
1

PolyShard: Coded Sharding Achieves Linearly
Scaling Efficiency and Security Simultaneously

Songze Li∗, Mingchao Yu∗, A. Salman Avestimehr∗, Sreeram Kannan†, and Pramod Viswanath‡
∗University of Southern California

†University of Washington
‡University of Illinois at Urbana-Champaign

Email: {songzeli,mingchay}@usc.edu, avestimehr@ee.usc.edu, ksreeram@ee.washington.edu,
pramodv@illinois.edu

Abstract

Today’s blockchains do not scale in a meaningful sense. As more nodes join the system, the efficiency of the system
(computation, communication, and storage) degrades, or at best stays constant. A leading idea for enabling blockchains to scale
efficiency is the notion of sharding: different subsets of nodes handle different portions of the blockchain, thereby reducing the load
for each individual node. However, existing sharding proposals achieve efficiency scaling by compromising on trust - corrupting
the nodes in a given shard will lead to the permanent loss of the corresponding portion of data. We observe that sharding is similar
to replication coding, which is known to be inefficient and fragile in the coding theory community. In this paper, we demonstrate
a new protocol for coded storage and computation in blockchains. In particular, we propose PolyShard: “polynomially coded
sharding” scheme that achieves information-theoretic upper bounds on the efficiency of the storage, system throughput, as well
as on trust, thus enabling a truly scalable system. We provide simulation results that numerically demonstrate the performance
improvement over state of the arts, and the scalability of the PolyShard system. Finally, we discuss potential enhancements,
and highlight practical considerations in building such a system.

I. INTRODUCTION

Blockchain systems, which maintain a distributed trusted ledger and can do finite-state computations, can execute a wide
range of programs in a trust-free setting. This has promised a host of new and exciting applications in various areas including
digital cryptocurrency [1], industrial IoT [2], and healthcare management [3]. However, to enable these applications, we need
blockchain systems that scale well with the number of participating nodes [4]. The scalability is with respect to three important
performance metrics: the throughput - measured as the number of transactions verified in a distinct period of time, the storage
efficiency - measured as the maximum size of the blockchain that can be handled by nodes with fixed storage sizes, and the
security - measured as the number of malicious nodes the system can tolerate. By scalable, we mean that all these three metrics
should improve as the number of nodes N increases; this is a remarkably high expectation – state of the art scaling solutions
[5]–[9] expect performance metrics to not get worse (at best) as the number of nodes N increases.

Scalability has been one of the greatest challenges faced by current blockchain systems like Bitcoin [1] and Ethereum [10]. For
example, Bitcoin presently restricts its block size to 1 MB, and processing rate to 7 transactions/sec [11], inherently restricting
the throughput. The main reason that hinders these conventional technologies from scaling is that their key underpinning
storage and computation methods involve full replication: Each network node stores the entire blockchain and replicates all
the computations (verifications).

This feature gives a full replication system high security (of tolerating 49% adversarial nodes). But the storage efficiency
and throughput of the system is compromised: They stay constant regardless of the network size. In practice, the computational
burden even increases with the number of nodes (e.g., mining puzzles get harder as time progresses and more users participate),
causing the throughput to drop.

However, such a trade-off is far from optimal from information theoretical point of view. Given the N× computation and
N× storage resources across all the N network nodes, the following information-theoretic upper bounds hold:

security ≤ Θ(N); throughput ≤ Θ(N); storage efficiency ≤ Θ(N).

It is intuitive that these bounds can be simultaneously achieved by a centralized system, allowing all the 3 metrics to scale.
If a carefully designed decentralized system can provide the same scalability, this would represent a significant progress over
full replication and signal true scalability of blockchains – as more nodes participate in the system, all-round performance
improves. Such are the goals of this paper.

To close this gap, the leading solution being discussed in the blockchain literature is via sharding [7]–[9]. The key idea
is to break up (or “shard”) the blockchain into fragments which are then replicated. This way, both storage and computation
requirements are reduced by a factor equal to the number of shards K. However, in order to allow storage and throughput to
scale linearly with N , the number of nodes q = N

K participating in a shard has to be held constant. Consequently, an attacker

2

Fig. 1: Blockchain, conventional sharding and Polyshard.

only needs to control as less as q/2 nodes to compromise a shard, yielding a security level of q/2, which approaches zero
with increasing N . Although various efforts have been made to alleviate this security issue (e.g., by periodically shuffling the
nodes [8]), they are susceptible to powerful adversaries (e.g., who can corrupt the nodes after the shuffling), yet none achieves
security scalability.

In summary, both full replication and sharding based blockchain systems make trade-offs between the scalability of
throughput, storage efficiency, and security. A widely open fundamental question is thus:

Is there a blockchain design that simultaneously scales storage efficiency, security, and throughput?

In this paper, we answer this question affirmatively by introducing the concept of coded sharding. In particular, we propose
PolyShard (polynomially coded sharding), a scheme that simultaneously scales throughput, storage efficiency, and security
by Θ(N). We show mathematically that Polyshard achieves all three information-theoretic upper bounds and enables a
truly scalable blockchain system. (Table I)

TABLE I: Performance comparison of the proposed PolyShard verification scheme with other benchmarks and the information-theoretic
limits.

Storage efficiency Security Throughput

Full replication O(1) Θ(N) O(1)

Sharding Θ(N) O(1) Θ(N)

Information-theoretic limit Θ(N) Θ(N) Θ(N)

PolyShard (this paper) Θ(N) Θ(N) Θ(N)

PolyShard is inspired by recent developments in coded computing [12]–[20], in particular Lagrange Coded Computing [20],
which provides a transformative framework for injecting computation redundancy in unorthodox coded forms in order to deal
with failures and errors in distributed computing. The key idea behind PolyShard is that instead of storing and processing a
single uncoded shard as in convention, each node stores and computes on a coded shard of the same size that is generated by
linearly mixing uncoded shards, using the well-known Lagrange polynomial. This coding provides computation redundancy
to simultaneously provide security against erroneous results from malicious nodes, which is enabled by noisy polynomial
interpolation techniques (e.g., Reed-Solomon decoding). The illustration in Fig. 1 compares and contrasts Polyshard, sharding
and regular storage approaches in blockchains. The dark circles correspond to nodes, above which the stored blockchain is
shown. The different colors in the second row correspond to distinct shards, and Polyshard mixes the shards (colors) .

While coding is generally applicable in many distributed computing scenarios, the following two salient features make
PolyShard particularly suitable for blockchain systems.
• Oblivious: The coding strategy applied to generate coded shards is oblivious of the verification function. That means, the

same coded data can be simultaneously used for multiple verification items (examples: digital signature verification and
balance verification in a payment system);

3

• Incremental: PolyShard allows each node to grow its local coded shard by coding over the newest verified blocks,
without needing to access the previous ones. This helps to maintain a constant coding overhead as the chain grows.

As a proof of concept, we simulate a payment blockchain system, which keeps records of all the balance transfers between
clients, and verifies new blocks by comparing them with the sum of the previously verified blocks. We run experiments on this
system for various combinations of network size and chain length, and measure/evaluate the throughput, storage, and security
achieved by the full replication, uncoded sharding, and the PolyShard schemes. As we can see from the measurements
plotted in Fig. 2, PolyShard indeed achieves the throughput scaling with network size as the uncoded sharding scheme,
improving significantly over the full replication scheme. These experiments provide an empirical verification of the theoretical
guarantees of PolyShard in simultaneously scaling storage efficiency, security, and throughput.

Fig. 2: Measured throughput of verification schemes; here number of epochs t =1000.

In the following, we list the main contributions of this paper.
• Drawing upon principles from information and coding theory, we propose a radically different scalable design methodology

called coded sharding.
• We propose an instantiation of the general coded sharding principle called PolyShard, which stands for Lagrange

polynomial based coded sharding.
• We prove that PolyShard provides Θ(N) scalability to both efficiency (throughput and storage) and security;
• We corroborate our theoretic findings with simulation and evaluation of a payment blockchain system. We implemented
PolyShard in this system, and numerically demonstrate its efficiency and security scalibility.

Related works. Sharding is the state of the art technique to scale the computation, communication, and storage of blockchain
systems [7]–[9], [21]–[32]. The key idea is to partition the entire blockchain into K shards, each of which is managed by
a disjoint subset of nodes (miners). This reduces the required amount of computation by a factor of K. As an example, a
sharding protocol ELASTICO was proposed in [7], in which the the incoming transactions are partitioned into shards, and each
shard is verified by a disjoint committee of nodes in parallel. A decentralized sharding protocol OmniLedger [8] improved
upon ELASTICO in multiple avenues, including new methods to assign nodes into shards with a higher security guarantee,
proposed an atomic protocol for cross-shard transactions, and further optimized the communication and storage designs. For
all current sharding systems, in order to scale out with the number of nodes N , the number of shards K needs to grow with
N , i.e., K = O(N). This results in a constant number of nodes in each shards, which makes the system more susceptible to
adversaries as the network expands. Current systems achieve security through system solutions such as shard rotation [7], [8],
[33]. For example, OmniLedger leverages RandHound [34], a bias-resistant distributed randomness generation protocol,
to randomly sampling the subset of users assigned to a shard, and randomly updating the these subsets regularly over time.
Such methods can provide near-optimal security when the adversarial nodes are fixed prior to the random assignment, but are
susceptible when the adversary is dynamic and can corrupt nodes after they have been assigned to the shards.

II. PROBLEM FORMULATION: BLOCK VERIFICATION

We consider a blockchain system that consists of K independent shards, with each client associated to only one shard. For
clarity of presentation we focus on transactions that are verifiable intra-shard; cross-shard verifications are an added complexity
complementary to the contributions of this paper; for instance, the atomic payment and locking mechanisms of [8] can be
naturally incorporated with the ideas in this paper. We define the computation and networking models, and then performance
metric below.

4

A. Computation model

Each shard k, k ∈ [1,K] maintains its own sub-chain. We use t to denote discrete time in rounds and Yk(t) ∈ U denotes the
verified block in round t at shard k, where U is a vector space over a field F. Then the sub-chain at shard k till time t− 1 is
denoted as Y t−1k = (Yk(1), Yk(2), . . . , Yk(t− 1)). We wish to validate a new block Xk(t) ∈ U proposed in shard k in round t
with respect to the past of the sub-chain Y t−1k to ensure that it does not contain any double-spends or other irregularities. We
abstract out the mechanism which generates the proposal and instead focus on validating the proposed transaction. We note
that the proposal can be generated by a small number of nodes, while security depends on the number of nodes that validates
the transactions. Note that since transactions are intra-shard, the sub-chain is sufficient to verify whether Xk(t) is valid. To
verify Xk(t), shard k computes a verification function f t : Ut → V, over Xk(t) and the sub-chain Y t−1k , for some vector
space V over F.

Having obtained htk = f t(Xk(t), Y t−1k), shard k computes an indicator variable ztk, such that ztk = 1(htk ∈ W), where
W ⊆ V denotes the subset of the values of the verification function for which the block is valid. A simple example is when
V = {0, 1}, the output is binary and denotes the validity, i.e., W = {1}. Finally, the verified block Yk(t) is computed as
Yk(t) = ztkXk(t), i.e., if the block is not valid, it is treated as a null block which is represented as 0 in the field.

Without loss of generality, we model the verification function f t as a multivariate polynomial of degree d, motivated by
the following result [35]: Any Boolean function {0, 1}n → {0, 1} can be represented by a polynomial of degree ≤ n with at
most 2n−1 terms. Due to this result, common verification functions, such as balance check and digital signature verification,
can all be transformed into polynomials; details are available in Appendix A.
Example 1 (Balance verification). We consider a simple payment blockchain system that keeps records of the balance transfers
between clients. We assume that there are M clients in each shard, for some constant M that does not scale with t. In this
scenario, a block submitted to shard k at time t, Xk(t), consists of multiple transactions, and is represented by a pair of
real vectors Xk(t) = (Xsend

k (t), X receive
k (t)), for some Xsend

k (t), X receive
k (t) ∈ RM . A transaction that reads “Client p sends s

dollars to client q.” will deduct s from Xsend
k (t)[p] and add s to X receive

k (t)[q]. Clients that do no send/receive money will have
their entries in the send/receive vectors set to zeros. To verify Xk(t), we need to check that all the senders in Xk(t) have
accumulated enough unspent funds from previous transactions. This naturally leads to the following verification function.

f t(Xk(t), Y t−1k) = Xsend
k (t) +

t−1∑
i=1

(Y send
k (i) + Y receive

k (i)). (1)

Here the verification polynomial f t has constant degree d = 1, with F = R, U = RM , and V = RM . We claim the block
Xk(t) valid if none of the entries of the above verification function is negative, and we set Yk(t) = Xk(t) and append it the
sub-chain of shard k. Otherwise, we append a dummy all-zero block.

B. Networking model

The above blockchain system is implemented distributedly over N network nodes. A subset M ⊂ {1, . . . , N} of these
nodes may be malicious/adversarial, and the malicious nodes compute and communicate arbitrarily erroneous results during
the process of block verification. Only the honest nodes will follow the designed networking protocol described below.

At time t, each node i, i = 1, 2, , . . . , N , locally stores some data, denoted by Zt−1i = (Zi(1), Zi(2), . . . , Zi(t− 1)), where
Zi(j) ∈W for some vector space W over F. The locally stored data Zt−1i is generated from all shards of the blockchain using
some function φt−1i , i.e., Zt−1i = φt−1i (Y t−11 , Y t−12 , . . . , Y t−1K).

Next, given the K incoming blocks {Xk(t)}Kk=1, each node i computes an intermediate result gti using some function ρti on
the incoming blocks and its local storage, such that gti = ρti(X1(t), X2(t), . . . , XK(t), Zt−1i), and then broadcasts the result
gti to all other nodes.

Having received all the broadcast messages, each node i decodes the verification results for all K shards ĥt1i, ĥ
t
2i, . . . , ĥ

t
Ki,

using some function ψti , i.e., (ĥt1i, ĥ
t
2i, . . . , ĥ

t
Ki) = ψti(g

t
1, g

t
2, . . . , g

t
N). Using these decoded results, node i computes the

indicator variables (ẑ1i, ẑ2i, . . . , ẑKi), and then the verified blocks Ŷki(t) = ẑtkiXk(t), for all k = 1, 2, . . . ,K.
Finally, each node i utilizes the verified blocks to update its local storage using some function χti, i.e., Zti =

χti(Ŷ1i(t), Ŷ2i(t), . . . , ŶKi(t), Z
t−1
i).

We say that a block verification scheme S, defined as a sequence of collections of the above functions, i.e., S =
({ρti, ψti , φti}Ni=1)∞i=1, is b-secure, if for any subset M ⊂ {1, . . . , N} of malicious nodes with |M| ≤ b, and each node
i /∈ M, we have (ĥt1i, ĥ

t
2i, . . . , ĥ

t
Ki) = (ht1, h

t
2, . . . , h

t
K), for all t = 1, 2, That is, a blockchain system using b-secure

verification scheme can guarantee the correct verification results at the honest nodes in the presence of b malicious nodes.
We define the computational complexity of a function f , denoted by c(f), as the number of additions and multiplications
performed in the domain of f to evaluate f . In this paper, we are interested in the following three performance metrics.

Storage efficiency. Denoted by γS , it is the ratio between the size of the entire block chain and the size of the data stored
at each node, i.e.,

γS ,
K log |U|
log |W|

. (2)

5

The above definition also applies to a probabilistic formulation where the blockchain elements Yk(j)s and the storage
elements Zi(j)s are modelled as i.i.d. random variables with uniform distribution in their respective fields, where the storage
efficiency is defined using the entropy of the random variables.

Security. Denoted by βS , it is the maximum value of b such that a verification scheme S is b-secure. That is,
βS , sup{b : S is b-secure}. (3)

Throughput. Denoted by λS , it is the average number of blocks that are correctly verified per unit discrete round, which
includes all the computations performed at all N nodes to verify the incoming K blocks. That is,

λS , lim inf
t→∞

K∑N
i=1(c(ρti) + c(ψti) + c(χti))/(Nc(f

t))
. (4)

We aim at studying the information-theoretic bounds on these metrics and designing a scheme that can simultaneously
achieve all of them.

III. BASELINE PERFORMANCE

In this section, we first present the information-theoretic upper bounds on the three performance metrics for any blockchain.
We then study the performance of two state-of-the-art blockchain schemes and comment on the gap with the upper bounds.
Information-theoretic upper bounds. In terms of security, the maximum number of adversaries any verification scheme can
tolerate cannot exceed half of the number of network nodes N : thus, the security β ≤ N

2 . In terms of storage, for the verification
to be successful, the size of the chain should not exceed the aggregated storage resources of the N nodes. Otherwise, the chain
cannot be fully stored. We thus have γ ≤ N . Finally, to verify the K incoming blocks, the verification function f t must be
executed at least K times in total. Hence, the system throughput λ ≤ K

K/N = N . Therefore, the information-theoretic upper
bounds of security, storage efficiency, and throughput all scale linearly with the network size N .
Full replication. In terms of storage efficiency, since each node stores all the K shards of the entire blockchain, full
replication scheme yields γfull = 1. Since every node verifies all the K blocks, the throughput of the full replication scheme is
λfull = K

NKc(ft)/(Nc(ft)) = 1. Thus the full replication scheme does not scale with the network size, as both the storage and the
throughput remain constant as N increases. The advantage is that the simple majority-rule will allow the correct verification
and update of every block as long as there are less than N/2 malicious nodes. Thus, βfull = N/2.
Uncoded sharding scheme. In sharding, the block chain consists of K equal-size (of size q = N/K) disjoint sub-chains
known as shards. Each group of nodes is responsible for managing a single shard; this is a full replication system with K ′ = 1
shard and N ′ = q nodes. Since each node stores and verifies a single shard, the storage efficiency and throughput become
γsharding = K and λsharding = K

Nct/(Nct) = K, respectively. For these two metrics to scale linearly with N , it must be true that
K = Θ(N). Consequently, the group size q becomes a constant. Hence, compromising as few as q/2 nodes will corrupt one
shard and the chain. Thus, this scheme only has a constant security of βsharding = q/2 = O(1). Although system solutions
such as shard rotations can help achieve linearly scaling security guarantees, they are only secure when the adversary is non-
adaptive (or very slowly adaptive). When the adversary is dynamic, it can corrupt all nodes belonging to a particular shard
instantaneously after the shard assignment has been made. Under this model, the security reduces to a constant.

In summary, neither full replication nor the above sharding schemes can simultaneously scale the storage efficiency, security,
and throughput towards the information-theoretic bounds. We note that codes for storage or distributed storage [36], [37] cannot
be directly used here since we need to be able to calculate validation functions directly over coded blocks. This motivates us
to propose PolyShard (polynomially coded sharding) in the next section to achieve all of the three bounds simultaneously.
For clarity, from now on, we will refer to the sharding scheme as “uncoded sharding”.

IV. MAIN RESULTS

Theorem 1. For a blockchain system consisting of multiple shards, each of length t, a polynomial verification function f t with
constant degree d, operated on N network nodes, up to µ (for some constant 0 ≤ µ < 1

2) fraction of which may be malicious,
the following performance metrics are simultaneously achievable,

Storage efficiency γ =

⌊
(1− 2µ)

d
N + 1

⌋
= Θ(N), (5)

Security β = µN = Θ(N), (6)

Throughput λ =

⌊
(1− 2µ)

d
N + 1

⌋
= Θ(N), (7)

for computational complexity of the verification function c(f t) = O(t). Therefore, the information-theoretically optimal storage
efficiency, security, and throughput can be simultaneously achieved within constant multiplicative gaps.

The above performance metrics are achieved by a coded verification scheme proposed in this paper, named PolyShard.
To prove Theorem 1, we describe and analyze PolyShard in the next section.

6

Remark 1. Using PolyShard, each node stores locally a coded shard generated as a linear combination of the original
uncoded shards. Upon reception of the new blocks, each node linearly combines them to create a coded block, using the
same set of coefficients. Then, the node computes the verification function over the coded block and its local storage. The
computation results are collected and used to decode the intended verification results using Reed-Solomon decoding. This
coded computation technique was originally proposed in [20] for distributed computing multivariate polynomials subject to
computation errors, where Lagrange polynomial interpolation was used to generate the coded data.

Remark 2. Compared with the scenario of one-shot computation on static data in [20], the local storage at each network
node is growing in a blockchain system as more verified blocks are appended to the chain. The requirement of dynamically
updating the local storage that is compatible with the upcoming coded verification poses new challenges on the design of the
PolyShard scheme. Utilizing the data structure of the blockchain, and the algebraic properties of the encoding strategy, we
propose a simple incremental storage update policy for PolyShard that requires accessing the minimum amount of data.

Remark 3. The additional coding overhead, including the number of operations required to encode the input data, decode
verification results, and update the local storage, does not scale with the length of the sub-chains t. As a result, the performance
of PolyShard depends on the model of the verification polynomial f t. When the cost of computing f t, i.e., c(f t), increases
with t (e.g., when c(f t) = O(t)), the coding overhead becomes negligible as the chain grows.

V. POLYNOMIALLY CODED SHARDING (PolyShard) SCHEME

A. Storage encoding

We pick K distinct elements ω1, ω2, . . . , ωK ∈ F, one each corresponding to each shard k, and create the following Lagrange
polynomial

ut−1(z) =

K∑
k=1

Y t−1k

∏
i 6=k

z − ωi
ωk − ωi

. (8)

This polynomial is designed such that ut−1(ωk) = Y t−1k for all k = 1, 2, . . . ,K.
Next, as shown in Fig. 3, we pick N distinct elements α1, α2, . . . , αN ∈ F, one for each node. This creates N coded

sub-chains, denoted by Ỹ t−11 , Ỹ t−12 , . . . , Ỹ t−1N , by evaluating the above ut−1(z) at the points α1, α2, . . . , αN . That is, for all
i = 1, 2, . . . , N ,

Ỹ t−1i = ut−1(αi) =

K∑
k=1

Y t−1k

∏
t6=k

αi − ωt
ωk − ωt

=

K∑
k=1

`ikY
t−1
k , (9)

We note that Ỹ t−1i is encoded as a linear combination of the uncoded sub-chains Y t−11 , Y t−12 , . . . , Y t−1K , and the coefficients
`iks do not depend on the time index t. Therefore one can think of each node i as having a fixed linear vector `ik by which it
mixes the different shards to store the Ỹ t−1i on the node. The size of each coded sub-chain is K times smaller than the size
of the entire blockchain, and the storage efficiency of PolyShard is γPolyShard = K.

For this encoding to be viable, we need large enough field such that |F| ≥ N . For small field (e.g., binary field), we can
overcome this issue by using field extension and applying PolyShard on the extended field (see details in Appendix A).

Remark 4. The above data encoding is oblivious of the verification function, i.e., the coefficients `ik are independent of f t.
Therefore, the data encoding of PolyShard can be carried out independently of the verification, and the same coded storage
can be simultaneously used for all different types of verification items, which could include verifying account balances, digital
signatures or checking smart contracts.

B. Coded verification

In time t, K blocks X1(t), X2(t), . . . , XK(t) are submitted to the K shards for verification. The PolyShard scheme
verifies these blocks in three steps.
Step 1: block encoding. From the received the K blocks, each node i computes a coded block X̃i(t) as a linear combination
using the same set of coefficients as in (9). That is, X̃i(t) =

∑K
k=1 `ikXk(t). We note that this encoding operation can be also

viewed as evaluating the polynomial ut(z) =
∑K
k=1Xk(t)

∏
i6=k

z−ωi

ωk−ωi
at the point αi. This step incurs O(NK) operations

across the network, since each of the N nodes computes the linear combination of K blocks.
Step 2: local computation. Each node i applies the function f t to the coded block X̃i(t), and its locally stored coded sub-
chain Ỹ t−1i to compute gti = f t(X̃i(t), Ỹ

t−1
i). This step requires a total of Nc(f t) operations across the network since each

validation operation takes c(f t) steps. Having finished the local computations, each node i broadcasts its computation result
gti to all other nodes.
Step 3: decoding. Using the computation results gt1, . . . , g

t
N , a maximum µ fraction of which may be erroneous from malicious

nodes, each node decodes the intended results {f t(Xk(t), Y t−1k)}Kk=1. Since f t(ut(z), ut−1(z)) is a univariate polynomial of
degree (K−1)d, gti can be viewed as the evaluation of f t(ut(z), ut−1(z)) at αi, and it can be recovered following the process

7

node 1

shard 1

shard 2

shard k

incoming
blocks

Lagrange encoder

coded shards

Lagrange
encoder

decode
verification results

recurrent update via
Lagrange encoder

node 2

Lagrange
encoder

decode
verification results

recurrent update via
Lagrange encoder

node n

Lagrange
encoder

decode
verification results

recurrent update via
Lagrange encoder

broadcast

Fig. 3: Illustration of PolyShard scheme.

of decoding a Reed-Solomon code with dimension (K−1)d+1 and length N (see, e.g., [38]). In order for this decoding to be
robust to µN malicious nodes (i.e., achieving the security βPolyShard = µN), we must have µN ≤ (N−(K−1)d)/2. In other
words, a node can successfully decode f t(ut(z), ut−1(z)) only if the number of shards K is upper bounded as K ≤ (1−2µ)N

d +1.
Based on this constraint, we set the number of shards of the PolyShard scheme, KPolyShard = b (1−2µ)Nd +1c, which scales
linearly with network size N .

The complexity of decoding a length-N Reed-Solomon code at each node is O(N log2N log logN), and the total complexity
of the decoding step is O(N2 log2N log logN).

Having decoded f t(ut(z), ut−1(z)), each node evaluates it at ω1, . . . , ωK to recover {f t(Xk(t), Y t−1k)}Kk=1, to obtain the
verification results {ztk}Kk=1.

C. Incremental sub-chain update

The blocks that fail the validation process (i.e, ztk = 0) should be replaced by the null block in the finalized chain, so we
have, Yk(t) = ztkXk(t). Each node now calculates

Ỹi(t) =

K∑
k=1

`ikz
t
kXk(t) =

K∑
k=1

`ikYk(t), (10)

and append Ỹi(t) into its local coded sub-chain to update it to Ỹ ti = (Ỹ t−1i , Ỹi(t)).
Updating the sub-chains has the same computational complexity with the block encoding step, which is O(NK).

Remark 5. Since the set of coefficients `iks in (10) are identical to those in (9), appending a coded block to a coded sub-chain
is equivalent to appending uncoded blocks to the uncoded sub-chains, and then encoding from the updated sub-chains. This
commutativity between sub-chain growth and storage encoding allows each node to update its local sub-chain incrementally
by accessing only the newly verified blocks instead of the entire block history.

The total number of operations during the verification and the storage update processes is O(NK) + Nc(f t) +
O(N2 log2N log logN), where the term O(NK) + O(N2 log2N log logN) is the additional coding overhead compared
with the uncoded sharding scheme. Since KPolyShard ≤ N , the coding overhead reduces to O(N2 log2N log logN). The
throughput of the PolyShard scheme is

λPolyShard = lim inf
t→∞

KPolyShardNc(f
t)

Nc(f t) +O(N2 log2N log logN)
. (11)

D. Performance analysis of PolyShard

Having demonstrated the robustness of PolyShard against µN = Θ(N) adversaries, we analyze the storage efficiency and
the throughput of PolyShard, for the scenario where the verification function f t has constant degree d, and its computation

8

complexity c(f t) = O(t) scales with the chain length t. This is for the verification process that scans through the entire history
of the blockchain. For each past block, an operation with fixed complexity is performed (e.g., adding two real vectors for
balance checking in Example 1).

For constant degree d, we have KPolyShard = b (1−2µ)Nd + 1c = Θ(N), and the storage efficiency γPolyShard = Θ(N).
When c(f t) = O(t), i.e., the complexity of computing f t increases with t, the throughput in (11) becomes

λPolyShard = lim inf
t→∞

KPolyShard

1 + O(N log2N log logN)
c(ft)

= Θ(N). (12)

This completes the proof of Theorem 1.
We can see that since the complexities of the encoding and decoding operations of PolyShard do not scale with t, the

coding overhead becomes irrelevant as the chain grows. The PolyShard scheme simultaneously achieves optimal scaling on
security, storage efficiency, and throughput.

VI. SIMULATION RESULTS

We perform detailed simulations to assess the performance of Polyshard in the payment blockchain system described in
Example 1. This system keeps records of all the balance transfers between clients, and verifies new blocks by comparing them
with the sum of the previously verified blocks (i.e., computing the verification function in (1)). More specifically, the system
contains K shards, each managing M clients. At each time epoch t, one block of transactions is submitted to every shard k.
We simulate this system over N nodes using the full replication, uncoded sharding, and PolyShard schemes respectively.

We measure the throughput of each scheme under different values of N and t to understand its scalability. Throughput is
defined as the number of blocks verified per time unit, and is measured by dividing K (the number of blocks generated per
epoch) by the average verification time (to be measured) of the N nodes. For PolyShard, the verification time also includes
the time each node spent on encoding the blocks. However, since the encoding time is a constant, whilst the balance summation
time increases with t as the chain becomes longer, it is expected that the encoding time is becoming negligible.

We note that the storage efficiency and security level of each scheme are decided by system parameters and, thus, do not
need measurements.

We simulate this system for t = 1000 epochs, using different number of shards K ∈ [5, 50]. Each shard manages M = 2000
clients. We fix the ratio N/K = 3. Thus, the number of nodes is N ∈ [15, 150]. We plot the complete relation between N , t,
and throughput of the three schemes in Fig. 4. For a closer look, we plot the relation between t and throughput when N = 150
in Fig. 5, and the relation between N and throughput when t = 1000 in Fig. 2 in Section I.

Results and discussions

1) Throughput: As expected, PolyShard provides the same throughput as uncoded sharding, which is about K times of
the throughput of full replication. From Fig. 5, we observe that the throughput of all three schemes drops as the time
progresses. This is because that the computational complexity of verifying a block increases as more blocks are appended
to each shard. In terms of scalability, Fig. 2 indicates that the throughput of PolyShard and uncoded sharding both
increases linearly with the network size N (and K), whilst the throughput of full replication almost stays the same.

2) Storage: It is straightforward to see that PolyShard provides the same storage gain over full replication as uncoded
sharding, with a factor of K. Thus, PolyShard and uncoded sharding are scalable in storage, but full replication is not
(Table IIa).

3) Security: As we have analyzed, full replication can tolerate up to 50% of malicious nodes, achieving the maximum security
level βfull = N

2 . The error-correcting process of PolyShard provides robustness to βPolyShard = N−K
2 = N−N/3

2 = N
3

malicious nodes. In contrast, under uncoded sharding, each shard is only managed by 3 nodes. Thus, its security level is
only 1 regardless N , which is not scalable (Table IIb).

TABLE II: Storage and security of the three schemes under different network size N .
(a) Storage efficiency.

N 15 30 60 90 120 150

γfull 1 1 1 1 1 1

γsharding 5 10 20 30 40 50

γPolyShard 5 10 20 30 40 50

(b) Security.

N 15 30 60 90 120 150

βfull 7 15 30 45 60 75

βsharding 1 1 1 1 1 1

βPolyShard 5 10 20 30 40 50

In summary, PolyShard outperforms both full replication and uncoded sharding because it is the only scheme that can
simultaneously 1) alleviate the storage load at each node; and 2) boost the verification throughput by scaling out the system,
and 3) without sacrificing the safety requirement even when the number of adversaries also grows with network size.

9

(a) Full replication. (b) Uncoded sharding.

(c) PolyShard.

Fig. 4: Throughput of the three schemes with respect to time and number of nodes.

Fig. 5: Throughput of the three schemes when number of nodes N =150.

VII. DISCUSSIONS

In this section, we discuss how PolyShard fits into the overall architecture of a contemporary blockchain system.
Integration into blockchain systems. We note that Polyshard has so far been described in a simple setting where each
shard produces one block in lock-step. We highlight one instantiation of how Polyshard could fit into the architecture of an
existing blockchain system, which combines a standard sharding method for proposal followed by Polyshard for finalization.
The K shards are obtained by assigning users to shards via a user-assignment algorithm. The N nodes are partitioned into
K shards using a standard sharding system (see [8]). Inside of the shard, the nodes run a standard blockchain along with a
finalization algorithm to get a locally finalized version of the block.

10

Each node is also assigned a coded shard via a coded-shard-assignment algorithm, which assigns a random field element
αi ∈ F to a node so that the node can compute which linear combination it will use for coding. We point out here that it is
easy to handle churn (users joining and leaving) by this method if the size of the finite field F is much larger than N - since
at this point, the probability of collision (two users getting assigned the same field element) becomes negligible. Thus each
node plays a role in both an uncoded shard as well as a coded shard, thus its storage requirement will be doubled; however,
our system still has storage efficiency scaling with N . The Polyshard algorithm now gets the locally finalized blocks from
the different shards at regular intervals and it acts as a global finalization step performing coded validation at the level of
the locally finalized blocks. We point out that users requiring high trust should wait for this global finalization stamp before
confirming a payment, whereas users requiring short latency can immediately utilize the local-finalization for confirmation.

Beyond the aforementioned issues, there may be cross-shard transactions present in the system, which are payments or smart
contracts with inputs and outputs distributed across multiple shards. In such a case, we will use a locking-based method, which
locks the payment at the source shard and produces a certificate to the destination shard so that the amount can be spent; this
idea has been proposed as well as implemented in Elastico [7] and Omniledger [8].
Relationship to verifiable computing. An alternative paradigm for accelerating computing in blockchain is verifiable computing
[39]–[43], where a single node executes a set of computations (for example, payment validation) and integrity of these
computations are then cryptographically certified. A major difference between our framework and verifiable computing is that
our scheme is information-theoretically secure against a computationally unbounded adversary as against the computational
security offered by verifiable-computing schemes. However, verifiable computing schemes can provide zero-knowledge proofs,
whereas our scheme does not offer zero-knowledge capability. Finally, verifiable computing is relevant in an asymmetric setting,
where one computer is much more powerful than the others, unlike Polyshard which is designed for a symmetric setup
comprising of equally powerful and decentralized nodes.
Future research directions. Polyshard currently works with polynomials whose degree scales sub-linearly with the number of
nodes. An interesting direction of future work is to remove this limitation. In particular, computations that can be represented
as low-depth arithmetic circuits can be implemented iteratively using low-degree polynomials. Another important direction of
future research is the design of validation schemes that can be represented as low-degree polynomials or low-depth arithmetic
circuits.

VIII. ACKNOWLEDGEMENT

We thank support from the Distributed Technology Research Foundation, Input-Output Hong Kong, the National Science
Foundation under grants CCF 1705007, CCF-1763673 and CCF-1703575, and the Army Research Office under grant
W911NF1810332. This material is also based upon work supported by Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR001117C0053. The views, opinions, and/or findings expressed are those of the authors and should not
be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] A. Bahga and V. K. Madisetti, “Blockchain platform for industrial internet of things,” Journal of Software Engineering and Applications, vol. 9, no. 10,

p. 533, 2016.
[3] M. Mettler, “Blockchain technology in healthcare: The revolution starts here,” in IEEE 18th International Conference on e-Health Networking, Applications

and Services (Healthcom). IEEE, 2016, pp. 1–3.
[4] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized blockchains,”

in International Conference on Financial Cryptography and Data Security. Springer, 2016, pp. 106–125.
[5] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in bitcoin,” in International Conference on Financial Cryptography and Data

Security. Springer, 2015, pp. 507–527.
[6] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A scalable blockchain protocol.” in NSDI, 2016, pp. 45–59.
[7] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A secure sharding protocol for open blockchains,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016, pp. 17–30.
[8] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and B. Ford, “Omniledger: A secure, scale-out, decentralized ledger.” IACR Cryptology ePrint

Archive, vol. 2017, p. 406, 2017.
[9] A. E. Gencer, R. van Renesse, and E. G. Sirer, “Short paper: Service-oriented sharding for blockchains,” in International Conference on Financial

Cryptography and Data Security. Springer, 2017, pp. 393–401.
[10] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.
[11] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun, “On the security and performance of proof of work blockchains,” in

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016, pp. 3–16.
[12] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” 53rd Allerton Conference, Sept. 2015.
[13] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff between computation and communication in distributed computing,”

IEEE Transactions on Information Theory, vol. 64, no. 1, Jan. 2018.
[14] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” IEEE Transactions on

Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.
[15] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework for distributed computing with straggling servers,” IEEE Workshop on

Network Coding and Applications, Sept. 2016.
[16] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly using coded short dot products,” in NIPS, 2016, pp.

2100–2108.
[17] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an optimal design for high-dimensional coded matrix multiplication,” in NIPS,

2017, pp. 4406–4416.

11

[18] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in distributed optimization through data encoding,” in NIPS, 2017, pp. 5440–5448.
[19] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding stragglers in distributed learning,” in Proceedings of the 34th

International Conference on Machine Learning, Aug. 2017, pp. 3368–3376.
[20] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded computing: Optimal design for resiliency, security and privacy,” e-print arXiv:1806.00939,

2018.
[21] Y. Gao and H. Nobuhara, “A proof of stake sharding protocol for scalable blockchains,” Proceedings of the Asia-Pacific Advanced Network, vol. 44, pp.

13–16, 2017.
[22] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: A fast blockchain protocol via full sharding,” Cryptology ePrint Archive, https://eprint.iacr.

org/2018/460.pdf.
[23] S. Bano, M. Al-Bassam, and G. Danezis, “The road to scalable blockchain designs,” USENIX; login: magazine, 2017.
[24] Z. Ren and Z. Erkin, “A scale-out blockchain for value transfer with spontaneous sharding,” e-print arXiv:1801.02531, 2018.
[25] H. Yoo, J. Yim, and S. Kim, “The blockchain for domain based static sharding,” in 2018 17th IEEE International Conference On Trust, Security And

Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE,
2018, pp. 1689–1692.

[26] S. Cai, N. Yang, and Z. Ming, “A decentralized sharding service network framework with scalability,” in International Conference on Web Services.
Springer, 2018, pp. 151–165.

[27] A. Chauhan, O. P. Malviya, M. Verma, and T. S. Mor, “Blockchain and scalability,” in 2018 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C). IEEE, 2018, pp. 122–128.

[28] M. H. Manshaei, M. Jadliwala, A. Maiti, and M. Fooladgar, “A game-theoretic analysis of shard-based permissionless blockchains,” e-print
arXiv:1809.07307, 2018.

[29] “Ethereum sharding FAQs,” https://github.com/ethereum/wiki/wiki/Sharding-FAQs.
[30] A. E. Gencer, R. van Renesse, and E. G. Sirer, “Service-oriented sharding with aspen,” e-print arXiv:1611.06816, 2016.
[31] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis, “Chainspace: A sharded smart contracts platform,” e-print arXiv:1708.03778, 2017.
[32] S. Forestier, “Blockclique: scaling blockchains through transaction sharding in a multithreaded block graph,” arXiv preprint arXiv:1803.09029, 2018.
[33] Z. teacm, “The zilliqa technical whitepaper.”
[34] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,” in IEEE

Symposium on Security and Privacy (SP). IEEE, 2017, pp. 444–460.
[35] Y. M. Zou, “Representing boolean functions using polynomials: more can offer less,” in International Symposium on Neural Networks. Springer, 2011,

pp. 290–296.
[36] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network codes for distributed storage,” Proceedings of the IEEE, vol. 99, no. 3, pp.

476–489, 2011.
[37] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage at the msr and mbr points via a product-matrix

construction,” IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227–5239, 2011.
[38] R. Roth, Introduction to coding theory. Cambridge University Press, 2006.
[39] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing: Outsourcing computation to untrusted workers,” in Annual Cryptology

Conference. Springer, 2010, pp. 465–482.
[40] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable collision resistance to succinct non-interactive arguments of knowledge, and back

again,” in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. ACM, 2012, pp. 326–349.
[41] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical verifiable computation,” Communications of the ACM, vol. 59, no. 2, pp.

103–112, 2016.
[42] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-interactive zero knowledge for a von neumann architecture.” in USENIX Security

Symposium, 2014, pp. 781–796.
[43] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transparent, and post-quantum secure computational integrity,” Cryptol. ePrint Arch.,

Tech. Rep, vol. 46, p. 2018, 2018.

APPENDIX A
FIELD EXTENSION FOR GENERAL BOOLEAN FUNCTIONS

For general blockchain systems that verify incoming blocks based on the most recent P verified blocks, (e.g., a payment
system that keeps records of clients’ account balances and updates the records every P sets of transactions), we can generally
model each incoming block Xk(t), and each verified block Yk(j) as a binary bit stream of length T , and the verification
function f t : {0, 1}T (P+1) → {0, 1} as a Boolean function that indicates whether Xk(t) is valid or not.

Using the construction of [35, Theorem 2], we can represent any arbitrary Boolean function f : {0, 1}n → {0, 1} whose
inputs are n binary variables as a multivariate polynomial p of degree n as follows. For each vector a = (a1, . . . , an) ∈ {0, 1}n,
we define ha = z1z2 · · · zn, where zi = xi if ai = 1, and zi = yi if ai = 0. Next, we partition {0, 1}n into two disjoint
subsets S0 and S1 as follows.

S0 = {a ∈ {0, 1}n : f(a) = 0}, (13)
S1 = {a ∈ {0, 1}n : f(a) = 1}. (14)

The polynomial p is then constructed as

f(x1, . . . , xn) = p(x1, . . . , xn, y1, . . . , yn) =
∑
a∈S1

ha = 1 +
∑
a∈S0

ha, (15)

where yi = xi + 1.
We note that this model applies to verifying the digital signatures in the incoming blocks, where the verification does not

depend on past blocks, i.e., P = 0. Utilizing the above technique, we can transfer the required non-polynomial computations
like inversions and hash functions over some large prime field into polynomial evaluations.

For Boolean verification polynomials over binary field as in (15), the PolyShard data encoding (9) does not directly apply
since it requires the underlying field size |F| to be at least the network size N . To use PolyShard in this case, we can

12

embed each element yk[i] ∈ {0, 1} of a verified block Yk (time index omitted) into a binary extension field F2m with 2m ≥ N .
Specifically, the embedding ȳk[i] ∈ F2m of the element yk[i] is generated such that

ȳk[i] =


00 · · · 0︸ ︷︷ ︸

m

, yk[i] = 0,

00 · · · 0︸ ︷︷ ︸
m−1

1, yk[i] = 1.
(16)

Then we can select distinct elements α1, α2, . . . , αN ∈ F2m to apply the encoding strategy in (9) on the block elements in the
extension field.

Verification over extension field still generates the correct result. To see that, we can easily verify that the value of the
verification polynomial p as constructed in (15) is invariant with the embedding operation in (16). That is, since the polynomial
p is the summation of monomials in F2, when we replace each input bit with its embedding, the value of p equals 00 · · · 0︸ ︷︷ ︸

m

if

the verification result is 0, and equals 00 · · · 0︸ ︷︷ ︸
m−1

1 if the result is 1.

