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Abstract. Attribute-Based Encryption (ABE) is a versatile one-to-many encryption primitive which
enables fine-grained access control over encrypted data. Due to its promising applications in practice,
ABE has been attracting much attention in the community and schemes with better security, access
policy expressivity, and efficiency have been continuously emerging. On the other hand, due to the
nature of ABE, namely, different users may share some common decryption privileges and a malicious
user may leak some common decryption privileges for financial gain or other incentives, being able
to identify such malicious users (i.e. traitor tracing) is crucial towards the practicality of an ABE
system. For some existing ABE schemes with appealing properties (e.g. full security, large universe),
the corresponding traceable counterparts have been proposed. However, these works are proceeded
case by case, and there are still many appealing ABE schemes not having the traceable counterparts.
Furthermore, when any new ABE scheme emerges and we want to apply it in practice, it will take
significant workload to investigate and propose its traceable counterpart.

In this paper, we propose a framework to transform existing and (possibly) future ABE schemes to
their traceable counterparts in a generic manner. In particular, by specifying some requirements on the
structure of the ABE constructions, we propose an ABE template, and show that any ABE scheme
satisfying this template can be transformed to a fully collusion-resistant blackbox traceable ABE scheme
in a generic manner, at the cost of sublinear overhead, while keeping the appealing properties, such
as fine-grained access control on encrypted data, highly expressive access policy, short ciphertext, and
so on. We prove the security in the framework all in the standard model, and we present a couple of
existing ABE schemes with appealing properties as examples that do satisfy our ABE template.
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1 Introduction

Attribute-Based Encryption (ABE), introduced by Sahai and Waters [29], is a versatile one-to-many encryp-
tion primitive which enables fine-grained access control over encrypted data. Due to its promising applications
in practice, ABE has been attracting much attention in the community and undergoing a significant devel-
opment. Among the recently proposed ABE schemes [29/T3/5ITOIT2I30/TR27ITABITIBTITER28T6T], progress
has been made on the schemes’ security, access policy expressivity, and efficiency. For example, Lewko et al.
[18] proposed the first fully secure ABE schemes, Lewko and Waters [I9] proposed a new proof technique for
achieving full security for ABE, Attrapadung et al. [3] proposed the first expressive Key-Policy ABE (KP-
ABE) with constant-size ciphertexts, Rouselakis and Waters [28] proposed the first large universe ABE E|
schemes which impose no limitations on the attribute sets or the access policies, Waters [31] proposed the
first ABE scheme supporting regular languages to be the access policy while the previous works support at
most boolean formulas, and Attrapadung [I] proposed a series of fully secure ABE schemes which support
regular languages, constant size ciphertexts, or large universe.

3 In a large universe ABE scheme, the attribute universe can be exponentially large, any string can be used as an
attribute, and attributes do not need to be pre-specified during setup.



As security, access policy expressivity, and efficiency are the three preliminary directions for ABE research,
traitor tracing is a compulsory requirement for practical ABE schemes. In particular, using Ciphertext-
Policy ABE (CP-ABE) [13l5] as an example, ciphertext access policies do not have to contain any receivers’
identities, and more commonly, a CP-ABE policy is role-based and attributes are shared between multiple
users. For example, the user with attributes {Bob, Mathematics, PhD Student} and the user with attributes
{Carl, Mathematics, PhD Student} are sharing the attributes {Mathematics, PhD Student} and both of
them can decrypt the ciphertext with policy “(Mathematics AND (PhD Student OR Alumni))”. In practice,
a malicious user, with attributes shared with multiple other users, might leak a decryption blackbox/device,
which is made of the user’s decryption key, for the purpose of financial gain or some other forms of incentives,
as the malicious user has little risk of being identified out of all the users who can build a decryption blackbox
with identical decryption capability. Being able to identify this malicious user (refer to as ‘traitor’) is crucial
towards the practicality of an ABE system.

With a series of work [2T|20/22/2312524], Liu et al. formalized the problem of traitor tracing for ABE
well and proposed the counterparts supporting traitor tracing for some existing appealing ABE schemes.
For example, [20023] add fully collusion-resistant blackbox traceability to the fully secure CP-ABE scheme
n [18], and [24] adds fully collusion-resistant blackbox traceability to the large universe CP-ABE scheme in
[28]. Note that the schemes in [20022I232524] achieve fully collusion-resistant blackbox traceability E| at the
cost of sublinear (i.e, linear in the square root of the number of users in the system) overhead, which is the
most efficient level to date.

While Liu et al. [2TI20022123125124] transformed several existing appealing ABE schemes to their traceable
counterparts, there are still many other appealing ABE schemes for which no traceable counterparts are
proposed, for example, the fully secure ABE schemes in [I] which support regular languages, large universe,
or constant size ciphertexts. Furthermore, we believe that in the future more and newer ABE schemes with
better security, expressivity, efficiency and other appealing features will appear, and to be practical, these
existing and future ABE schemes also need to be traceable against traitors. Investigating these schemes and
proposing the traceable counterparts one by one will be a heavy workload.

In this paper, we make an attempt to propose a framework to transform existing and future ABE
schemes to their traceable counterparts in a generic manner. In particular, by specifying some requirements
on the structure of the ABE constructions, we propose an ABE template, and show that any ABE scheme
satisfying this template can be transformed to a fully collusion-resistant blackbox traceable ABE scheme in
a generic manner, at the cost of sublinear overhead, while keeping the appealing properties of the underlying
ABE schemes, such as fine-grained access control on encrypted data, highly expressive access policy, short
ciphertext, and so on. The contributions of this framework are two folds:

— For the existing ABE schemes satisfying the template, the traceable counterparts can be given directly
by applying the transformation framework. And we indeed show that the appealing ABE schemes in
[1], which are fully secure and support regular languages, constant size ciphertexts, or large universe, do
satisfy this template. In addition, we also show that the large universe CP-ABE scheme by Rouselakis
and Waters [28] also satisfies this template.

— For the existing ABE schemes not satisfying the template and the potential future ABE schemes, this
framework provides a ‘target’ which they can try to achieve and then also be transformed to a traceable
one.

1.1 Our Results

First, as shown in “1. Definition” of Fig. [I} we define Traceable ABE by extending the definition of Con-
ventional (non-traceable) ABE, i.e., a) predefining the number of users in the system, b) indexing the users
with unique indexes, and ¢) adding a tracing algorithm. As predefining the number of users in the system
is a necessary setting for achieving blackbox traceability and does not undermine the capacity of ABE, i.e.

4 Fully collusion-resistant traceability means that the number of colluding users in constructing a decryption device
is not limited and can be arbitrary.
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Fig. 1. Outline

enabling fine-grained access control on encrypted data, the Traceable ABE has the appealing properties of
conventional ABE and additionally supports blackbox traceability. This part is proceeded in Sec. [2]

The aim of this work is to transform existing (even some future) conventional (non-traceable) ABE
schemes to traceable counterparts, i.e. proposing a generic framework that enables ABE schemes to be
traceable, as shown in “2. Generic Construction/Transformation” of Fig. [I} This aim is achieved by two
steps. First, as shown in “2-1 Definition” and “2-2 Transformation” of Fig. 1| we define a simpler primitive
called Augmented ABE (or AugABE for short) and show that an Augmented ABE implies a Traceable
ABE. This part is proceeded in Sec. ] Then, as shown in “2-3 Generic Transformation” of Fig. [Ij we
propose a generic framework to transform Conventional (non-traceable) ABE to Augmented ABE. This part
is proceeded in Sec. @ Thus, for the conventional (non-traceable) ABE schemes that satisfy the proposed
ABE template, the “2-3 Generic Transformation” will transform them to Augmented ABE counterparts,
then the “2-2 Transformation” will transform those Augmented ABE schemes to corresponding Traceable
ABE schemes, which will keep the appealing properties of the corresponding conventional (non-traceable)
ABE schemes and additionally support blackbox traceability.

More specifically, in Sec. we present a general ABE definition which covers a variety of ABE systems,
including CP-ABE, KP-ABE, ABE supporting boolean formula, ABE supporting regular language, etc., and
has a potential for supporting blackbox traceability. Namely, we define a ‘functional’ ABE system, which
is identical to conventional (non-traceable) ABE, except that each user/decryption key is assigned and
identified by a unique index k € {1,...,K} (K is the number of users in the system). Note that predefining
the number of users K in the system is a necessary setting for achieving blackbox traceability, and in practice
this should not incur much concern, and does not undermine the capacity of ABE, i.e. enabling fine-grained
access control on encrypted data. In other words, except this necessary setting, the functional ABE has all
the appealing properties of conventional ABE, and additionally, as each user/decryption key is uniquely
indexed, this functional ABE can support blackbox traceability and is referred to as Traceable ABE, as
defined in Sec. 2.2

In Sec. we define Augmented ABE by modifying the definition of Traceable ABE. In particular,
Augmented ABE has four algorithms (Setup,, KeyGeny, Encrypt,, Decrypt, ), where the setup, key generation,



and decryption algorithms, i.e., Setup,, KeyGen,, and Decrypt,, are the same as that of the Traceable ABE.
The encryption algorithm Encrypt, takes one more parameter k € {1,...,KC + 1} than the original one in
Traceable ABE, and the decryption criteria in Augmented ABE is changed in such a way that an encrypted
message using ciphertext tag Y and encryption index k can be recovered using a decryption key SKk. x,
which is identified by index k € {1,...,K} and associated with a key tag X, only if (X matches Y) A (k >
k), where (X matches Y) is the standard decryption criteria for conventional ABE and (k > k) is an
additional requirement incurred by encryption index k. We define the message-hiding and (encryption-)
index-hiding properties of Augmented ABE in Sec. and in Sec. we show that a message-hiding and
index-hiding Augmented ABE scheme, say Xa = (Setup,, KeyGeny, Encrypt,, Decrypt, ), will imply a secure
Traceable ABE scheme X = (Setup,, KeyGeng, Encrypt, Decrypt, ), where the encryption algorithm Encrypt
is derived from Encrypt, by always setting the encryption index to be 1, and the tracing algorithm Trace is
built on Encrypt, by producing ciphertexts with index k € {1,---K} and feeding these ciphertexts to the
decryption blackbox. The message-hiding property of Augmented ABE will guarantee the security of the
derived Traceable ABE and the index-hiding property of Augmented ABE will guarantee the traceability of
the derived Traceable ABE.

The definitions of Traceable ABE in Sec. [2| the definitions of Augmented ABE in Sec. and the
reduction of Traceable ABE to Augmented ABE in Sec. are similar to precious work in [20[22/23/2524].
While [20023I25124] focus on CP-ABE and [22] focuses on KP-ABE, this paper formalizes the definitions
of Traceable ABE and Augmented ABE and the reduction of Traceable ABE to Augmented ABE in a
most generic manner, which covers all kinds of ABE, including CP-ABE, KP-ABE, ABE supporting boolean
formulas, ABE supporting regular languages, etc. While re-formalizing these preliminaries is a necessary part,
the major contribution of this paper lies in the generic transformation of Conventional (non-traceable
ABE) to Augmented ABE (i.e. the 2-3 part in Fig.[I). In particular,

— We define an ABE template for Conventional (non-traceable) ABE. The template represents a type
of ABE construction techniques, so that this template covers not only many existing important ABE
schemes with appealing properties, but also some possible ABE schemes in the future, which consider
this template and corresponding construction techniques when designed.

— We propose a generic framework that transforms the ABE template to Augmented ABE. This means
that all the ABE schemes falling in the template can be transformed to their traceable counterparts,
enjoying their original appealing properties and additional fully collusion-resistant blackbox traceability.

e The overhead for the transformation (i.e. the overhead for the fully collusion-resistant blackbox
traceability) is linear in VK, i.e. the resulting Traceable ABE schemes achieve the most efficient level
to date for fully collusion-resistant blackbox traceable systems.

e We prove the message-hiding and index-hiding properties of the resulting Augmented ABE in the
standard model. (The outline for the security analysis is given later in Fig. )

— We show some existing appealing ABE schemes, i.e. the ones in [I] which are fully secure and support
regular languages, constant size ciphertexts, and large universe, satisfy our ABE template. That is,
we can obtain the traceable counterparts for these appealing ABE schemes, by applying our generic
transformation framework.

— To cover the appealing ABE schemes in [I], the template, as well as the generic transformation and the
proof, are described on composite order groups. To be more general, we show that the template, the
transformation, and the proof also work well for the schemes on prime order groups, and present the
large universe CP-ABE scheme Rouselakis and Waters [28] as an example.

We do not want to oversell our asymptotic result. Our method/framework considers and works for a
subset of pairing-based ABE schemes, namely, those ABE schemes complying with our non-traceable ABE
template, rather than ALL the ABE schemes. For example, our framework is not applicable to the lattice-
based ABE schemes (e.g. [9]). Actually, as so far there is not known results on lattice-based ABE schemes
with traitor tracing.

We would like to view our asymptotic result mainly as a stepping stone towards building practical ABE
schemes. In particular, in retrospect, the ABE schemes by Waters [30], Lewko et al. [18], Lewko and Waters
[19], Attrapadung [I], and so on, represent one of the main branches of ABE development, as well as a branch



of pairing-based ABE design/construction method, and it is reasonable to believe that new ABE schemes in
this branch will be proposed in future. While these ABE schemes have been getting better security, policy
expressivity, and/or efficiency, they did not consider or support traitor tracing, and this seriously limits
their applicability in practice. Our asymptotic result makes the ABE schemes following this branch to have
traitor tracing functionality, while leaving it as future work to further reduce the overhead incurred by traitor
tracing functionality and make other types of ABE schemes (e.g. the lattice-based ones) to support traitor
tracing.

2 ABE and Blackbox Traceability

In this section, we define a ‘functional’ ABE and its security, which are similar to Conventional (non-
traceable) ABE (e.g. [19128]), except that we explicitly assign and identify users using unique indices. Then
we formalize the fully collusion-resistant traceability for this ‘functional’ ABE.

To be as general as possible, in the definitions of this functional ABE, we use the terms ‘ciphertext tag’
and ‘key tag’, rather than ‘access policy’ and ‘attributes’. When the ciphertext tag is an attribute set and
the key tag is a Boolean formula, it is a KP-ABE supporting Boolean formula as policy; when ciphertext
tag is a Deterministic Finite Automata (DFA) and the key tag is a string, it is a CP-ABE supporting DFA
as policy, an so on.

2.1 Attribute-Based Encryption and its Security

Attribute-Based Encryption Syntax. Given integers a and b where a < b, let [a, b] be the set {a,a +
1,...,b}. Also, we use [b] to denote the set {1,2,...,b}. Let relation I" : X x Y — {0,1} is a predicate
function that maps a pair of key tag in a space X and ciphertext tag in a space Y to {0,1}. An Attribute-
Based Encryption (ABE) scheme for predicate I' consists of following algorithms:

Setup(A, I, K) — (PP, MSK). The algorithm takes as input a security parameter A, a predicate I", and the
number of users in the system /C, runs in polynomial time in A\, and outputs a public parameter PP and
a master secret key MSK.

KeyGen(PP, MSK, X) — SKj, x. The algorithm takes as input PP, MSK, and a key tag X € X, and outputs
a secret key SKj x corresponding to X. The secret key is assigned and identified by a unique index
ke [K].

Encrypt(PP, M,Y) — CTy. The algorithm takes as input PP, a message M, and a ciphertext tag Y € Y,
and outputs a ciphertext CTy. Y is included in CTy.

Decrypt(PP, CTy,SKy,x) — M or L. The algorithm takes as input PP, a ciphertext C'Ty, and a secret key
SKp, x, and outputs a message M or L indicating the failure of decryption.

Correctness. For all X € X, Y € Y, and messages M, suppose (PP, MSK) < Setup(\, I, ), SKy x +
KeyGen(PP,MSK, X), CTy < Encrypt(PP, M,Y). If I'(X,Y’) = 1 then Decrypt(PP, CTy,SKy x) = M.

Security. The security of an ABE scheme for predicate I is defined using the following message-hiding game,
which is a typical semantic security game and is similar to that for conventional ABE [19I28] security.
Gamepypy. The message-hiding game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(A, I, K) and gives the public parameter PP to A.

Phase 1. For i = 1 to Q1, A adaptively submits (index, key tag) pair (k;, X,) to ask for secret key for key
tag Xg,. For each (k;, Xy,) pair, the challenger responds with a secret key SKy, x, , which corresponds
to key tag X, and has index k;. '

Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0, 1}, and sends CTy~ < Encrypt(PP, M, Y™) to A.

Phase 2. For i = Q1 + 1 to @, A adaptively submits (index, key tag) pair (k;, Xi,) to ask for secret
key for key tag Xy, . For each (k;, Xj,) pair, the challenger responds with a secret key SKki’in, which
corresponds to key tag Xy, and has index k;.



Guess. A outputs a guess b’ € {0,1} for b.

A wins the game if &' = b under the restriction that none of the queried {(k;, Xi,)}%, can satisfy
I'(Xy,,Y*) = 1. The advantage of A is defined as MHAdv 4 = | Pr[b/ = b] — 1|.

Definition 1. A K-user ABE scheme for predicate I' is secure if for all probabilistic polynomial time (PPT)
adversaries A, MHAdv 4 is negligible in \.

We say that a K-user ABE scheme for predicate I" is selectively secure if we add an Init stage before Setup
where the adversary commits to the challenge ciphertext tag Y™*.

Remark: As pointed out in previous work [20/2223])25)24], (1) although the KeyGen algorithm is responsible for
determining/assigning the index of each user’s secret key, to capture the security that an adversary can adaptively
choose secret keys to corrupt, the above model allows A to specify the index when querying for a key, i.e., for
1 =1to @, A submits pairs of (k;, Xi,) for secret keys with key tags corresponding to X}, and the challenger will
assign k; to be the index of the corresponding secret key, where Q < K, k; € [K], and k; # k; V1 <i# 7 <@
(this is to ensure that each user/key can be uniquely identified by an index). (2) For k; # k; it does not require
Xy, # X, i.e., different users/keys may have the same key tag.

2.2 Blackbox Traceability

A ciphertext-tag-specific decryption blackbox D is described by a ciphertext tag Yp and a noticable proba-
bility value € (i.e. e = 1/f()) for some polynomial f), and this blackbox D can decrypt ciphertexts generated
under Yp with probability at least €. Such a blackbox can reflect most practical scenarios, which include the
key-like decryption blackbox for sale and decryption blackbox “found in the wild”, which are discussed in
[20123]. In particular, once a blackbox is found being “useful”, i.e. being able to decrypt ciphertexts (regard-
less of how this is found, for example, an explicit description of the blackbox’s decryption ability is given,
or the law enforcement agency finds some clue), we can regard it as a ciphertext-tag-specific decryption
blackbox with the corresponding ciphertext tag (which is associated to the ciphertext that it can decrypt).

We now define the tracing algorithm and traceability against ciphertext-tag-specific decryption blackbox.

TraceD(PP,YD,e) — Kp C [K]. Trace is an oracle algorithm that interacts with a ciphertext-tag-specific
decryption blackboxr D. By given the public parameter PP, a ciphertext tag Yp, and a probability value €, the
algorithm runs in time polynomial in A and 1/¢, and outputs an index set Ky C [K] which identifies the set
of malicious users. Note that € has to be polynomially related to A, i.e. ¢ =1/f(\) for some polynomial f.

Traceability. The following tracing game captures the notion of fully collusion-resistant traceability
against ciphertext-tag-specific decryption blackbox. In the game, the adversary targets to build a decryption
blackbox D that can decrypt ciphertexts under some ciphertext tag Yp. The tracing algorithm, on the other
side, is designed to extract the index of at least one of the malicious users whose decryption keys have been
used for constructing D.

Gamerg. The tracing game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(A, I', K) and gives the public parameter PP to A.

Key Query. For i = 1 to Q, A adaptively submits (index, key tag) pair (k;, Xk,) to ask for secret key for key
tag Xg,. For each (k;, Xy,) pair, the challenger responds with a secret key SKy, x, , which corresponds
to key tag X, and has index k;. '

Decryption Blackbox Generation. A outputs a decryption blackbox D associated with a ciphertext
tag Yp and a non-negligible probability value e.

Tracing. The challenger runs TraceD(PP7 YD, €) to obtain an index set Ky C [K].

Let Kp = {k;|]1 < i < Q} be the index set of secret keys corrupted by the adversary. We say that A wins
the game if the following two conditions hold:



1. Pr[D(Encrypt(PP, M,Yp)) = M] > €, where the probability is taken over the random choices of message
M and the random coins of D. A decryption blackbox satisfying this condition is said to be a useful

ciphertext-tag-specific decryption blackboz.
2. Ky = @, or Kp g KD, or (F(th,YD) 75 1 th € KT).

We denote by TRAdv 4 the probability that A wins.

Remark: For a useful ciphertext-tag-specific decryption blackbox D, the traced Ky must satisfy (K #
D) A (Kr € Kp) A (Fky € Ky s.t. I'(Xy,,Yp) = 1) for traceability. (1) (Ky # 0) A (Ky € Kp) captures the
preliminary traceability that the tracing algorithm can extract at least one malicious user and the coalition
of malicious users cannot frame any innocent user. (2) (3k; € Kr s.t. I'(Xy,, Yp) = 1) captures the strong
traceability that the tracing algorithm can extract at least one malicious user whose secret key enables D to
have the decryption ability corresponding to Yp. We refer to [I7J20] for why strong traceability is desirable.
Note that, as of [TITTII7I20], we are modeling a stateless (resettable) decryption blackbox — such a
blackbox is just an oracle and maintains no state between activations. Also note that we are modeling public
traceability, namely, the Trace algorithm does not need any secrets and anyone can perform the tracing.

Definition 2. A K-user ABE scheme for predicate I' is traceable against ciphertext-tag-specific decryption
blackbox if for all PPT adversaries A, TRAdv 4 is negligible in \.

We say that a C-user ABE scheme for predicate I is selectively traceable against ciphertext-tag-specific
decryption blackbox if we add an Init stage before Setup where the adversary commits to the ciphertext
tag Yp.

3 Augmented Attribute-Based Encryption

As outlined in Sec. we now define Augmented ABE (or AugABE for short) from the ABE above and
formalize its message-hiding and index-hiding notions, then show that a message-hiding and index-hiding
AugABE can be transformed to a secure ABE with blackbox traceability.

3.1 Definitions

An AugABE scheme has four algorithms: Setup,, KeyGen,, Encrypt,, and Decrypt,. The setup algorithm
Setup, and key generation algorithm KeyGen, are the same as that of ABE, respectively. For the encryption
algorithm, it takes one more parameter k € [K + 1] as input, and is defined as follows.

Encrypta (PP, M, Y, k) — CTy. The algorithm takes as input PP, a message M, a ciphertext tag Y, and an

index k € [K + 1], and outputs a ciphertext CTy. Y is included in CTy, but the value of k is not.

The decryption algorithm Decrypt, is also defined in the same way as that of ABE. However, the correctness
definition is changed to the following.

Correctness. For all X € X, Y € Y, k € [K + 1], and messages M, suppose (PP, MSK) < Setup, (A, I, K),
SK,x < KeyGenn(PP,MSK, X), CTy « Encrypt, (PP, M,Y, k). If (I'(X,Y) = 1)A(k > k) then Decrypt, (PP,
CTy,SKy x) = M.

Note that during decryption, as long as I'(X,Y) = 1, the decryption algorithm outputs a message, but
only when k > k, the output message is equal to the correct message, that is, k > k is an additional condition
and if and only if (I'(X,Y) = 1) A (k > k), can SKj, x correctly decrypt a ciphertext under (Y, k). If we
always set k = 1, the functions of AugABE are identical to that of ABE. In fact, the idea behind transforming
an AugABE to a traceable ABE, that we will show shortly, is to construct an AugABE with index-hiding
property, and then always sets & = 1 in normal encryption, while using k € [K + 1] to generate ciphertexts
for tracing.

Security. We define the security of AugABE in three games. The first game is a message-hiding game
and says that a ciphertext created using index 1 is unreadable to the users whose key tags do not satisfy



the ciphertext tag. The second game is a message-hiding game and says that a ciphertext created using
index K + 1 is unreadable by anyone. The third game is an index-hiding game and captures the intuition
that a ciphertext created using index k reveals no non-trivial information about k.

Gamef‘,”_,l. The message-hiding game Gamefé,,H1 is similar to Gameyy except that the Challenge phase is

Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0,1}, and sends CTy~ < Encrypta (PP, M,,Y™* 1) to A.

A wins the game if ¥ = b under the restriction that none of the queried {(k;, Xj,)}%, can satisfy

I'(Xy,,Y*) = 1. The advantage of A is defined as MH}Adv 4 = | Pr[t/ = b] — 1.

Definition 3. A K-user Augmented ABE scheme for predicate I' is Type-I message-hiding if for all PPT
adversaries A the advantage MH?AdvA 1s megligible in .

We say that an Augmented ABE scheme for predicate I' is selectively Type-I message-hiding if we add an
Init stage before Setup where the adversary commits to the challenge ciphertext tag Y*.

Gameﬁ,”_b. The message-hiding game Game/,\x,w,2 is similar to Gamemy except that the Challenge phase is

Challenge. A submits two equal-length messages My, M7 and a ciphertext tag Y*. The challenger flips a
random coin b € {0,1}, and sends CTy < Encrypts (PP, My, Y*, K + 1) to A.

A wins the game if &' = b. The advantage of A is defined as MHyAdv 4 = | Pr[b/ = b] — 3.

Definition 4. A K-user Augmented ABE scheme for predicate I' is Type-II message-hiding if for all PPT
adversaries A the advantage I\/IH’SAdvA 18 negligible in \.

Ga mefg. The index-hiding game defines that, for any ciphertext tag Y*, without a secret key SKg x; such

that I'(Xj,Y*) = 1, an adversary cannot distinguish between a ciphertext under (Y*, k) and (Y*, k + 1).
The game proceeds as follows:

Setup. The challenger runs Setup, (A, I, ) and gives the public parameter PP to A.

Key Query. For i = 1 to Q, A adaptively submits (index, key tag) pair (k;, Xk,) to ask for secret key for key
tag Xg,. For each (k;, Xy,) pair, the challenger responds with a secret key SKy,, X, » which corresponds
to key tag Xj, and has index k;.

Challenge. A submits a message M and a ciphertext tag pair Y*. The challenger flips a random coin
b € {0,1}, and sends CTy~ < Encrypt, (PP, M,Y* k +b) to A.

Guess. A outputs a guess b’ € {0, 1} for b.

A wins the game if b’ = b under the restriction that none of the queried pairs {(k;, X k)}zQ:1 can satisfy
(ki = k) A (I'(Xy,,Y*) = 1). The advantage of A is defined as IH*Adv 4[k] = | Pr[t = b] — 3.

Definition 5. A K-user Augmented ABE scheme for predicate I' is index-hiding if for all PPT adversaries
A the advantages \H*Adv 4[k] for k =1,... K are negligible in .

We say that an Augmented ABE scheme for predicate I" is selectively index-hiding if we add an Init stage
before Setup where the adversary commits to the challenge ciphertext tag Y*.

3.2 The Reduction of Traceable ABE to Augmented ABE

Let Yo = (Setupp, KeyGeny, Encrypt,, Decrypt,) be an AugABE, define Encrypt(PP, M,Y) = Encrypt, (PP,
M,Y,1), then X = (Setup,, KeyGen,, Encrypt, Decrypt,) is an ABE derived from Xa. In the following, we
show that if X'a is Type-I message-hiding, then X is secure (w.r.t. Def. . Furthermore, we propose a tracing
algorithm Trace for X' and show that if X'a is Type-II message-hiding and index-hiding, then X' (equipped
with Trace) is traceable (w.r.t. Def. [2)).



1 ABE Security

Theorem 1. If Xa is Type-I message-hiding (resp. selectively Type-I message-hiding), then X is secure
(resp. selectively secure).

Proof. The proof is similar to that in [20[23]. Due to the page limitation, we omit the details here.

[3:212 ABE Traceability
We now propose a tracing algorithm Trace, which uses a general tracing method previously used in [6I2617STTI20],
and show that equipped with Trace, X' is traceable (w.r.t. Def. .

TraceD(PP,YD,e) — Kr C [K]: Given a ciphertext-tag-specific decryption blackbox D associated with a
ciphertext tag Yp and probability € > 0, the tracing algorithm works as follows:

1. For k =1 to K + 1, do the following:
(a) Repeat the following 8A(N/e)? times:
i. Sample M from the message space at random.
ii. Let CTy,, < Encrypta (PP, M,Yp, k).
iii. Query oracle D on input CTy,,, and compare the output of D with M.
(b) Let py be the fraction of times that D decrypted the ciphertexts correctly.
2. Let Kt be the set of all k € [K] for which py — Pr+1 > €/(4K). Output Kr as the index set of the
decryption keys of malicious users.

Theorem 2. If Y is Type-II message-hiding and index-hiding (resp. selectively index-hiding), then X is
traceable (resp. selectively traceable).

Proof. The proof is similar to that in [20[23]. Due to the page limitation, we omit the details here.

4 Transform a Non-Traceable ABE to an Augmented ABE

In this section, we first formailze the notation of Pair Encoding Scheme in Sec. which is the core
components of the conventional (non-traceable) ABE template we propose in Sec. Then in Sec. we
propose the generic transformation from the ABE template to the Augmented ABE and in Sec. prove
the security of the resulting Augmented ABE.

Note that the ABE template, the transformation, and the proof in this section are described in composite
order bilinear groups, but as shown later in Sec. 5] all these also work well in prime order bilinear groups.

4.1 Pair Encoding Scheme: Syntax

The notion of Pair Encoding Scheme here is inspired by the work of Attrapdung [1]. Attrapdung [I] proposed
the notion of Pair Encoding Scheme, including syntax and security definitions, and proved the full security
of some Functional Encryption schemes based on the security of corresponding Pair Encoding Scheme in-
stantiations. Here we borrow the term of Pair Encoding Scheme, and actually we only use the syntax to
abstract the structures of the non-traceable ABE schemes which we aim to transform to AugABE, while not
considering or using the security properties of Pair Encoding Scheme.

A Pair Encoding Scheme for predicate I” consists of four deterministic algorithms given by (SysParam, KeyParam,
CiperParam, DecPair):

— SysParam(I") — (d,dp). It takes as input a predicate I' : X x Y — {0,1} and outputs two integers d
and dy. d is used to specify the number of common variables in KeyParam and CiperParam, and do(< d)
will be used to specify the requirements of the ABE template. For the default notation, let a and
B = (P1,...,P4) denote the list of common variables.



— KeyParam(X,N) — (¢ = (¢o,¢1,...,dq,),ds). It takes as inputs N € N and a key tag X € X, and

outputs a sequence of polynomials ¢ = (do, P1, ..., ¢4, ) With coefficients in Zy and an integer ds that
specifies the number of its own variables. Let & = (d1,...,04,) be the variables, we require that each
polynomial ¢,(0 < z < di) is a linear combination of monomials ., 6;,0;5;, where a, B = (B4, ..., Bq) are

the common variables. For simplicity, we write ¢(«, 3,0) = (¢o(a, 3,0), p1(a, 8,6), ..., ¢a, (a, 3,0)).
— CiperParam(Y,N) — (¢ = (¢1,...,%4,),dr). It takes as inputs N € N and a ciphertext tag ¥ € Y,

and outputs a sequence of polynomials 9 = (¢1, ..., 14, ) with coefficients in Zy and an integer d, that
specifies the number of its own variables. Let = (7,71, ...,74, ) be the variables, we require that each
polynomial ¢,(1 < z < d.) is a linear combination of monomials m,m;, 73,7 5;, where B8 = (51, ..., Ba)

are the common variables. For simplicity, we write ¥(8,7) = (¢1(8, ), ..., ¢4, (B, 7)).
— DecPair(X,Y, N) — E. It takes as inputs N € N, a key tag X € X, and a ciphertext tag Y € Y, and

output E € Zg\‘?"—ﬂ)x(d“).
Correctness. The correctness requirement is defined as follows.

— First, for any N € N, X € X, Y € VY, let (¢ = (¢o,01,...,04,),ds) < KeyParam(X,N), (¢p =
(¥1,...,%a4.),dr) < CiperParam(Y,N), and E < DecPair(X,Y,N), if I'(X,Y) = 1, then for any
a,B8=(B1,---,84), 8 = (01,...,064,), ® = (7, 71,...,mq.), we have ¢(a, 3,8)Ep(8,7)T = am, where
the equality holds symbolically. Note that since ¢(a, 3,8)Ep(8,m)T = Zie[o,dk],je[l,dc] E; j¢iv;, this
correctness amounts to check if there is a linear combination of ¢;1; terms summed up to ax.

— Second, for p that divides N, if we let KeyParam(X, N) — (¢ = (¢o, ¢1, - .., P4, ), ds) and KeyParam(X, p) —
(@" = (¢0, 915 - -+ by, ), ds), then it holds that ¢ mod p = ¢’. The requirement for CiperParam is similar.

Remark. We mandate that the variables used in KeyParam and those in CiperParam are different except only
the common variables a and 8. We remark that in the syntax, all variables are only symbolic: no probability
distributions have been assigned to them yet. (We will assign these in the later ABE template constcution).
Note that dg, dk, can depend on X and d,,d. can depend on Y. We also remark that each polynomial in
¢, 1 has no constant terms.

4.2 A Template for Non-traceable ABE Constructions

Below, we first review the Composite Order Bilinear Groups and some notations. Then, from a Pair Encoding
Scheme, by adding some additional requirements, we define a template for Conventional (non-traceable) ABE
constructions, which works on composite order bilinear groups. We would like to point out, as shown later
in Sec. [5] the template can be easily changed to one on prime order bilinear groups, and the transformation
from the non-traceable ABE template to Augmented ABE, as well as the proof, work well on prime order
bilinear groups.

Composite Order Bilinear Groups. Let G be a group generator, which takes a security parameter \
and outputs (p1,p2,ps3, G, Gr,e) where p1,ps,p3 are distinct primes, G and Gr are cyclic groups of order
N = p1paps, and e : G x G — G7 a map such that: (1) (Bilinear) Yg,h € G,a,b € Zy, e(g%, h®) = e(g, h)?®,
(2) (Non-Degenerate) 3g € G such that e(g, g) has order N in Gr. Assume that group operations in G and
Gr as well as the bilinear map e are computable in polynomial time with respect to A. Let Gy, G,, and
Gy, be the subgroups of order p;, p» and ps in G, respectively. These subgroups are “orthogonal” to each
other under the bilinear map e: if h; € G,, and h; € Gy, for i # j, then e(hy, hj) = 1 (the identity element
in GT)

Notations. For a given vector v = (v1,...,vq) € Zﬁ{, and g € G, by ¢g¥ we mean the vector (g"*,...,g"%) €
GY. For two vectors V. = (Vi,...,Vy), W = (Wy,...,Wy) € G¢ by V- W we mean the vector (V; -
Wi,...,Vg-Wy) € G4, i.e. it performs component-wise multiplication. Furthermore, by eq(V, W) we mean
szl e(Vi, Wi). Particularly, for v = (vy,...,vq),w = (w1,...,wq) € Z%, we have g - g% = g*+t%, and
ea(g?,g%) = Hizl e(g”, g% = e(g,9) ™), where (v - w) is the inner product of v and w. Sometimes we
omit the subscribe d of eq(V, W). For a vector V = (V4,..., V) € G4 and a matrix A = (4; j)ax: € Z‘IiVXt,
by VA we mean (L= ViAi‘l’ [T V;Amv PN | VzA”) €G".
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Non-traceable ABE template. The template consists of four algorithms as follows:

Setupyt (A, I') = (PP, MSK). Run (N, p1,p2,p3, G, Gr, €) < G(A). Pick generators g € G, X3 € G,. Run
(d,do) < SysParam(I"), where 1 < dy < d. Pick random 3 = (84,...,B4) € Z%. Pick random « € Zy.
The public parameter is

PP = ((NanGT76)7 gagﬁ7X37€(gag)a)'

The master secret key is MSK = (a).
KeyGenp (PP, MSK, X) — SKx. Upon input a key tag X, run (¢ = (¢o, ¢1, ..., da,, ), ds) < KeyParam(X, N).
Pick random & = (d1,...,d4;) € Z’f\‘,‘, R=(Ry,...,Rg,) € Gg’;“. Output a secret key SKx as

SKx = (X, K = g#*P9 . R).

To satisfy the template, it is required that for any key tag X and variables § = (41,...,d4,),

1. di > dy.

2. for z € [2,dg], ¢.(a, B,8) does not contain « or $101. For simplicity, we write them as ¢.(3,40), as
they do not contain .

3. 91 (avﬂa 6) =01, ¢0(a’ /Ba 6) =a+ B101 + 230:2 Bjd)(i(ﬂv 6)

That is, [

do
SKx = (X, (Ko=g"¢"" [[¢°?iPP Ry, Ki=g™ Ry,
d=2
Ky =g%®% Ry, ..., Ky = g*%®% . Ry,)).

Encryptyt (PP, M,Y) — CTy. Upon input a ciphertext tag Y, run (¢ = (¢1,...,%4,),dr) < CiperParam(Y, N).
Pick random 7 = (7, 71,...,74,) € Z?\}"H. Set P = g% Qutput a ciphertext CTy as

CTy = (Y, P, C=M- e(g,g)o‘”).

Note that P can be computed from g® and 7 since 4(3, ) contains only linear combinations of mono-
mials 7, m;, 85, 7 B;.
To satisfy the template, it is required that for any ciphertext tag Y and variables w = (7w, m1,..., 74, ),
L 1/)1(@7") =m.
2. 1ﬁQ(/EL Tl') = 6271-7 s awdo (ﬂaﬂ-) = Bdoﬂ-'
That is, the first dy components of P are Py = g™, Py = g% ... , Pa, = gPao™
Decryptyt (PP, CTy,SKx) — M or L. Obtain X, Y from SKx, CTy. Suppose I'(X,Y) =1 (i ['(X,Y) # 1,
output 1). Run E < DecPair(X,Y, N). Compute e(g, 9)*™ = ¢(KE, P), and output M «+ C/e(g,g)°".
To satisfy the template, it is required that there are two algorithms DecPairy and DecPairy such that:
—~Forany N e N, X e XY €Y, let (¢ = (¢o,01,--.,¢4,),ds) < KeyParam(X,N), (¢p =
(¥1,...,%4.),dr) + CiperParam(Y, N), for any variables o, 3 = (B1, B2, ..., B4), 6 = (61,02, ...,845),
7= (m,m,...,7q,), let E; < DecPair1(X,Y, N), E5 + DecPairy(X,Y,N), if I'(X,Y) = 1 we have
that ¢E1'¢T = p1017 and ¢E21/JT = [1017 + aT.
Note that e(g, g)*™ can be computed by e(g, g)*™ = e(K¥2, P)/e(K®:, P).

Later we will show there are a series of ABE schemes with appealing features complying with this template.

5 Note that to cover as many ABE schemes as possible, we only specify the necessary requirements which we may
use in the constructions and proofs of our generic transformation framework. Here we do not require ¢5(83, d) (for

d =2 to do) to contain only linear combination of monomials d;. Actually, if ¢;(3,d) contained f;, Ko could still
be computed, by putting 3 in MSK.
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4.3 Augmented ABE Transformed from Non-traceable ABE

Notations. Suppose that the number of users K in the system equals to m? for some m. In practice,
if £ is not a square, we can add some “dummy” users until it pads to the next square. We arrange the
users in an m X m matrix and uniquely assign a tuple (¢,7), where i,j € [1,m], to each user. A user at
position (¢,7) of the matrix has index k = (i — 1) * m + j. For simplicity, we directly use (7,7) as the
index where (i,5) > (4,7) means that ((i > i) V (i = i A j > j)). The use of pairwise notation (4,7) is
purely a notational convenience, as k = (i — 1) * m + j defines a bijection between {(i,5)]i,5 € [1,m]} and
[1,K]. Given a bilinear group order N, one can randomly choose 74,7y, 7, € Zy, and set x1 = (r4,0,72),
X2 = (0,7,72), X3 = X1 X X2 = (=1yTz, —TaVz, T2Ty). Let span{xi,x2} = {v1x1 + vaxa|vi,ve € Zn} be
the subspace spanned by x; and x2. We can see that x3 is orthogonal to the subspace span{xi,x2} and
73, = span{x1, X2, X3} = {vix1 + vaxz + vsxs|v1,v2,v3 € Zn}. For any v € span{x1,x2}, (x3-v) =0,
and for random v € Z3;, (X3 - v) # 0 happens with overwhelming probability.

Below we propose our AugABE construction, which is transformed from the Conventional (Non-traceable)
ABE template in above Sec. [£.2] Note that the parts written in the box are the same as the Conventional
(Non-traceable) ABE template, and we add/modify some additional parts to form our generic AugABE
construction.

Setupp(\, I, K = m?) — (PP, MSK). ‘Run (N,p1,p2,p3,G,Gr,e) + G(A). Pick generators g € G,,, X3 € ‘

Gyp,- Run (d, do) < SysParam(I"), where 1 < dg < d. Pick random 3 = (b1, ..., B4) € Z4,.
Pick random {a,7i, 2; € Zn }icm]» 1¢j € ZN}jcim]- The public parameter is

PP = ( (NaG7GTae)agah = gﬁaXl% {E’L = e(gag)aia Gi= gna Z; = gZi}iE['rn]a {H] = ng}jE[m] )

The master secret key is MSK = (al, ey Oy T1ye ooy Ty Clye ey cm).
A counter ctr = 0 is implicitly included in MSK.

KeyGen, (PP, MSK, X') — SK(; ;) x- ’ Upon input a key tag X, run (¢ = (¢o, P1,- - -, ¢d, ), ds) < KeyParam(X,

N). Pick random & = (81,...,04,) € Z%, R= (Ro,..., Rg,) € GLFL

Pick random Rj € G,,. Set ctr = ctr + 1 and then compute the corresponding index in the form of (¢, 5)
where 1 <4,j <m and (i — 1) xm + j = ctr. Output a secret key SK(; j) x as

SK(igx = ((1.4), X, K =g?neten PO R K = 7' Ry),

Note the requirements stated in KeyGenyy, we have

do

SK(i7j)7X = ((17])7X7 (K() = griCj—HMgBlél Hgﬁg¢g(5,5)R0’ K = gélRla
d=2

Ky = g¢2(ﬂ75) Ry, ..., K4, = gdmk(ﬁﬁ) -Ra,),

Ky = Z'Ry).

Encrypta (PP, M., Y, (i,5)) — CTy.
1. ’ Upon input a ciphertext tag Y, run (¢ = (¢1,...,%q,),dr) < CiperParam(Y, N). H Pick random & =

(m, 71y .., Ta, ) € Z‘Ii\}'"H. ‘Set P = ¢¥Bm), ‘
Note that P can be computed from g® and 7 since 4(3, 7) contains only linear combinations of mono-
mials 7T77Ti,7rﬁj,ﬂ'iﬂj.
2. Pick random




3
Ve, W1,...,Wn € Ly.

Pick random ry, 7y, 7, € Zn, and set x1 = (74, 0,72), X2 = (0,74, 72), X3 = X1 XX2 = (—TyT2, =TTz, FxTy)-
Pick random

v, €Z5 Vi€ {l,...,i},

v; € Span{XhXQ} Vi e {{+ 13 s am}'

For each row i € [m]:
— if ¢ < i: randomly choose 3; € Z,,, and set

Ri = g’l’717 R; = gnvia Q’L = g‘%, QiJ = (951)972;:1 (gﬁl)ﬂa
Qi,2 = (gﬁ2)5i7 .. aQi,do = (gﬁdO)Sia
Q;=g", T,=Ej.

— if i >i: set
= Goive, R; = GrEY Q= g7'<‘3i(v1:'vc)7 Qin = (gﬂ1)T$7,(”7t'vc)Ziti (g/31>‘fr,

Qi,? = (gﬁz)TSi(vi.vC)’ sty Qi,do = (gﬁdo )TSi(vi.vC)a
_ i . T8 (Vi-ve)
Qi=g"., Ti=M- E :

For each column j € [m]:

— if j < j: randomly choose pu; € Zy, and set C; HT(v°+“JX3) g™, C) = g»s

— if j > j: set C; =H["% g™, C}=g"i.
3. Output the ciphertext CTy as CTy = (Y, P,(R;,R;,Q;,{Q, d}d Qb Ty, (Cy, CY)Ty >

Decrypta (PP, CTy,SK; jy, x) — M or L. Parse CTy to CTy = (Y, P, (RZ,R’ Q“{de}d X LT,

(Cy,C"%)7y) and SK(; ) x to SK(; jy x = ((z’,j),X, K = (Ky,...,Kg,), K ).ObtalnY X from CTy,
SK(ij),x- Suppose I'(X,Y) =1 (if F(X Y) # 1, output L).
1. ‘Run E, < Pair(X,Y, N). \ Compute Dp « (KB, P).
2. Compute

e(KOin) €(K6,Q;) . 63(R;aC;)

D] — .
(K1, Qi) T3, e(K 3, Q; 0)  €3(Ri Cj)

3. Computes M <+ T;/(Dp - Dy) as the output message. Suppose that the ciphertext is generated from
message M’ and encryption index (i,7), it can be verified that only when (i > i) or (i = i A j > j),
M = M’. This is because for i > i, we have (v; - x3) = 0 (since v; € span{x1,Xxz}), and for i = i, we
have that (v; - x3) # 0 happens with overwhelming probability (since v; is randomly chosen from Z?V)
The correctness is referred to Appendix [A]

4.4 Augmented ABE Security

Let Xt = (Setupyt, KeyGenyr, EncryptyT, Decrypty) be a non-traceable ABE scheme satisfying the tem-
plate in Sec. and Xa = (Setupy, KeyGen,, Encryptpa, Decrypt,) be an Augmented ABE scheme derived
from Xyt as shown in Sec. As shown in Fig. 2] Theorem [3] Theorem [4 and Theorem [j] state that the
AugABE proposed above is Type-I message-hiding, Type-IT message-hiding, and selectively index-hiding,
respectively. Below we prove Theorem [3] and Theorem [] in a framework manner. For the Theorem [5] we
prove it in a framework manner partially, namely, we prove Claim (1| in a framework manner, while proving
Lemma case by case for the concrete underlying conventional (non-traceable) ABE schemes, and the proof
of Claim [2 will be identical to that of Lemma [l
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Fig. 2. Outline for Security Analysis

Theorem 3. If Y\t is secure (resp. selectively secure), then Xa is Type-I message-hiding (resp. selectively
Type-I message-hiding).

Proof. Suppose there is a PPT adversary A that can break X in Game’,eAH , With non-negligible advantage
MHiAdv A, we construct a PPT algorithm B to break Yyt with advantage AdvgXnT, which equals to
MH? Adv 4.

Setup. B receives the public parameter PPNT = ((N, G,Gr,e) g,9°, X3, E = e(g,g)a) from the challenger,
where g € G, and X3 € G, are the generators of subgroups G,, and G,, respectively, 8 = (51,...,84) € VAL
(for (d,do) < SysParam(I")) and a € Zy are randomly chosen. B picks random {a, 74, 2; € Zn}icim], 1¢5 €
7N }je[m), then gives A the public parameter PP:

PP = ( (N, Ga GTae)agagﬁ7X37 {E’L =L e(gag)a;, G; = gri, Z; = gZi}iE[m]a {HJ - ng }jE[m] )

Note that B implicitly chooses {c; € Zy }ie[m) such that {a + o} = a; mod p1 }igm-
Phase 1. To respond to A’s query for ((4,7), X(; j)), B submits X(; ;) to the challenger, and receives a secret
key

do
SK?Q(—LJ') = (X (Ko=g%g"" H gPi?iBIR, Ky =g Ry,
d=2
Ky =g»PB9 Ry . Ky = g*u®9) . R,Y),

where (¢ = (¢o,¢1,--.,¢4,),ds) < KeyParam(X; ;),N), § = (01,...,0q;) € Z‘f\‘,‘, R = (Ry,...,Rq,) €
G+l
p3
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B picks random ]:26 € G,,, then responses A with a secret key SK(Z-J-)’X(M) as

Ky Xy = (1), X(ijys (Ko = Ko - g™, Ky = K,
Ko =Ko, ..., Ky
K{=K{'Ry).

k

Note that such a secret key has the same distribution as the secret key in the real Augmented ABE scheme,
ie. SKij) xi, = ((i,4), Xj), K =g@lrietesBdl . R Ki= 77" Ry), where Ry = Ri' Ry,

Challenge. A submits to B a ciphertext tag Y* and two equal length messages My, My. B submits
(Y*, My, M) to the challenger, and receives the challenge ciphertext in the form of CTNT =

<Y*7 P:gw('ﬁ’*)a C’: M‘e(g,g)aﬁ— >,

where (1 = (Y1, ...,%a,),dy) + CiperParam(Y*, N), & = (&, 71, ...,7a,) € L3 1.

Note that (3, 7) contains only linear combinations of monomials 7, 7;, 75}, 7;5;, and the first dy com-
ponents of P are P| = g7, P, = g#7% ... P; = gP4%7. B creates a challenge ciphertext for (7, ) = (1,1) as
follows:

1. B picks random @’ = (7', 7,..., 7, ) € Z& *, then sets P = g¥@7") . (P)~L.

Here (P)~!' means (P}, .. .,Z5d:1). Note that (83, 7) contains only linear combinations of monomials
7T, 7, By, T35, we have (13)*1 = g¥(B:=7) Note that 1(3, 7’) contains only linear combinations of mono-
mials 7/, 7}, ' ;, 7} B;, we have that P = g¥ B —7),

2. B picks random

Ky Ty 8)ye.y80 )ttt €ELN, Ve, Wi, .., Wy, € L.
B picks random 14,7y, 7, € Zn, and sets x1 = (73,0,7.), X2 = (0,7y,72), X3 = X1XX2 = (—TyTs, —T2Tz, TaTy).
B picks random vy € Z3;, v; € span{x1,x2} Vi € {2,...,m}.
For each row i € [m]: note that ¢ > i (since i = 1), B sets

TR

R, = G;ﬁ:vi .plﬁ”i’ R, = G'Z_isﬁzvi ,plm”z,
Qi =g WP Qi = (g7 ev) 2l (P
Qin = (g7)751Wiv) Py Qigy = (¢P00) i) L Py
Q=g" Ti=C-e(g" P) B,
For each column j € [m]: note that j > j (since j = 1), B sets
C; = H% g™, C) = g™

3. B outputs the ciphertext CTy~ as CTy- = (Y*, P,(R;, R}, Q;,{Q, J}jip Qi T)ixy, (C4,C%)T ). Note
that this CTy~ is a well-formed ciphertext for ciphertext tag Y* and encryption index (i,j) = (1,1), with
implicitly setting s1,...,8m € Zy and w = (7w, m1,...,74,) € Z‘]i\}'ﬂ by

/

S,L‘"V_

————=s;,modp; Vi € {l,...,m}, 7w —@ =mmodp;.
T(v; - ve)

Phase 2. Same with Phase 1.
Guess. A gives B a b'. B gives b’ to the challenger.

Note that the distributions of the public parameter, secret keys and challenge ciphertext that B gives A
are same as the real scheme, we have AdvgXnT = MH?AdvA.
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Theorem 4. X5 is Type-II message-hiding.

Proof. The argument for message-hiding in Gamef‘,,H , is straightforward since an encryption to index K + 1
(i.e. (m+1,1)) contains no information about the message. The simulator simply runs Setup, and KeyGeny
and encrypts M, under the challenge ciphertext tag Y* and index (m + 1,1). Since for all i = 1 to m,
T, = Ef  contains no information about the message, the bit b is perfectly hidden and MH”Adv 4 =0.

Now we investigate the Theorem [5| where we prove the index-hiding property. As shown in Fig.
Theorem [5] follows Lemma [I] and Lemma [2| and we need to prove Lemma [I| case by case. Here we use
‘Assumption X’ to represent the assumption(s) that Lemma [1|is based on, and we will present the concrete
assumptions when we prove Lemma [I] concretely.

Theorem 5. Suppose that the Assumption X, the DS3DH, and the DLIN Assumption hold. ﬁ Then no PPT
adversary can selectively win GamefH with non-negligible advantage.

Proof. Tt follows Lemma, [I] and Lemma [2] below.

Lemma 1. If the Assumption X hold, then for j < m, no PPT adversary can selectively distinguish between

an encryption to (i,3) and (i,7 + 1) in Gamem with non-negligible advantage.

Proof. In Gamem with index (i,j), let Y* be the challenge ciphertext tag, the restriction is that the ad-
versary A does not query a secret key for (index, key tag) pair ((,7), X ;)) such that ((i,5) = (i,7)) A
(F(X(m-), Y*) = 1). Under this restriction, there are two ways for A to take:

Case I: In Key Query phase, A does not query a secret key with index (i, j).
Case II: In Key Query phase, A queries a secret key with index (4, j). Let X (i.j) be the corresponding key
tag. The restriction requires that I'(X(;),Y™) # 1.

Case I is easy to handle as the adversary does not query a secret key with the challenge index (i, j).
Case II captures the index-hiding requirement in that even if a user has a key with index (i, ) he cannot
distinguish between an encryption to (Y*,(4,7)) and (Y*, (4,7 + 1)), if the corresponding key tag does not
satisfies I'(X| (i) Y*) = 1. This is the most challenging part of achieving strong traceability. Actually, this is
the only part where we cannot handle in a framework manner, and we have to prove this lemma for different
schemes case by case.

Lemma 2. If the Assumption X, the D3DH, and the DLIN Assumpfion hold, then for1 < i < m, no
PPT adversary can selectively distinguish between an encryption to (i,m) and (i + 1,1) in Gamely, with
non-negligible advantage.

Proof. Similar to the proof of Lemma 6.3 in [, to prove this lemma we define the following hybrid exper-
iment: Hy: encrypt to (i,7 = m); Ha: encrypt to (4,5 = m + 1); and Hs: encrypt to (¢ + 1,1). This lemma
follows Claim [[ and Claim 2] below.

Claim 1. If the Assumption X holds, then no PPT adversary can selectively distinguish between experiment
H, and Hy with non-negligible advantage.

Proof. The proof is identical to that for Lemma

Claim 2. If the D3DH and the DLIN hold, then no PPT adversary can distinguish between experiment Hs
and Hs with non-negligible advantage.

5 Here D3DH and DLIN are the abbreviation of the widely accepted Decision 3-Party Diffie Hellman Assumption
and Decisional Linear Assumption, respectively. we refer to [II] for the details of these two assumptions.
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Proof. The indistinguishability of Hy and Hj3 can be proved using a proof similar to that of Lemma 6.3 in
[11], which was used to prove the indistinguishability of similar hybrid experiments for their Augmented
Broadcast Encryption (AugBE) scheme. For simplicity, we prove Claim [2| by a reduction from our AugABE
scheme to the AugBE scheme in [11].

In particular, Garg et al. [T} Sec. 5.1] proposed an AugBE scheme Xagge = (Setupp,gge, Encrypta,qge;
DecryptAugBE) and proved Yaugge is index-hiding. In the proof of index-hiding for X'augge in [11, Lemma 6.3],
two hybrid experiments were defined and proven indistinguishable via a sequence of hybrid sub-experiments.

- HAugBE Encrypt to (i,m + 1), (i.e. Ho in [L1])
HA”gBE Encrypt to (i +1,1), (i.e. Hs in [I1])
By following [11, Lemma 6.3], if the DSDH and the DLIN hold, no PPT adversary can distinguish between
HYVEBE and HE for YaugBe with non-negligible advantage. Suppose there is a PPT adversary A that can

distinguish between Hy and Hj for our AugABE scheme with non-negligible advantage. We can construct a
PPT algorithm B to distinguish between Hj"85F and H45"85F for Saueee with non-negligible advantage.

The game of B distinguishing between H, and H3"8%F is played in the subgroup G,, of order p; in
a composite order group Gy of order N = pipops. B is given the values of p;, p» and p3, and can chooses
for itself everything in the subgroup G,,.
Setup. The challenger gives B the public key PK**88% and due to (i,m + 1) ¢ {(i,7)|]1 < 4,j < m}, the
challenger gives B all private keys in the set {SK(Al,”jg;3 Bl1<i,j< m}

PKAEE = (g, {E; =e(9,9)™, Gi = g" }ieim), {Hj = 9%, fj}je )
AugBE [ T4 Oi,j
SKGE: =(Kiys Kl jy AKijgbiemniy ) = (997 f7 0 g7, {7 Yremniy )s

where g, f1,..., fm € Gy, {0, 1i € Zyp, Yicpm)s {¢5 € Zp, }jem)s 04,51 < 4,5 <m) € Zy,, are randomly chosen.
B picks random X3 € G,,, runs (d,dy) < SysParam(I"), and picks random pSs,...,84 € Zy. B picks
random 21, ..., 2y, € Zy. Setting ¢# = (H;”:l fi, g%, ..., g%), B gives A the following public parameter PP:

AugBE

PP = ( (N7G7GT76)5 9, gﬁa X37 {Elv Gia Zl :gZi}iE[m]7 {H]}]E[m] )
Note that B implicitly picks 81 € Zy such that g% = [T~ £

Key Query. To respond to A’s query for ((i, j), X(; ;)), Bruns (¢ = (¢o, ¢1, ..., ¢a,),ds) < KeyParam(X; j,
N), picks random ds,...,04, € Zn, R = (Ro,...,Ra,) € (Gg,’;“, and R € G,,. B outputs a secret key
SK(i,j),X(i,j) as

)

SKwi) Xy = (00, Xy, (Ko=Kiy-( [ Kij5-]1]9%#1P2Ro. Ki=K];- R,
JelmN\{5} d=2
Ky =g?B3) Ry ... Kq =g%nB . Ry),

Ko - (KI ) 'Ré))-

Note that B implicitly picks 61 € Zy such that 6; = 0; ; mod p;. Note that for any variables o € Zy, 3 =
(Biy---,Ba) € 24,8 = (01,...,045) € Zjl\;*, each ¢,(3,0)(2 < z < di) contains only linear combinations of
monomials J;,0;58; and does not contain 316;. Note that B knows the values of ¢or = g% = f(,f’j, 02,y ..., 0d,
and g7 =TI, fj, ;- .., fa, B can calculate the values of g?2B:8) - g%a.(B:9) and then the values of

gPa®aB9) for d € {2,...,dy}. Thus, we know B can produce the above secret key SK(i.3), X000,

Challenge. A submits a message M and a ciphertext tag Y*. Note that (i,m + 1) & {(4,7)|1 < i,j < m},
B sets the receiver set to be J = {(4,)|1 <4,7 < m} and submits (M, J) to the challenger. The challenger
glves B the challenge ciphertext CTAveBE — ((R R’ L Qi QZ,T)z 1 (C’], C’) J), which is encrypted to
(i*,7%) € {(i,m +1),(i+1,1)} and in the form of

Jj=1

7 Note that we slightly changed the variable names in the underlying AugBE scheme to better suit our proof.
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1. For each i € [m]: _ ~ . . R
i<t Ry = gv, R, =g"™, Qi=g", Q;=l;e, ;)" Ti=E].
Cifg > Gs Ui R; _ Gfsivi, Ql _ gTSi(’U,L”’Uc), @2 _ (Hj'GJi fj)TSi(’vi,-’vc)7 T,L = M.E,Z—Si(’vi"vc).
2. For each j € [
_ lf] < ]* é] — H;(UC+NJ'X3) .g"‘wj’ é; :gw7
—ifj>j% Cj=H" g™, C=g".

where k,7,5,(1 < i <m),5(1 <i<i*),u(l <j<i*) ey, ve,wij(l <j<m )vi(lgigi*) €
Z3 . and (i > i*) € span{xi1, X2} are randomly chosen (where x1 = (r,0,7.),x2 = (0,7y,72),x3 =
(=ryrs, —TyTs, ryry) are for randomly chosen 7y, 7y, 7, € Zy, ), and J; = {j|(i,7) € J}.

Note that J = {(i,7)[1 < i,j < m}, we have J; = {1,...,m} for all 1 < g m, and then Q) =

(s, £3)" = (g for i < 3* and @) = (TTjeg f5)702) = ()70 for i >
B runs (¢ = (¢1,...,%4,),dr) < CiperParam(Y™*, N) and picks random 7 = (, . Ta,) € T4
then sets

P = gw(ﬁ,ﬂ).

Note that P can be computed from g? and 7 since 1(3, 7) contains only linear combinations of monomials
T, T, ’/Tﬁja Wiﬂj'

B picks random t1,...,tm € Zy. B outputs a challenge ciphertext as CTy- = (Y*, P,(R;, R}, Q;,
{Qz d}d 1’ i );n 1» (Cj’ C;);n:1>’ where

1. For each i € [m]: R; = R;, R, = R, Q; = Qi, Qi1 = Q- Z!'(¢")", Qin = Q?Qwqui,do =
QM. Qi =g", T, =
2. For each j € [m]: C; =C; , Cl=C".

@

Guess. A outputs a guess b’ € {0, 1} to B, then B outputs this & to the challenger as its answer to distinguish
between HzAugBE and H?“gBE for scheme Xa,qgE-

As the exponents are applied only to the elements in the subgroup G,,, from the view of A, the distri-
butions of the public parameter, secret keys and challenge ciphertext that B gives A are same as the real
scheme. Thus B’s advantage in distinguishing between HA"8% and H. ? “BE for scheme Y augee will be exactly
equal to A’s advantage in distinguishing between H, and Hj for scheme Xa.

5 Extensions to Prime Order Groups

In Sec. [ the Non-traceable ABE Template, the transformation from Non-traceable ABE Template to
Augmented ABE, and the proofs are all presented on composite order bilinear groups. Note that our generic
transformation from Non-traceable ABE Template to Augmented ABE and the security proofs for the
transformation do not rely on the the composite order bilinear groups, and are only related to the G,
subgroup. Actually, the only reason we use composite order bilinear groups in Sec. [4]is that some appealing
ABE schemes, e.g. the ones in [I], are built on the composite order bilinear groups, and we want our Non-
Traceable ABE template to cover these appealing ABE schemes. On the other side, as shown below, it is
easy to adjust the Sec. [] contents to prime order bilinear groups, and the resulting generic framework still
works well. Roughly speaking, this can be done by replacing the N with the prime order p; and removing
all the parts related to ps, p3s. Below we list the details.

— In Sec. define ‘Prime Order Bilinear Groups’. Let G be a group generator, which takes a security
parameter A and outputs (p,G,Gr,e) where p is prime, G and G are cyclic groups of order p, and
e: G x G — Gr a map such that: (1) (Bilinear) Vg,h € G,a,b € Z,,e(g% h°*) = e(g,h)?, (2) (Non-
Degenerate) 3g € G such that e(g, g) has order p in Gp. Assume that group operations in G and G as
well as the bilinear map e are computable in polynomial time with respect to .
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— In Sec. redefine the Non-Traceable ABE Template by replacing (N, p1, p2,ps3, G, Gr, e) < G(A) with

(p, G,Gr, e) < G(X), replacing N with p, replacing p; with p, and removing all the parts related to Gp,:
e Removing X3 in Setupyt and PP,
e Removing R = (Ry, ..., Rq,) € G 1! in KeyGenyr and SKx.

— For Sec. [£3] similar to Sec. [4:2] modify the transformation from Non-Traceable ABE Template to Aug-
mented ABE by replacing (N, p1,p2, 03, G,Gr,e) + G(A) with (p,G,Gr,e) + G(X), replacing N with
p, replacing p; with p, and removing all the parts related to G,,:

e Removing X3 in Setupyt and PP,
e Removing R = (R, ..., Rq,) € Gg’;“ and Rj € G,in KeyGen, and SK(; ;) x.

— For Sec. modify the proofs according to the above modifications for Sec. [f.2]and Sec. In particular,
replace N with p, replace p; with p, and remove all the parts related to G,,.

It is easy to see that with the above modifications, the generic transformation framework on prime order
bilinear groups also works well. And Later we also give some instantiations on prime order bilinear groups.

6 Instantiations Satisfying the Non-traceable ABE Template

In this section we show that some existing non-traceable ABE schemes with appealing features satisfy the
template in Sec. and prove the Lemma [1] (the indistinguishability between an encryption to (i,7) and
(i,7 + 1)) for the AugABE constructions from these non-traceable ABE instantiations.

These instantiations include three ABE instantiations on composite order bilinear groups, which were pro-
posed by Attrapadung [1I2], and one ABE instantiation on prime order bilinear groups, which was proposed
by Rouselakis and Waters [2§].

6.1 Fully Secure Unbounded KP-ABE with Large Universe

Attrapadung [I, Sec. 5.3] proposed a fully secure unbounded KP-ABE scheme with large universe (i.e. the
public key size is constant and independent from the size of the attribute universe), here we denote it by
EK,"TLU. In EK,"TLU the predicate I" is described by linear secret sharing scheme (LSSS) [, which is used
in many ABE schemes (e.g. [I3IB0/I8ITI/28]) to express the access policy. Actually, any monotonic boolean
formula (resp. monotonic access structure) can be realized by an LSSS [4]. We refer to [19] for more details of
LSSS in ABE. Below we review EKIPTLU in terms of Pair Encoding Scheme. Note that we change the variable

names in EK,EFLU to better suit our template definitions.

1 The Pair Encoding Scheme
ZNF-’FLU complies with our non-traceable ABE template Sec. with the following Pair Encoding Scheme.

SysParam. Take as input I' : X x Y — {0,1}, where the ciphertext tag (here is the attribute set) space
Y ={Y | Y C Zn} and the key tag space X = {LSSS (4, p) | A is a matrix over Zy and p maps each
row of A to an attribute in Zx (p does not need to be injective) }, output d = 6 and dy = 2. Denote
B=(Br,.... ).

KeyParam. Take in N and key policy (4, p) € X, where A is an [ x n matrix, and p : [1,1] = Zy maps each
row of A to an attribute in Zy, output ds =1 +n +1 and ¢ = (¢o, $1, P2, {3k, Pak, D5k frepy) With
dp =2+ 3l:

o = a+ B101 + P2d2, @1 =01, P2 =0,
P3k = Ap - u+EBa,  Gar =& D5k = Ek(Bs + Bep(k)),

where § = (81,02,&1,...,&, U2y, Up) € Zk{”“ and w = (u; = B301,ug,...,Upy).

19



CiperParam. Take in N and attribute set S C Zy, output d, = 1+|S| and ¢ = (Y1, V2, V3, Y4, {5, V6,5 }wes)
with d, = 4 + 2|9]:

Py =7, P = fam, g = i + BaT,
Yy =7, VY55 =701+ 1B+ Bex), Y6z =Tz,

where 7 = (7, T, {7y }ues) € Z?\,ﬂsl.
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. dj > dy, where di, = 2 + 3l and dy = 2.
2. Each of {¢o, ¢1, P2, {P3,k> Pa,k> 5.k frep} 18 a linear combination of monomials «, 6;, §; ;.

3. ¢ = a+ Bi1¢1 + Badz, ¢1 = 01. None of {¢a, {31, Pak; P51 rep} contains a or B16;.
— CiperParam:

1. Each of {11, ¢2,v3,%4,{¢5.2,%6,}zes} is a linear combination of monomials 7, 7;, 73;, m;5;.
2. 1 =, by = .
— DecPair: When S satisfies (A, p), let I = {k € [I]|p(k) € S}, we have reconstruction coefficients {wy }rer
such that ), ; wr(Ay - u) = u; = B301. Therefore, we have the following linear combination of the ¢;);
terms:

P13 — Zwk(¢37kw4 — Qa1 V5, p(k) + 5,606, p(k)) = 01(B17T + B3T) — Zwk((Ak ~u)T) = B1o17.

kel kel

[6.112 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. [2] here we only need to handle the BLUE parts in Fig. [2] i.e, (1) state the
security of the underlying conventional non-traceable ABE scheme (since the Type-I message hiding property
of the AugABE is reduced to it) and (2) prove the Lemma

(1) The Section 5.3 of [1] shows that their KP-ABE scheme corresponding to the above Pair Encoding
Scheme is a fully secure unbounded KP-ABE scheme with large universe.

(2) The Lemma instantiation here is: if the Modified (1,q)-EDHES Assumption holds, then for j < m,
no PPT adversary can selectively distinguish between an encryption to (i,7) and (i,j + 1) in Gamely, with
non-negligible advantage, provided that the size of the challenge attribute set is < q.

The Modified (1,¢)-EDHE3 Assumption is a special case of the Modified (n,t)-EDHE3 Assumption,
which we introduce by modifying the (n, t)-EDHE3 Assumption in [2] Definition 6], i.e., giving the adversary
one more element g% ¢/, In Appendix we prove that Modified (n,t)-EDHE3 Assumption holds in the
generic group.

Definition 6. The Modified (n,t)-EDHE3 Assumption Given a group generator G, let (N = p1paps,
G,Gr,e) &£ G\, g £ Gy, 92 £ Gy, 93 L Gps, a,¢,2,d1, ..., dy &£ Zy . Suppose that an adversary
s given

D= ((N,G,GT,e), g’gauqa"’gc’gc/z’ga"c/z

Ve gdi7
Vg€l s.t. j#5 gai Cdj/zdj/,
Vielin], jj'€l,t] s.t. j£5' gavdj/dj'a
Vielt,2n], j€l.1 gaZ_Cd]}

Vie[l,2n] i%n+1, jE[1,1] gazc/d"72
vz‘e[1,2n], gd'ellt] s.t. j#£j Qadej/dj'w
a"/d?7

Viern+1], jep 9%
a‘c’d;/dy )

Vieln+1,2n], jjrelly 9
and a target element T' € Gy, . The assumption states that it is hard for any polynomial time adversary to

distinguish whether T = ga"“z or T <& Gy, -

The proof of the above Lemma [I] instantiation is given in Appendix [C}
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6.2 Fully Secure KP-ABE with Short Ciphertexts

Attrapadung [T, Sec. 5.3] proposed a fully secure KP-ABE scheme with short ciphertexts (i.e. ciphertext size
is constant and independent from the size of the attribute set associated with the ciphertext), here we denote
it by EKIPTSC. In EKIPTSC the predicate I' is also described by LSSS. Below we review ZKIPTSC in terms of Pair

Encoding Scheme. Note that we change the variable names in EKIPTSC to better suit our template definitions.

1 The Pair Encoding Scheme
ENPTSC is a bounded ABE where the maximum size for attribute set associated with the ciphertext is bounded

by T', while no further restriction is required. EKIPTSC complies with our non-traceable ABE template Sec.
with the following Pair Encoding Scheme.

SysParam. Take as input I' : X x Y — {0,1}, where the ciphertext tag (here is the attribute set) space
Y={Y |Y CZyA|Y| <T} and the key tag space X = {L.SSS (A, p) | A is a matrix over Zy and p
maps each row of A to an attribute in Zy (p does not need to be injective) }, output d = T + 6 and

do = 2. Denote ﬁ = (51, ey 547 90, 01, . 79T+1)~
KeyParam. Take in N and key policy (A4, p) € X, where A is an I xn matrix, and p : [1,{] — Zx maps each row

of A to an attribute in Zy, output ds = [+n+1and ¢ = (do, 1, D2, {P3,ks Pa,ks P5,k,05 {P5,k,t frer) Fren)
with d, =2+ (T + 3):

G0 = a+ B161 + B2ba, ¢1 =01, @2 = 0o,
O3k = Ap - u+&Bs,  Pak = ks
G500 = Ekbo,  {B5,00 = & (Or1 — O1p(k)") beer,

where & = (81,02, &1, .-+, &, U2, s uy) € ZR™T and w = (uy = B3d1, ug, . .., uy).
CiperParam. Take in N and attribute set S C Zy such that |[S| < T, let ¢; be the coefficient of 2! in
p(Z) = chGS(z - .’E), output dr =2 and ’lvb = (¢17¢27¢37¢4a¢57¢6) with d. = 6:

Yy =m, Yo = o, g = i+ B3,
Yy =T, 1/}5:7?54+7}(90+Z?:00t9t+1)7 Ve =T,

where w = (7,7, %) € Z%,.
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. d > do, where d, =2+ (T + 3) and dy = 2.
2. Each of {¢o, ¢1, 2, {®3,k, P4k, @5,k,0, {P5.k,¢ }ee[r] Jrep } 1 @ linear combination of monomials «, ;, 3 5;-
3. ¢o = a+ Bi1¢1+ Pagz2, ¢1 = 61. None of {p2, {#3 k, Pk, P5.k,0, {P5,k.t re[T] Fre[)} contains o or 5.
— CiperParam:
1. Each of {1, 92, 3,94, ¢5,16} is a linear combination of monomials 7, m;, w3;, m;5;.

2. 1 =, Yo = Pom.
— DecPair: When S satisfies (A, p), let I = {k € [l]|p(k) € S}, we have reconstruction coefficients {wy }rer
such that ), . ; wr(Ay - u) = u; = B301. Therefore, we have the following linear combination of the ¢;);
terms:

T
Dp = ¢193 — Zwk (f3,604 — Gapths + (d5,0,0 + Z CLs.6,t)6) -

kel t=1

Note that

T T T
(¢5,5,0 + Z ctfs.k.0)06 = &k (0o + Z ctbipr — 01 Z cip(k)')
t=1 =1

t=1
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T

= & (00 + 3" clipr — 01 (p(p(k)) — co)) 7

t=1
T
= & (60 + Z g1+ O1co) since p(p(k)) =0
t=1
T
= gk (00 + Z Ct9t+1)ﬁ.
=0
We have that
T
Dp = ¢1ibs — > wi(srtha — daxths + (Ss.k0 + D Ctds k1))
kel t=1

T T
= 193 — Zwk((Ak “u+ §pBa)T — Ei(TPs + (00 + th9t+1)) + & (00 + thetﬂ)ﬁ)
kel =0 =0

= 01(Bam + Bs7) — Y wi(Ak - u)T

kel

= 01517.

[6-212 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. [2| here we only need to handle the BLUE parts in Fig. [2] i.e, (1) state
the security of the underlying conventional non-traceable ABE scheme (since the Type-I message hiding
property of the AugABE is reduced to it) and (2) prove the Lemma [1}

(1) The Section 5.3 of [1] shows that their KP-ABE scheme corresponding to the above Pair Encoding
Scheme is a fully secure KP-ABE scheme with short ciphertexts.

(2) The Lemma [l instantiation here is: if the Modified (T 4+ 1,1)-EDHE3 Assumption holds, then for
j <m, no PPT adversary can selectively distinguish between an encryption to (i,7) and (i,j +1) in Game,AH
with non-negligible advantage, provided that the size of the challenge attribute set is < T.

Note that the Modified (T' 4+ 1,1)-EDHE3 Assumption is a special case of the Modified (n,t)-EDHE3
Assumption in Def. [6]

The proof of the above Lemma [I] instantiation is given in Appendix

6.3 Fully Secure ABE with Ciphertexts Associated with DFAs

Attrapadung [2] Sec. 8.2] proposed a fully secure ABE scheme for regular languages [°| with ciphertexts
associated with Deterministic Finite Automata (DFA). Here we denote it by Y0 In PP the
predicate I' is described by DFA. In particular, for a DFA M and a string w, I'(M, u) = 1 if the automata
M accepts the string u. We refer to [BI/I] for more details about DFA-based ABE, here we only give
the below brief introduction. A DFA M is a 5-tuple (Q, A, T,qo, F) in which @ is the set of states Q =
{90,q1,---,qn-11}, A is the alphabet set, T is the set of transitions, in which each transition is of the form
(g2, qy,0) € Q X Q X A, qo is the start state, and F' C Q is the set of accepted states. We say that M accepts
a string w = (uy,us,...,u;) € A* if there exists a sequence of states pg, p1,...,pn € @ such that pg = qo,
for i = 1 to I we have (p;—1,pi,u;) € T, and p; € F. Note that, as shown in [12], it is wlog if we consider
machines such that |F| = 1. Below we review EﬁErDFA in terms of Pair Encoding Scheme. Note that we change
the variable names in E,EPTDFA to better suit our template definitions.

8 Attrapadung [2] refers to the scheme as a ‘Functional Encryption’ scheme. Note that the scheme in [2] is still in
“All-Or-Nothing” style and is covered by our ABE definitions, in this paper we refer to it as an ABE scheme.
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[6-3l1 The Pair Encoding Scheme
E,i,pTDFA complies with our non-traceable ABE template Sec. with the following Pair Encoding Scheme.

SysParam. Take as input I' : X x Y — {0, 1}, where the ciphertext tag space Y = {M | M is a DFA} and
the key tag space X = {u | u € (Zy)*}, output d =9 and dp = 2. Denote 8 = (51,...,09).

KeyParam. Take in N and a string u € (Zy)*, let | = |u|, and parse w = (uq,...,u;). Output ds = 3 +1
and @ = (¢o, b1, P2, 93, P4, $5,0, {P5.k5 6,k fre[r,y) With dp =5+ 21

¢o = o+ B161 + P2da, ¢1 =01, P2 = 0o, ¢3 = —B301 + Ba&i,
b4 = Eofs, 50 =250, {Psk =8k Pek = Ex—1(B6 + Brur) + &k (Bs + Pour) b e,

where § = (1,02, &0,&1,...,&) € Z?’VH.
CiperParam. Take in N and a DFA M = (Q,Zn, J, o, qn—1) where n = |Q|, let J = |J|, and parse J =

{(qeys @y, o0)|t € [1,J]}. Output dr = 14 J +n and ¥ = (V1,12 93, Y, U5, %6, {76, V8,6, Vot Fen,a))
with d, =6 + 3J:

Y1 =, o = for, g = Py + B3,
Yy =T, s = T, e = —vo + 7o Bs,
Yy =T, Ust = Vo, +T(B6 + Br0t), o = —vy, + (B + Booy),

where m = (7,7, 70, 71, -+, 77, {Va } g e\ {qn_11}) € Z?\?L‘H" and v,_1 = BuT.
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. di > dy, where di, =5+ 2] and dy = 2.
2. Each of {¢o, ¢1, ¢2, #3, P4, 05,0, {P5.ks D6,k } ke[, } is a linear combination of monomials a, d;, 8;5;.

3. ¢o = a+ Bi1¢1 + Pagz, ¢p1 = 61. None of {92, ¢3, P4, ¢5,0, {®5,k, D6,k ke, } contains a or B16;.
— CiperParam:
1. Each of {41, %2, %3, %4, %5, %6, {07, V8., Vot teqn,s1} is a linear combination of monomials 7, 7;, 735, 7 3;.
2. Y1 =, hy = P
— DecPair: When M accepts w = (ug,...,u;), we have that there is a sequence of states pg, p1,...,0 € Q
such that py = qo, for k¥ = 1 to | we have (pg_1,pr,ux) € J, and p; € F. Let (qxtk,qytk,atk) =
(Pk—1, P, ur). Therefore, we have the following linear combination of the ¢;¢; terms:

P13 + P34 — Paths + ¢5,006 + Z (= 06,107t + D5, k—1Vs,t, + D560t

ke[1,]]
=61(B17 + B37) + (—B301 + B4&)T — EoBsmo + Eo(—vo + 70 Ps5) + (Eovo — En—1)
2(51617{ + 64€lﬁ - 5lﬁ4ﬁ-
:Blélw.

Note that for any k € [1,1] we have

— 96,,Y7,t, + P5k—1Vs,t, + P5.8Y0,1,,
= — (&k—1(Bs + Bruk) + &k(Bs + Bour)) Ty, + Ek—1(Va,, + e, (Be + Brow,)) + Eu(—vy,, + e, (Bs + Boo,))

:gk—lyztk - gkyytk

and for any k € [1,l — 1] we have y,, = wxy,,,. Note that ¢,,, = po = qo implies z;, = 0 and
doy, = Pl = Gn—1 implies z;, = n — 1. Thus, we have

D (~6rthra, + G5 k-1Us + b5.kUor,) = ey, — Gy, = oMo — EiVn1.

ke[1,]]
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[6-312 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. [2] here we only need to handle the BLUE parts in Fig. [2] i.e, (1) state the
security of the underlying conventional non-traceable ABE scheme (since the Type-I message hiding property
of the AugABE is reduced to it) and (2) prove the Lemma

(1) The Section 8.2 of [2] shows that their ABE scheme corresponding to the above Pair Encoding Scheme
is a fully secure ABE scheme with Ciphertexts Associated with DFAs.

(2) The Lemma (1] instantiation here is: if the Modified (n,J)-EDHE2-Dual assumption holds, then for
j <'m, no PPT adversary can selectively distinguish between an encryption to (i,7) and (i, +1) in Gamely,
with non-negligible advantage, provided that the size of the challenge transition set is < J.

The Modified (n,J)-EDHE2-Dual Assumption is a special case of the Modified (n,m)-EDHE2-Dual
Assumption, which we introduce by modifying the (n, m)-EDHE2-Dual Assumption in [2, Definition 9], i.e
giving the adversary one more element g“nilbc/ #.In Appendix we prove that Modified (n, m)-EDHE2-Dual
Assumption holds in the generic group.

Definition 7. The Modified (n, m)-EDHE2-Dual Assumption Given a group generator G, let (N =

R R R R
P1p2pP3, Ga GT,G) — g(A)7 g <— Gp1f g2 < GPQ) g3 <— Gp37 a,b,c,z,dl,...,
an adversary is given

dm £ Zy. Suppose that

n—1
D = ((N,G,Gr,e), g.9% 9".9"%, 9" "%, g2, g5,
Viclnl, jurelimlry 9075, g0 % gl g Gl gavdsfdy | gat A5 galdy [y
viE[O,n—l}, je(tm] ga ‘e ga bcdj’
vie[o,n], j€1,m] g" bed]
a'bed; /d 2, a'bed’ /dS,
Vie[an—1], jireltm] i 9 Lgt e
Vie[l 2n—1],i#n, j€[1,m)] ga_bc/d - v _ _ _
Vze[l 2n—1], j,5’€[1,m] galc/d? , ga’leCdj/dj’ , gaZdej/d?/ , galc/d?ga’bcd?/d?, 7 galbzcd?/dj/ )

and a target element T' € Gy, . The assumption states that it is hard for any polynomial time adversary to

distinguish whether T = g ¢* or T £ Gy, -

The proof of the above Lemma [I] instantiation is given in Appendix [E]

6.4 Large Universe CP-ABE on Prime Order Groups

Rouselakis and Waters [28] proposed a large universe CP-ABE scheme which is on prime order groups and

consequently more efficient than those on composite order groups. Here we denote it by ZCPLUP In ECPLUP
the predicate I" is described by LSSS. Below we review ECPLUP in terms of Pair Encoding Scheme. Note that
we change the variable names in ECPLUP to better suit our template definitions.

[6.4.1 The Pair Encoding Scheme
ECPLUP complies with our non-traceable ABE template Sec. with the following Pair Encoding Scheme.

SysParam. Take as input I : X x Y — {0,1}, where the key tag (here is the attribute set) space X =
{X | X CZ,} and the ciphertext tag space Y = {LSSS (4, p) | A is a matrix over Z, and p maps each
row of A to an attribute in Z, (p does not need to be injective) }, output d = 4 and dyp = 1. Denote
B= (B, B4)

KeyParam. Take in p and attribute set S C Z,. Output ds =1+ |S| and ¢ =
dp =1+2|S]:

¢o = o + B101,

(d)Oa ¢)17 {¢w,2a ¢I73}IES) with

1 =01, {Pe2="0s, ¢u3=(82x+ B3)0; — B101}zes,

where § = (01, {0 }zes) € Z;HS‘.
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CiperParam. Take in p and ciphertext policy (4, p) € Y, where A is an [ xn matrix over Z,, and p : [1,1] = Z,
maps each row of A to an attribute in Z,. Output dr = I +n and ¥ = (Y1, {dr,1, k.2, Vr,3}rep) With
de. =1+ 3l:

Y1 =m, {r1=P1(Ar-u) + Balr, Vr2=—(Bep(k) + B3)k, V3 = ke
where m = (7, u2, ..., Un,&1,...,&) € Zé"’” and u := (u; = m, U2, ..., Uy).
We can see that the outputs of above (SysParam, KeyParam, CiperParam) satisfies our template requirements:

— KeyParam:
1. dy > doy, where dj, = 1+ 2|S| and dy = 1.
2. Each of {40, ¢1,{¢2,2, $2,3}zecs} is a linear combination of monomials «, d;, 0;3;.
3. ¢o =+ P1é1, 1 = 01. None of {¢4 2, ¢y 3}ses contains a or f101. Note that dy = 1.
— CiperParam:
1. Each of {41, {¢x1,Vk,2,¥r 3} ke } s a linear combination of monomials 7, m;, 73;, 7 3;.
2. ¢ = m. Note that dy = 1, thus there is no requirement on v ; for d>2.
— DecPair: When S satisfies (A, p), let I = {k € [I]|p(k) € S}, we have reconstruction coefficients {wy }rers

such that Zkej wi(Ag - u) = u1 = w. Therefore, we have the following linear combination of the ¢;1;
terms:

Zwk(¢ﬂ/fk,1 + Bo(k),2Vk,2 + Ppk),30k,3) = 0151 Zwk((Ak ‘u)) = B1017.

kel kel

[6.412 Security Analysis of the Resulting Augmented ABE

As shown in Sec. and Fig. |2} here we only need to handle BLUE parts in Fig.[2] i.e, (1) state the security
of the underlying conventional non-traceable ABE scheme (since the Type-I message hiding property of the
AugABE is reduced to it) and (2) prove the Lemma

(1) The Section 4 of [28] shows that their CP-ABE scheme corresponding to the above Pair Encoding
Scheme is a selectively secure CP-ABE scheme with large universe.

(2) The Lemma [1| instantiation here is: if the Extended Source Group q-parallel BDHE Assumption [2]]]
holds, then for j < m, no PPT adversary can selectively distinguish between an encryption to (i,7) and
(i, + 1) in Gamem with nmon-negligible advantage, provided that the challenge LSSS matriz’s size | X n
satisfies I,n < q.

The proof of the above Lemma [I] instantiation is given in Appendix [F]

7 Discussions

Besides the instantiations above in Section[6] some other existing ABE schemes also satisfy our ABE template
and can be transferred to Traceable ABE by applying our approach. For example,

. The Fully Secure ABE for Keys associated with Regular Languages in [, Sec. 5.2], with dg = 2.
. The Fully Secure CP-ABE in [2, Scheme 11], with dy = 1.

. The Fully Secure CP-ABE with large universe in [2, Scheme 13], with dy = 1.

. The Fully Secure CP-ABE Scheme in [I8, Sec. 2], with dy = 1.

. The Fully Secure CP-ABE Scheme in [19], with dy = 2.

Tk W N =

We omit the details of these instantiations here.
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8

Conclusion

In this work, we proposed a generic framework that can transform conventional (non-traceable) ABE schemes
to their traceable counterparts, which remain the appealing properties of the original conventional (non-
traceable) ABE and achieve additional fully collusion-resistant blackbox traceability at the cost of sublinear
overhead. In particular, we proposed a conventional (non-traceable) ABE template, and proposed a generic
transformation from the ABE template to Augmented ABE which implies Traceable ABE. This generic
framework implies that any ABE schemes satisfying our ABE template can be transformed to a Traceable
ABE in a generic manner. And we showed that some existing appealing ABE schemes do satisfy our ABE
template. We proved the security of our transformation framework in the standard model.
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A Correctness

Correctness. Suppose that the message is M’ and the encryption index is (4, ). For i > i we have

e(Ko, Qi) - e(K}, Q) B e(gTiCjJraigﬁuh H;{O:z gﬁg¢g(ﬁ,5)7gTSi(vi-vc))e(Zfl7gti)
e(K1,Qin) TI7, (K3 Qq)  e(g®, (9P )7s:wive) Z1i (gh)m) - [T, e(gPa B, (gha)msi(vive))
e(gr.;CjJrai’g‘rsi(vi-vc))
e(g, (97)")

If i > 1A j > j: we have

(RO es(GE, ™) 1 1

es(Ri,Cy)  e3(GyV HJ - grwi) — eg(glisivi, gea™v)  e(g, g)risiciT(vive)”

If i >4 A j < j: note that for i > i, we have (v; - x3) = 0 (since v; € span{x1,Xx2}), then we have

a(RLC) G ) ! 1

63(Ri, Cj) 63(Gfivi,H;(Uc+ujx3) . g’“"i) eg(gTiSi'vi7gCJT(UC+HjX3)) B 6(97 g)TiSiCjT('Ui"UC) .

If i =i Aj < j: note that for i = 4, we have that (v; - x3) # 0 happens with overwhelming probability (since
v; is randomly chosen from Z3;), then we have

e3(R;; C) e3(G7*, g%7) 1 1

es(Ris Cj)  eq(Gyive, H]PHX) . grwyy  eg(grieimi, geim(vetiixs)) e(g, g)risiea(@ive ti (ixs))

Note that Dp = e(K®1, P) = e(g,g)d’Ele = e(g,9)?17%5™. Thus from the values of Tj, Dp and Dy, for
M = T;/(Dp - D;) we have that: (1) if (i > i)V (i =i Aj > j), then M = M’; (2) if i =i Aj < j, then
M = M'-e(g,g)Tsmicimi(vixa), (3) if < 4, then M has no relation with M’.
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B Generic Security of the Assumptions

As the underlying assumptions in this paper are modified versions of the assumptions in [2], in this section
we prove the generic security of these assumptions using the proof framework of [2].

Theorem 6. The Modified (n,m)-EDHE2-Dual assumption is secure in the generic group model.

Proof. The Modified (n, m)-EDHE2-Dual assumption could be considered as (M,Y)-EDHE assumption [2]
Definition 11] where the matrix M and the vector Y are depicted in Table |1} and where we use variables
a,b,c,dy,...,dpy, z. The first requirement holds since n,m = O(poly(A)). We now prove the second require-
ment. We denote by v, ; ; the row of type x with specified ¢, j in the range if there is any for that type. We
also denote by S, the set of all row indexes of type x ranged in its specified condition.

Type Terms Range a b ¢ d d dn__ 2
7 7 0 0 0 0 O 0 0
5 g 1 0 0 0 0 0 0
3 g 0 1 0 0 0 0 0
4 e 0 1 0 0 0 0 -1
4+ ga"flbc/z n—1 1 1 0 0 0 -1
5 gaic iel0,n—1] 7 0 1 0 0 0 0
6 gv j € Lm) 0 0 0 lay !
. '8 iel,nl, € [1,m] i 0 0 —2a; 0
s ¢ ielnljem] i 0 0 ~Gey 0
9 g% iellmljellm] i 10 e !
0 ¢ e [Lnlgg € [Loml.j# 7 i 0 0 laj, 20y 0
1 g e[l g € [Loml.j # 5 i 00 la;, ~6a; 0
12 g¥t%il e (1,n)], 5,5 € [L,m],j # 7 i 1 0 laj, —lay 0
13 gaibcdj ie0,n—1],j€[1,m] i 1 1 laj 0
o g iefonljellm] i 11 50 0
15 gaZbcdj/dﬁ, ie[l,2n—1],5,5 € 1,m],j #4 i 1 1 laj, —2a; 0
16 ga’ibcd?/d?, iel,2n—1],5,5 €[1,m],j # i 1 1 Saj, —baj 0
17 geibeld; iel,2n—1],i#n,je[l,m] i 1 1 —1la; 0
18 ¢t ie[l,2n—1],5€[l,m] i 0 1 ~2a; 0
19 g"% el —1,5€[1,m] i 0 1 —bo; 0
20 g e (120 - 1],4.5 € [Lom] iz o1 laj, ~lay 0
21 g B/ e (1,20~ 11,4, € [1,m)] P21 Soi, _lai 0
99 gaibcdj/d?, i€ [1,2n—1],5,7 €[1,m] i 1 1 laj, —6a; 0
03 g¥ el e, 2n —1),4,5 € [1,m] i1 1 5aj, —2aj 0
Target
« go"er n 0 1 0 0 - 0 1

Table 1. The matrix representation of the Modified (n, m)-EDHE2-Dual assumption

We first observe that 2v, contains 2 in the column z, but for any v, w, v, + v,, contains at most 0 in the
z column, hence 2v, # v, + v, for any v, w. It remains to prove that v, + v, # v, + v,, for any u, v, w. We
observer that v, +v,, for u ¢ {4,4%} contains 1 in the column 2. Hence by the same reason, v, + v, # v, + vy,
for all w ¢ {4,477}, v,w. It remains to prove that v, + vy = (n,1,1,0,...,0) # v, + v,, for all v,w and
Vi +vgr = (2n—1,1,2,0,...,0) # v, + v, for all v,w. By the proof of the (n, m)-EDHE2-Dual assumption
[2l Lemma 46], v + v4 # v, + vy, for all v,w such that v,w ¢ {4T}. We observe that v, + v,, for v € {47}
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or w € {47} contains at most —1 in the z column. Hence v, + v4 # v, + vy, for all v, w. Now it remains to
prove that v, + v+ = (2n —1,1,2,0,...,0) # v, + v, for all v,w. For a vector X and column ¢, we denote
[X], the entry in X at gq. We first consider the following five cases.

veE{4,4T} or w e {4,47}: [vy + V). < —1 but [vi + vy+], = 0.
— v € S9g U Sy1 or w € Sog U Soq: [Vv +Vw]b > 2 but [V* +V4+]b =1.
— v € SgUS11 US16US19g or w € Sg U S11 USi16 U Sig: [VU + Vw]dj < —1 for some J but [V4< + V4+]dj =0
for all j. This is since [v,]4, = —6 for some j and [v,]q; <5 for all j.
— v € Saz or w € Saz: [Vy +Vyla; # 0 for some j but [v. +vy+]q; = 0 for all j. This is due to the following.
WLOG, we assume v € Sa3 (and w can be any) and write v = (23,1, j,j'). We further categorize as:
o If j =j', [vo]a, = 3. But for all j, [vy]a, # —3.
o Ify 7é .j/’ ([Vv]dj’ [Vv}dj/) = (5’ _2)' But for all jvj/7 ([Vw]djv [Vw]dj/) 7é (_5’2)'
— v € Sy or w € S14: WLOG, we assume v € S14. We further categorize as:
o w € Soo: [y + Volp = 2 but [vi + vy+]p = 1.
o w ¢ Sy [Vy 4 Vula; # 0 for some j but [v, + v4+]q, = 0 for all j. This is since [v,]q, = 5 for some j
and [vy]q; # —5 for all j.

From now, we can assume v, w ¢ {4,47} U Sg U S11 U S14US16US19 U So0 U Sa1 U Saz. We then consider the
following case:

— v € S7US10U S15 U S8 U Sy or w € S7 U S19 U S5 U S1g U Soa: [VU + Vw]d]- < —1 for some j but
[V« +Vat]a, = 0 for all j. This is since [v,]q; < —2 for some j and [vy]q; < 1 for all j.

From now, we can assume also v, w ¢ S7 U S19 U S5 U S1s U Saa. We further categorize as:

- v ¢ S5 U S13 U S17 and w ¢ S5 U S13 U Si7: [VU -i-Vw}C =0 but [V* -i—V4+]C = 2.

v € S5US13US17 and w € S5 U S13 U S17: we further categorize as:
e v € S5 and w € Ss: [y + Vylp =0 but [vi + vty = 1.
e vE S5 and w € S13U S17: [V + Vila, # 0 for some j but [v, 4 va+]q, = 0 for all j.
e v &€ Si3US7 and w € Ss: [vy, + Vyla; # 0 for some j but [v. + vy+]q, = 0 for all j.
e v e Si3USi7 and w € Si3U Si7: [VU + Vw]b = 2 but [V>,< +V4+}b =1.

- v € S5US13US17 and w ¢ S5 U S13 U Sp7: [Vu + Vw}c =1 but [V,,< + V4+]C = 2.

- v ¢ S5 U S13 U S17 and w € S5 U S13 U Si7: [VU -i—Vw}C =1 but [V,k -i—V4+]C = 2.

This concludes all cases.
Theorem 7. The Modified (n,t)-EDHES3 assumption is secure in the generic group model.

Proof. The Modified (n,t)-EDHE3 assumption could be considered as (M,Y)-EDHE assumption [2, Def-
inition 11] where the matrix M and the vector Y are depicted in Table |2 and where we use variables
a,b,c,dy, ..., d, z. The first requirement holds since n,t = O(poly(A)). We now prove the second require-
ment. We denote by v, ; ; the row of type x with specified i, j in the range if there is any for that type. We
also denote by S, the set of all row indexes of type x ranged in its specified condition.

We first observe that 2v, contains 2 in the column z, but for any v,w, v, + v,, contains at most 0
in the z column, hence 2v, # v, + v,, for any v, w. It remains to prove that v, + v, # v, + v,, for any
u,v,w. We observer that v, + v, for u ¢ {4,4%} contains 1 in the column z. Hence by the same reason,
Vi + Vo # Vy + vy, for all u ¢ {4,47}, v, w. It remains to prove that v. + vy = (n,1,0,...,0) # v, + vy, for all
v,wand v, + vy = (2n+1,1,0,...,0) # v, + vy, for all v, w. By the proof of the (n,t)-EDHE3 assumption
[2l Lemma 47], vi 4 v4 # vy, + vy, for all v, w such that v,w ¢ {47 }. We observe that v, + v,, for v € {47}
or w € {47} contains at most —1 in the z column. Hence v, + v4 # v, + vy, for all v, w. Now it remains to
prove that v, +vg+ = (2n +1,1,0,...,0) # v, + v, for all v,w. For a vector X and column ¢, we denote
[X], the entry in X at g. We first consider the following five cases.

~ve{4,4T} orw e {4,47}: [vy + Vi) < —1 but [vi +vy+], = 0.
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Type Terms Range a c d1 ds d z
1 g 0 0 0 0 0 0
2 g° 1 0 0 0 0 0
3 g° 0 1 0 0 0 0
4 g°/* 0 1 0 0 0 -1
4t g el* n 1 0 0 0 -1
5 gh j et 0 0 laj 0
6 g5 ieLn+1]je 1,1 i 0 T 0
T Y el €Lt iAF i 0 laj, —2a; 0
8 atedi/dyr 5 it e [1,t],5 # 4’ n 1 lej, —laj 0
9 g edi ie[1,2n],j €11 i1 la; 0
10 gv /b iel,2n)i£n+1,5€e[1,t] i 1 —laq; 0
11 gL el € L £F i 1 laj, —2aj 0
12 g¥ U/ e [n+1,2n), 4,5 € [1,1 i 2 sy — g 0
13 g n 0 0 0 - 0 0
Target
% go" = nt1 0 0 0 - 0 1

Table 2. The matrix representation of the Modified (n,¢)-EDHE3 assumption

~v€SgUS7USy orw e SgUS7US1i: [V +Vylg, < —1 for some j but [v, +vy+]q, = 0 for all j. This is
since [vy]q; = —2 for some j and [v,]q; <1 for all j.
— v € Syp or w € S1a: [Vy + Ve > 2 but [vi + vyt = 1.

From now, we can assume v, w ¢ {4,47} U Sg U S7 U S11 U S12. We further categorize as:

- v ¢ {3}U58U59U510 and w ¢ {3}U58USQU510: [Vv +Vw]c =0 but [V* +V4+]c =1.
- vE {3}USgUSgUSlO and w € {3}USgUSgU510: [vv—i—vw]c = 2 but [V* -|-V4+]c =1.
- v € {3}USgUSyU St and w ¢ {3} U Ss U Sy U Syp: we further categorize as:
e ve {3} and w e {2,5,13}: [vy + Vyla < mbut [vy +vy+]e =20+ 1.
e v SgUSyUSipand w € {2,13}: [vy + vy la; # 0 for some j but [v. +vy+]q, = 0 for all j.
e v € S3USyUSipand w = 5: [y + Vyla < 20 but vy +vyt]q = 2n + 1.
- v ¢ {3} USsUSyUSyp and w € {3} USs U Sy U Sjp: this is the same as the previous case for “v €
{3} USg U Sg U Sig and w ¢ {3} U Sg U Sy U S19” by exchanging v, w.

This concludes all cases.

C Proof of the Lemma (1 for the Fully Secure Unbounded KP-ABE with Large
Universe

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

C.1 The Resulting Augmented KP-ABE

Setupp(\, I, K = m?) — (PP,MSK). Run (N, p1,p2,p3,G,Gr,e) < G(\). Pick generators g € G,,, X3 €
Gps- Set d = 6,dy = 2. Pick random B8 = (f1,..., ) € Z%. Pick random {a;, i, 2 € ZN}icim)s {¢; €
ZN }je[m)- The public parameter is

PP = ( (N,G,Gr,e),g,h = (h1 =g",... he = ™), X3,
{El = 6(979)0”7 G’L :.9”7 ZZ = gZi}iE[m]a {Hj = gCJ}jG[m] )
The master secret key is MSK = (al, ey QU Ty ey Ty cl,...,cm).

A counter ctr = 0 is implicitly included in MSK.
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KeyGen, (PP, MSK, (4,p)) = SKi j),(a,p)- Set ctr = ctr 4+ 1 and then compute the corresponding index
in the form of (i,5) where 1 < 4,5 < m and (i — 1) *m + j = ctr. Let I x n be the size of A. Pick
random & = (61,02, &1,...,&, Uz, ..., up) € ZN", R = (Ro, Ry, Ra, {Ra, Raie, Rs 1. brep) € G3F3,
and Rj € Gp,. Implicitly setting w = (u1 = (361, uz, ..., u,), output a secret key SK; ;) (a,,) as

SKigam = ( (5,4), (4, p),
Ko =gne g g™® Ry, Ky =g" Ry, K> =g Ra,
(K3, = g™ g% Ry y, Kup = g% Rag, Ksp = (9% ") Rs 1 }rer,
K= Z'R}).

Note that K3 = g% %gP1& Ry can be computed as K3 = (gP8)Ar101 g2 is Akttt gBhatk Ry 1 where
Ak = (Ak1, Akﬁg,.ﬁ.i, A p) is the k-th row of A.

Encrypta (PP, M, S, (i,7)) — CTs.
1. Upon input the attribute set S C Zy, pick random 7 = (7, T, {7y }zes) € Z?\,ﬂsl. Set

Pl :gﬂ-a P2 :gﬁzﬂ'7 P3 :gﬂlﬂ—gﬂgﬁa
Py=g", {Ps,=g%""(g%gP") ™, Ps,=g"}ses.

2. Pick random K, T, S$1,...,8m, t1,..-,tm € ZN, Ve, W1,..., Wy € L.
Pick random ry, 7y, 7. € Zy, and set x1 = (1,0,72), X2 = (0,7y,72), X3 = X1 XX2 = (—TyTz, —Tal, T2Ty).
Pick random v; € Z3; Vi € {1,...,i}, wv; € span{x1,x2} Vi€ {i+1,...,m}.
For each row ¢ € [m]:
— if i < 4: randomly choose 8; € Zy, and set

Ri=g", R,=g"", Qi=g" Qi1=(g")"ZI'(¢")", Qi2=(¢")", Q,=4g", Ti=FE;"
— if i >i: set

Ri=GIv, Ri= P, Q=g Quy = (g 20 (g7, Qua = (g7,

Q; — gti7 E — MEZT%('UZ'Uc)

For each column j € [m]:
— if j < j: randomly choose p; € Z,, and set Cj = H]’_'(”CJrﬂjxs) - g C; = gWi,
—ifj>jiset Cj=H[" g™, C}=g"i.
3. Output the ciphertext CTs as CTs = (S, (P, P, P3, Py, {Ps », Ps 2 }zes), (Ri, R, Qi, Qiny Qi QL T)M 4,
(Cja C;);n:1>
DecryptA(PP,CTS,SK(i’j)’(A’p)) — M or L. Parse CTg to CTg = <S, (Pl,P27P3,P4,{P57z,P6,m}mes),
(Ri’ Rg, Qi, Qi,l’ Qi,2a an Ti);n:h (Cj7 C;);n:1> and SK(i,j),(A,p) to SK(i,j),(A,p) = ((L])v (A, p)7 (KO’ Ky, K,
{K37k,K4,k,K57k}ke[l],K6). Suppose S satisfies (4, p) (if S does not satisfies (4, p), output L).
1. Compute constants {wk},(x)es such that 3, cgwpAr = (1,0,...,0). Compute

e(Ksk, Ps) - e(Ks5k, PG,p(k:)))wk
e(Kyk, Ps o))

Dp (—6(K1,P3)/ H (

p(k)es
2. Compute

e(Ko, Qi) - e(Kp, Qf)  e3(R;, CY)

Dy + . .
! e(K1,Qin) - e(K2,Qi2) es3(R;,Cj)

3. Computes M «+ T;/(Dp - Dy) as the output message.
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C.2 Proof of Lemma [

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (1,¢)-EDHE3 problem instance in a
subgroup as follows. B is given

D = ((N,G,Gr,e), g,9% g% g%, 9%/ (for g°"/* with n = 1), go, g,

Vje[q] g J’ gacd ga 2ed; , gac/d , a/d27 2/ul27
d;/d>? dj/dj d; /d?, 2ed;/d?,
Viirelal sit. j#i gzziz/df/:ﬂ“ [dyr o gredildye garedildy
Vigelq 95 )
R R R R R
and T, where (N = plpng,G Gr,e) «— G, g «— Gy, 92 — Gy,, 93 «— Gy, a,¢,2,d1, ..., d — Zn,

and T is either equal to g“ % or is a random element from G,,. B’s goal is to determine 1" = g“ orTisa
random element from G,, .

Init. A gives B the challenge attribute set S* = {af,...,a}.} C Zy, where |S*| =" <q.

Setup. B randomly chooses {a; € Zn}icim)s {76, 2 € ZN}icpmp\{i}s ™5 % € ZN, {¢; € ZN}jeim), and
B1, B2, 8%, B4, B, Bs € Zn. B gives A the public parameter PP:

(9, hy = ( W hy = g%, hy = (9"), ha = (g°)%,
H (g*/4)ai) - (T 6%/%), he = g% - ( ] o*/%),
e[l*] tell*] te(l*]
{Ei = 6(9,9) Yicml
{Gi=g"" Zi =9V Yicpmppips {Hj = (0 jepmngy: Gi= ()%, Zi = g%, H; = (g°)% )

Note that B implicitly chooses r;, z;(i € [m]\ {i}), ¢;(j € [m]), B, Bs,Ba.B5,B6 € Zn such that

ar; =r; mod p1, az, = z; mod p1 Vi € [m] \ {i},
acj = ¢ mod p1, (¢/2)c; = cj mod py Vj € [m] \ {7},
afy = B1 mod p1, afly = B3 mod p1, afy = B4 mod py,

By + Z (—aja/d?) + Z(ac)/dtzﬁ5 mod p,

te(l*]

By + > a/d; = B mod p;.
te(l]

Query Phase. To respond to A’s query for ((7,7), (A, p)), let I x n be the size of A,

o if (Z,j) ;é (E,j) B piCkS random § = (51,52,51,...,fl,’UQ,...,Un) S Zl]\—[&-n—&-l’ R = (R07R1,R2,
{R3k; Ra ke, Rs x brep)) € sz?’l, and Rj € Gp,. Implicitly setting u = (u1 = B301,us,...,uy), B creates
a secret key SK(; j) (4,0

ga (gC/Z)TzF h51h52R0, 17&5’] %5
KO = gai(gac/z)r . hilhngO; S E’] #3
g% (g%)" T W R Ry, i i,j =],
Ky = 961R1, Ky = 962 - Ro, K(/J = Z%Rl
{Ksp = hy "0 gZime Aeru B Ry o Ky = % Rag, Koo = (hshf ™) Rs Y rer.

e if (4,7) = (i,7): it implies that A is querying a secret key with the challenge index (i, ), and (A4, p) is not
satisfied by S*. B first computes a vector @ = (41, ..., 4,) € Z% that has first entry equal to 1 (i.e. 43 = 1)
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and is orthogonal to all of the rows Ay of A such that p(k) € S* (i.e. Ay-@ =0VEk € []] s.t. p(k) € S*). Note
that such a vector must exist since S* fails to satisfy (A4, p), and it is efficiently computable. B picks random
61502, {&k trelt) st p(k)es=s 1Sk hell] st. p(k)gs=s Uy - Uy € Zn, R = (Ro, R1, Ro, {R3 5, Raks Bs i brepny) €
Gg’);‘?’l, and Rj € Gyp,. Let ' = (0,u),...,ul) € Z%, B sets the values of 61 € Zn, u € ZY%, {& €
ZN}kE[l] s.t. p(k)gS* by 1mp1101tly setting

81 — arich /61 =6, mod p1, u=1u'+ (af})d11,

SENCEDS p(;‘f‘“ )B4rich (Ax @)/ (B15) = & mod p Vk € [I] s.t. plk) ¢ 5™
te(l*]

Note that for a; € S* and p(k) ¢ S* we have p(k) — a; # 0. B creates a secret key SK(; 7) (a,,) as follows:
Ko = g™ h{'h5 Ro, K1 = g™ (¢") "I/ AR, Ky = g™ R, K = (Kl)ZZRa,
o for k € [l] s.t. p(k) € S*,
Ksp = g A Whi Ry = Q(A’“'u/)ﬂﬁéglmk'ﬁ)hi’“R;},k = g AR Ry
Kip=g%Ryp, Ksp = (hshg(k))g’“Rak,
o for k € [I] s.t. p(k) ¢ S*,

Kz = gAY h§ Ry

_g(Ak-u’) aB; (81 —arics/B1) (Ax @)

g
,hil/c ) (gaﬁg)aﬁérécg(z‘lk'ﬁ)/(ﬂiﬁé) . (ga64) (Ztep=) 5 a*)ﬁé i (Ak: u)/(6154)R

gl Arw) . goBs8 (Aem) i (o Trei) ﬁ)—ﬁéréc;mm)mi Ro
B g(A’“ ) (ga)BS(;l(Ak.ﬁ) ) hik . ( H (ga%dt)W)*BérécﬂAk.a)/ﬁiR&k’
te(l*]

’ acd o — Y
K4,k — gﬁkR4’k — gékJF(a*Zte[L*] p(k),taz« )BSTZCJ(AIC‘“)/(51IB4)R4J€

& . (ga)ﬁgrgc;(Ak.a)/(a;ﬁ;) | H (gacd,)4p(k)1_az )—5ér%c§(Ak‘ﬁ)/(ﬁiﬂfl)R&k’

te(l*]

=g

Ko = (hshg™)% Rs

(G—Zue[z* p((]lcc)d a* )ﬁér:f; (Ak u)/(ﬁ][i;

= (hs h”“”) - (hshg™) Rs
acd

= (hahg™)s
"y 2 . (0= v epe) pom—am )Baics (Ax @)/ (B15Y)
. (965+ﬁ6p(k) | H (ga/dt)p(k)fat) | H gac/dt)) S USRS ke 184 Rs
te(l*] te(l*]
acd,s

_ (h5hg(k))€;“ ) (gﬁé-i-,b’ép(k))a@érfcg(Ak'ﬁ)/(ﬁiﬁi) ) (gﬁé""ﬂép(k)) vrenx (k) — a* )B3rics (Ap-w) /(81 54)

acd ¢!

. ( H (ga/df)p(k)fa,*,)aﬁé%%(flk-ﬁ)/(ﬁiﬁé) . ( H (ga/df)p( )— ) —(XCvenn p(k)— p(R)—a¥, )5éT;°;(Ak a)/(8184)

te(l*] tell]
( H gac/dt)aﬁéréé( /(B1BY) H gac/dt Cee %)ﬂéﬁ%(h-ﬁ)/(ﬁiﬁé).Rs’k
te(l*] te(l*]
_ (h5hg(k))f;" . (ga)(Bé+ﬁep(1f))5é7"§c;(z4k~u)/(/31/34) ) ( H (gacdt,)W>—(ﬁé+6ép(k))ﬁéréc§(Akﬂ)/(ﬁiﬁi)
t’'e[l*]
121
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N H (gaz/df)p(k)—a:)Bérécé(Ak-ﬁ)/(BiBL) N H H (gazcdt//d )p(k%) Byrick(Ax-@)/(B18%)

te(l*] te[l*]) t’ell*]

123
H g c/d, Byrici(Ar-a)/(B18%) H H a?c?d, /dy W)—Bgrgcg(Akﬂ)/(ﬂ{ﬁé) Rs.i
te(l*] tel*] t’'e[l*]

U3

H H a cdt//d )%{1,) /3éT;C;(Ak “)/(ﬁ ﬁ4)

te[l*] t'e[l*\{t}

Uy, for t'#t
(T ¢ ga%dt/dg)f,iii:iji)—5ér£c§<Ak¢a)/<mg).( I gl FS AT B8) g B
te(l*] te(l*]
for t'=t

=W Wy Wy W3- Ry

Note that B can calculate the values of Ko, K1, K2, Kj, { K3 ¢, K41, K5 1 } e using the suitable terms of the
assumption.

Challenge. A submits a message M. B randomly chooses

/ / / ! ! /
Ty S1yeevs 852187 Siq1s -1 Smy L1y Gt Gy by € LN,
B ’ / 3
Wi, W), W, Wy € Ly,

! =/ / !/
T Ty Tgxseees My €ZN.

B randomly chooses 74,1y, 7, € Zn, and sets x1 = (12,0,72), x2 = (0,7y,72), X3 = X1XX2 = (—Tyrs, =TT, TaTy).
B randomly chooses
v, €ZiVie{l,...,i—1},
v? € span{x1, X2}, v{ € span{xs},
v; € span{x1,x2} Vi € {i+1,...,m},
vl € span{x1, X2}, V¢ = v3xs € span{xs}.
B sets the value of ,7,s;,t(i € [m]\ {i}) € Zn, ve,v; € L3, {w; € Z3 N} ™ € LN, & € Ly, {m,: €
7N }ep#) by implicitly setting
a=rmodp;, azr’ =7 modpi, s;/a=s;modps,
ti + cprr'si (v - vl) )z = t;mod py Vi e {1,...,i— 1},
ti — apy7'si(vi - v7) /2 + By 55 (V] q cvl)/zi=t; mod py Vie {i+1,...,m},

1 c
v = —vP + vl v; =00 + —v!
S e ¢ Vi i S Vi

w;— - ach’vp = w; mod p1,
w’ — ccjT'vl = wimodpy Vj € {j+1,...,m},

7' —er'si(v! - vl) = mmod py, T+ cf7'si(v] - vl)/B3 = T mod py,

T — di 31847 55(v] - vl) /By = 7oz mod py Vt € [I7].

It is worth noticing that v; and v, are random vectors in Z3; as required, and (v;-v.) = L (v?-v2)+<(v?-v1),
since x3 is orthogonal to span{x1, x2} and Z3%; = span{x1, X2, X3}
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B creates a Ciphertext <S*7 (P1> PQa P37 P47 {PS,:va PG,a:}xES*)7 (R’H R;7 Qi7 Qi,la Qi,27 Q;a Ti);lh (0]7 C;);n:1>
as follows:

L Py =g7 (¢°) 70V Py = (Py)P2, Py=hi'hf, Py=g" (g°)m iwivd/os,
for t € [I*],
Psq: = hff(h5h‘g:)”“;
_ thrcﬁifr'sé(vg.vZ)/ﬁé . (hShg:)ﬂ;? —di 81847 55 (v vl) /By
- hf . (gaﬁé)cﬁif's,’;(v?vZ)/ﬂé

* 4 ’ ’ o * * —d B} BLT! s (v g !
) (hShgt )ﬂ'a; ) (gﬂsgﬁﬁat . ( H (ga/df,)at —at,) . ( H gac/dt/)) + 3184 91(’01 vl)/B35
t'e[l*] t’el*]

= B - (g°) T AT (i (g) TR BT e 5,
. ( H (gadt/df,)affa:,)*ﬁiﬁiT/S%(vg'vg)/Bé . ( H gacdt/dt/)*5154[17/5%(”?'”2)/53»

t'efl*] tefl*]
= BY - (g") BTSN (i YT (gie) TGP () B,
~—
o, A 2]

. ( H (gadt/df, )az‘fa:,)*ﬂiﬁi‘ns,’;(v?-vg)/ﬁé . ((gadt/df)affa:)*ﬂiﬁi‘r’s%(v?-vg)/ﬁé
e[\ {t}

1, for t'=t
W3, for t'#t
. ( H gacdt/dt/)_51527l5%(”g'vg)/5é . (gacdt/dt)_ﬁiﬁ:ﬂ'/sé(vg'”g)/ﬁé
vel*\{t} PR
Yy, for t'#t
=V, Wy - Us - Uy,
Pﬁ,at* = gwa; _ gw;; —d 81847 s (vE-v) /By _ W;f (gdt)*ﬁiﬁflr’sé(vg-vi{)/ﬁé.

Note that the values of ¥y, ..., ¥, can be calculated using the suitable terms of the assumption.
2. For each i € [m):

— if ¢ < ¢: it randomly chooses §; € Z,, then sets

Ry =g", R =(¢")", Qi=g" Qi1=h{'Z'n],
Quz = Q% @) =g (g WO/ T =
— if § =14: it sets
R, = gr%s%v%’(gc/z)rés%vg’ R; _ (ga)ﬁs%v? (gac/z)r%s%vg7 Q; = g-,—’s%(v?"vz)(gC)T/S%('Ug"UZ)7
"s5(v7vY) by ! i i
Qin =hy UTIZERT ) Qi = Q)% Qi=g", Ti=M-e(g™, Q).
— if i >4 it sets
R; = g"*¥, Rj = (g%, Qi=(¢")" @), Q1= ZI'hT,
Qi,Q _ (Qi)ﬁ27 Q; — gt;(ga)—ﬁh’si(vrvi’)/z; (gc)ﬁif’sg(v%’vg)/z;’ T, = M- 6(90”',@1‘).

w

. For each j € [m]:
— if j < j: it randomly chooses y; € Zy and implicitly sets the value of u; such that (ac)’l,ug-ug —v3 =
j1; mod py, then sets Cj = (g(a¢)/2)57 v . g5 Ve (gaywi | Cf = g¥i.
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’

— if j = j: it sets C; = TG e ()™, C) = gwé . (ga)_céT,vg.
S > it sets G = (gUO2)ETE L (o), Gy = g - (¢7) 4,

ItTr= g“zz, then the ciphertext is a well-formed encryption to the index (i, j). If T is randomly chosen, say
T = g" for some random r € Z,,, the ciphertext is a well-formed encryption to the index (¢,j + 1) with
implicitly setting p; such that (3> — 1)v3 = p; mod p;.

2z

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that in
the real scheme. B’s advantage in the Modified (1, ¢)-EDHE3 game will be exactly equal to A’s advantage
in the selective index-hiding game.

D Proof of the Lemma [1] for the Fully Secure KP-ABE with Short Ciphertexts

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

D.1 The Resulting Augmented KP-ABE

Setupa(\, U, N = m?,T) — (PP,MSK). Run G(\) to get (N,p1,p2,p3,G,Gr,e). Pick generators g € Gy, ,
X3 € Gp,. Set d =T + 6,dy = 2. Pick random 3 = (B1,...,04,00,01,...,0741) € Z%H’. Pick random
{as, riy 2i € Ln}icim), {¢j € ZN}jepm)- The public parameter is

PP = ( (NaGaGT7€)7g7h1 :gﬁla-~-ah4 :g547f0 :geomfl :gela---va-l—l :geT+17 X3,
{Ei=e(g,9)™, Gi=g"", Zi=g"}icpm)» {H; =9%}jeim) )

The master secret key is MSK = (ozl, ey Oy Tlye ooy Ty Clye e cm).
A counter ctr = 0 is implicitly included in MSK.

KeyGen, (PP, MSK, (4, p)) — SK(; j),(a,p)- Set ctr = ctr + 1 and then compute the corresponding index in
the form of (i,j) where 1 <¢,7 <m and (i — 1) xm + j = ctr. Let | x n be the size of A. Pick random

5 = (61,52,51,...,gl,UQ,...,'LLn) € Zé\—}_n+la R - (ROaRlaRQ){R3,k7R4,kaR5,k,07 {R5,k,t}tE[T]}k€[l]) €

Gi:(?’JrT)l, and Ry € G,. Implicitly setting uw = (u1 = (301, uz, .. ., uy,), output a secret key SK; ;) (a,p)

as
SKi.g). (a0 = ((8:), (4, p),
Ko =gt h'hy* Ry, Ki=g" R, Ka=g¢"-Rs, Ky=Z]"Ry,
(K3 = g"*“h§ Ry o, Kug, = g Ray,
. —p(k)?

K5,k,0 = f§", {K5,k,t = (ft+1f1 o(k) )gkRE),k,t}te[T]}kel)-
Note that K3 = gk ughate R3 1, can be computed as
Ky = (gP)Ar101g2ie Anate ghali Ry | — h?k’lélgzrﬂ Arcwe hSF Ry 1., where Ay = (A1, Agay -y Agn)
is the k-th row of A.

Encrypta (PP, M, S, (i,)) — CTs.
1. Upon input the attribute set S C Zy, pick random w = (m, 7, #) € Z3,. Let ¢; be the coefficient of 2*

in p(z) := [[,eg(z — ). Set
Plzgﬂv P2:h'72rv PBZhThga
7 7 T ey \T #
Py=g", Ps=hi(foll,_0fit1) s Ps=g"
2. Pick random

Ky Ty S1y.-.y8m, t1y...,tm € Zp,

36



3
Ve, W1,...,Wn € Ly.

Pick random ry, 7y, 7. € Zy, and set x1 = (1,0,72), X2 = (0,7y,72), X3 = X1 XX2 = (—TyTz, —Tal, T2Ty).
Pick random

v €2} Vie{l,... i},
v; € span{x1,x2} Vi € {i+1,...,m}.

For each row ¢ € [m]:

— if ¢ < 2: randomly choose §; € Z,, and set

R, =g", R, =g"", Qi=g", Qi1=(¢")"ZI'(¢")", Qi2=(¢™)",
Qi=g", T,=E.

— if i > i set
Ro= G™, Ry =GI™, Qi= g™, Qu = (") zl (g™,

Qi 9 = (gﬂz)rsi(vi-vc)’
i _ 75;(vive)
Q=g", T,=M-E] :

For each column j € [m]:

— if j < j: randomly choose p; € Zy, and set C; = H;(v“+“-7"3) g, C = g™

—ifj>jiset Cj=H[" g™, C}=g"i.
3. Output the ciphertext CTS = <S, (Pl, P27 Pg, P4, P5, P6)7 (Ru R;, Qi7 Qi,la Qi,Qv Q;, Ti)?;h (Cj, C;)T:1>

D(ECI’yp'EA(PP7 CTs, SK(i,j)7(A,p)) — M or 1. Parse CTS to CTS = <S, (Pl, Pg, Pg, P4, ]357 Pﬁ), (R“ R;, Qi; Qi71,

Qi2, Q5 Ty, (Cy, Ch)y) and SK; 5y, (a,p) 10 SK(i ). a0 = ((i,9), (A, p), (Ko, K1, Ko, {K3 1, Ka ., K510,
{ K5kt breir) Yren)» K§)- Suppose S satisfies (4, p) (if S does not satisfies (4, p), output L).
1. Compute constants {ws },(x)es such that Zp(k)éS’kak = (1,0,...,0). Let ¢; be the coefficient of z*
in p(2) := [[,cg(z — x). Compute

(K3 Pa) - €(Ks 0 TTi—1 K& 00 Po)

Dp (—e(Kl,Pg)/ H ( e(K47k’P5) )wk

p(k)eS

e(aAeupst o) . e T e & g7
=e(K1,Py)) [] ((g hs, g7™) - e((fo Ili—o fitn)% . g )) )

s T Ct 7
p(k)es e(g§k7h4 (fO Ht:O ft—l—l) )
:€(K1,P3)/ H (e(gAk“u’gﬁ'))Wk _ e(g’g)alfslﬂ'e(g’g)ag(slﬁ'/e(g’g)aSélﬁ—
p(k)eS
a1617r.

=e(9,9)

Note that Dp can be computed using 4 pairing computations, since [] ;) cs (e(K31, Py))“" can be
compute by e(Hp(k)ES Kg”,;, Py), and the same applies to two parts for Ps and Pg.
2. Compute

e(Ko, Qi) - e(Kp, Q) e3(R;, C%)
e(K1,Qi1) - e(K2,Qi2) e3(R;,Cj)’

Dy +
3. Computes M «+ T;/(Dp - Dy) as the output message.
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D.2 Proof of Lemma [l

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (T' + 1,1)-EDHE3 problem instance in
a subgroup as follows. B is given

D = ((N,G,Gr,e), 9,9% 9% 9%, g /= (for g°*"/# with n =T + 1), g%, ¢,

a‘cd

Vier+1)) 9%

Vic[2(T+1)],i£T+2 galvc/‘j,
Vier+2) ga/_/j ;
Vierr+2.20r+1)) 9%¢ )

and T, where (N = p1paps, G,Gr,e) il G, g i Gy, 92 il Gy, 93 £ Gy, a,c,2,d i Zy, and T

L T2 . . . T+2 .
is either equal to g* # or is a random element from G,,. B’s goal is to determine T" = g* " or T is a

random element from G,, .
Init. A gives B the challenge attribute set S* = {a],...,a}.} C Zy, where |S*| =1* <T.

Setup. B randomly chooses {a; € Zn}iepm), {76, 2 € ZN}ie[mJ\{i}a 75,25 € LN, {cj € ZN}jem), and
By B2, B3, By, 05,01, .., 00 1 € Zn. Let ¢ be the coefficients of 2* in p(z) = [[,cg-(z — ), B gives A the
public parameter PP:

T+1 ’ T+1 ’ T+1 ’
(90 b1 =", b= g%, by = ("), = (g,
. T
’ +1 12w rt g2
fO :geoga c/d H(ga /d ) Ct, {ft — gatga /d }tT:—&-ll’
t=0
{Ei = e(9,9) }ieim)

T+1

{Gi=9", Zi=(¢" Vhicpngy Hi =07 YjemnGy, Gi= (9"

T+1

)i, Zi=g7, Hj = (g°)7 )

Note that B implicitly chooses 75, z;(i € [m]\ {i}), ¢;(j € [m]), B1, B3, B4, 85,86 € Zn such that

aT+1 T+1

ri =r;mod p1, a’ 'z = z; mod py Vi € [m] \ {i},
ac; = ¢; mod py, (¢/2)c; = cj mod py Vj € [m] \ {j},

a’™ B = 1 mod p1, o'y = B3 mod p1, o’ !B} = B4 mod py,

T

06 +a’le/d - Zc,f(a“‘l/dQ) = 0y mod p1,
t=0

vte{l,...,T+1}: 0, +a'/d*> = 6; mod py,

Query Phase. To respond to A’s query for ((7,7), (A, p)), let I x n be the size of A,
o if (i,j) # (i,7): B picks random & = (81,02,&1,...,&, U, up) € ZN" R = (R, Ry, Ro,

{Rs,k, R4,k, R5,k,0, {Rs,k,t}tET}ke[l]) S Gz;—l(g—‘rT), and R6 S Gp3. Implicitly setting u = (u1 = ﬂ3(51, U, . . . ,un),
B creates a secret key SK; jy (4,

g% (g°/*)"% - W h32 Ry, i # 1,5 # ]
Ko ={ g (g(aT‘FlC)/Z)T‘%Cj . h?lhngm cf = LJ 7&5
g% (g™ - hS P Ry, i #£4,§ =]
Ki=¢"Ri, K»=g" Ry, Kj=Z"Rj,

{Kg,k _ h?k‘lélgzz;z Ak,tuthikR3’k7 K4,k: — gfk R4,k7
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Ks o= f" {Kspi= (ft+1f1_p(k) )% Rs kot heer) et

e if (i,5) = (4,7): it implies that A is querying a secret key with the challenge index (i, ), and (A, p)
is not satisfied by S*. B first computes a vector @ = (U1,...,U,) € Z} that has first entry equal to 1
(i.e. w3 = 1) and is orthogonal to all of the rows Ay of A such that p(k) € S* (le. Ay -4 = 0 Vk €
[l] s.t. p(k) € S*). Note that such a vector must exist since S* fails to satisfy (4,p), and it is effi-
ciently computable. B picks random 87, 02, {&k Fref] s.t. p(k)es=s 1&L Rell] st. plk)gs= Uas -+ Uy, € Zy, R =
(Ro, Ru, Ro, {Rs.ic, Raies Rs 5.0 { R ot Yeer bheqy) € Goa ' ®17), and R}y € Gy, Let '/ = (0,ub, ..., ul) € Z
B sets the values of 0, € Zn, w € Z3;, {€x € ZN kel s.t. p(k)gs+ by implicitly setting

* ’I’L

61 — arich /ﬁl =5 modp;, u=u'+ (a” B @

T
&+ ZP k)'eda™ 1) Byrich (A - @) /(81 584) = & mod py Vk € [I] s.t. p(k) ¢ S*.

t=0

Note that for p(k) ¢ S* we have p(p(k)) # 0. B creates a secret key SK; 5y (4, as follows:

a; 1,01 " a\—rick /B, o
Ko = g*h{"h$?Ro, K1 = ¢ (¢9") ""/"1 Ry, Ky = g2 Ry, K{ = (K1)* Ry,
o for k €[] s.t. p(k) € S*,
Kyp =g Wh§ Ry = g(A’“'”’)JFQTHB-’/"SI(A"’"_‘)hikRg,k = g(A’“'“/)hikR&m
Kug = g% Rap, Kspo=f5" {Ksps= (ft+1f17p(k)l)gkRS,lat}te[T]a
o for k €[] s.t. p(k) ¢ S*,

K3 =g h Ry,

= gUkw) | a8 —arted /) (i)

/ ’ YN — Y ’ oT+1l-t g g TWav: — ! Al
RSk (go" T BhyaBarics (A B (B18Y) aT+1ﬂ4)<ZT:o el gt ! () /(B4 B)) R

g
’ Y = / a2TH2-t, [
_ g(Aku ) . gaT+16351(Akvu) . hik X (gZ’tT:O W)d)p(k))ﬁ3rlc] (Ak u)/ﬁl R3 &

T

_ g(Ak-u’) . (gaT+1)ﬁé51(Ak-ﬁ) . hfl; . (H(gaQTJrQ’tcd)p‘Z(plz,):)) )5ér2(C3(Ak‘ﬁ)/ﬂiR37k’
t=0

Ko = g% Ryp = gs;+(a+m ST p(k) eda 1) phrtc (Ax-m)/ (5] BIR, ik

T
= g&k . (g°)Perics(An @)/ (B161) . (H(ga“l*tcd);g;’z;; )ﬁéréc_’;(Ak-M/(ﬁ;ﬁg)R

t=0

ks

Ks k0 = f§* Rs ko
_ fﬁk . ( 05 aT+lc/dH 1+1/d2) )aﬁgrgcg(Akﬂ)/(B{BQ)
1=0
o T+1C/d H 1+1/d2 (Zt ", W”ér%%("‘k'ﬁ)/wm@}% o

— g;c . ((ga)e(’))5{&74%6_/7(141@"’1)/(515:1) '(gaT“c/d)ﬁérgc_%(Ak'ﬁ)/(ﬁiﬁf;) ) (ﬁ(gai“/dz)—cj)ﬁéréc_%(Ak'ﬁ)/(ﬁiﬁi)

=0
121

2]
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T
. (H(gaT'H_"cd) ((72;)))005:’57-’6’ (Ax-@)/(B18%)

U3

T
(e bt i (v /B30

vy

c¥p(k)t _
HH aT I ey ol )6éT£C_’;(Ak-u)/(ﬁ{ﬁ£)R5k0
t=01i=0

Wl ) (gaT+2c/d)ﬁéT%C§(Ak'ﬁ)/(ﬁiﬁ‘l) . WQ . wg . W4

< T+it2—t —ctp(k)t Ll (A ;o
<H H (g° T C/d) p(p(R) )'33’7%( K@)/ (B184)
t=04i€[0,T1\{t}

Uy, for i#t

T
(e %)%T%%Mk@/(ﬁiﬁé) R
t=0

for i=t
— !Ill . (gaT+2C/d)6:/3T/c, (Akﬁ)/(ﬁiﬁalx) 'WQ . !p,?, . !p4 . !pg,

A

B B o
. ((gaT+2c/d)W)’BST?CJ(‘A’V“)/(BlBD Rs

A1, since ST ci (k) =p(p(k))
=V - Uy U3V -Us - Rs 1 0,

Ks gt = (frarS7 " )% Rs i Vi e [1,T]
o f o0 Y6k (g ga I (g5 o=t (4 gt S o8 eda™ 1) Srie (A (160
—_—
173
= W - (gl —Ohe ) ga" T/ ga/dty—p(k)ty aarics (Ax )/ (Bi5)

. (gegﬂ— ip(k)tga“rl/d2 (ga/dQ)—p(k)t) (p(p(k)) Yo p(k) eda™ 1™ 1)5§T/0/ (Ar-a)/ (B ﬂ4)R

2oy

Nl —g' t att? /a2 a2 /d?\— t frgc%Aﬂ 818,
Z%'((g )6t+1 61 p(k) g /d .(g /d) (k) )53 (<5 (Ar-)/(BrBa)

W7
T P —0 p(k)t
—i N = SIS LAy /PWN A o >
. (]‘_[(gcdaTJrl l)p(k)l) Sy Barics (Ak-@)/(B184)
1=0

'S

g

=n

I
=

(go" T eyl y ety e (A )/ (51 52)

K2

(S (g etk i e (4 ) G150
=0
=W Uy - Uy
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. ( (gaTJrZH*ic/d)p(k)i) mﬁérécé(Ak'ﬁ)/(ﬁiﬁé) . ((gaT+2+t7tc/d)p(k)t) mﬂéT§0§(Ak'ﬁ)/(ﬂiﬂi)

€0, T\ {t} for i=t
Yy, for i#t
T
. (Z(gaT'*'Q_ic/d)fp(k) ) p(p(k)) ﬂé’",cl (Ae-@)/(B181) . ((gaT'*'Q_Oc/d)fp(k)O) %ﬁérécé(f‘k'ﬁ)/(ﬁ;ﬁi) Rs it
=1

for i=0

Wig, for i#0
=g - Wy -Ug - Wy -V Rs 1, ¢

Note that B can calculate the values of Ko, K1, K2, Ki, { K3k, Ka.x, K5 1,0, { K5,1,¢ }te[1) Frep) using the suit-
able terms of the assumption.

Challenge. A submits a message M. B randomly chooses

/ . /o / / . /
Ty S1senes 81585 Sigls -3 Smy U1y G it g0ty € LN,
! /
Wi, WG, W, Wy €Z N
! =/ / /
ﬂ,ﬂ,ﬂa»{,...,ﬂal*GZN.

B randomly chooses 74,1y, 7, € Zn, and sets x1 = (12,0,72), x2 = (0,7y,72), X3 = X1 XX2 = (—Tyrs, =TT, TaTy).
B randomly chooses
v, €L} Vie{l,... i1},
v} € span{x1, x2}, v{ € span{xs},
v; € span{x1,Xx2} Vi € {i+1,...,m},
vP € span{x1,x2}, vI =rv3xs € span{xs}.
B sets the value of k,7,s;,t;(i € [m]\ {i}) € Zn, v.,v; € Z3, {w; € Z3; NYiL; T, € Zy by implicitly
setting

oI+l = T+1 T+1 —

xmod p1, a'Trzr’ =7 mod py, sg/a = s; mod py,
ti + B’ si (v - vl) /2 =t mod py Vi € {1,...,i—1},

ty—a" BT si (v - V) /2 + BT (v - vl) /2 = t; mod py Vi € {i+1,...,m},
c
ve=2z""v0 +vl, v; =0l + -0l
K3 z K3
w% - ach’vg = w; mod p1,
w —cciT'vi =wjimod py Vi€ {j+1,...,m},
7 —ecr'si(vl-vl) =7 modp1, 7' 4 cfy7'si(vd - vl) /B3 = 7 mod py,
— dp By sy (v - vl) /B = 7 mod py.

It is worth noticing that v; and v, are random vectors in Z3; as required, and (v;-v.) = £ (v?-v2)+£(v?-v),
since x3 is orthogonal to span{x1, X2} and Z3; = span{x1, x2, X3}
B creates a ciphertext (S*, (Pr, P2, P, Py, Ps, Ps), (Ri, R, Qi,Q, Q7 , Ti)2y, (Cj,C})7Ly) as follows:

77

1. P, = g"" (gc)_Tlsg(“g'vg)7 P, = (Pl)ﬁQ’ Py = h?’hé’r" P, = gﬁ" (gc)ﬁi‘r’s%(v%vg)/ﬁé’

T
7 NG
Py = h4 (fO Hff-f-l)
t=0
w+c,8’r’s’(vi?~vq)/63 9/ aT+le/d at’+1 dz e, T o’ t+1 g2, o2\ 7 —dB) BT 85 (vEvd) /B
—h4 iVe c/ H / -H(gt“g“ / )Ct) 1P4T 83(V5V:)/Ps

t=0
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= B (g BT S, (g ga” el H b yer ) 7SO0 w0/

s (gaT+1c)ggg;T/sg(ug.vg)/gg ) (geg Hge;HC;)ﬁf,dﬁiﬁgwsg(vg.vz)/ﬁé

. (gaT“c/d> 7' —dB] By’ s (v]-vd)/ By

T T
_ ’ ’ ’ *\ 7! ﬁ'B'T'si(v?-vq)/ﬁ'
:hZ . (g )ﬂ4ﬂ17's( v?)/B% (990 I |get+lct)7f . H cht 1P4T 53\V5°Vc)/Ps
t=0
. (gaT+lc/d)ﬁl . (gaT+1c) _BQB:;T/Sé(”g‘”g)/ﬁé

T T
g% H 991+lcf)ﬁ/ . H t+1ct —p1By7 57 (viwd)/ By . (gaTJrlc/d)ﬁ/
t=0
Py =g~ =g ~PT s v By
= g7 (g)BiIPT i (0] D) /By

2. For each i € [m):

— if ¢ < ¢: it randomly chooses §; € Z,, then sets

T+1

Ri=g%, R,=(g° )", Qi=g¢%, Qi1=hyZh},

Qiz = (Q)), Q) =g"(g")imsiivd/=, Ty = B

— if 4 =14: it sets

q

’ !
R; _grlgvl( c/z)r;szv27

T+1 1 ol ayP T+1

)rsvl(ga
'rs(v -v?) . -
Qll*h Ztl 1 Qi,QZ(Qi)Bzv Q;:gtla Ti:M'e(g Iin)'

sl wd 16! (vP P 6! (v
R; — (ga c/z)risjvi’ Qi — gT 55 (v7 vc)(QC) 55 (vF vc)7

—if § > 4: it sets

T+1

P PP THL /g (a;- . ’
Ro= g, Ry= (o Q= (¢ e, g = 2l
Qi,? — (Qi)627 Q; — gt; (gaT+1),gifr/si(vi-vf)/z;(gc)ﬁi‘,-’s%(vg.v‘é)/zé’ I-vz =M. e(gaini)~

3. For each j € [m]:
- 15 <J: it randomly chooses 5 € Zyn and implicitly sets the value of ji; such that (aT+1C)_1/J;‘V3 —

va = iy mod pr, then sets C; = (g« "1/ gL (g s O — g,
—if j=j:it sets C; =T57 vl (g7

—if j > j: it sets C; = (gla™™

T+1 ’

)i, Cf =g <ga>—637’”‘c° :
)TV (g ), O = g™ - (g°) TV
ItT = g“T+22, then the ciphertext is a well-formed encryption to the index (i, 7). If T is randomly chosen,

say T' = ¢g" for some random r € pr the ciphertext is a well-formed encryption to the index (4,7 + 1) with
implicitly setting p; such that (-4, — 1)v3 = p; mod p;.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, secret keys and challenge ciphertext are the same as that in
the real scheme. B’s advantage in the Modified (T'+1, 1)-EDHE3 game will be exactly equal to .A’s advantage
in the selective index-hiding game.
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E Proof of the Lemma [1] for the Fully Secure ABE with Ciphertexts
Associated with DFAs

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

E.1 The Resulting Augmented ABE with Ciphertexts Associated with DFAs

Setupp(\, U, K = m?) — (PP, MSK). Run G(\) to get (N, p1, p2, p3, G, Gr, ). Pick generators g € Gyp,, X3 €
Gyp,- Set d =9,dy = 2. Pick random B = (Bi,...,B9) € Z%. Pick random {a;, 7;, 2 € ZN Yiemm]s 1¢j €
Z.N }jefm)- The public parameter is

PP = ( (N,G,Gr,e),g,h = (h1 = g",... hg = g™), X3,
{Ei=elg,9)™, Gi=g", Zi=g"}Yietm)» {H;j=9"}jemm )
The master secret key is MSK = (al, ey Oy Tlyeees Ty Clyens ,cm).
A counter ctr = 0 is implicitly included in MSK.
KeyGen, (PP, MSK, u € (Zy)*) — SK(; j),u- Set ctr = ctr + 1 and compute the corresponding index in the
form of (i,7) where 1 < ¢,j < m and (i — 1) *m + j = ctr. Let | = |u|, and parse u = (uy,...,u;).

Pick random & = (81, 02,%0,&1,...,&) € ZY', R = (Ro, R1, ..., Ra, Rs.0, {Rs k, Ro i }rep) € Gp ', and
R{ € Gp,. Output a secret key SK(; ;y ,, as

SK(i,j),u = ( (i,j),u,
Ko =g T h{*hY - Ry, K1 =g" Ry, Ko=g" Ry,
K3 =h3*h§ - Rs, Ky =h5 - Ry, Kso=g% - Rsy,
{Ksi = g% - Rs i, Ko = (hehy*)*="(hshg*)* - Re i }req,
Ky =2 - Ry).
Encrypta (PP, M, M, (4, 5)) — CTiy.
1. For any DFA M = (Q,Zn,J,q0, F = {gu-1}) where n = |Q|, let J = |J|, and parse J =

{(4eys ay,,o0)|t € [1,J]}. Pick random 7 = (7,7, 70,71, ..., 71, {Va}qoeQ\{qn_1}) € Z357T and im-
plicitly set v,,—1 := B47. Set

Pi=g",  Py=g"", Py = ghmghsT,

Py=g" Ps =g, Ps = g~"hz",

{Pry=g™, Pgi=g"+(heh7")™, Po;r=g "v(hghg')™ }ien, -
Note that for ¢ € [1,J], if z; =n — 1, then Py, is computed as Ps; = hj(hehst)™; if y, = n — 1, then
Py, is computed as Py, = hy " (hghg')™.

2. Pick random

Ky Ty S1y--+38m,y t1y...,tm € Zn,

3
Ve, Wi,..., Wy € Ly.

Pick random ry, 7y, 7, € Zn, and set x1 = (74, 0,72), X2 = (0,74, 72), X3 = X1 XX2 = (—TyTz, —TaT2, FxTy)-
Pick random

v €L} Vi€ {l,... i},
v; € span{x1,x2} Vi € {i+1,...,m}.

For each row ¢ € [m]:
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— if i < 4: randomly choose 8; € Z,, and set

R, =g¢", Ri=¢"", Qi=g¢", Qix=(9")"Z(¢")", Qiz=(4™)",
Qi =4g", T,=E".
— if 4 > 4: set
R, = Gfivi7 R; — G;j@squ, Q; = g7's¢('ui~'uc)7 Qi,l _ (961)75i(vi-vc)ziti (951)7r, Qi,z _ (gﬁz)TSi('vi»vc)7
Q=g%, Ti=M- B[,

For each column j € [m]:

— if j < j: randomly choose y; € Z,, and set C; = H;(vcﬂ“)“)

—if j > jiset C; = HI" - g™, C = g™
3 Output the ciphertext CTM = <M, (Pl,PQ,Pg,P4,P5,P67 {P7,t7PS,t7P9,t}te[1,J]>7 (Ri;RganﬁQi,l,Qi,%Q;y
T:)ity, (Cj, C))TLy)-
DecryptA(PP CTM,SK ,j),u) — M or L. Parse OTM to CTM = <I\/H7 (P17P2,P3, P4, P57P6, {P’?,ta PS,t7P9,t}te[17J])7
(R;, R}, Q;, Qin, Qio, QLT)",, (Cj, C;);n:1> and SK(i,j),u to SK(i,j),u = ((’L,j), u, (Ko, K1, Ko, K3, K4, K,
{ K51, Ko i brep, Kb), where M = (Q,Zn, T, qo, F = {qn-1}) withn = |Q|, J = |T|, T = {qa.+ dy. ot }re1,)5
and u = (uq,...,u;). Suppose M accepts u (if M does not accept u, output L).
1. Find a sequence of states pg, p1,. .., o € @ such that py = qq, for k = 1 to | we have (pg_1, pr,ux) € J,
and p; € F. Let (qz,, ,qy,, »0t) = (Pk—1, Pk, ug). Compute

. g’i’wj

; C; :gw]

Dy o H e(Ksp—1,Ps1,) - e(Ks5:Pot,)

kel,l] (Ko k: Pru)

— H e(g% 1, 9" (hehy' )mk)'e(%g’“79_yy"“ (hshg™)™)
kel e((hehy* )81 (hghg* ), g™ )

= T elfr.g" ) elg®.g7")  (since or, = up)
ke(1,l]

:e(gEo’guul) . (gEl,g—”ytl ) (since Yt = Ttyyy fork=1,...1-1)
:6(950’91/0) . (gfl g Vn—l) (SiHCe xtl = antl =n — 1)
:e(gﬁo’guo) ’ e(gflvhzl )-

Compute
D e(Ky,P3)-e(Ks, Py) - e(Ks,FPs) - Dr
p <
e(Ky4, Ps)
_elg™ 9779 T) - e(hy " hE g") - (g%, g 0 hE") - e(g%0, ") - (g hyT)
e(hg, g™)

=e(9”,¢"7).

2. Compute

e(K()in) G(K(/),Q;) . 63(R;,C;)
e(K1,Qi1) - e(K2,Qi2) e3(R;,Cj)’

D[(—

3. Computes M «+ T;/(Dp - Dy) as the output message.
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E.2 Proof of Lemma 1l

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve a Modified (n, J)-EDHE2-Dual problem instance in
a subgroup as follows. B is given

n—1
D= ((NaG7GTae)ag?gaagbvgb/z7ga bc/z, 92, g3,
i i T/ d? i i i 746
ga /d?7ga b/dj7gdj7ga d_7/dj/’ga bdj/d]-/,ga /d?7ga d]/dj/7
*bed
g7,
Vz‘e[o,n], JE[L,J] g° de;,

Vielt,nl, j.j'€ll,J].i#’
Vico,n—1], je[1,7] 9

a'c
b

i 2 iy 15 /46
Viell,2n—1], j.j'€[1,J],5%5" ga‘de]/dj',ga bedj/djs
ibe/d;
Vie[,an—1),izn, jeg] 9% %,
i 2 132 . i . 6 i 6 K 5 2 172 5 X
Viefano1, jrepm g% %, gt edi/ i gt el i gateldy | qaibed [ | gatbied)/dy

R R R R R

and T, where (N = p1paps, G,Gp,e) «— G, g «— Gy, g2 <— Gy, g3 <— Gy, a,b,¢,2,d1,...,dy «— Ly,

a"cz a"cz

and T is either equal to g or T is

a random element from Gy, .

Init. A gives B the challenge DFA M* = {Q*,Zn,J*, 90, qn-1}, where n = |Q*|, let J = |J|*, and parse
J = {(‘hu%;lao—f)v ooy (Gay,s Ay, 03)}

Setup. B randomly chooses {ai € Zn}icim)s {70, 2 € ZN}icpmp\a}s ™5 % € ZN, {¢; € ZN}jeim), and
B, B2, 8%, BY, B, BE, B%, B, By € Zi. B gives A the public parameter PP:

(ga hl = (ga)ﬁia h2 = 9627 h?) = (ga>ﬂé7 h4 = (ga)&l% h5 = gﬁé . ganb/d17

he=g% - ( [ gie" " /digma" A hyp =P (] g,
]

or is a random element from G,,. B’s goal is to determine T' = g

te(l,J] tell,J
hs=g% (T g i "/ ag Y g = g% (T o),
te(1,J] te[1,J]

{E: = e(9,9)" Yiem)»
{Gi=9", Zi= ")V Yietpgiy {H = (@) sepmpgy, Gi= (0" )%, Zi= g7, Hy = (g") )
Note that B implicitly chooses r;, z;(i € [m]\ {i}), ¢;(j € [m]), B1,Bs, B4, Bs, Bs, B, Bs, Po € Zn such that
a™ tert = r; mod p1, az, = z mod py Vi € [m] \ {i},
act = ¢; mod pr, (b/2)¢; = ¢; mod py Vi € [m] \ {7},
aBy = fr mod py, afy = B3 mod p1, aBy = By mod py, G5 +a"b/dy = 5 mod py,
Bs + Z (ofa" " /di—a"""*b/d;) = Bs mod p1, B + Z (—a™""/d?) = By mod py,

te(l,J] tell,J]
By+ > (—oja™ ¥ /df +a" V'b/dy) = Bs mod pr, By + »_ (a" ¥ /df) = By mod py.
te(l,J] te(l,J]

Query Phase. To respond to A’s query for ((4, j),u), let | = |u|, and parse u = (u1, ..., u),
o if (i,5) # (i,4): B picks random & = (61,2, &0, &1, -+, &) € ZN, R= (Ro, Ry, ..., Ra, Rs 0, {Rs , R 1
brep) € GSF?, and Rf) € Gy,. B creates a secret key SK(; ;) 4

g% (gb/z)mc; . htl51hgz Ry, :i ?é 5’] %3

n—1 ’ — —

Ko =< g%i(g" "ve/#)rici AR - Ry, ti=1,j#]
g% (ga)ri% . h?lhgz - Ry, i # ;,j = 5
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Ki=g¢" Ry, Ky=g" Ro, K)=2]""Ry,
Ky =h3%h§ - Rs, Ky =h% - Ry, K5 =g% - Rsy,
{Ksi = g% - Rs e, Koy = (hehy*)*="(hshg*)** - Re 1} req1-

e if (i,j) = (i, 7): it implies that A is querying a secret key with the challenge index (3, ), and M* does not
accept u. We denote by uy, the vector formed by the last [ —k symbol of w. That is wg, = (ug+1,. -, u;). Hence
ug = u and wu; is the empty string. For ¢; € {qo, ..., qn—1} = @, let M be the same DFA as M* except that
the start state is set to ¢;. Then for each k € [0,1] we define Uy, = {i € [0,n — 1]|M accepts uy}. From this
and the query restriction that M* does not accept u, we have 0 ¢ Uy. Due to the WLOG condition, we have
U, = {n—l}. B piCkS random d = ( 3,52,56,51, - ,fl/) S Z?V-H, R = (Ro, Rl, Cey ]%4,R5707 {R5)k, R6,k}k€[l]) S
GS1?, and Rf) € Gp,.

B sets the values of 01 € Zy, w € ZR;, {& € Zn }rep by implicitly setting

V) n—1_.. /
61= 6y —a" erics /By,

g =& —riciB/ BN (D ae)(1+ (0 D d/(of —w))),

i€Ug te(l,J)
s.t.oy #uy

Vke[,l—1]: & =& — rgcgﬁg/(ﬁgﬁ;)( 3 aic) (1 +0 S df(or — )
1€Ug te(l,J]
s.t.0; AUkt

oY A/ - w)),

te(l,J]
s.t.o; Fuy
=& -8/ (Y ae)(1+ 0 Y d/or —w)),
i€el; tell,J]
s.t.of #ug

B creates a secret key SK; 5 ,, as follows:

n—lc

Ko = g“h}'h? - Ry, K1 = g% (¢"" )™/ Ry, Ky = ™ Ry, K= (K\)* - R),

K3 =h3""hi' - Rs
o o 7rgc§ﬁg/(5;ﬁ;)(ziwl aic) <1+(bz te[1,J] d::’/(a;‘fuz)))

_ hg—élhil ) (gaﬁé)a' eric; /By (gaﬂjl) s.t.op#u - Rs
o o —T%c%ﬁé/(ﬂ{ﬂfl)a"hlc(l-i-(bz te[1,7] d‘:’/(af—ul)))

_ h;élhil . (ganc)r;cjﬂo,/ﬁl ) (gaﬂfl) s.t.of#u - R

(since Uy = {n —1})
_ h;&'lhi; ) (ganc)TéC%Bé/Bi . (ga”c> —T%%ﬂé/ﬂi . ( H (ga"‘bcdf)l/(of—uz))_7%0%5:/3/5{ - Ry

te(l,J]
s.t.ofFu
= h3_61 hil . ( H (ganbcdf)l/(grf’ul))77“26353/51 . R37
te(l,J]
s.t.a;‘;éul

Ky =hs - Ry
— 1 (g% .g“nb/dl)_r%ﬂé/(w‘/‘)(Ei“’o o)

_récgﬁé/(ﬁiﬁfl)(zie% aic) ((bz te[1,] dt/(g;_ul)>)
. (gﬁé . gahb/dl) s.t.o; Fuy "Ry
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_ hg(’) ) ( H gaic) —7"2635355/(5154) ) ( H ga"+ibc/d1)_T?C_?Bi%/(ﬁlﬁzl)

€Uy i€Up

note that 0¢Uy

(H 11 (gaibcdt)l/w:—ul))fréc;ﬁgﬁg/wiﬁg)

€Uy tG[l J]
s.t.o] ;éul

( H H (gan+ib2(:dt/dl)1/(0;—u1))7T§C§ﬁé/(ﬁ134[L) ] R4

1€Uyp t€[1 J]
s.t.o] #ul

Ks0=9% Rsp

—rlel el - ) ‘e b dy a':— 1
. (S ) T IO (PR

=g s.t.o; #uy ) R570
=g ([T o) (I T gt T
1€Up i€Uo te(l,J)
s.t.o] ;éul

Ksp=9% Rsp  forkel[l,l—1]

52*’“%63%/(%%)(215%a'iC) (1+(bz tep) de/or—u)+ (0T yepn g df/(a:fum))

=g s.t.oy gy s.t.op Fuk . R5,k
H g T;C;ﬁz/(ﬁ1ﬁ4 . ( H H (gaibcdt)l/(az7uk+1))7"'£céﬁé/(ﬁiﬁa)
€Uy i€Ux  tell,J]

s.t.0; Fupy1

H H a bcd5 1/(01 —uk)) T;/(;’Bé/(ﬁiﬁi) . R5 .

€U, te(l,J]
s.t.op Fuk

Ks; = g% - Rs;

i-rics 34/ ( Siew, a'e) (14 (0% ey di/coi—w))

=g s.t.o; #ug 5.1
_ gﬁl/ . ( H gajc)fré;céﬁé/(ﬁiﬁﬁ . H H a bcd" 1/(at 7u,)) 7”2‘3;‘5:,‘)/(51,34’1) . R5,l7
el €U tell,J]
s.t.oy Fuy

K1 = (hehi)% (hghg')™ - Rg 1
= (heh¥")® (hghy")S

2}

. (gﬁ(’,"rﬁ';ul . ( H g(g:_ul)anzt/dfg_anztb/dt)>Ticjﬁs/(5154)(2ieU0 gﬂ/c)
te(l,J]

_T%%Bé/(ﬁiﬁé)(zigyo aic) ((bZ t'e[1,J] dt//(U;/—uﬂ))
. <g,3g+ﬁ;u1 H g ul)a"ﬂ't/dfg—a"*xtb/dt» s.t.o) AU

te(l,J]

te(l,J)
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—ric5 3/ (8164) (Ziem aic) ((bz t'€1,J] dt'/(fff/*uz)))
( 58+59“1. H g (o7 —ur)a”" yt/d?ganiytb/dg) s.t.of Fuy

fElJ]

7T£C,}ﬁé/(ﬁiﬁi) (Zq,eUl diC) ((bZ t/G[l,J] df//(%ﬁ/*”l)))

( St H g (o7~ a"*yt/dfga’“ytb/dt)) s.t.o; #u1 -RG,I
te(l,J)]
(H g"" ) iRt B (B ( I II zﬁic/df)(afful))_Tﬁcéﬁé/(ﬁiﬁé)
i€Uo te[1,J]i€Uo
Wy o

H H (ga’ﬁmt“bc/dt)*l)_Técgﬁé/(ﬁiﬁi)

te[1,J]) i€Uo

(H H (gaibcdt,)l/(oflful))

ieUo t'e[1,J]
‘;tot/;éul

—r5ck 8L (Be+Bru1)/(B15Y)

'

H H H (ga“*mt“bcdt,/df)(Uf—m)/(ot*/—ul))

te[l,J]i€Uo t'e[1,J]
staf,yéul

H H H (gan_mtﬁb%dt'/dt)71/(0;,7*“1))_T%C%ﬁé/(ﬁmzl)

te[l,J]i€Uo t'€[1,J]

—rich s/ (B184)

sfot,;éul
Vs
o —r;c5 B (Bs+Bou1)/ ﬁﬂ4 an—vtHig g8y — (o —u1) —rict By /(B18%)
(o) [T T (o sy i)
€U te[1,J] i€U;
' 7,

H H (ga"*’yﬁribc/dt))7%%&3/(&15‘1)

te[l,J] i€l

(H H (gafbcdt,)1/(ofl—uz>)*T%c&ﬁé(ﬁéw;ul)/(ﬁ;ﬁb

€Uy t'eg[l,J]
s.t.oy, Fus

Ys
H H H (ga"_yt_Hdet//d?) —(of 7u1)/(alf, 7u2)) —récéﬁé/(ﬁiﬁé)
te[l,J] i€l t'e[1,J]
s.t. Uf,iuz
Yy
5/(B18%)

H H H (ga"iytﬁb%dt//dn)1/(0:,—U2))7r§c_’7[53

te[1,J]i€lUr t'e[1,J]
s.t.o;, Fus
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(TL TD (gtetnycimmny TG Gicd
i€Ur t'e[1,J]
s.t.o] F#uy

Wll

H H H (ga"*ywbcdfl/d?)*(Ufful)/(vff*ul))‘7’263"55/(515@
te[l,J] i€l t'e[1,J)

s.t.o] #u1
H H H (ga"*y“/“b%df,/dt)1/(%*/*“1))_77C5ﬁ3/(ﬁ1ﬁ4) Re

te[1,J]i€lUr t'e[1,J]

S.t.o‘:;éul
Lp12
n—myp+i _ _T‘% LBL /(B B4
:¢1.¢2.¢3.< H H(ga t+bc/dt) 1) o 3/(14).@4
te[1,J)i€Uo
IT IT 1II (gan_mtﬁbwt’/df)(UZ*UI)/(U:/*ul))_’%C%ﬁé/(ﬁiﬁfl)
te[l,J]i€lo t'e[l,J]
S‘to‘t,;ﬁul
n—ypti —rick By /(8184
.%.%.%.( T 11 t+b(!/dt,)) 5/ (81 4).%.%.%0.¢111

te[l,J] i€l

H H H (ga"*yt“bcdi’//d?)—(Uf—ul)/(o;‘,—ul))*Té‘%ﬁé/(ﬁiﬁi)

te[1,J] i€l t'€[1,J]

s.t.oy] ;éul
W12 - Re 1
R —1\ ~"iciBs/ (B18Y)
ey ([T T () O,
te[l,J] i€Uo

. ( H H H (ganfwtﬂbcdt//df) (o7 —u1)/ (o} —u1)> —rich B4 /(81 84)

te[l,J] i€Uo t'€[l,J]
s.t.o) Fuy s.t.oy Fur

N S - A
.%.%.%.( I1 11 (& *b/dt)) O W w0y
te[l,J]i€U1

I I 1 (gawmbcdf//dﬁ)f<o:—u1>/<a:~u1>)—*%C%f*é“ﬁﬁf”i)

te[l,J] i€Ur t'e[1,J]

s.t.o; #uy s.t.o; #u1
W19 - Re 1
= Epl . Epg . Epg
H H an— wt+ibc/d,,)_ ) T;C;ﬁg/ B1841) ) ( H H an— x,,+ibc/dt)_1)*7”26253/(515:1).
t€[1 J] i€Uo te[l,J] i€Uo
s.t.o} #ul s.t.of=uy
AFY, forot#uy Jor of=u1
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< H H H (ga"*thridet'/d?)(U:_ul)/(at*/—ul))_Tgcéﬁé/(ﬁiﬁ"l)

te[1,J] i€Uo t'e[1,J]
St(ﬂ#“l sto’t,;éul t'#t

W13, for t'#t

I 10 (gan—wbcdt/df)<a:fu1>/<o:fu1>> —rici s/ (B18)

te[l,J] i€Uo
s.t.o; #u1

Ao, for t'=t
. WE) . WG . W’Y
. —rich B/ (BLBL) . —rict 84/ (BLB4)
(T T ) (T I )
te[l,J] €U tElJ] €Uy
s.t.o; #u1 s.t.o; =u1
Ay, for oy#uy for of=uy

W - Wy - Wig - Uy

< I 11 I (ganfywribcdf//d?)—(o‘f—ul)/(a'z,—ul)>_Técéﬁé/(ﬁiﬁé)

te[l,J] €Uy t'e[1,J]
St0t7£U1 s.t.of Fug,t' £t

V14, for t'#t

( I1 H(gwwbcdi’/df)—<a:—u1>/(o:—u1))*Técéﬁé/wwin

te[l,J] €Uy
s.t.oy #uy

A;l,for t'=t

“Wio - Re1
=V - ¥y U3
H H n—mt+ibc/dt)—1) *T{Cﬁé/(ﬁiﬁé) ) ( H H (ga7L7‘Tt+ibc/dt)_1) *ﬁéﬁé/(ﬁiﬂi)
tell,J]  i€lUo te[l,J]  i€Uo
efo—ulstﬁﬁxt sta_ulefz Ty

W15, for i#xy for i=xy (if x+€Up)
Wy - Wy3 - Vs - W - Wy

H H nfytﬂbc/dt))* f ;ﬁg./ ﬁ 54 ( H H n—yt+ibc/dt))77{;63:3:/3/(616:1)

te[l,J] i€l te[l,J] i€Ux
sta—ulstwéyt sto—ulstl Yt
Y16, for iF#y: for i=y; (if y+€U1)

“Wg - Wy - Wi - W11 - Vs - Vi - Re 1
=W Wy Vs W5 Wy -y - W5 - We - W7 - Wi - Ws - Yo - V1o - W1 - ia - Wiz - Re
(since for ¢ € [1, J] such that o] = uy, we have(z; € Uy Ay € Uy) or (vt ¢ Up Ayr ¢ Ur).)

K. = (hah* )1 (hghy* )% - Rg x for ke [2,1—1]
= (hehy*)Sk=1 (hghy* S

< ﬁ6+57uk ) H g k an— l'f/dz an— 'Efb/d ))T;C;ﬁ%/(ﬁiﬁi)(21eUkl a’C)
te[1,J)]
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J,';cgﬁg/w;ﬁ;)(z@m a) ((bz el dt,/(g;,,uk)))

(st (] geimon i geaora)

te(1,J]

S.t.o’:,#uk

77‘%%5‘/’/(515‘/‘)(2%%1aic)((bz ¢ €[1,7] di’//w?*Uk—l)))

. (gﬁ(",“v’ﬁéuk H g uk a™— 'ct/dQ an— mtb/dt))
te[l,J]

. (gﬂé+ﬁéuk H g 0’ uk an TVt /d?gan—ytb/dt)) —T‘;C;B‘g/(ﬂlﬁz;) (ZiEUk alc)

te(1,J]

*
s.t.at,;éuk_l

—rici By /(B1BL) (Zieuk a'ic) ((bz ¢ e[, ] dt//(U:/—“kJrl)))

'<gﬁé+ﬁéuk H g (o} —ug)a™" yt/dfgan_y"b/dt))

S't*’:/?'éuk-f-l

—r5c5B3/(B154) (Zieuk aic) ((bz ¥ e1,] df//(”f/—uk»)

te[1,J]
. < Bs+Bour H g Wy"/dfgg”*%b/d,,))
te1,J]
= (hghy*)%=1 (hghyt )
v
( 11 gaic>*”%céﬁéwéw;uk)/wmg)
1€Uk -1

2

H H (ga”’_wt*”"c/df)(d;‘fuk))_T%cgﬂé/(ﬂiﬂé)

te[1,J] i€Uk_1

Vs

H H (ga"_mt"'ibc/dt)*l)_T%C%Bé/(ﬁiﬁ‘i)

te[l,J]i€Uk_1
5 (B6+Brur)/(B181)

( D (ga'ibcdt,)l/w:,—uk))*T%C%
i€Uk—1 t'e[1,J]
s.t.o), Fu

'
H H H (ga"*zt“bcdt,/df) (o7 —ur)/ (o 7uk)> —riciBy/(B1BY)

te[l,J] i€Uk-1 t'€[1,J]
s.t.oy, Fuy

H H H (ganizt“bzcdt//dt)—1/(0f/—uk)>

tE[l,J] 1€Uk_1 t’e[l,J]
s.t.oy, Fu

—rictBy/(B18%)

Us

( I1 11 (gaibcdg,)l/w:ﬁukﬂ))—récf;ﬁé<ﬁé+ﬂm>/<aiag>

i€Uk-1  t'e[1,J]
s.t.oy Fuk_1

1’73
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H H H (g“niwﬁibc‘if//d?)(oj_uk)/(of’_ukfl)<ga"7”“b2cdf//dt)_1/(0:1_1%71))

te[l,J] i€Uk-1 t'€[1,J]
s.t.oy Fuk—1

—r5ck B3/ (B154)

124
) —r5¢5 85 (Bs+Boun)/ (815)

.(Hga

i€Uy

Uy

H H (ga"*ytJric/d?) —(Uz—uk)> —ric; B3/ (B181)

te[l,J] €Uy

Yy

I T1 6 )

te[l,J] €Uy

( H H (gaibcdt/>1/(0:,_uk+l))

€Uk t'e[l,J]
s.t.0), Fup 1

—richB5/(8164)

—rick By (Bg+Bour)/ (B164)

Y10

H H H (gan_yﬁ—idet’/d?)i(U:7""‘)/(0:/7uk+1)(ga"_yt‘*'*bzcdt’/dt)1/(”:/*U1c+1)>

te[l,J] €U, t'e[1,J]
s.t.07 FUpq1

—rick B/ (B18Y)

21

. ( Z Z (gaibcdf/)1/(Uf/—uk))*T§C§53(5§+ﬁéuk)/(5iﬁé)

€Uk t'el1,J]
s.t.oy, Fuy

5P
H H H (gan—yﬁ-%bcdfl/d?) —(of—ur)/ (o} *Uk)) —T%céﬁé/(ﬁiﬁé)

te[l,J]i€U, ' €[1,J]
stat,;ﬁuk

H H H (ganfyt#»inCdE//dt)1/(0’:/—’U,k))_Tgc_%ﬁi;/(ﬁgﬁz/l) .RG’k

te[1,J]i€Ur t'€[1,J]
s.t.o), Fuy

Vi3
n—wgti _1\ —Ti¢5Bs/ (B1BY)
:¢1~¢2~W3.< H H (ga +bC/dt) 1) i3 14'!p4

tE[LJ] 1€Uk—1

I I 11 (gan*zmbcdt,/df)(a?—w)/(o?—w))*T%Bé/(ﬁiﬁi)
te[l,J]i€Uk-1 t'€[1,J]
s.t.o’Z,;ﬁuk
n—ygti —r5c5B5/(B1BY)
.%.%.%.%.%.( I1 II o yt*bc/dt)) i Wy Wy - Uy
te[l,J] i€Uy
—rtch 81/ (B185)

H H H (ga"—yt“bcdf,/df)*(affu;m)/(vfﬁuk))

te(l,J] i€Uy t'e[LJ]
s.t.oy, Fuy
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W13 - Re i,

—7, . ( I 1II ¢ "*It“bc/dt)%)

tel,J] i€U,_1
s.t.o; Fuy

te[l,J] i€Ur—_1
s.t.o; =u

H H H (ga“*mt“bcdt,/df)(Uf—uk)/(o;—uk))*T%CQ’-B;';/(B{BZ;)

te[l,J] i€Uk_1 tE[l J]
3t0t75uk ERN WEZI

Wy W - Wy - Wy - Wy - ( H H (g“n_yt“bc/dt))

te[l,J] €U
s.t.op Fup

[T IT G ) ™

te[l,J] €U
s.t.o; =uy

. ( H H H (ga’L’ytJride?//d?)_(af—uk)/(o:,—uk))

tel,J] €Uk t'€[1,J]
s.t.of Fug s.t.oy, Fu

W3- Re 1,

:ww%.( T T (s

tel,J] i€U,_1
stotiuk

—r5ctBy/(B18L)

—r5c5B5/(B818%)

—rici 5/ (8164)

_1) —ric; B3/ (B184)

Apt
ric5B5/(8161)

te[l,J] i€Up_1
s.t. o't =Ug

. < H H H (ga"*wﬁr'ibcdt//df)(Of—uk)/(g:/ —w))

te[l,J] i€Uk—1 t'e[1,J]
s.t.ol Fu sto’t,#u;mt #t

—rich B85/ (B164)

!0147 fOT' t';ﬁt

( m 11 ¢ Hmbcdt/dg)(oi—w)/(a:—uk))

te[l,J] i€U,_1
s.t.o; Fuy

—r5c5Bs/(B1BY)

Ag, for t'=t

Uy W Wy W - Wy ( H H (g“%y”ibc/dt)

te[l,J] €U
s.t.op Fug

)*Tﬁ%ﬂé/(ﬂiﬂé)

Ay

H H “uﬁ%c/ch))470363/(61,84) L ZURN 4P

te[l,J] i€Ug
s.t. o‘t =ug
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. < H H H (ganfyﬁz‘bcdf,/df)—(of—uk)/(g;f,_uk)>—rgc%ﬁ;/(gggi)

te[l,J] €Uy t €[1,J]
St‘Tt?éUk s.t.07 Fup,t'#t

Wis, for t'#t

H H (ga"_yt*’ibcdf/df)*(”: —uk)/ (o} *uk))

te[l,J] €U
s.t.o; #uy

—r5c5B3/(B15Y)

Al_l, for t'=t
W13 - Re 1,

—wevew ([T ()

te[l,J] i€Ur—1
s.t.o; =uy

Wy W - Wy - Wy - Wy - ( H H (ganfy”ibc/dt)

te[l,J] €U
s.t.op =ug

anTet —1\ i Ps/ (BLAS
:¢1~Q72.Q73.( H H +bC/dt) 1) %85/ (8164)

te[l,J] i€Uk_1
s.t.o) =uy s-t.iFTe

_1\ —Tic5B3/(B18Y)
) ’ Wy Wy

—r5c; B3/ (B18Y)
) 10 - Y11

Vi, for i#wy
H H "*%Jr’tbc/dt)—l) 7T£C;’ﬁé/(ﬁ1ﬁzl) .!p4 - !p14

telJ €Uk _1
s.t.oy —ukétz Tt

for i=z¢ (if ¢€Uk-1)

Wy W - Wy - Wy - Wy - ( H H (g“n_ytﬁbc/dt))

te[l,J] €Uy
s.t.op =up £ Yt

—richB5/(8181)

W7, for i#y:
—r5ck By /(B154)

I )

tElJ ZEUk
s.t.o; =uy =Yt

for i=yy (if y+€UL)
Y0P - Y2 Vs - Wis - Re g

“Wip - W5 - Vi3 - Re i,

=V Wy W3 W Wy W1y W5 Vs Wy -Wg Vg -Wi7 W10 W11 - V12 - V15 - V13 - Rk,
(since for ¢ € [1,J] such that o} = ug, we have(z; € Uy_1 Ay € Uy) or (zy ¢ Up—1 Ay: & Ug).)

Koy = (hthl)&*l(hShgl)& Rg,
- (hﬁh?l)él/—l(hsh'gl)gl/

< 56+57ul ) H g —'u.l)a" zf/dQ an— Ifb/d ))

te[1,J)

chgﬁg/w;ﬁg)(z@H a)
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e85/ ( Zie_, a'e) (05 peqn dolion—w))

(gt (T gl gy sty
te[1,J]

*Técf;ﬁé/(ﬁiﬁzlx)(zigmil aic) ((bZ t,G[l,J] df//(U:/*ulfl))>

) (gBéJrﬁ;u, H g *—up)a™" ”/d2 an— Ttb/dt)) s‘t.U;‘,;éul_l
te(1,J]

.(Qﬂé+l3§uz (] g a"—yt/dggan—vtb/dt))""fvchB/wl@)(ZieulaC)
tell,J]

_"%C;’ﬁé/(ﬁiﬁé) (ZieUl aic) ((bz t'el1,J] df//(ﬂz/—ul)))

.<gﬁé+ﬁgul H g™ yt/dfgan—ytb/dt)) 5.t Reu
tef1,J)
= (hehy")%-1 (hshg')
¥
( 3 gaic)—T§C§B§,(Bé+5§uz)/(ﬂiﬂé)
€U 1
2
H H (gan—zﬁic/df)(g;,ul))_7,§c§5é/([316£)_( H H (ganfzfribc/dt)f])—T%C%Bé/(ﬂ{ﬂé)
te[l,J]i€U;—1 te[l,J]i€U;—1
s

(I LD (gt icimm) s assmmoisn
. e, )
i€Ui1 t'e[l,J]

ER R EST

'

H H H (ganf’“}ribcdt//df)(”;—ul)/(”;—ul))

te[l,J]i€li—1 t'e[1,J]
s.t.(r:,;éul

H H H (gan_mt+ib26dt’/dt)fl/(‘fflfuz))_Técgﬁé/(ﬁiﬁfl)

te[1,J]i€li—1 t'€[1,J]
s.t.oy, Fu

—rict B4/ (8185)

s

H H (gaibcdf,)l/(af/—ul,1)>

€U—1 t'egl,J)]
s.t.oy Fui—1

—rick By (Bg+Bhw) /(81 84)

s

1T 11 1T (go" " beds a2y (i /(i — i) (ga”_““b%df//dt)1/(0}*/*1”—1)) —7i¢583/ (B1B2)

te[1,J]i€li—1 ' €[1,J]
s.t.oyFurq
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(Tl e 8484+ Bwn) /(B154)
. g )

el

Uy

=yt qo *(f’f*uz)) —7-%0%[3&/(/31/32) ( At tipe/d, —rgcgﬁé/(ﬁiﬁfl)
II II ) (I 1T G )
te[l,J]i€l; te[l,J]i€l;

Yy
(IT 11 (g“ibcdff)l/(U:/7U’>)_Técgﬁé(ﬁé*‘@éul)/(ﬁ{ﬁfl)

el t'e(1,J]
s.t. O’t/?éu1

Y10

H H H (gan—yf,Jribcdts//d?)—(o;‘—ul)/(at*,—ul)>)7T§c§ﬁé/(5iﬁi)

te[1,J]i€U; t'€[1,J]
s.t. at,7$u;
H H H (gan—yt+zb2cdf//dt)1/(0':,7u1)))—7’20353/(5154) ~R6J

te[l,J]i€lUr t'e[1,J]
s.t.o), Fu

251

w1 L6 )

te[l,J]i€U; 1

H H H (ganfw‘Jribcdt//df)(”:_ul)/(gfl—ul))

te[l,J]i€Ui—1 t'€[1,J]
s.t.oy, Fu

n—yp+i —rictBL /(BB
'W5'u76'u77'u78'u79'( H H(ga \+bC/dt)) 585/ (8184)
te[1,7] i€U;

—rick 85/ (8164)

—rich s/ (8164)

H H H (ga”*yt“bcdf,/df) —(at*—uz)/(af,—ul)) ) —r5c5B3/(B1BY) Wy - Ry

te[1,J] €U t'e[1,J]
s.t.oy Fu

:y'/yu?gwg.( M II ¢ ”t“bc/dt)fl)

tE 1 J i€elU;_1
s.t.oy] ;ﬁul

I )

tell,J] i€U;1
s.t. o't =u;

—ric5 B/ (B184)

—rich 5/ (8164)

( II II 1I (g““’”‘“bcdt//df)<a:—uz)/<a:/—ul))*récéﬁé/(ﬁiﬁ:o
te[l,J] i€Ui—1 t/ €[1,J]
s.t.of Fuy s.t.o), Fu
an—veti —ricB5/(B184)
’WS’WG’W’?'WS'WQ'( H H Jt+bc/dt)) iPs/ PP
te[l J] €U
s.t.o} ;ﬁul
H H (ga"’yt+ibc/dt))_T763ﬂ3/(ﬂ1ﬂ4)
te[l,J] i€l
s.t.o;=u;
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—riciB5/(8164)

oo ((I1 I 11 (ga"*““bcdi/df)—(oz‘—uz>/<a:/—uz>)) < R

te[l,J] i€l t'e[LJ]
s.t.oyFu s.t.o), Fu

=V YUy - Us - ( H H (ga""”“bc/dt)—

te[l,J] i€U;_1
s.t.o; #uy

1) —riciBs/(B164)

apt
—richBy/(8184)

I )

tell,J] i€U;—1
s.t.oy=u

( H H H (gan_mt+ib6dt//df)(J:{iul)/(U:/*ul))

tElJ] €U tel]
S’to'f;ﬁu[ 5t0't/7éult;ﬁt

—ric5B5/(B18%)

Yo, for t'#t

( H H (ganfmfﬂribcdt/df)(U:—ul)/(g:_ul)>

te[l,J] €U
s.t.oy #uy

—rictBy/(B18%)

Ag, for t'=t

n—ypti —ricBs/(B184)
.%,%,%,%,%,( 11 II@“'+“”ﬂ)T’3/14

te[l,J] i€l
s.t.op F#ug
Aq
< H H nfytﬂ'bc/dt))—Tﬁcfgﬂé/(ﬂﬁﬂé)
te[1,J] i€l
s.t. U, =uy
n—yyti C(o*— . —ricsB5/ (8184
g - ( H H H (ga v+ bcdf//df) (of—w)/ (o) ul))) e 3/ (B1BY)
tel1,J] €U, t'e(1,J]
s.t.of Fug s.tg?,#u;,t'#t
Wig, for t/#t
H H nfyﬁibcdf/d?)f(offuz)/(UZ*ul)))_récgﬁé/(ﬁmi) Wy - Rey
te[1,J] i€l;
s.t.o] ;éu;
ATY for #'=t
it 84/(81 L)

— W Wy W ( I 11 (ganwmbc/dt)A)— '« oy,

te[l,J] €U

s.t.of=u;
et —ric5B3/(B184)
.%.%.%.%.WQ.( T I ™ bc/d)) i g W Wy - Ry
te[1,J] i€U;
s.t.of=u;
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n—mptiy . _1\ —7ic5B5/(B1BL)
—wwow (T I (e

tell,J] €U

s.t.of=u; 1FT

V14, for iFxy

n—xp+i -1 *chl’ﬁg/(ﬁiﬁé)
M II (¢ e ) ’ Wy - W
tell,J] i€Ui_1
s.t.of=u; =Tt
for i=zy (if z4€U;_1)
—ric5 B3/ (B15%)

Wy W - Uy - Wy - Uy - ( H H (g“"fy”ibC/dt))

tE[l,J] 7{€Ul
s.t.of=u; i#ye

Uis, for iFy:

n—yg+i 77"%%@" 8. 8!
H H (ga B bddt)) e Wi - W3- Y11 - Rey

te[l,J] Z:GU;
s.t.oy=u; =Yt

for i=y, (ify:€U;)
=0 Wy U3 - Wiy Wy -Wio-WUs - Vg - Wy - Ug - Wy - Wi - W0 - V13- Vi1 - Re
(since for ¢ € [1, J] such that o] = u;, we have(x; € U1 Ay, € Up) or (xy ¢ U1 Ay ¢ UL).)

Note that B can calculate the values of Ko, K1, K», Kj), K3, K4, K50, { K5, K6 1 }rep) using the suitable
terms of the assumption.

Challenge. A submits a message M. B randomly chooses

/ ! / ! ! /
Ty S1yee vy 852187 Siq1s -1 Smy L1y it Gy by € LN,
/ / 3
Wi, W), Wy, Wy, € Ly
/ —/ / / / !
T, T, g, Tyy---, Ty GZN, {Vz €ZN}quQ\{Qn—1}'

B randomly chooses r, 7y, 7, € Zn, and sets x1 = (r5,0,72), x2 = (0,74, 72), X3 = X1 XXz = (—ryrs, —Tgrs, TaTy).
B randomly chooses

v, €25 Vie{l,... i—1},
v? € span{x1, xz2}, v € span{xs},
v; € span{x1, X2} Vi € {i+1,...,m},
vP € span{x1,xz2}, vI =rv3xs € span{xs}.

B sets the value of &, 7, 53, t;(i € [m]\{i}) € Zn, ve,v; € ZY, {w; € ZJ} 5, 7, 7, 7o, M1, ..., Ty € L, {v, €
ZN}q,€Q\{gn_.} by implicitly setting

n—1 n—1

a"te=rmodpy, a" tezr’ =7 modpi, si/(a" 'c) = s;mod py,
ti + 0By 7 si (v - vl) /2 = t; mod py Vi e {1,...,i— 1},
ty—a" BT si(v - o) /2] + BT s (v - v?) /z) = t; mod py Vi€ {i+ 1,...,m},
1
v, = ;vﬁ +vl, v; =0+ ;v%

’ D — oy
w;—aCTv = wj mod py,

w); — bel;m'vl = w; mod py Vi € {j+1,...,m},
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7' —br'si(v] - vl) = 7w mod p1, T 4 0BT s5(v] - vl)/By = T mod py,
mo + d1 B35y 7 55 (v? - vl) /B3 = mo mod py,
Ty 4 dy By 517 s (v g v?)/B% = m mod py Vt € [1, J],
vy +a" BB T s (v] - vl) /B3 = v, mod pr Vg, € Q\ {gn-1}-

Also, B implicitly sets vy, 1 := 47 = afy (7' + bB17's5(v] - vd)/B3) mod p;.

b (v!

It is worth noticing that v; and v, are random vectors in Z3; as required, and (v; - v.) = L(v? - vE) +

-vY), since x3 is orthogonal to span{x1, x2} and Z3%, = span{x1, X2, X3}
B creates a ciphertext (M*, (Py, P2, P3, Py, Ps, Ps, { Pr.¢, Ps 1, Po .t }ier1)), (Ri, R}, Qi, Qi 1, Qi2, Q3 Th)i

(ij C; );n:1> as follows:

1.

Pl _ gﬂ' _ gﬂ—’ (gb)—-,—/5%('1,“2_7~'zjg)7 P2 _ (Pl)ﬂg’ P3 _ h71r T hﬂ' 7r
Py = gﬁ' = gﬁ/ (gb),ﬁi'r/s%(vg-‘vg)/,@é’ Py = gﬂ—o = gﬂ'é) (gdl)ﬁzlﬂiT/s%(vi ’Ug)/ﬁé’
Py = g~ "0RT = g a VL s (0T uD) B T (8% ga"b/dr i B85 o202

- gfuahgé (g )PaBiBLT i (vl v ) /85

for t € [1, J],

Py =g™ = gﬂi . (gdt)ﬂf;ﬂif'#(v%v@/ﬁé’
if oy =n—1,
Py = gt (hehZ )™
— gaﬁ4(7r +b51'r’9/(v v9)/B5) (h ho't )Trt+d,ﬁ4b’17' sl(v%vg)/ﬂé
=1 ’ /] * '3 sl (Y. ’
= (g®)Pa gaBibBiT s;(v;-v&)/ﬁg(hﬁh‘;t )i (gPst o )dtﬁﬁlf s7(vive)/Bs
H go'Z/a”_-’Et/ /d?/g*a"—-’”t’ b/dt/ . H gia" ’H//d2 )a' )dt64617/8/( q)/fBS
t'el,J] t'ef1,J]
_ (g“)ﬁﬁ' BT ] VDB (g 7 Y (gie) (Pt BB T s (v v )/ By
H g —a"” zt/b/dt,)dtﬂ4 1T 3,(1’ vq)/ﬁs
t’'e(1,J)]
_ (g“)ﬁﬁ'gw;w;r’sé(vsf /B3 (hghSt Y™ () PotProBasiT (v D)/ B
H g —a”” ‘f’bdt/dt,)54517/s/(v vd) /B
t'e(1,J]
= (ga)ﬁiﬁ/gaﬁibﬁif'#(v?-vZ)/Bé(h haf)w;( dt)(5é+5$0§)52517'32(1'?'”2)/5&
( H gfa" It/bdt/d,,)BMiT'S'(v 'Uq)/ﬁz.(gfab)ﬁzlxﬁiT’S%(U?'vg)/ﬁé

t'el1,J] T
ht for t'=t

for t'#t
_ (ga),[ijﬁr' (heh%‘:)wé (gd‘) (Be+B707)ByB17" s3(v?v) /By
T g v S
t'el1,J]

t'#t
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ifxy #n—1,
Pso = g (hehy' )™
= g¥er - g0 T OBABIT ST /B (o 7 YA BB T s (v v ) /By
= Ve - go" T VBB ST By (BT (BBl ) BT S (0D B

(L g e gy (] g sy

te[l,J] t'e[1,J]

de B4 BT 55 (v vd) /By

= Ve g TR SO B (T8 Y (g ) PRSI T s (v w) Ps

( H g—a"’”t’b/dt/)dt5£517,<9§(vg'v2)/5é
t'e[1,J]

= g gt TSSO B (g T ) (gh) et Bre BT T /5

| H g—a””t/bdt/dt/)52517/3%(1’?‘1’3)/53,
t'e(1,J]

= gV gt VBB ST B (7 Y (e ) (BB BT (0D /s

. ( H gfanfzt’ bdt/dt/)ﬁzxﬁﬂ' s;(vi-vl)/ By . (gfanfzt6)5:1517,5%(”?""2)/@%

t'e[1,J]

At for t'=t
for t'#t
= g% - (hghZF )i () FoHPren AT (T g ey TSSO
t'e[1,J]
t'#t

ifyy =n—1,
Py, = g~ (hghg' )™
— g OB BB ST 0D BL) (g T YT AL T s (010 /B

= (g®)PaT g aBabBLT S (v 0D/ By (g T Y (gﬁgwgo;‘)Wéﬂi“#(v?'v@/ﬁé

*  n— n— n—1 * dB,B,T/SL‘(’Ug',Uq)/ﬁ/
—at,a™ TV /dS a" TV b/dy a" e fdf o\ AT BT e S
A(CIT g7 ™7y - C I o ™)
t'e[1,J] t'e[1,J)]
= (go)~FiT gmaBibBLT S (WI )/ B (o iy (e ) (Bt BooiBLAIT (v vE) /B
| H ga"*yt’b/dt,)dtﬁéﬂiT/S%(vg'vg)/ﬂé
t'e(1,J]
_ (ga)—ﬁiﬁ/g—aﬂibﬁ{T’s%(vgmg)/ﬁé (hghg:)ﬂ; (gdt)(5é+ﬁé‘7:)ﬂiﬁ{T,S%(”g'”g)/ﬁé
( H ga"_yt’bdt/dt/)54/151"'l5%(”g‘”g)/ﬂé
te[1,J]
— (g®) O g aBibBl T s (Wl )y (g 7 Y () (BB S (] v s

YN

N H g bdt/dt/)ﬁfxﬁl"' s7(viwl)/B; (gab)ﬁéﬁif’#(v%vg)/ﬁé

t'el1,J]

y—
vt for t'=t

for t'#t
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_ (g%) T (hgh ) (g ) ROl T o™ b ) BBRT S 02) 5

t'e[1,J]
t'#t
if Yt 7é n— ]-7
Pgy =g vt (hghg' )™
g g VBB S Bl (o T YR BT s () /B4
gV - g BT S B (T YT (Pt Bhot ) PP S (T 0/ B

(O R O G | | gawt//df/)o:,)dfﬂéﬂif’sﬂv%'vﬁ)/ﬁé

t'e[1,J] t'e[1,J)]
= g g T OB SEVD B) (g gy (gie) PR IRAT (0 B
. ( H ga“’yt’ b/dt/)dtﬂwﬁ/s%(”g‘vg)/ﬁé
t'e(1,J]
= g g BB S 0] W) B (T Y () (Bt Par AT S (] ) /s
) ( H g bdt/dt/)ﬁéﬁiT'S%(vg'vg)/ﬁé
t’'e(1,J]
= g g T BB S ) By (o Ty (g ) (BB BB () s
. ( H ga”_yt’bdt/dt/)ﬁiﬁiTIS%(vg‘”g)/ﬂé . (gan_ytb)ﬁéﬁiﬂsé(”g'vg)/ﬁé
t,te'[;lé’tJ] for t'=t
for t/#t
= g (e () BT DI, (T g b P D 5
t'e[1,J]
t'#t

Note that the values of (Py, Py, Ps, Py, Ps, Ps,{Prt, Pst, Pot }1e[1,7]) can be calculated using the suitable
terms of the assumption.
2. For each i € [m]:
— if ¢ < ¢: it randomly chooses §; € Z,, then sets

n—1

Ri = gvi7 R{L = (ga C)viv Qz = 98i7 Qi,l = hingflhT s
Qiz = (Qi)%2, Q) = gli(gH)A siwivd/= T, = B

— if § = 7: it sets

n—1

R, = grisivl (qh/=yrisiv! | Ry = (g7 eyrisiol (gt s s yrain! | = g6 (g sl uD),
@I g . ,.
Qix=hy "UZERT, Qia = (Q0)P, Qi =4g", Ti=M-e(g™, Q).
—if i > 4: it sets
R, = g % R/ _oa teyris;vg __(.a" e 7's;(vi-vP) R Zt;hﬂ'/
i =9 ) i_(g ) 7Qz—(g ) an,l— i 1
Qi’z _ (Qi)ﬁz, Q; _ gt;(ga"’lc)_517'/3%'(”"'”5)/21{ (gb)ﬁif’%(v?'“@/zi’ T, = M- 6(9%,@@‘)-
3. For each j € [m]:
— if 7 < j: it randomly chooses ,u; € Zy and implicitly sets the value of y; such that (@™ tbe)~t /L;-Vg —

vs = p; mod py, then sets C; = (g Tbe/zyGTIVE L T MGG L (gaT T eywy C) = gvi.

n—1
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— if j = j: it sets C; = Te57vE (92" ey @i, C) = g% - (g*) T Ve,

—if j > it sets Cj = (g P/2)GTVE L (g0 WS, O = g - (gh) TR

If T = ¢g*"°*, then the ciphertext is a well-formed encryption to the index (i,7). If T is randomly chosen,
say T = g¢" for some random r € Z,,, the ciphertext is a well-formed encryption to the index (4, j 4+ 1) with
implicitly setting p; such that (77— — 1)v3 = p; mod p;.

acz

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that
in the real scheme. B’s advantage in the Modified (n,J)-EDHE2-Dual game will be exactly equal to A’s
advantage in the selective index-hiding game.

F Proof of the Lemma [1| for the Large Universe CP-ABE on Prime Order
Groups

To make the proof easy to follow, we present the details of the resulting AugABE scheme first.

F.1 The Resulting Augmented CP-ABE

Setuppa(\, I, K = m?) — (PP,MSK). Run (p, G,Gr,e) < G(\). Pick a generator g € G. Set d = 4,dy = 1.
Pick random 8 = (B1,...,4) € Z,. Pick random {«, i, zi € Zp}icim], {¢j € Zp}jcm)- The public
parameter is

PP = ( (p7G7(G’Tae),gah = (hl :gﬂla"'ah4 = 954)7
{Ez = e(gag)ai7 G’L :g”7 Z; :gZi}iE[m]a {H] = gcj}je[m] )

The master secret key is MSK = (041, ey Oy T1ye ooy Ty Clye et cm).
A counter ctr = 0 is implicitly included in MSK.

KeyGenp (PP,MSK, S C Z,) — SK; jy,s- Set ctr = ctr + 1 and then compute the corresponding index in
the form of (¢,j) where 1 <4,5 <m and (i — 1) * m + j = ctr. Let [ x n be the size of A. Pick random

0 = (01,{0s}ses) € Z,l)HS‘. Output a secret key SK; ;) 5 as

SK(i,j),S = ( (7;7‘7.)787
Ko =g eoteighh Ki=g" {Kp2=g¢", Ku3=(9""¢")"(g")"" }ues
Ky =27").
Encrypta (PP, M, (A, p), (i,7)) — CTa,p)-
1. Upon input a ciphertext policy (A4,p) € Y, where A is an [ X n matrix over Z,, and p : [1,]] = Z,

maps each row of A to an attribute in Z,. Pick random m = (7, ug,...,upn,&1,...,§) € Zif” and set
u = (T, U, ..., Up). Set

P =g, {Pk,l — gBl(Ak'u)gB4fk, Pio= <gﬂ2ﬂ(k)gﬂs)—5k7 Pr3= gfk}ke[ly

2. Pick random &, T, S1,...,8m, t1,...,tm € Zp, Ve, Wi,..., Wiy, € Zg.
Pick random ry, 7y, 7> € Zy, and set x1 = (re,0,72), X2 = (0,7”@,,7'_2)7 X3 = X1XX2 = (—Tyrs, —Talz, TaTy).
Pick random v; € Z2 Vi € {1,...,i}, wv; € span{x1,x2} Vi€ {i+1,...,m}.
For each row ¢ € [m]:
— if 4 < ¢: randomly choose §; € Z,, and set

R, =g, R, =g"", Qi=g¢%, Qi1=(¢")"ZI(¢")", Q:=4", T =E"
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— if § > i: set
= G?iviv R;, = G?Sivia Q’i = gTSi(vi.UC)v Qi,l = (gﬁl)TSi(vi-vC)Zfi (gﬁl)ﬂ—a
Q; — gti, Ti =M. Ezsi(vi'vc)'

Note that dy = 1, thus there is only Q; 1.
For each column j € [m]:
— if j < j: randomly choose p; € Z,,, and set C; HT(”cﬂLyxs) -, CY = g™
—if j > jiset Cj = H]" - g*i, C = g*
3. Output the ciphertext CT(A,p) = ((A,p)7 (Pr,{Pr,1, Pro, Prsltren), (Ri, R}, Qi,Qin, QF,Ti)i%,
(C1C) ).

DecryptA(PP, CT(A,p), SK(i,j),S) — M or L. Parse CT(A”O) to CT(A,p) = <(A, p), (Pl, {Pk,h Pkyg, Pk,3}k6[l])a
(Rz‘, Rg, Qi, Qi71, Q;, Ti)ﬁl, (Cj, C;);n:1> and SK(i,j)7S to SK(Lj),S = ((Z, j), S, (Ko, Kl, {Ka:,27 Ka:,?;}xeSH K(l))
Suppose S satisfies (A, p) (if S does not satisfies (4, p), output L).

1. Compute constants {wk},x)es such that 3, cgwpAr = (1,0,...,0). Compute

Dp + H e(K1, Pin) - e(Kpry.2: Pr2) - (K pky.3, Pr3)) "
p(k)eS

2. Compute

(Ko, Qo) e, Q) es(RLC))
e(K1,Qi) e3(R;,C;)’

Dy +
3. Computes M « T;/(Dp - D) as the output message.

F.2 Proof of Lemmalll

Proof. Suppose there exists a polynomial time adversary A that selectively breaks the index-hiding game
with advantage e. We build a PPT algorithm B to solve an Extended Source Group g-parallel BDHE problem
as follows. B is given a problem instance as

D = ((r,G, GT, €),9.9% 9, g%,
g%, gbi, g@ti, g /b gedti i, e g,
g/ Vi € [2¢q

e ]\ {g+1},7 € gl
g* it o Vi€ [2q],4,5" € lq] s.t. 5" # j,
gcda br/bj gcda b /b3 Vi e [q],j,] c [ ] st ] 7&]’ )
and T, where (p,G,Gr,e) £ g, g £ G, a,c,d,by,..., by £ Zy, and T is either equal to gcanrl or is a

random element of G. B’s goal is to determine T = g‘mq+1 or T is a random element from G.
Init. A gives B the challenge LSSS matrix (A*, p*), where A* is an | x n matrix with [,n < g.

Setup. B randomly chooses {a; € Zp}icim), {ri, 2 € Zplicim\giy> 5% € Zp, {¢j € Zpljem), and
By, BY, B4 € Zy,. B gives A the public parameter PP:

(97 hi=g%, h2—9ﬁ2'HH t/bz A“

kell] te[n]

_gﬁ\ﬂ,. H H ’/b2 —p" (k)AL . hy _954. H H ’/bk

kell] te[n] kell] ten]
{El = 6(97 g)ai}iG[m]7
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{GZ = griv Z; = (ga)Zi}iG[m]\{z}’ {HJ = (gd)cj}je[m]\{j}v Gf = (gaq)rgv Zi = gzi’ HE = (ga)C; )

Note that B implicitly chooses r;, z;(i € [m]\ {i}), ¢;(j € [m]), B, B2, B3, Ba € Z, such that

a?ri = r; mod p, az; = z; mod p Vi € [m] \ {i},

dc; = c¢j mod p Vj € [m]\ {j}, acj = ¢; mod p,

a=pimodp, B+ Y Y (a'/b})(Af,) = B2 modp,
kell] te[n]
63+ZZ (a' /67) (—p" (k) A} ) = B3 mod p,
[l] te[n]
54+ZZ (a /bk) (A}, ) = Bs mod p,
[ ten]

Query Phase. To respond to A’s query for ((4,7),5),

o if (i,5) # (4,7): B picks random & =

. ) . - . -
g (g GRY, i AL A
Ko =< g% (g% )iin, i=ij#]
g (g IRy, i =]
S5 )
Kl =g 17 K(/) :Z»L'la
{Kup = 9%, Kuo3=(hhs)’"hi" }ses.

o if (i,
not satisfy (A*,
(1e Uy =

p*). B first computes a vector @ = (uq,...,

(01,{0s}zes) € leflsl, then creates a secret key SK; j s:

j) = (i,7): it implies that A is querying a secret key with the challenge index (7,7), and S does
Up) € Z, that has first entry equal to frécg
frgcé) and is orthogonal to all of the rows A} of A* such that p*(k) € S (ie. A} -a =0Vk €

[l] s.t. p*(k) € S). Note that such a vector must exist since S fails to satisfy (A*, p*), and it is efficiently

computable. Then B randomly chooses (61,{0.}zecs) € Zp

implicitly setting

145

51 = (S; + Z ﬂta,q+1_t,

ten]
Y / utbk/a(”
mgs S $ O
K ell] kel teln
p*(K')¢S P (k)¢S
Note that for x € S and p ( "y ¢ S we have x — p* (k') # 0.
B creates a secret key SK(; 5) ¢ as follows:
n

n
Ko =g h ([ H™),

t=2

For = € S, we have

Kop=g" =g% ([ (g")%/@0 ).

k'e[l]
P (k)¢S

Note that for = € S, we have

by

(hhs)? = (hghs)?

Vi1
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v (RS hy) T Zw et ot s =

VT

6 = (Kl)zga

(I Lo,
]

k'e(l]
p (k") ¢S

te[n

’
Gy by adtl=t

(hghg)zk’em,p*(k'ms e

[n] z—p* (k)

and sets the values of d; and {0}zes by

(1)

(2)



/

:%,1'( H ﬁ2x+53 H H t/b2 (z—p*(k))A )%)

1] kell] te[n]

!
Ty byradt Y

( H H ﬂ2w+/33HH (go'/th)(@=p" ()4} )T

E'ell] t'€n] ke(l] te[n]
p* (k)¢S
= Lpl 1 ( H (gbk/)0'1 (/521+B3)/ —p (k )) H H H (l bk//bz 5] Ak t%)
k' ell] kel te[n] K e[l]
P (k)¢S p(K")¢S
Y12
(II II (gbk/a‘”l*“)awwgwwg)/(w—p*(k’)))
Kell] t'€ln]
P (k)¢S
V13
.( T [T (oo oyt 55
kelllte[n] K'ell] t'€n]
P (k)¢S
t * —p* (k)
:%,1'@1,2'( H H (g* bk’/bk)‘s 1A%, (k’))
kell] teln] K'e[l]
p(k)ES p* (K¢S

Ui (for p*(K)ES)

H H H abk//bQ 5A,ttT‘_p(k, H H a/bkaA“ W 5

k:E[l te[n] k' e[l \{k} ke[l] te[n]
P (k)¢S pr (k)¢S p* (k)¢S
U5 (for p*(k)¢S,k'#k) Y16 (for p*(k)¢S,k'=k)

T k
(T T IT Iyt )

ke[l te[n] K el] t'€n]
p(k)eS p* (K¢S

W17 (for p*(k)ES)

CTLIT TI JL oty sy

ke[l ten] k' e[l \{k} t’'€[n]
p*(k)ES p (k)¢S

Vis  (for p*(k)ES,k'#k)

H H H (gaq+1—t’+t/bk)A2'tﬂ‘ﬂ)

kell] te[n]t'€[n]
p* (k)¢S

(for p*(k)ES,k'=k)

=Wy Wio Vg Vs -Pre-Pis-VYir Vs H H H (g“q+17t,+t/bk)AZ,tﬁt/>’

ke(l] te[n] t'eln]
“ p(k)¢S

b0 = (g T [y e oo

ke[l] te[n]
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—n T o))

t’€[n]

HHH

[n] t'€[n]

an

1t'€[n]

—¢! * =
gdti-t th/bk)—Ak,tut/)7

where Wl = wl,l . EpLQ e
Thus, we have

Ky3 = (h3hs)’hy*

H H H (gaq+litl+t/bk’)_"4;,tﬂt/)

H adt1i— t! +t/bk) Ak tut/)

- ¥ g and ¥, can be calculated using the suitable terms of the assumption.

kell] teln]t'en]
p*(k)eS
[ I1IT @i (T L)
kell] te[n]t’e[n]\{t} kell] te[n]
p(k)eS pr(k)eS
U3 (for t'#t) for t'=t

= Wl . WQ . W3 . ( H (gaq+1/bk)7("4:ﬁ))
ke(l]
p*(k)eS

=y WUy W3, (since A} - =0Vk €[] s.t. p*(k) €95)

Note that ¥;, ¥, and ¥3 can be calculated using the suitable terms of the assumption, B can calculate K, 3.

Challenge. A submits a message M. B randomly chooses

T 81,8 1585 i1y Sm € Ly,
ottty € Ly,
wl,...,wi,l,ij..,w;n GZ;);,

E1ee &l €Ly, u = (0,ul,...,uy,) €Zy.

B randomly chooses 14,7y, 7. € Zj, and sets x1 = (r3,0,7.), x2 = (0,7y,7.), X3 = X1XX2 =

then randomly chooses

v, e ZiVie{l,...,i—1},

v? € span{x1,x2}, v! € span{xs},

v; € span{x1,x2} Vi € {i+1,...,m},

v’é € Span{Xh X2}7 'UZ = VX3 € Span{X3}-

B sets the values of k, T, s;, t;(i €
{k € Zp} e by implicitly setting

p?

7= a = o
a?’=rmodp, calt" =7 modp, si/a

(_ry'f‘m —TgTz, T:Jcry)7

[m] \ {i}) € Zp, v;, v, wi(j € {j,...,m}) € Z3, w € Ly, u € Zy, and

= s; mod p,

Vie{l,...,i—1}: t;+cdr'si(v] vl)/z =t; mod p,
Vie{i+1,...,m}: t;—a%m's;(vi-vE)/z + cdr'si(v? - vl)/z = t; mod p,
v; =P + dv!, v.=coh + v,

"oP = w-
w;—acjr v? = wj; mod p,

Vie{j+1,...,m}: wj—cddr’
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vl = w; mod p,



7' — cdr'si(v? - vl) = mmod p, w=mn(l,a,a®,...,a" ")+,

VE e[l & + cdbpr'si(v? - vc) = £, mod p.

It is worth noticing that v; and v, are chosen from Z3 at random as required, and (v; - v.) = l(vf .

vP) 4 d(v? - v?), since x3 is orthogonal to span{x1, x2} and Z3 = span{x1, X2, X3}. B creates a ciphertext
<(A*7p*)a (P17 {Pk,la Pk,?a Pk,3}k€[l]) (RZa Rm QH Ql,la QzaT)th (CJ7C ) = > as follows:

L Py= g7 (ged) TR,
For each k € [I]: we have

nfl)

Pk,l _ (hl)AZuhik _ (hzl‘l};'(l,a,....a

) hA* u’ hg,c ,34 H H a /bk’ k’, cdbk’rs (v -vl)

451 k’ell] te[n]

= H (gaf)A;,t)W/—ch/S%(v?-vZ) LBy - (gcdbk)ﬁh/sfz(v?-vi) N H H (gcdafbk/bk,)A;,,t)f'%(v?'vi)

te[n] P k'ell] te[n]

2

_ ( H (gat)A’,;)t)ﬂ' . ( H (gcdat)AZ,t)*T SI("’?”Z) '(I)l _@2

te[n] te[n]

A
| H H cda’ bie /b ) *,Yt)T/s%('v%vZ) N H (gcdaf)A;;yt)T/s%(v%vZ)
k' e[l]\{k} te[n] te[n]
By (for k'#k) A= (for k'=k)

= P3Py - Dy - Dy,
Py = (hg*(k)hg)_g’“
_ (hz”*(k)hg)’fif . (gﬁép*(k)+ﬁé)—cdbkr’s%('vg«vg) A H H t/bz (0" (k) —p* (') AL, " cdbyr' s} (v3-v?)
k'e[l] te[n]
_ (hg*(k)hs)—5; . (gcdbk)*(ﬂép*(k)Jrﬁé)T'S%(v?'vZ) N H H cda bk/bz (p (k')*P*(k))Ath)T’S%(v%vﬁ)

pe k'e[l] te[n]

:@5‘( H H eda®by, /b2, (0" (K))—p" (k) AL, )T’SQ(v%vi)

k' e[l]\{k} te[n]

P (for k'#k)
N H (gcdafbk/bi)(p*(ff)—p*(k))AZ,t)T’S§(v§'vZ)

te[n]

1 (for k’=k)
= &5 - bg,
Pig = g% = gt (g7 vi D),

Note that @4,...,Pg can be calculated using the suitable terms of the assumption, B can calculate
Py, Pra, P 3.
2. For each i € [m):

— if i < 4: randomly chooses §; € Z,, and sets
R, = g”i, R; _ (gaq)vl,
Qi = L Qin = (ga)uZ:;(ga)ﬂ' 7 Q; _ gt,’i(gcd)-r’s%('ug~'ug)/z§7 T, = Ef’



—ifi =1: sets
R, = grgs,’;'uf . (gd)r%s%vg’ R; _ (gaq)r%s,';vf . (gdaq)r%s%vg’
Qi _ g‘r’s%('v%’-vg)(gcd)'r/s%(vg"uif)7 Qi,l _ (ga)r’s%('v?‘vg)zit% (ga)Tr

T; = M - e(gaiaQi)'

/

, Qi =g",

— if i >4 sets
Ri _ g’l'iS'i’Lli’ R; _ (gaq)nsivi?
Qi = (")), Qua = 2 (9", Q= gt (g") T (gt
T; =M -e(9™, Q).

3. For each j € [m]:
— if j < j: randomly chooses p; € Z,, and implicitly sets the value of p; such that (u}/(cda?) — 1), =
pj mod p, then sets: C; = (gPa)EiTvE L geiT Ve L (gatyws C' = g¥i.
Sifj = fisets C; = TGV (U)W, O = g¥i - (g7) 9.

—if > Jisets € = (g%)ITVE - (¢%) W5, O = g - (g°4) TG VE,
IfT = g“’“q+1, the ciphertext is a well-formed encryption to the index (7,7). If T is randomly chosen, say

T = g" for some random r € Z,, the ciphertext is a well-formed encryption to the index (i,j 4+ 1) with
implicit setting p; such that (i — Dre = p; mod p.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b to the challenger.

The distributions of the public parameters, private keys and challenge ciphertext are the same as that
in the real scheme. B’s advantage in solving the Extended Source Group g-parallel BDHE problem will be
exactly equal to A’s advantage in the selective index-hiding game.
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