning Factory, given the smaller locktime, not dependent
on the number of updates, and the fact that invalidation of states

are only signed once everybody has a validation of the new state,
the stale factory attack is significantly less bothersome.

5.3 Performance Analysis
In this section, we compare the impact of different timelocks, that
of a Lightning Factory and of a DMC Factory. If the factory faces
a stale factory situation, some funds from some channels or, in
the worst case, all funds from all channels may be locked for the
locktime that was set by the timelock. If the factory simply can not
be updated because of one or several users being offline, the funds
can be moved within the already opened channels, but not outside,
for as long as the timelock has not finished.

In both cases, we consider the cost of holding unusable liquidity
during each locktime. We call this the interest rate. Similar to the
value chosen by Zohar et al’s [4], we choose an interest rate of
r = 0.0001096 per iteration step, when fixed. For our simulation,
we consider the factory wishes to update at each iteration step, and
each iteration steps reduces the timelock by one. The two above-
mentioned cases will change the impact of the locktime, that is, the
value of r , but the locktime is not dependent on it. Hence, we use a
generic model that works for both cases.

Let p be the probability of a user going unresponsive and/or
malicious during an update (or in between updates) in a binomial
distribution, and let p be the same for all users, then the expected
number of possible updates is E(n) = 1

1−(1−p)n . If the factory was
opened defining lf updates, then the remaining updates are lf −E(n)
otherwise. Finally, to consider the cost, we consider the remaining
updates and multiply them by the interest rate r , being the cost
(lf − E(n))r if E(n) < lf .

SAC’19, April 8-12, 2019, Limassol, Cyprus A. Ranchal Pedrosa et al.

Figure 5: Remaining percentage of updates as a function on the total lifetime of the factory.
n LF DMF
10 ϕ 3437ϕ
100 ϕ 3576ϕ
3000 ϕ 6839ϕ
104 ϕ 8977ϕ

Interest LF DMF
ϕ ϕ 3785ϕ
5ϕ 5ϕ 3729ϕ
9ϕ 9ϕ 3551ϕ
10ϕ 10ϕ 3686ϕ

p LF DMF
10−7 ϕ 3645ϕ

2 · 10−7 ϕ 5661ϕ
5 · 10−7 ϕ 7963ϕ

10−6 ϕ 8957ϕ

Figure 6: Cost as a function on the number of users n, the probability of a malicious/offline party and the interest rate.

Figure 5 shows the simulation results4 of the remaining percent-
age of updates as a function on the total lifetime of the factory lf
and on the number of users n, expected number of updates j as
a function on the probability of a malicious/offline party p, and
simulation results showing resulting cost when increasing the life-
time, from left to right. Both in Figure 5 and Figure 6, when fixed,
the chosen values of each parameter are: p = 10−7 (1 user in 10
million goes unresponsive, either during update or not), lf = 10000
(after 10000 updates the DMC Factory closes), n = 1000 (1000 users
in the factory). One can see how increasing the number of users
immediately affects the lifetime of the channel, due to the increas-
ing chance of a stale attack. Increasing the lifetime of the channel
also increases such chance, given the more tries. This is strongly
dependent on the value on p chosen, as shown in Figure 5, which
we consider to be generous for the DMC construction in our results.

Figure 6 shows the cost as a function on the number of users n,
the probability of a malicious/offline party p and the interest rate r ,
from left to right. The right-most plot of Figure 5, along with the
tables in Figure 6, illustrate how the cost, dependent on the interest
ϕ, is much lower in our construction compared to a DMC factory,
by a factor of more than 3000 in almost all results, and increasing
for DMC while remaining constant for our construction LF. These
results were obtained by a simulation on 1000 factories per result.

It is, therefore, clear that Lightning Factories scale well better
when considering the locktime of fund than DMC factories, re-
gardless of the actual values for n, lf , p and r . Additionally, we
prevent selfish users from continuously publishing outdated states
that maximize their rewards, by penalizing them.

6 CONCLUSIONS AND DISCUSSION
In this paper, we proposed the first extension of Lightning Channels
to Lightning Factories, solving the trade-off between the lifetime of

4the code to obtain such results is available at https://github.com/ranchalp/
LightningFactories-simulations

the factory and the risk of temporary funds lock-in existing in DMC
Factories. Our design scales well better thanDMCFactories, offering
a constant collateral cost, independent of the lifetime of the channel
and the members of the factory. Moreover, our Lightning Factories
are resilient to attacks. Driven by the necessity to implement non-
interactive aggregate signatures, we proposed BNN as signature
scheme. Note that advantages of BNNs lie in a reduced signature size
with respect to the Schnorr-based interactive AS schemes proposed
byMaxwell et al. [10] by a factor of 2. Moreover, it would be possible
to implement it in Bitcoin, requiring additional modifications from
the perspective of validation semantics. The reason is that it is
necessary to enforce all and only the required transaction fragments
at each step. This can be implemented with a new Opcode, in a
backward compatible way, such that miners that do not want to
upgrade will simply believe transactions involving this Opcode in
other miners’ blocks. Other than Bitcoin, we believe that this design
would be beneficial to other existing and upcoming blockchains.

ACKNOWLEDGMENTS
The authors would like to thank Yannick Seurin for our many
insightful discussions related to the cryptographic schemes men-
tioned in this paper.

REFERENCES
[1] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted Aggre-

gate Signatures. International Colloquium on Automata, Languages and Program-
ming - ICALP, (June), 2007.

[2] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. pages 416–432, 2003. URL:
https://doi.org/10.1007/3-540-39200-9_26, doi:10.1007/3-540-39200-9_26.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. volume 17, pages 297–319, 2004. URL: https://doi.org/10.1007/
s00145-004-0314-9, doi:10.1007/s00145-004-0314-9.

[4] Simina Brânzei, Erel Segal-Halevi, and Aviv Zohar. How to charge lightning.
CoRR, abs/1712.10222, 2017. URL: http://arxiv.org/abs/1712.10222, arXiv:1712.
10222.

[5] Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scalable funding
of bitcoin micropayment channel networks. In International Symposium on

https://github.com/ranchalp/LightningFactories-simulations
https://github.com/ranchalp/LightningFactories-simulations
https://doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1007/s00145-004-0314-9
http://arxiv.org/abs/1712.10222
http://arxiv.org/abs/1712.10222
http://arxiv.org/abs/1712.10222

Lightning Factories SAC’19, April 8-12, 2019, Limassol, Cyprus

Stabilization, Safety, and Security of Distributed Systems, pages 361–377. Springer,
2017.

[6] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. eltoo: A simple layer2
protocol for bitcoin. White paper: https://blockstream.com/eltoo.pdf.

[7] Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. pages 3–18, 2015. URL: https://doi.
org/10.1007/978-3-319-21741-3_1, doi:10.1007/978-3-319-21741-3_1.

[8] Stefan Dziembowski, Sebastian Faust, and Kristina Hostakova. Foundations of
state channel networks. IACR Cryptology ePrint Archive, 2018:320, 2018. URL:
https://eprint.iacr.org/2018/320.

[9] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain payment
networks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 439–453, 2017. URL: http://doi.acm.org/10.1145/3133956.3134033,
doi:10.1145/3133956.3134033.

[10] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple
schnorr multi-signatures with applications to bitcoin. IACR Cryptology ePrint
Archive, 2018.

[11] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, Christopher Cordi, and Patrick
McCorry. Sprites and State Channels: Payment Networks that Go Faster than
Lightning. CoRR, 2017. URL: http://arxiv.org/abs/1702.05812, arXiv:1702.05812.

[12] Joseph Poon and Vitalik Buterin. Plasma: Scalable Autonomous Smart Contracts.
White paper, pages 1–47, 2017. URL: http://plasma.io/plasma.pdf.

[13] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, and Alek-
sey Ostrovskiy. Flare: An Approach to Routing in Light-
ning Network. White Paper (bitfury. com/content/5-white-papers-
research/whitepaper_flare_an_approach_to_routing_in_lightning_n et-
work_7_7_2016. pdf), page 40, 2016.

[14] Draft Version, Joseph Poon, and Thaddeus Dryja. The Bitcoin Lightning Network.
draft version 0.5, i:1–22, 2016.

https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
http://dx.doi.org/10.1007/978-3-319-21741-3_1
https://eprint.iacr.org/2018/320
http://doi.acm.org/10.1145/3133956.3134033
http://dx.doi.org/10.1145/3133956.3134033
http://arxiv.org/abs/1702.05812
http://arxiv.org/abs/1702.05812
http://plasma.io/plasma.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Payment Channels and Factories
	3.1 Channels
	3.2 Factories

	4 From Lightning Channels to Lightning Factories
	4.1 Lightning Channels
	4.2 Cryptographic Scheme
	4.3 Lightning Factory Protocol

	5 Complexity, Resilience and Performance Analysis
	5.1 Complexity Analysis
	5.2 Resilience Analysis
	5.3 Performance Analysis

	6 Conclusions and Discussion
	Acknowledgments
	References

