
Improved Brute–Force Search Strategies for
Single–Trace and Few–Traces Template Attacks

on the DES Round Keys

Mathias Wagner, Stefan Heyse

mathias.wagner@nxp.com

Abstract. We present an improved search strategy for a template at-
tack on the secret DES key of a widely–used smart card, which is based
on a Common–Criteria certified chip. We use the logarithm of the proba-
bility function as returned by the template attack itself, averaged over all
28 template positions along the rings representing the C and D Registers
of the DES key schedule, as the sorting criteria for the key candidates.
For weak keys — which in this attack model have a minimal rest entropy
of only two bits — we find that on average only 37.75 bits need to be
recovered by brute force when using only a single trace in the Exploita-
tion Phase. This effort goes down to just a few bits for a single DES key
when using only a few traces in Exploitation Phase.

1 Introduction

Template attacks on the DES key loading [1] and the DES key schedule [2, 3] have
been the topic of a number of previous publications, where we have established
that such attacks can be successfully used to break the DES key of a smart card
based on a recently certified chip.

In this paper we want to report on an improved search strategy for these
attacks, using the same traces as in the previous works. The improvement comes
about mostly by using a better sorting criteria for the ordering of the ranking
of key candidates in the final brute–force step of the attack.

In a nutshell, this attack takes advantage of a weakness in the key schedule
of the DES HW coprocessor of the smart card in question — certified by the
German BSI — where the DES round keys of any two consecutive rounds in
the key schedule leak their Hamming distances, with correlation function ampli-
tudes being as large as 70%. Since the DES key schedule decomposes into two
disjunct subkey schedules for the so–called C and the D Register, respectively,
the complexity of the attack is drastically reduced — in essence it boils down to
having to sort two lists — each comprising 227 subkey candidates — according
to a yet to be defined sorting criteria, and then search for the correct key across
these two ordered lists.

As in the previous papers, we will perform the template attack on the DES
keys based on templates created on so–called rings for the C and D Registers.
An alternative approach based on work presented in Sec. 5 of [3], taking more

2

systematically advantage of the existence and structure of so–called weak–keys
may follow later, using a new, tailored set of traces.

2 Brute-Force Algorithm

As a recap from [2], the two so–called C rings resulting from the DES key schedule
look as follows,

7 → 21→ 35→ 49→ 38→ 52→ 9 → 23→ 37→ 51→ 8 → 22→ 36→ 50→ 7
↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗

0→ 14→ 28→ 42→ 31→ 45→ 2 → 16→ 30→ 44→ 1 → 15→ 29→ 43→ 0

10→ 24→ 11→ 25→ 39→ 53→ 12→ 26→ 40→ 54→ 13→ 27→ 41→ 55→ 10
↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗↘↗

3→ 17→ 4 → 18→ 32→ 46→ 5 → 19→ 33→ 47→ 6 → 20→ 34→ 48→ 3

(1)

where the arrows denote an ⊕ relation between two key bits (residing in two
consecutive rounds of the DES key schedule).1 The first of these two rings maps
to the C Register of the DES key schedule, the second ring to the D Register.

For these two disjoint C rings we construct the templates maximally over-
lapping. So, if the first template is, e.g.,

7 → 21→ 35→ 49→ 38→ 52
↗↘↗↘↗↘↗↘↗↘

0→ 14→ 28→ 42→ 31→ 45
(2)

then the next template “to its right” is

21→ 35→ 49→ 38→ 52→ 9
↗↘↗↘↗↘↗↘↗↘

14→ 28→ 42→ 31→ 45→ 2
(3)

and so on along the ring, until the loop is closed. For details, please refer to [2,
3]. Incidentally, the templates shown here are 11–bit templates, but clearly they
can be made smaller or larger by pruning or extending them to the right. In
what follows we shall work with those 11–bit templates, but it turns out that
smaller templates work equally well for a reason not yet understood. Smaller
templates are much less demanding computationally and thus are preferred.

Following this approach we find 14 overlapping template positions along each
of the two C rings, resulting in 2 × 14 = 28 lists of pattern–template matching
candidates, each list containing 211 candidates in the Exploitation Phase. We

1 The numbering of these key bits is such that we count them as ordered in the original
DES key, but we ignore parity bits. Note that the C rings do not tell between which
two rounds the ⊕ occurred, nor how often in total.

3

will come back to the task of finding consistent key candidates across these 28
lists further below, but first let us specify what approximations we use when
calculating the templates for this attack.

According to [1], various approximations are possible to evaluate the tem-
plates in the Profiling Phase. As in the previous papers [2, 3], we chose the most
simple approximation by calculating a simple average C̄ over the covariances Cj

of each template class j as

C̄ =
1

M

∑
j

Cj , (4)

where M is the number of possible template values in each list, so M = 211 in our
case. This then leads to an approximate probability function P , the logarithm of
which is called LnP AvC in Table 1 of paper [1]. This is the most simple average
one can use for the covariance, but other definitions proposed in [1] work equally
well, and thus we believe our results are not sensitive to the precise method how
to average over Cj .

The next task then is to combine the 14 individual ranking lists for the C
respectively D Register to a single ranking list for that register. Without loss of
generality, let us look at the 14 ranking lists for the C Register. As elaborated
in more detail in [2, 3], the first step is to weed out these 14 ranking lists to use
only subkeys and corresponding ranking entries on each list that are compatible
with the subkeys on neighbouring ranking lists. This is simply a requirement
stemming from the fact that the template positions along the ring were chosen
to overlap with each other, and hence the templates are not independent. Not to
be forgotten is the overlap of the “first” and the “last” template along the ring,
which reduces the possible choices by another factor of 2. Eventually, a total of
227 possible entries remain that are consistent across all 14 lists. This makes a
lot of sense, since the C and the D Register control 28 subkey bits each, and
one bit is consumed by the ⊕ operation already, leaving 27 bits. With this we
arrive at two (not yet) ordered lists of 227 entries each, one for the C Register,
the other for the D Register.

What is new in this paper compared to our previous work is how we order
these two ranking lists, each containing 227 subkey candidates, to reduce the
effort of brute–force searching further. As a first step we calculate for each entry
in these two lists the sum over the logarithm of the approximate probability
function P (as returned by the pattern–template matching step) as

LnPC,D =

13∑
i=0

ln(PC,D
i) , (5)

where the superscripts C and D refer to the C and D Register, respectively, and i
simply runs over all 14 template positions of the respective ring.2 In essence, the
underlying assumption with this metric is that the probability of a given entry

2 Using QuickSort [4] the task of sorting a list of 227 subkey candidates according to
the metric given by Eq. (5) is done in less than a minute on a standard PC.

4

C Register

D Register

LnP
C

LnP
D

𝛼 < 1

𝛼 = 1

correct key

Fig. 1. Search strategy dealing with the two subkey ranking lists of the C and D
Registers of the DES key schedule. For each list the value of LnPC,D is calculated
according to Eq. (5), and then the sum LnP is taken according to Eq. (6), initially
with α = 1. All key candidates in the grey area are being successively tested as the
threshold LnP increases, until eventually the correct key is found. (This threshold
is called “Frontier” in [5, 6].) The grey triangle then represents the number of key
candidates that had to be tried in this brute–force search. Suitably chosen values of
α < 1 can reduce the brute–force search effort on average, reflecting the fact that on
average the D Register leaks more than the C Register.

on the list to be the correct subkey is given by the product of the probabilities
of all its contributing 14 templates. Clearly, this assumption is in contradiction
to the very fact that these 14 templates overlap as shown, e.g., in Eqs. (2) and
(3), and hence cannot be independent. However, the results we obtain with this
approach are encouraging. Perhaps there is still room for further improvement
when accounting for these overlap–induced dependencies as well.

To arrive at a single list of key candidates to be searched through, we can
combine the C and D Register candidates and order the new list according to

LnP (α) = LnPC + αLnPD , (6)

where the weighing parameter α can be used to take into account that the D
Register leaks more than the C Register, c.f. Fig. 16 in [2], in which case α < 1
holds. Searching is now done by successively increasing the value of the threshold
LnP (α) until the correct key is eventually found. The key space to be searched

5

through this way is indicated, for α = 1, by the grey area in Fig. 1.3 This
approach is very similar to the optimal search strategy proposed earlier in [5]
(see, e.g., Fig. 1 therein) or, more recently, in [6].

As always when performing the risk analysis of a vulnerability found, be it
within the Common Criteria or any other security assessment scheme, one needs
to consider the worst–case scenario. For the attack in question the worst case
arises when the secret DES key is a so–called weak key, which in the perfect
leakage model has a very low rest entropy in the final brute–force step of the
attack. Weak keys as pertinent to the current attack have been discussed in
Sec. 5 of [3], and in contrast to the 4 weak keys known from a cryptanalysis of
the DES algorithm, plenty of weak keys exist for the present attack scenario.
In the worst case, it turns out that weak keys have a rest entropy as low as 2
bits only for this attack, and some 0.135% of all DES keys fall in this class. In
the trace set used in the Exploitation Phase of [2, 3] there are 378 traces and
associated keys fulfilling this condition, and these will be the traces we will focus
on in the subsequent analysis to perform 378 single–trace attacks.

For α = 1 we find — averaged over those 378 attacks — a remaining rest
entropy of E(α = 1) = 39.09 bits. This can be optimised slightly when account-
ing for the fact that the D Register leaks more strongly than the C Register, by
optimising the parameter α, yielding E(α = 0.68) = 38.77 bits.4 In contrast, the
approach proposed in [2] based on taking simple averages of the rankings of the
C and D Register lists yields a rest entropy of Eav = 41.73 bits.5 The new search
strategy is thus some 3 bits better than the one originally proposed in [2].

This result can be further improved upon by taking into account the leakage
of the Total Hamming Distance (THD) ||dist15||1 as elaborated in more detail in
Secs. 3 and 5 of [3]. This leakage is different from that of the C rings discussed
so far, as it also accounts for how often two key bits are actually connected
xor–wise anywhere in the 16 rounds of the DES key schedule. In contrast, the
two C rings only record wether two bits are connected via an ⊕ at all, but not
how often. According to Table 5 of [2] some bit pairs are connected only at
2 positions in the key schedule, whilst others are connected in as many as 12
different positions. The construction of the corresponding templates has been
discussed in [3] and will not be repeated here. It shall suffice to say that all
traces need to be preprocessed with one more step by averaging over the 16 DES
key–schedule rounds.

We deal with this additional leakage in the same way as we did when com-
bining the leakages of the C and the D Registers — we add it to Eq. (6) using
yet another weighting factor β as

LnP (α, β) = LnPC + αLnPD + βLnPTHD . (7)

3 It turns out that one can further improve the results slightly when using a non–
linear function instead of the linear one used in Eq. (6). However, this becomes very
cumbersome and the benefit is rather small. Thus, here we only optimise α.

4 Any value 0 < α < 1 means that the D Register leaks more than the C Register.
5 The difference to the numerical value reported in [2, 3] is due to the fact that in the

current paper we restrict the analysis to weak keys only.

6

THD = 0
THD = 1
THD = 2
THD = 3

THD = 4

THD = 5

THD = 0
THD = 1
THD = 2

THD = 3

THD = 4

THD = 322

THD = 320

THD = 323

THD = 321
THD = 322

THD = 324

C Register D Register

THD = 323
THD = 324

…
…

THD = 7

THD = 321
THD = 320
THD = 319

THD = 6 +𝛽 LnPTHD=7+319

Fig. 2. Search strategy according to Eq. (7): For each register we first order the list
according to the Total Hamming Distance (THD) of its entries. This gives 235 subsets
for each register. Within each such subset we then order as before according to Eq. (6).
Each combination of one subset from the left with one subset from the right has then
a constant additional offset βLnPTHD according to Eq. (7). In essence, we then need to
keep track of and simultaneously advance 325×325 thresholds or “Frontiers” connecting
all subsets of the left with all subsets on the right, until the correct key is found.

However, as it stands, at first sight Eq. (7) seems to destroy our approach to have
two disjunct ordered sets of only 227 subkeys, one belonging to the C Register,
and the other belonging to the D Register. The term βLnPTHD seems to imply
that we now need to sort all 254 DES keys in one go, which is much more work
than sorting two sets of only 227 subkeys each. Fortunately, this is not the case.

Firstly, we note that the Total Hamming Distance (THD) ||dist15(k)||1 of a
DES key k decomposes into its contributions from the C and the D Register as
||dist15(k)||1 = ||dist15(kC)||1 + ||dist15(kD)||1, where kC and kD are the respec-
tive subkeys belonging to these two registers. By definition, the term βLnPTHD

only depends on the sum ||dist15(k)||1.

Secondly, as illustrated in Fig. 2 we can reorder the 227 subkeys of, e.g.,
Register C such that all subkeys with the same value of ||dist15(kC)||1 are gath-
ered within one contiguous subset, labelled with THD = 0, 1, 2, ..., 324. There
are a total of 325 such subsets, as the largest THD possible for a 27–bit subkey
“scattered” and repeated across 16 DES rounds turns out to be 324, whilst the
smallest is 0.6 Within each such subset we order the subkeys in the same way as

6 A few extreme values are actually not possible, like a Total Hamming Distance of
1, and so the number of subsets is actually slightly less than 325, but this does not
matter for this analysis.

7

7

6

5

4

3

2

1

0

N
u
m

b
e
r

o
f

O
c
c
u
re

n
c
e
s

5040302010

Rest Entropy

11-bit C-Type

Based on Total LnP Ranking with HD and Skew - Mean: 37.75 bits

Fig. 3. Distribution for the rest entropy ET based on 378 single–trace attacks and
using Eq. (7) with α = 0.675, β = 0.252.

before according to increasing values of LnPC. The same is then done with the
subkeys belonging to Register D. The effort of sorting these two lists this way
is only marginally larger than it was before. In essence, we are still sorting two
lists of 227 subkeys each, and the problem remains easy to tackle.

With these newly ordered two lists we can still use the same search strategy
as in Fig. 1, but now we apply it to all 325 × 325 possible combinations of
these C and D Register subsets. Each such combination has a constant value of
βLnPTHD, which simply offsets this combination as a whole with regards to all
other combinations. In the end, we can search over these 325×325 combinations
as before using a single threshold value for LnP .

For α = 1 we find a rest entropy of ET(α = 1, β = 0.253) = 38.06 bits when
averaged over the ensemble of 378 single–trace attacks targeting a weak key. If we
optimise both parameters simultaneously, we find ET(α = 0.675, β = 0.252) =
37.75 bits. The fact that the values of α and β do not change much compared
to the previous results is an indication that these results are fairly robust. The
distribution over these 378 single–trace attacks is shown in Fig. 3. This result
is about 4 bits better than the first results shown in [2]. Thus, accounting for
the Total Hamming Distance leakage in the analysis yields one further bit re-
duction of the brute–force effort. This is less than what had been estimated in
[3], though.7

Clearly, we can still improve these results in a number of ways. Firstly, we can
account for yet more leakage mechanisms by adding more terms in Eq. (7). An

7 It should be noted that optimizing the parameter α alone yielded on average about
a third of a bit only. Given that this is a fairly expensive operation, it may not be
worth doing.

8

example would be the leakage during the key–loading stage of the same smart
card as presented in [1]. Comparing Figs. 42 and 43 of [3], this can potentially
yield an average additional reduction of up to 3.34 bits in the brute–force effort.
With this the average rest entropy for a single–trace attack could come down to
roughly 34.4 bits.

Secondly, Eq. (5) assumes that the 14 templates on a C ring are completely
independent of each other, which is not the case, as they overlap. It would be
interesting to find a way to take this property into account.

Finally, if we allow more traces to be used in the Exploitation Phase, results
can be dramatically improved as already shown in Sec. 6.2 of [3] for a randomly
chosen but fixed key with an average rest entropy. However, for the smart card
in question we simply did not measure multiple traces for the same weak key
at the time, and hence we cannot perform a similar analysis here. Yet, with the
results of [3] it is more than reasonable to expect that it does not take more than
a few traces to push the remaining average rest entropy below 20 bits for a weak
key. If we keep increasing the number of traces used during the Exploitation
Phase further, eventually the ultimate rest entropy of these weak keys should be
reached, namely only 2 bits.

3 Conclusions

In conclusion, we have presented an improved search strategy for the remaining
brute–force search in the template attack on the DES key schedule of a recent
smart card based on a widely–used chip certified by the BSI. It is some 4 bits
better than previous results, resulting in an average rest entropy of 37.75 bits
for weak keys, using a single trace in the Exploitation Phase. This result can
be further improved upon by combining it with other DES key leakage found in
the same smart card (up to 3.34 bits less rest entropy), and/or using more than
one trace during the Exploitation Phase. In the latter case the rest entropy is
eventually expected to go down to values as low as 2 bits.

References

1. Wagner, M., Hu, Y., Zhang, C., Zheng, Y.: Comparative Study of Various Ap-
proximations to the Covariance Matrix in Template Attacks. Cryptology ePrint
Archive, Report 2016/1155, 2016

2. Wagner, M., Heyse. S.: Single–Trace Template Attack on the DES Round Keys of
a Recent Smart Card, Cryptology ePrint Archive, Report 2017/057, 2017

3. Wagner, M., Heyse. S., Guillemet, C: Brute–Force Search Strategies for Single–
Trace and Few–Traces Template Attacks on the DES Round Keys of a Recent
Smart Card, Cryptology ePrint Archive, Report 2017/614, 2017 (rev. in Dec 2017)

4. https://en.wikipedia.org/wiki/Quicksort
5. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F-X.: An Optimal Key

Enumeration Algorithm and its Application to Side–Channel Attacks, Cryptology
ePrint Archive, Report 2011/610, 2011

6. Li, Y., Wang, S., Wang, Z., Wang, J.: A Strict Key Enumeration Algorithm for
Dependent Score Lists of Side–Channel Attacks, CARDIS, 2017

