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Abstract

We present attacks that use only the volume of responses to range queries to reconstruct databases.
Our focus is on practical attacks that work for large-scale databases with many values and records,
without requiring assumptions on the data or query distributions. Our work improves on the previous
state-of-the-art due to Kellaris et al. (CCS 2016) in all of these dimensions.

Our main attack targets reconstruction of database counts and involves a novel graph-theoretic
approach. It generally succeeds when R, the number of records, exceeds N2/2, where N is the
number of possible values in the database. For a uniform query distribution, we show that it requires
volume leakage from only O(N2 logN) queries (cf. O(N4 logN) in prior work).

We present two ancillary attacks. The first identifies the value of a new item added to a database
using the volume leakage from fresh queries, in the setting where the adversary knows or has previ-
ously recovered the database counts. The second shows how to efficiently recover the ranges involved
in queries in an online fashion, given an auxiliary distribution describing the database.

Our attacks are all backed with mathematical analyses and extensive simulations using real data.

1 Introduction

Setting. In a recent ground-breaking paper, Kellaris et al. [KKNO16] initiated the systematic study
of volume attacks against databases. Here, the setting is an adversary who is able to learn how many
records are returned in response to queries made to a database. From just this information, the adversary
tries to reconstruct the database counts, that is the exact number of records in the database having each
particular value. As a secondary target, the adversary may try to learn the content of individual queries.

We stress that, in the envisaged setting, the adversary does not know the individual queries (these
may be encrypted) and does not learn which records are returned in response to each query (so it does
not have what is known as access pattern leakage). In some settings, the attacker may know something
about the distribution on queries (for example, that they are uniformly distributed range queries), and
it may also have access to some kind of reference distribution which represents (possibly inaccurate) side
information about the distribution from which the database is drawn. However, we are also interested
in attacks in the “bare” setting where the attacker has no ancillary information.

Such volume attacks may be quite easy to mount in practice. For example, the attacker might be
located on the network between a client making queries and a server hosting the database, with all
interactions between client and server being encrypted. Yet the communication pattern and volume of
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data on the wire from server to client may indicate how many records are returned from each query,
since typical secure communications protocols like TLS do not attempt to hide the directionality or
amount of data being transmitted (indeed, modern TLS cipher suites like those based on AES-GCM
directly leak plaintext lengths in ciphertexts). This makes volume attacks possible. This setting is
of course related to problems in the field of traffic analysis, such as mounting and preventing website
fingerprinting attacks [DCRS12, SST17]. Relatedly, the time taken to process database queries may act
as a side channel to reveal the volume of responses.

As a second example of the relevance of volume attacks, the database server itself might be ad-
versarial, with the client using advanced encryption techniques (possibly in combination with trusted
hardware like SGX) to hide queries and access patterns from the server. Existing techniques for this
purpose [CJJ+13, CGKO06] do hide the queries but tend to leak the access pattern, rendering them
vulnerable to quite devastating attacks, see [KKNO16, LMP18]. The next natural evolutionary step in
this area, then, will be to combine the existing techniques with oblivious memory access techniques such
as ORAM [SvDS+13, Gol87] to hide the access patterns. However, not only would this degrade perfor-
mance, but also such an approach might be of dubious security value, since volume attacks mounted
by the server would still be possible and might have significant security impact. Moreover, as recent
work has shown [GRS17], SQL databases store the cardinalities of responses to past queries, so volumes
may leak even to the so-called snapshot adversary who is only able to compromise the server for a short
period of time and grab a copy of its memory. This is a weaker adversarial setting than the persistent
attacker setting implicit to assuming an adversarial server.

The impact of volume attacks, if possible, can be serious. Although they cannot reconstruct the exact
connection between individual records and their values, they do enable the exact database counts to be
reconstructed, and this may represent significant leakage. As illustrative examples, consider a company’s
salary database leaking to a competitor, or a hospital’s mortality data becoming exposed. This is even
so when the adversary already has an approximation to the database distribution, since knowing exact
counts can represent a much more serious privacy violation than merely having approximations to those
counts. For example, by mounting the attack and recovering exact counts at different points in time,
the adversary may be able to deduce the value of specific records of interest that were added or removed
from the database. Furthermore, the exact database counts can leak important information about the
values of specific outliers, which can then be de-anonymising. Indeed, the privacy risks of releasing
precise database counts were among the core motivations of modern differential privacy research.

Range queries. In this work, we focus on database reconstruction using the volume leakage of range
queries. Range queries are perhaps the simplest type of query beyond point queries, and constitute
a central primitive in modern databases: for example, four queries in the TPC-H query benchmark
(designed to reflect real workloads) contain explicit range queries. In the setting of range queries, data
takes on numerical values in some range [1, N ] (the value of the left endpoint is fixed at 1 only for ease
of exposition, and without loss of generality [LMP18]). All range queries are of the form [x, y] for some
1 ≤ x ≤ y ≤ N . When a range query [x, y] is issued, all records with values z ∈ [x, y] are returned in
response to the query. Because we target volume attacks, recall that the adversary only sees the number
of records returned by the query, and not the record identifiers, or the values x, y.

Existing work. Kellaris et al. [KKNO16] (KKNO) made an excellent first step in understanding
volume attacks arising from range queries, formalising this style of attack and introducing a pair of
algorithms that are each capable of performing database reconstruction. KKNO’s attacks were the first
to demonstrate that reconstructing database counts solely from the volume leakage of range queries
is possible. However their attacks are severely limited in practice, for two reasons. First, KKNO’s
algorithm strongly relies on the assumption that range queries are drawn independently and uniformly
at random. Real-world queries are not expected to be uniform, or independent. If these conditions
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are not met, KKNO’s algorithm fails. In fact the uniformity assumption seems inherent to the KKNO
algorithm, which exploits specific properties of that distribution; it is unclear how the algorithm could
be adapted to more general distributions. A second limitation of KKNO’s attack in practice is that it
requires observing the volume leakage from O(N4 logN) queries. For N = 100 for instance, this number
represents about half a billion queries. For further discussion, see Appendix A.

It may seem at first that this query complexity is unavoidable. Indeed as shown in [KKNO16],
any generic algorithm succesfully achieving database reconstruction from volume leakage must require
as many as Ω(N4) range queries. However, the example databases demonstrating this are certainly
pathological, and one might wonder whether this is the true barrier to performance for typical databases
in which the values in records are drawn from some reasonable distribution. Our work shows that it is
not.

Our results. Because of the ease with which they can be mounted, their real-world impact on privacy,
and their likely future importance, it is vital to understand volume attacks better. This is what we
set out to do in this work. Our focus is on making database reconstruction (DR) attacks using volume
leakage from range queries more practical.

In this direction, our main result is a volume-based DR attack for range queries that does not rely
on any uniformity or independence assumptions on the query distribution. Instead, it only needs to
observe each distinct volume at least once, regardless of how queries are drawn. The former property
makes our attack much more practical than those of KKNO, which as discussed above crucially rely on
a uniformity assumption. The latter property leads to a substantial reduction in the number of queries
needed for a DR attack, since now only the “coupon collector number” of queries needs to be seen for
the query distribution. For example, if for the purpose of comparison to KKNO’s algorithm, we assume
that queries are uniform, then our algorithm only requires O(N2 logN) queries, instead of O(N4 logN)
for KKNO’s.

In more detail, our approach reduces the problem of DR to finding a clique in a certain graph
that is constructed from the volume leakage. By applying suitable preprocessing, in practice, we find
that we actually often end up in the situation where clique finding in the graph is trivial, avoiding the
need for expensive clique-finding algorithms. We evaluate the performance of our algorithm using real
medical datasets obtained from the US government Healthcare Cost and Utilization Project (HCUP)
Nationwide Inpatient Sample (NIS).

Our attack has two main limitations. First, as noted above, we assume that every range query must
be issued at least once. This is certainly a strong assumption. Nevertheless, it is considerably weaker
than the assumption required by KKNO’s attack, which needs that every query should be observed
multiple times (roughly N2 times on average) so that the exact frequency of every volume can be
determined. Furthermore, we believe it is reasonable to expect that a secure encrypted database should
remain secure even when every range query has been issued.

The second main limitation of our attack is that it does not succeed for all databases. Indeed that
would be impossible, since it would then have to require Ω(N4) queries due to the lower bound from
[KKNO16], as discussed earlier. Instead we aim to cover typical parameter regimes that include many
real-world databases. Assumptions on the database required by our algorithm are twofold. First, if we
wish to recover the exact count of every value in the database, then we must assume that the database
is dense, in the sense that every value must be taken by at least one record (equivalently, there is no
value with a zero count). However, our attack does extend to the non-dense (or sparse) case, with
the limitation that it only recovers non-zero database counts. This point is discussed in more detail in
Section 3.3.

Second, our attack does not succeed for all parameter regimes, although our experiments show a
high success rate on real-world datasets. In addition to experiments, to help provide insight about
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parameter regimes where our attack succeeds, we build a statistical model of how the number of records
R and the number of values N influence the adversary’s view of volumes, and how this affects the
success of our attack. For example, if for the purpose of the model we assume a uniform distribution of
values across records, and a uniform distribution on ranges, then our model predicts that the number
of records R required for our attack to succeed should be Ω(N2) when the leakage from O(N2 logN)
queries is available. This estimate matches with what we observe in practice in our experiments, despite
several idealisations made in building the model: we find that when R exceeds about N2/2, our clique-
finding algorithm works extremely well in practice (given volume leakage from enough queries), but its
performance declines markedly when R becomes significantly lower than N2/2.

In addition to our main attack, we propose two ancillary attacks. The first of these ancillary attacks
considers a setting where the adversary has already recovered exact database counts, for example as a
result of running our main attack. Then we assume the database is updated with a new record. We
propose an algorithm to deduce the value of that new record, purely from observing the volume of range
queries, as in the previous attack. This enables the adversary to update its knowledge of the database
on the fly as new records are added.

Like our main attack, the algorithm we propose does not require an assumption on the query
distribution. However if for the sake of analysing the performance of the algorithm, we do make the
assumption that queries are uniformly distributed, then we are able to show that only O(N) queries are
needed for our algorithm to recover the value of the newly added recorded, provided again that R is
Ω(N2). We stress that the uniformity assumption is needed only for analysis; the algorithm still works
well without it. We go on to show that even better performance can be achieved if only approximate
recovery of the new value is desired. This analysis again supports our experimental results using HCUP
datasets. For example, our experiments show that on a real-world hospital database of about 20000
records, the median number of queries needed to ascertain the age of a patient in a newly added record
to within 10 years is only 17 queries; after 57 queries it is known within just 2 years.

Our second ancillary attack shows how to efficiently recover the ranges involved in queries in an
online fashion, given a reference distribution for the database. This reference distribution could be
obtained by a successful DR attack, but it could also be an inaccurate estimate obtained from a related
dataset or a previous breach. The attack relies on the following idea: given the volume leakage for
a query, we can compare that leakage to volumes obtained synthetically from all the ranges in the
reference distribution. In our attack, we just output the set of all ranges whose volumes are close (in
a well-defined sense) to the leaked volume. Although simple, this idea turns out to be powerful. It
is also amenable to analysis. For example, assuming the database is drawn exactly from the reference
distribution, we are able to prove that the output set always contains the correct range, except with
some small (and tunable) error. This follows from an application of the Dvoretzky-Kiefer-Wolfowitz
inequality, a Chernoff-type bound on the maximum distance between the empirical and true CDFs of
a distribution. Surprisingly, our simple “CDF matching” algorithm continues to work well even when
the reference distribution is not particularly accurate. To demonstrate this, we again use the HCUP
datasets; we compile a reference distribution by aggregating data from one year, and use it in attacks
against individual hospitals from other years. For more than 80% of hospitals our attack is able to
correctly eliminate all but fifteen possibilities for some queries on the AGE attribute (which has 4186
possible queries).

In its entirety, our work shows that volume attacks, perhaps not yet considered a serious security
threat because of unrealistic assumptions or poor performance, should be considered a real concern in
practice, not only in advanced settings (like an honest-but-curious database server) but even in basic
settings such as a network-based or snapshot adversary. Our work should also serve as a warning for
researchers developing new database encryption schemes: simply hiding access patterns is not enough;
volumes must be hidden too.
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2 Background and Setting

The setting we consider has two parties: a client and a server. The client stores no information locally
and the server stores a database that the client queries. In this paper we will treat the database as a
sequence of values between 1 and N (hereafter, “records”), but will not assume anything about how
records are stored or accessed. We assume client-server communication is unbreakable and that the
queries and responses sent between the client and server reveal no information except for the number
of records in the response. This is an extremely conservative setting: the attacker neither knows nor
can issue any queries.

Reconstruction attacks. Call the number of records with a given value the count of the value. As
discussed in the introduction, our main attack targets database reconstruction (DR), which is to say it
attempts to recover the counts of all values. KKNO observed that counts can only be recovered up to
reflection, meaning that for any value k, the recovered count could be for k or N + 1 − k. When no
assumptions can be made about the number of records or the counts of individual elements (we will call
this sparse), Kellaris et al. proved that Ω(N4) queries are required to perform DR generically. We will
also study two other attack types. The first, update recovery, learns the value of a single record added
after the database is reconstructed. The second is query reconstruction, which tries to reconstruct the
queries rather than the database.

Notation and terminology. Recall that N is the number of possible values. We assume (without
loss of generality) that set of possible values is [1, N ]. The number of records is denoted by R. We let
[x, y] for 1 ≤ x ≤ y ≤ N represent a query for all records whose value is in the closed interval from x to
y. There are N(N + 1)/2 possible range queries. The volume of a range query [x, y] is the number of
records whose value lies in [x, y]. We also say that these records match the range query. We call volumes
the set of integers that are the volume of some range. We denote the volume of a range q = [x, y] by
vol(q). We say that a database is dense iff every value is taken by at least one record. We will use
standard asymptotic notation (O, Ω, etc.) as well as “tilde” asymptotic notation like Õ, which simply
hides polylog factors. log() denotes the natural logarithm.

Assumptions. We assume that the total number of records, R, is known by the adversary. We believe
this is a reasonable and conservative assumption. Releasing the aggregate size of a database (even one
containing sensitive information) has little or no privacy implications in most settings, and the value R
may in fact be publicly available. Even if the information is not public, an adversary can infer R using
the on-disk size of a database or by observing network traffic while a database is restored from backup.

We also assume the adversary knows the total number of possible data values N in the field targeted
by the range queries. Note that this number does not depend on the database under attack, but only
on the type of data being targeted. Other assumptions required by our main attack are discussed in
Section 1.

Unless otherwise specified, we will never assume an attacker knows either the query distribution or
the database distribution. An assumption on the query distribution becomes necessary when it comes
to analysing the query complexity of the attacks though: indeed the client could otherwise repeat the
same query forever, and the adversary would never learn anything new. To give meaningful and clear
analyses we will thus sometimes assume a uniform distribution; however, in every case the algorithm
itself does not require that assumption to succeed. We make these assumptions to provide analytical
insight into a “typical” behavior of the algorithm. Further, our attacks are evaluated on real-world
non-uniform datasets.
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3 Practical Volume-Only Reconstruction Attacks

In this section, we describe and analyze our main result, namely a practical database reconstruction
attack using only the volume leakage of range queries. Our attack uses only a set of range volumes as
input, and does not use any distribution-dependent frequency information. In particular, the success of
the attack is not dependent on knowing the query distribution.

We begin this section by discussing the requirement of data density, presenting the key idea behind
our algorithm – identifying elementary ranges – and then providing an overview of the algorithm’s
steps. We explain it in detail in Section 3.1. We then analyze it in Section 3.2 and present the results
of practical experiments in Section 3.3.

Data density. The main setting of our algorithm is the case where the database is dense; that is,
where every value in [1, N ] matches at least one record. Our algorithm succeeds on dense databases,
and can also succeed if the database is not dense. In that case, it is not possible to recover the counts of
all values, because it is impossible to learn which values are matched by zero records from just a set of
volumes of range queries. Therefore, we define success as recovery of the non-zero counts of all values in
the correct order; that is, the only missing information is precisely the set of values with zero matching
records. This still reveals a considerable amount of information to the adversary. Some knowledge of the
database distribution may enable reconstruction of all counts. This is discussed further in Section 3.3.
Nevertheless, the main focus of our attack is dense databases, where recovering the counts of all values
is possible with just a set of range query volumes.

Elementary ranges. Consider the ranges [1, 1], [1, 2], . . ., [1, N ] – let us call them elementary ranges.
Knowing the volumes of these N ranges is necessary and sufficient for reconstruction: if we know the
volumes of [1, 1], [1, 2], . . ., [1, N ], then the number of records that have value k is the difference between
the (k−1)-st and k-th element in the list (treating the 0-th element as zero). The goal of our algorithm
will therefore be to identify the volumes of these elementary ranges among the set of all volumes.

Our approach stems from the following observation: every range [x, y] can be expressed either as
[1, y] (if x = 1) or as [1, y] \ [1, x − 1] (if x > 1). In other words, every range is either an elementary
range, or can be expressed as the set difference of two elementary ranges. From the point of view of
volumes, this means that every volume is either the volume of an elementary range (an elementary
volume), or the difference of the volumes of two elementary ranges. Conversely, the set difference of two
elementary ranges is a range, and so the difference (in absolute value) of the volumes of two elementary
ranges is itself an observed volume. Elementary ranges are also R-complemented. That is, if R is the
total number of records and v is the volume of an elementary range, then R−v must also be the volume
of a range. This holds because the complement of an elementary range is also a range. Note that the
range [1, N ] of maximum volume R may not be R-complemented; however by convention and to avoid
special cases later on, we shall adapt the definition of “R-complemented” to say that it is.

In summary, the volumes of elementary ranges have the following strong properties among the set
of all volumes:

1. Every volume occurs as either the volume of an elementary range, or the difference of the volumes
of two elementary ranges.

2. Conversely, the difference (in absolute value) of the volumes of any two elementary ranges is a
volume.

3. If v < R is the volume of an elementary range, then R− v is also a volume.

In fact, if we include 0 as the volume of an elementary range (whether 0 was an observed volume or
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not), these properties imply that the set of pairwise differences of the volumes of elementary ranges is
exactly the set of all volumes.

Remark. All three conditions above are necessary for an N -subset of all observed volumes to be the
set of elementary volumes. But a form of converse holds: if a set of N volumes, viewed as a candidate
set of elementary volumes, satisfies all three properties, then it is straightforward to check that the set
of database counts it induces generates exactly the set of all observed volumes. In other words, a set
of N volumes is a valid solution to our problem (in the sense that it is compatible with the observed
leakage) iff it satisfies all three properties; the three properties characterize the set of valid solutions.

Building a graph. In order to exploit the previous three properties of elementary ranges, we build
a graph as follows. The nodes (a.k.a. vertices) of the graph are the R-complemented volumes. Two
nodes are connected by an edge iff their absolute difference is also a volume; we label the edge by
that difference. Property (3) implies that elementary volumes must appear as nodes in the graph.
Property (1) implies that every volume must occur as a node or an edge in the subgraph induced by the
elementary volumes. Property (2) means that every pair of elementary volumes must share an edge:
that is, the elementary volumes form a clique in the graph. In light of the remark above, if we include
0 in the set of elementary volumes, a valid solution is exactly an (N + 1)-clique (including the dummy
node 0) whose edges contain all volumes.

Algorithm overview. One natural approach is to build the graph and run a clique-finding algo-
rithm to identify elementary volumes. Empirically, this approach suffices in some cases but has three
drawbacks. First, in many real-world datasets the edge density of the graph is high and clique-finding
does not terminate in a reasonable time frame (recall that the clique decision problem is NP-complete).
Second, in some cases, the solution clique is not maximal, and clique-finding would not suffice. Third,
this approach does not use Property (1). For these reasons, our algorithm uses generic clique-finding
only as a last resort.

Instead, we run a graph pre-processing phase, which exploits both properties 1 and 2 to simultane-
ously identify nodes that must be elementary volumes, named necessary nodes; and prune nodes that
cannot be elementary volumes, to progressively reduce a set of candidate nodes. This step is iterated
until the sets of necessary and candidate nodes stabilize. Our experiments show that in many cases,
this pre-processing step suffices to identify the set of elementary volumes. However, in the cases that it
does not suffice, we then run a clique-finding step that seeks to extend the set of necessary nodes into
a clique within the subset of candidate nodes while satisfying properties 1 and 2.

We now explain the steps of our algorithm in detail.

3.1 Reconstruction Algorithm

The idea of our algorithm is to use the properties of elementary ranges to identify their volumes among
the set of all volumes. As explained earlier, this information is then enough to reconstruct database
counts up to reflection (cf. Section 2). The main constraint of our algorithm is that it requires the set
of all volumes. In the context of an adversary observing volume leakage, this means that (in general)
every range query must have been issued at least once.

Step 1: Obtaining the set of query volumes. The first step of the algorithm is to collect all
volumes. Let V be the set of all observed volumes. We can bound the number of possible distinct
volumes. If the data is dense (i.e., each of theN values occurs at least once), thenN ≤ |V | ≤ N(N+1)/2,
the upper bound being the number of ranges. If the data is sparse (iff the volume 0 appears in V ),
then the number of values N ′ < N that appear in the database (with non-zero counts) must satisfy

|V | ≤ N ′(N ′ + 1)/2 + 1, and therefore is at least Nmin
def
= −0.5 + 0.5 ·

√
1 + 8 · (|V | − 1).
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Aside. Note that N nodes are not always necessary to generate all observed volumes V . Consider
N = 5 with all elements having counts of 2, so V = {2, 4, 6, 8, 10}. Then the triangle with nodes 2, 6,
10 (and edges 4, 4, 8) generates all observed volumes, yet it has 3 < N nodes.

The query complexity of this step depends on the query distribution. No constraint on the query
distribution is required, other than every query should occur with non-zero probability. The adversary
does not need to know the query distribution. In principle, the adversary could even try to run the
attack and see whether it succeeds to determine whether all volumes have been observed yet. If a query
distribution is assumed, one can give bounds on the number of queries necessary before all volumes
have been collected with high probability. This is discussed further in Section 3.2.

Step 2: Graph pre-processing. Given the set V of all possible query volumes, we form an initial
set of candidate elementary volumes, Vcand. First, if 0 appeared in V (iff the data was not dense), then
we remove it entirely from V for simplicity. Let Vcand be the set containing R and all volumes that have
an R-complement:

Vcand
def
= {R} ∪ {v ∈ V : R− v ∈ V } \ {0}.

This set will contain R, pairs of volumes, and maybe the singleton volume R/2 if R is even and this
volume was observed. This is the initial set of nodes. It must contain the volumes of the elementary
ranges [1, 1] through [1, N − 1] because of their complementary ranges [2, N ] through [N,N ]. It must
also contain the elementary volume R for range [1, N ].

We place an edge between two node candidates iff their absolute difference is an observed volume:
the set of edges E is defined as

E
def
= {(v, v′) ∈ Vcand × Vcand :

∣∣v − v′∣∣ ∈ V }.
Form the graph G = (Vcand, E) with node set Vcand and edge set E. In Appendix C, we present an
analytical model to estimate the number of vertices and edges in the graph.

In this pre-processing step, we prune the set of nodes Vcand and identify a set of nodes Vnec ⊆ Vcand
that must be in the clique. We present an example of graph-preprocessing in Figure 1. Subfigure (a)
shows the initial graph – for the moment, ignore its distinguished nodes.

Let vmin be the smallest R-complemented volume. It must be an elementary volume, up to reflection.
Indeed the largest volume strictly smaller than R can only be the volume of [1, N − 1] or [2, N ], since
every other range strictly within [1, N ] is included in one of those two ranges. It follows that the smallest
R-complemented volume is either the volume of [1, 1] or the volume of [N,N ]. Since we can reconstruct
the database only up to reflection (cf. Section 2), we break the reflection symmetry by assuming that
it is the volume of [1, 1] – which is correct up to reflection. In this respect, note that by the reflection
symmetry, in addition to the N -clique induced by the volumes of queries [1, 1], [1, 2], . . . , [1, N ], the graph
will contain another N -clique generated by the volumes of the queries [N,N ], [N − 1, N ], . . . , [1, N ];
reconstruction up to reflection is equivalent to recovering one of these two solutions.

Therefore, we initialize the set of necessary nodes Vnec to contain vmin and R. These two nodes are
highlighted in subfigure (a) in the example in Figure 1.

Next, we repeatedly perform the two following steps until they do not yield changes in the sets Vcand
and Vnec: (1) eliminate node candidates that are not adjacent to all necessary nodes, and (2) identify
necessary nodes based on volumes that arise only as one node candidate or edges incident to it.

Below, we briefly describe these two steps.

Eliminating candidate nodes: If any node in Vcand \ Vnec is not adjacent to all nodes in Vnec, then
it cannot be an elementary volume, so remove it from Vcand. In the example in Figure 1, we see in
subfigure (b) that three nodes have been removed in this way.
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(a) The largest observed
volume is R=27, so we
initialize Vcand to the
set of R-complemented
volumes and Vnec to
{vmin, R}={2, 27}.
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(b) Eliminate candidate
volumes 3, 8, and 23
since they are not ad-
jacent to both nodes in
Vnec.

2

4

5

1922

24

25

27

(c) 4 and 19 are neces-
sary since 15 arises only
as their difference. 24
is necessary since it does
not arise as a difference of
candidate volumes, only
as a candidate volume it-
self.

2

4

19

24

27

(d) The number of nec-
essary volumes is N ,
so pre-processing suc-
ceeded. These elemen-
tary volumes correspond
to element counts 2, 2,
15, 5, 3 (or 3, 5, 15, 2,
2).

Figure 1: An example of pre-processing for a database with N = 5 distinct elements having counts 3, 5, 15, 2, and
2. The set of all possible range query volumes is {2, 3, 4, 5, 8, 15, 17, 19, 20, 22, 23, 24, 25, 27}. Nodes corresponding
to necessary elementary volumes have thicker borders and red shading.

Identifying necessary nodes: There are three ways to extend the set of necessary nodes. First, if
the set of node candidates is as small as it can be (Nmin if the data is sparse, or N otherwise), then
all candidate nodes must be necessary (Vcand = Vnec). Second, if any non-complemented volume arises
only as edges incident to a single non-necessary node candidate, then this node must correspond to an
elementary volume and is therefore added to Vnec. In the example in Figure 1, we see in subfigure (c)
that nodes 4 and 19 have been added to the set of necessary nodes because non-complemented volume
15 arises only as an edge between them. Finally, if any non-necessary node candidate arises only as
itself or as edges incident to itself, then it must correspond to an elementary volume and is added to
Vnec. We see in subfigure (c) that node 24 was added to the set of necessary nodes for this reason. The
example finishes in subfigure (d) when all remaining non-necessary candidate nodes are removed since
they are not adjacent to all of the necessary nodes.

In Appendix F we prove a straightforward lemma that shows this procedure is correct: it does not
eliminate any elementary volumes from the set of node candidates, and all necessary nodes correspond
to elementary volumes.

Pseudo-code for Step 2 is given in Algorithm 1. The main Get Elem Volumes procedure uses a
few subroutines. Gen All Volumes checks whether a subset of nodes generates all volumes in a given
set (and perhaps other volumes). Gen Exact Volumes additionally checks that only the volumes in
the given set are generated. Min Subcliques takes a clique Vk that generates all volumes of a given set
Vall and finds the minimal subclique(s) of Vk that generate exactly the volumes in Vall. Here, “minimal”
refers to no strict subset of them generating all volumes in Vall.

Step 3: Clique-finding. At this point, we have two sets of volumes, Vnec and Vcand, satisfying
Vnec ⊆ Velem ⊆ Vcand, and we know a lower bound, Nmin, on the size of the clique formed by Velem. As
we will see when we present our experimental results, when the data is dense, the pre-processing in Step
2 often found a clique that generated all volumes in V (i.e., the sets it found satisfied Vnec = Vcand).
This is the case in the example of Figure 1. When that is not the case, however, we must find a clique
of size at least Nmin in the graph induced by Vcand that generates exactly all volumes in V . There may
be multiple such cliques. Although the clique of the elementary volumes Velem must be a subclique of
a maximal clique, it is not necessarily a subclique of a maximum clique (the largest maximal clique).
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Algorithm 1 Graph pre-processing: finding a smaller subgraph.

1: procedure Graph Preprocessing(N , V )
2: R← max{V }
3: if 0 ∈ V then
4: V ← V \ {0}
5: Nmin ←

⌈
−0.5 + 0.5 ·

√
1 + 8 · |V |

⌉
6: else
7: Nmin ← N

8: Vcomp ← {v ∈ V : R− v ∈ V } ∪ {R}
9: Vcomp ← V \ Vcomp

10: vmin ← min{Vcomp} . vol([1, 1]) or vol([N,N ])
11: Vnec ← {vmin, R}
12: Vcand ← Vcomp

13: all processed ← FALSE
14: while not all processed do
15: V ∗nec ← Augment NEC(Vcand, Vnec, Vcomp, Nmin)
16: V ∗cand ← Reduce CAND(Vcand, V

∗
nec, V )

17: if V ∗cand = Vcand and V ∗nec = Vnec then
18: all processed ← TRUE

19: Vnec ← V ∗nec
20: Vcand ← V ∗cand
21: return Vcand, Vnec

22: procedure Augment NEC(Vcand, Vnec, Vcomp, Nmin)
23: if |Vcand| = Nmin then
24: Vnec ← Vcand

25: return Vnec

26: for each e ∈ Vcomp :
27: for each v ∈ Vcand \ Vnec :
28: if 6 ∃(w,w′) ∈ (Vcand \ {v})2 :

∣∣w − w′∣∣ = e then
29: Vnec ← Vnec ∪ {v}
30: for each v ∈ Vcand \ Vnec :
31: if 6 ∃(w,w′) ∈ (Vcand \ {v})2 :

∣∣w − w′∣∣ = v then
32: Vnec ← Vnec ∪ {v}
33: return Vnec

34: procedure Reduce CAND(Vcand, Vnec, V )
35: for each v ∈ Vcand \ Vnec :
36: for each vnec ∈ Vnec :
37: if |v − vnec| /∈ V then
38: Vcand ← Vcand \ {v}
39: return Vcand

Our approach is motivated by the following observation: since the clique we want to find must include
the nodes in Vnec, which already form a clique, we can reduce our problem to finding the rest of the
clique in the subgraph of non-necessary candidate nodes – that is, the subgraph induced by Vcand \Vnec.
This second part of the clique must have the following properties. First, it must generate all missing
volumes – the volumes in V that do not arise as nodes or edges in the subgraph induced by Vnec – and
no volumes outside of V . The missing volumes could arise either as edges between the nodes of this
clique part, or as edges between its nodes and the nodes in Vnec. Second, if the number of elementary
volumes is between Nmin and Nmax, then this clique part must have size at least max{0, Nmin − |Vnec|}
and at most Nmax − |Vnec|. Given such a clique in the subgraph of non-necessary candidate nodes, we
recover the elementary volumes by combining it with Vnec.

10



Pseudocode for Step 3 is given in Algorithm 2. The Find Maximal Cliques subroutine called on
line 14 in Algorithm 2, which returns all maximal cliques in the subgraph induced by CANDnn, is not
specified: it can be implemented using existing clique-finding algorithms. Algorithm 2 returns a set
of lists of volumes that (1) include vmin, (2) have size between Nmin and Nmax, (3) generate exactly
the volumes in V and no others, and (4) are not supersets of any other list of volumes in the returned
solution. This set of lists of volumes must include Velem, or a subset of Velem if the data was sparse. See
Lemma 2 in Appendix F for the full statement of correctness.

In addition, in Algorithm 3, we propose more practical variants of some subroutines from Algo-
rithm 2. We also modify the algorithm to return all solutions (when possible), not only minimal ones.
Specifically, we replace Min Subcliques with All Subcliques P as defined starting on line 15 in
Algorithm 3. If it may be impractical to enumerate the subcliques whose sizes are in the right range,
we do not return any subcliques—the final solutions will be incomplete.

3.2 Analysis of the Algorithm

Time complexity. The pre-processing step increases Vnec or decreases Vcand at each step; since there
are at most N(N + 1)/2 volumes, it follows that this step iterates O(N2) times. The bulk of the time
complexity comes if clique-finding is run.
Finding maximal cliques. In general, a graph on n nodes can have an exponential number of maximal
cliques [MM65] – this clearly seems incompatible with our goal of practical reconstruction attacks. When
the number of nodes is small, however, it is still feasible to enumerate all of the maximal cliques with an
algorithm such as Bron–Kerbosch [BK73]. For larger domains, there exist logarithmic time algorithms
to sample one maximal clique at a time [Lub85].
Finding minimal subcliques. In the worst case, if the data is not dense, the check on line 40 in
Min Subcliques in Algorithm 2 will be carried out for 2|Vk|−1 subcliques. In Section 3.3, we evaluate
a variant that either returns all subcliques, not just minimal subcliques, or fails if it is impractical to
do so.

Query complexity. We must assume something about the distribution to analyze the query complex-
ity of collecting all volumes. In the case of a uniform query distribution, this is the classic coupon col-
lector’s problem; because there are O(N2) possible queries, coupon collection implies that O(N2 logN)
queries suffice (and the constants are small).

For a non-uniform distribution, if the least likely range has probability α
N(N+1)/2 , then a straightfor-

ward adaptation of coupon collection analysis shows that O(α−1N2 logN) queries suffice. Computing
coupon collector bounds for arbitrary distributions is straightforward, but somewhat tedious: Flajolet
et al. [FGT92] give a generating function for it. They also give a closed-form solution for one distribu-
tion of practical importance, namely the standard Zipf [Zip35] distribution (where the k-th most likely
element has probability proportional to 1/k). Somewhat surprisingly, their results imply that even if the
query distribution is standard Zipf, the query complexity of collecting all volumes is only O(N2 log2N).
This means that even with a very skewed distribution the query complexity of our attack is not much
higher than with a uniform distribution.

Analytical model. In order to provide insight into the behavior of our algorithm, in Appendix C, we
build an analytical model of the graph underpinning the algorithm. We assume the records are sampled
i.i.d. from a fixed distribution. The database counts then follow a multinomial distribution, which
can be modelled (with only a factor of 2 loss in some cases [MU05]) by a series of independent Poisson
variables. Because a sum of Poisson variables is itself a Poisson variable, the number of records matching
any given range is also a Poisson variable. Using properties of the difference of Poisson variables, we
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Algorithm 2 Recovering elementary volumes via clique-finding.

1: procedure Get Elem Volumes(N,Vcand, Vnec, V )
2: if |Vcand| = |Vnec| then . Pre-processing success
3: return Vnec

4: if 0 ∈ V then
5: V ← V \ {0}
6: Nmin ←

⌈
−0.5 + 0.5 ·

√
1 + 8 · |V |

⌉
7: Nmax ← min{N − 1, |Vcand|}
8: else
9: Nmin ← N

10: Nmax ← N

11: Mmin ← max{0, Nmin − |Vnec|}
12: Mmax ← Nmax − Vnec

13: CANDnn ← Vcand \ Vnec . Non-necessary candidate elem. volumes
14: cliques ← Find Maximal Cliques(CANDnn)
15: solutions ← {}
16: for all Vk ∈ cliques do
17: if |Vk| < Mmin then
18: continue
19: if Gen All Volumes(Vnec ∪ Vk, V ) then
20: solutions ← solutions ∪

Min Subcliques(Vk, V,Mmin,Mmax, Vnec)

21: return solutions

22: procedure Gen All Volumes(Vnodes, Vall)
23: for all v ∈ Vall do
24: if 6 ∃ (v1, v2) ∈ Vnodes × Vnodes : |v2 − v1| = v then
25: if v /∈ Vall then
26: return FALSE
27: return TRUE

28: procedure Gen Exact Volumes(Vnodes, Vall)
29: if Vnodes ⊆ Vall and Gen All Volumes(Vnodes, Vall) then
30: for all (v1, v2) ∈ Vnodes × Vnodes do
31: if |v2 − v1| /∈ Vall then
32: return FALSE
33: return TRUE
34: else
35: return FALSE

36: procedure Min Subcliques(Vk, Vall,mmin,mmax, Vnec)
37: subcliques ← {}
38: for all m ∈ {mmin, . . . ,min{mmax, |Vk|}} do
39: for all Vsk ∈ m-subsets(Vk) do
40: if Gen Exact Volumes(Vnec ∪ Vsk, Vall) then
41: if 6 ∃ V ′k ∈ subcliques : V ′k ⊂ {Vnec ∪ Vsk} then
42: subcliques ← subcliques ∪ {Vnec ∪ Vsk}
43: return subcliques

12



Algorithm 3 Practical, probabilistic subroutines for Alg. 2.

1: procedure Find Maximal Cliques P(CANDnn,Mmin, Vall)
2: cliques ← {}
3: if |CANDnn| ≤ 20 then
4: cliques ← Find Maximal Cliques(CANDnn) . NetworkX
5: else
6: for i ∈ {1, . . . , 1000} do
7: a clique ← Find A Maximal Clique(CANDnn) . graph-tool
8: if |a clique| ≥Mmin then
9: cliques ← cliques ∪ {a clique}

10: if cliques = {} then
11: return FAILURE . All sampled cliques too small

12: if 6 ∃ Vk ∈ cliques : Gen All Volumes(Vnec ∪ Vk, Vall) then
13: return FAILURE . No sampled clique gen. all volumes

14: return cliques

15: procedure All Subcliques P(Vk, Vall,mmin,mmax, Vnec)
16: subcliques ← {}
17: if

∑mmax
m=mmin

(|Vk|
m

)
≤ 2000 then

18: for all m ∈ {mmin, . . . ,min{mmax, |Vk|}} do
19: for all Vsk ∈ m-subsets(Vk) do
20: if Gen Exact Volumes(Vnec ∪ Vsk, Vall) then
21: subcliques ← subcliques ∪ {Vnec ∪ Vsk}
22: return subcliques

can then approximate the collision probability between volumes, and ultimately compute estimates of
the number of distinct volumes, nodes, and edges in the graph.

To compute concrete bounds, we assume the database distribution is uniform. We show that the
number of volume collisions can be approximated byN3/(4

√
πR). Experiments in Appendix C.4 support

this estimate. In particular, having no volume collision whatsoever would require R = Ω(N6), which
is only reasonable for very low values of N . This shows the importance of using algorithms that are
resilient to the fact that volumes do collide, and hence do not in general identify a unique range; as is
the case of our algorithm.

We also show that the ratio R/N2 relates both to the ratio of collisions among volumes, and to
the edge density of the graph, suggesting that it is a critical quantity for assessing the success of our
algorithm. Our experiments show that when this ratio is 1/2 or more, our algorithm typically succeeds
easily (even on non-uniform age data), while when it is much lower than 1/2 it typically fails.

Furthermore if we model the graph as a random graph, as far as its clique number is concerned
(and disregarding the existence of the two N -cliques stemming from elementary ranges), then we show
that for the two solution cliques stemming from elementary volumes to be of maximum size among all
cliques (and hence uniquely identifiable as such), it should be the case that R = Ω(N2). We refer the
reader to Appendix C for more details.

3.3 Experimental Evaluation

In this section, we present an experimental evaluation of the reconstruction attack from the previ-
ous section. We simulate an attacker who has observed enough queries to see all possible volumes
of range queries. We implemented our algorithms in Python and used the graph-tool [Pei14] and
NetworkX [HSS08] packages for finding cliques or maximal independent vertex sets.

Datasets and methodology. We test our algorithm on various attributes from three years of med-
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Pre-processing results by attribute and data density

Figure 2: Pre-processing success and data density by attribute.

ical records from the US government’s Healthcare Cost and Utilization Project (HCUP) Nationwide
Inpatient Sample (NIS). The attributes we chose to extract have domain sizes that range from N = 4
to N = 366 and they are all attributes on which range queries are meaningful. For more information
about these datasets and how we extracted attributes, see Appendix B. Each of the three years includes
patient discharge records from about 1000 hospitals, giving us 3000 datasets for most attributes. (Some
were not available in all years.)

We say the attack succeeds if there is a single solution output by Algorithm 2, and it is the set of
elementary volumes (up to reflection). For dense datasets (where every value appears at least once and
no range query has volume 0), this means that all element counts have been recovered exactly, up to
reflection. For sparse datasets, this means that all non-zero element counts have been recovered in order
(up to reflection), but it is not known which elements did not appear in the database – the attacker
must make a decision about which values were not observed. In our evaluation of step 2, we discuss
and evaluate one such strategy, which uses a small amount of auxiliary information, for assigning the
recovered counts to a subset of elements in the domain.

Step 1 evaluation. The first step of the attack is to observe enough queries to see all possible range
query volumes. The number of queries that this entails depends on the query distribution, as discussed
in Section 3.2. For instance, if the query distribution is uniform, then the expected number of queries
is O(N2 logN).

Step 2 evaluation. For each dataset-attribute combination, we ran Algorithm 1 to obtain sets of
necessary elementary volumes, Vnec, and candidate elementary volumes, Vcand. The plot in Figure 2
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Pre-processing results for sparse datasets:
assigning counts to values with a simple strategy

Figure 3: Extending pre-processing success for sparse datasets. The fraction of correct values is out of the actual
number of values for each dataset. Whiskers indicate the 5th and 95th percentiles, while boxes indicate the 25th
and 75th percentiles, with a line at the median and a diamond at the mean.

shows, for each attribute, the average1 number of datasets for which pre-processing was sufficient for
the attack to succeed. For all attributes except AGE and AGEDAY, pre-processing correctly identified
the non-zero element counts in order (up to reflection) for the vast majority of datasets. The difference
in patterns on the bars indicates which datasets were dense. Attributes with smaller domain sizes, e.g.,
AMONTH, MRISK, SEV, and ZIPINC, were dense most of the time. The attributes with the largest
domain, LOS and AGEDAY, were dense in fewer than 0.01% of datasets.

Pre-processing recovered the set of elementary volumes for at least 90% of all dense datasets for
each attribute except AGEDAY. This attribute had a single dense dataset in each 2004 and 2008 that
required clique-finding.

For sparse datasets, recovering the set of all non-zero counts provides a lot of information. Combining
it with some rudimentary information about the database distribution can lead to recovering all element
counts, just like in the dense case. For instance, one might guess that the length of stay (LOS), the
number of chronic conditions (NCHRONIC), and the number of procedures (NPR), might be 0 most
frequently, then decrease. To illustrate just how valuable knowing the set of elementary volumes could
be when combined with a tiny bit of knowledge about the domain, we evaluate the following strategy for
assigning counts to elements: simply guess that they correspond to the first values in the domain. The
results are displayed in Figure 3. We juxtapose the success of our simple strategy for LOS, NCHRONIC,
and NPR with its mediocre results for the number of diagnoses, NDX, which is 1 more frequently than
0, and thus our strategy is not suitable for it.

Step 3 evaluation. Lastly, we ran Algorithm 2 (with some modifications) on the few dataset-
attribute combinations for which pre-processing did not find a unique solution. First, we modified
Get Elem Volumes to return all solutions, not just minimal ones, by replacing Min Subcliques in

1For attributes that were available in more than one year (as noted in Figure 7 in Appendix B), results were very
similar, so we averaged the counts.
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Figure 4: Overall results of the practical reconstruction attack.

Alg. 2 with All Subcliques P (described starting on line 15 in Alg. 3). However, for the sake of a
more practical attack, we allowed Get Elem Volumes to return an incomplete list of solutions, or to
fail entirely.

Our probabilistic variant of Find Maximal Cliques is described starting on line 1 of Algorithm 3.
Specifically, line 14 of Algorithm 2 is replaced with Find Maximal Cliques P(CANDnn,Mmin, V ).
For graphs with 20 or fewer nodes, we used the find cliques routine from the NetworkX Python
module (line 4) [HSS08]. For graphs with more nodes, we sampled maximal cliques one at a time, 1000
times, (line 7) using Luby’s efficient parallel algorithm for maximal independent sets, implemented as
the max independent vertex set routine from the graph-tool Python module [Pei14].

The three points at which our variant may fail are (i) Find Maximal Cliques P fails to find any
maximal cliques of size at least Mmin (line 11), (ii) we found such cliques, but none of them generated
the set of missing volumes (line 13), or (iii) there were such cliques that generated the set of missing
volumes, but for all of them, it was impractical (line 17) to find all of their subclique solutions.

Figure 4 shows the overall attack results. Success, in green, occurs when pre-processing or clique-
finding finds the solution and it is unique – there is a single clique whose size is in the right range
that generates all observed volumes. Multiple cliques, in blue, arise when clique-finding has found all
such solutions, but there is more than one, so that the correct solution cannot be precisely determined.
Failure, in red, arises either when Algorithm 2 returns FAILURE or {} or when we sampled maximal
cliques using Luby’s algorithm (line 7) and may not have found all of them.

In our experiments, the most common reason for failure overall was (iii): it was impractical to find
all subcliques (about 60% of failures or incomplete cases). The second most common overall reason for
failure was (ii), not finding any cliques that generated all missing volumes (about 36%). However, as
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one might expect because of the bound on line 17 in All Subcliques P, the attributes with fewer
possible values (e.g., AGE with N = 91 compared to AGEDAY with N = 365) failed more often due
to no cliques generating all volumes as opposed to too-big cliques.

Conclusions. Overall, our experiments indicate that our clique-finding approach yields overwhelming
success in reconstructing counts of dense datasets – and that in most cases, no expensive clique-finding
is even required (see the white bars corresponding to dense data in Fig. 2). For sparse data, the success
of this approach mainly depends on what auxiliary information is available to the attacker. We showed
how an attacker can leverage rudimentary knowledge of a distribution (e.g., that the most frequent
values are the smallest) to correctly assign exact counts to values (see Fig. 3).

4 Update Recovery Attack

In this section, we consider an attack in the following setting. We assume that the adversary knows the
database counts, via either the reconstruction attack from the previous section or a one-time compromise
of the database. Now suppose that a new record is added into the database, and that the attacker learns
this. The attacker could detect such an update for example because an update query may have a different
volume than a range query; the attacker could also infer indirectly that an update has occured because
he observes volumes that were not possible for the original database counts. In this context, we propose
an attack to recover the value of the newly added record using only the volume leakage of range queries
issued after the update.

Note that in order to fully recover the value of the new record, the attack assumes that enough
range queries are issued by the client before any further update is made. Thus the attack as it stands
will fail if updates are made in close succession. We leave the treatment of frequent or simultaneous
updates for future work.

On the other hand, if there are enough range queries for our attack to fully recover the value of a
new record after it is added, and before the next update, then database counts are fully known before
the next update. It follows that the attack can be repeated for the next update. Thus if database
updates are rare relative to range queries, then the attack allows an adversary to update its view of
database counts on the fly as updates are made.

As a first idea to recover the value of the new record, one could re-run the database reconstruction
attack and compare the original and new counts. This has unnecessarily high query complexity—our
attack in this section is orders of magnitude more efficient analytically and experimentally.

Like our main attack, our update recovery algorithm does not require a uniform query distribution.
If we do make that assumption for the purpose of analysis, then the algorithm is amenable to analysis
in the same model as our main attack. Recall that in that model, our main attack required O(N2 logN)
queries for full reconstruction. In the same model, our update recovery algorithm only requires O(N)
queries to recover the value of the new record exactly. Furthermore the same algorithm is able to
approximate the value of the new record quite quickly: our model predicts that the value of the new
record can be approximated within an additive error εN , for any ε > 0, after observing O(1/ε) queries;
once again the observed behavior in our experiments on real-world data matches this prediction.

4.1 Update Recovery Algorithm

The idea of the attack is as follows. First, because the adversary knows all database counts for the
original database, it knows the volume of every range query on that database. Now suppose that a new
record is added, and the adversary then observes the volume of some range query.
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Algorithm 4 Update recovery attack.

1: procedure Update Recovery(V ,C,N)
2: RangeFromVol← empty map
3: for x ∈ [1, N ] do
4: for y ∈ [x,N ] do
5: v ←

∑
x≤k≤y C(k)

6: if RangeFromVol(v) is undefined then
7: RangeFromVol(v)← [x, y]
8: else
9: RangeFromVol(v)← ⊥

10: Possible← [1,N] . Set of possible values
11: for v ∈ V do . Iterate through observed volumes
12: if RangeFromVol(v − 1) = [x, y] and RangeFromVol(v) is undefined then
13: Possible = Possible ∩ [x, y]

14: if RangeFromVol(v) = [x, y] and RangeFromVol(v − 1) is undefined then
15: Possible = Possible \ [x, y]

16: return (min(Possible) + max(Possible))/2

Assume that the volume of that query is not equal to the volume of any range for the original
database (i.e. before the record was added). Then it must be the case that the queried range has
matched the new record. The adversary can detect this, since it knows the volume of every query for
the original database, as noted earlier. Since the query has matched the new record, its volume must
be one more than the volume of some range in the original database. If that range is unique, once
again the adversary knows this, and can deduce the queried range [x, y]. In that case the adversary can
immediately deduce that the value of the new record must lie within [x, y]. A similar reasoning holds
in the case that the observed range does not contain the new record.

As the volumes of more range queries are observed, the adversary refines its knowledge of the new
record’s value. We note that the previous reasoning required an assumption about a certain volume
corresponding to a unique queried range in the original database. As both experiments and analysis
will show however, this event occurs often enough that the algorithm is able to quickly home in on the
value of the new record.

Pseudo-code is provided in Algorithm 4. The input of the algorithm is a set of volumes V , which
should be the number of matching records (i.e. volume) of a set of observed queries; the original
database counts C, where C(k) is the number of records with value k; and the number of values N . The
algorithm creates a table “RangeFromVol” mapping volumes to ranges for the original counts C, then
proceeds to refine the set “Possible” of possible values for the new record as new volumes are observed,
according to the algorithm explained in the previous paragraph. The algorithm finally outputs a guess
for the value of the new record, which is simply the average of the minimum and maximum of the set of
possible values obtained up to that point (this choice minimizes worst-case error). We preferred clarity
in the pseudocode; many refinements are possible. Our experiments show that this simple algorithm is
already quite effective.

Our analysis of the attack’s query complexity is given in Appendix D. Within the same analytical
model as in Section 3.2, we show that assuming R = Ω(N2), the expected number of queries for exact
recovery is O(N), and the expected number of queries to recover the value of the new record within εN
is O(1/ε), where the constants depend on N/

√
R.
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Precision

R 20% 10% 5% 2% Exact

5000 47 79 123 229 974

10000 18 29 46 99 391

20000 11 17 27 57 191

Figure 5: Median number of queries needed to achieve the given precision in the output of Algorithm 4, for three
hospitals with size within 10% of the given R.

4.2 Experiments

We have run Algorithm 4 on the age data of patients in three hospitals of sizes within 10% of R = 5000,
10000 and 20000, extracted from the same HCUP data as in Section 3.3. The age data is capped at 90
in our dataset for privacy reasons, and so the number of values is N = 91. Thus the choices of sizes
5000, 10000 and 20000 reflect the cases where R is respectively close to N2/2, N2 and 2N2. Update
recovery should work well in parameter regimes when the main reconstruction attack works well: around
R ≥ N2/2. Effectiveness should degrade gracefully below that value.

If R is close to N2/2 or below, it may happen that most or all ranges that would allow to uniquely
identify the value of the new record collide with other volumes; in that case exact recovery could be very
expensive or impossible. If recovery is impossible, the average number of queries required for recovery
is technically infinite. Obviously, an infinite average does not reflect the fact that in practice, recovery
should usually succeed with a low number of queries. For this reason we use medians instead of averages.

Results are given in Figure 5. As predicted by our model, the number of queries needed for exact
recovery is of the order of magnitude of a reasonably small multiple of N , although the constant degrades
when R approaches N2/2. The number of queries necessary to achieve a precision ε does appear to
behave as O(1/ε). Furthermore, the value of the new record can be approximated reasonably well within
relatively few queries, especially for larger R: for R = 20000 we see that observing the volume of 27
queries suffices to recover the value of the new record within an error of 5%, i.e. within 5 years.

5 Range Query Reconstruction via CDF Matching

In Section 3, we described an attack that achieves database reconstruction from the volumes of unknown
queries. Once the database has been reconstructed, the queries themselves can also be reconstructed
from their volumes by matching an observed volume to the set of possible queries that have that volume.
Thus, one generic approach to query reconstruction is to observe enough volumes to reconstruct the
database using the previous attack, then simply match queries to volumes using the reconstructed
database. In Appendix E we confirm experimentally that this attack is very effective. A drawback
of this approach is that many queries must be observed before any information is learned about any
queries. If an attacker wants to learn as much as it can from a set of queries of any size, a different
approach is needed.

In this section, we describe an attack that achieves query reconstruction “online”, meaning the ad-
versary can infer a set of likely underlying values for the query as soon as it observes its corresponding
volume. We call this attack “CDF matching”. CDF matching uses an estimate of the database distri-
bution (below, an “auxiliary distribution”) to infer the underlying (hidden) query as soon as its volume
is observed. Various works [NKW15, GSB+17] have argued that attacks with auxiliary distributions are
realistic; such distributions can come from census data [BGC+18], public employee records [GSB+17],
or even copies of similar databases posted online by hackers.
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First, we will describe the attack and analyze it in the setting where the adversary has full knowledge
of the database distribution. Then, we will demonstrate empirically that (1) the attack reveals a
substantial amount of information about queries, and (2) our analysis retains much of its predictive
power even when the adversary has a poor auxiliary distribution.

Preliminaries. Before describing our attack we will state and discuss two useful technical tools. The
Kolmogorov-Smirnov (KS) distance between CDFs F and G is KS(F,G) = supx |F (x)−G(x)|. Let
Ib is 1 if b = 1 and 0 otherwise. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [DKW56] is
a Chernoff-type bound on the maximum distance between the empirical and true CDF of a distribution.

Theorem 1 (Dvoretzky-Kiefer-Wolfowitz). Let πDB be a distribution on [1, N ], and X1, . . . , XR be R
i.i.d. samples from πDB. Let F̂ (i) = 1

R

∑R
j=1 IXj≤i and F (i) =

∑i
j=1 pi for i ∈ [1, N ]. Then

Pr

[
sup
i

∣∣∣F̂ (i)− F (i)
∣∣∣ > ε

]
≤ 2e−2Rε

2
.

This is a useful result for several reasons. First, it implies convergence for volumes of range queries,
since the volume of every query [i, j] can be written R ·(F̂ (j)−F̂ (i−1)). It is also a uniform convergence
bound, meaning its guarantees apply to all range queries simultaneously. Finally, its rate of convergence
is nearly as fast as a single Chernoff bound, though it applies to many events at once.

5.1 The CDF Matching Attack

First define some notation. Let the number of records in the database be R. Let πDB = (p1, . . . , pN ) be a
distribution over [1, N ], andR the set of all range queries on [1, N ]. We model the database as a sequence
of R i.i.d. samples X1, . . . , XR from πDB. For any query q = [a, b], define VDB(q) =

∑R
i=1 Ia≤Xi≤b and

Pr [ q ] =
∑

`∈q p`.
Let our attack be represented by the adversary A. For any query q, A takes as input πDB, R, VDB(q),

and the confidence parameter 0 < δ < 1. The adversary A first computes a precision ε with the property
that

Pr

 sup
q′∈R

∣∣∣∣∣∣VDB(q′)

R
−
∑
`∈q′

p`

∣∣∣∣∣∣ ≤ ε
 ≥ 1− δ

using the DKW inequality, as ε =
√

(2 log 2
δ )/R. The adversary A then outputs

Q̂ =

{
q′ ∈ R :

∣∣∣∣Pr
[
q′
]
− VDB(q)

R

∣∣∣∣ ≤ ε
}
.

We will measure success on two axes: (1) raw accuracy, which measures whether the true query is
in the candidate set Q̂, and (2) uncertainty reduction, which measures the size of Q̂ (where smaller Q̂s
reduce the attacker’s uncertainty more). There are many ways to refine the CDF matching attack, such
as using constraints on query volumes. One such constraint is that for two volumes v1 < v2, the query
with volume v2 cannot be contained in the query with volume v1. Such refinements would increase
reconstruction accuracy but would make the attack “offline”, so we leave it to future work.

Analysis. Next we turn to analyzing the performance of the CDF matching attack. With the DKW
inequality as a tool, it is straightforward to put tight analytical bounds on these two performance metrics
in an ideal query reconstruction setting where the adversary has precise knowledge of the database
distribution and the database is sampled i.i.d. The following theorem lower-bounds raw accuracy and
is proven via a simple application of DKW.
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Theorem 2. Let πDB = (p1, . . . , pN ) be a distribution on [1, N ], and let R be the set of all intervals of
[1, N ]. Let DB = X1, . . . , XR be R i.i.d. samples from πDB. For a range query q = [i, j] on [1, N ], define
Pr [ q ] =

∑j
`=i p` and VDB(q) =

∑R
k=1 Ii≤Xk≤j. Let A be an adversary which on input πDB, R, VDB(q)

and 0 < δ < 1 computes ε =
√

(2 log 2
δ )/R and outputs Q̂ as defined above. Define Err to be the event,

over the coins used to sample DB, ∃q ∈ R so that q 6∈ A(πDB, R, VDB(q), δ). Then Pr [ Err ] ≤ δ.

Proof. If the event Err happens, then there exists a query q = [a, b] for which q 6∈ A(πDB, R, VDB(q), δ).

By the definition of Q̂, this implies
√

(2 log 2
δ )/R < |VDB(q)/R−Pr [ q ]|. We can rewrite the right-hand

side purely in terms of CDFs, as∣∣∣∣VDB([1, b])

R
− VDB([1, a− 1])

R
− (Pr [ 1, b ]− Pr [ 1, a− 1 ])

∣∣∣∣
=

∣∣∣∣(VDB([1, b])

R
− Pr [ 1, b ]

)
+

(
Pr [ 1, a− 1 ]− VDB([1, a− 1])

R

)∣∣∣∣
≤
∣∣∣∣VDB([1, b])

R
− Pr [ 1, b ]

∣∣∣∣+

∣∣∣∣VDB([1, a− 1])

R
− Pr [ 1, a− 1 ]

∣∣∣∣ .
Since VDB([1, b])/R is exactly the empirical CDF F̂ (b) of b and Pr [ 1, b ] is the true CDF F (b) of b, either

|F̂ (b)−F (b)| or |F̂ (a−1)−F (a−1)| is greater than
(√

(2 log 2
δ )/R

)
/2 (wlog say it’s the former). Since

supi |F̂ (i)−F (i)| ≥ |F̂ (b)−F (b)|, this implies supi |F̂ (i)−F (i)| >
(√

(2 log 2
δ )/R

)
/2. An upper-bound

on the probability of this event can be obtained by directly applying DKW. This yields Pr [ Err ] ≤ δ,
as needed.

This theorem implies that an adversary that chooses its candidate set in CDF matching via the
DKW inequality has perfect raw accuracy except with probability δ. Even with an inaccurate auxiliary
distribution, Theorem 2 and other results of this form are likely to hold as long as the KS distance
between the true distribution and the adversary’s auxiliary distribution is low.

Next we present a theorem on the uncertainty reduction of the CDF matching attack. Uncertainty
reduction measures the number of queries which could correspond to an observed volume. Intuitively,
uncertainty about the underlying query of an observed volume is related to the number of queries whose
probabilities are “close” to the real query.

Theorem 3. Let πDB = (p1, . . . , pN ) be a distribution on [1, N ], and let R be the set of all intervals of
[1, N ]. Let DB = X1, . . . , XR be R i.i.d. samples from πDB. For a range query q = [i, j] on [1, N ], define

Pr [ q ] =
∑j

`=i p` and VDB(q) =
∑R

k=1 Ii≤Xk≤j. For any query q, 0 < δ < 1, and ε =
√

(2 log 2
δ )/R

define Cq = {q′ ∈ R : |Pr [ q ]− Pr [ q′ ]| ≤ 2ε} and CSq = {q′ ∈ R : |Pr [ q′ ]− (VDB(q)/R)| ≤ ε}. (Note
that Cq is fixed by πDB, δ, R while CSq is a random variable.) Define CS to be the event, over the coins
used to sample DB,

⋃
q∈R(|CSq| > |Cq|). Then Pr [ CS ] ≤ δ.

Proof. If the event CS happens, then there exists a q ∈ R so that |CSq| > |Cq|. For query q, Cq is the
set of queries for which an ε interval around their expected volume overlaps with the ε interval around
the expected volume of q. Thus, |CSq| > |Cq| implies there exists q′ so that |(VDB(q′)/R)−Pr [ q′ ]| > ε.
Applying DKW lets us upper-bound the probability of this happening by δ.

This theorem is useful because it relates the size of the candidate set for a query to the number of
other queries whose expected volumes are close in probability. Further, for a given database distribution
we can quantify the rate at which the candidate sets for range queries get smaller as the number of
records increases.
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Figure 6: Results of CDF matching experiments on HCUP attributes. The number appearing below each attribute
is the median across all hospitals of the KS distance between an individual hospital and the auxiliary distribution.
The percentage corresponding to each bar pattern is the proportion of queries in the set Q̂ for the correct
predictions; thus, smaller numbers are better.

5.2 Experimental Results

We performed two types of experiments to assess the risk of query reconstruction. The first type assumes
the exact count of each element in the database is known, either because the database was stolen or
the attacker observed enough queries to run the clique-finding algorithm described above. For space
reasons, a description of the exact procedure and the results appear in Appendix E.

The second type of experiment evaluates the CDF matching algorithm using the attributes described
in Figure 7 of Appendix B. In each experiment, we took the individual hospital records for that attribute
for a particular year’s HCUP data to be the targets of the attack. We used the aggregate counts of a
different year of HCUP data as the auxiliary data. We ran experiments with different combinations of
auxiliary data and target hospitals for the HCUP years 2004, 2008, 2009 and 2013. Surprisingly, both
the performance of the experiments and the median KS distance between the auxiliary distribution and
the target hospitals varied only a small amount between different experiments for an attribute, so for
simplicity of exposition we will only present one experiment for each.

An individual experiment performs the following steps: first, we compute the number of records R
in the target hospital. Then we compute the epsilon given by the DKW inequality for R and δ = 0.05.
Then for each query in the target hospital, we compute the set of candidate queries Q̂ as described
above. Figure 6 shows the median raw recovery rate (i.e. the median fraction of times the correct query
is in Q̂) broken down by the sizes of the sets Q̂. The set sizes are relative to the total number of queries
for each attribute (given in Figure 7); to save space we omit converting the percentages to absolute sizes.
Roughly, the total height of each bar is the median fraction of correct predictions (of any size) and the
different patterns on each bar report how much reduction in uncertainty each correct prediction gives
the adversary (where a smaller number means the size of Q̂ is smaller, and the adversary’s uncertainty
is reduced more). With precise knowledge of the database distribution and i.i.d. samples, the median
raw recovery rate would be 100% except with probability 0.05. With no knowledge at all, the “baseline
guessing” attack would simply set Q̂ to be all possible queries. On this graph, this would be a bar with
the 100% pattern going from 0.0 to 1.0.

Discussion. The raw recovery rate varied widely between different attributes. For the two largest at-
tributes (AGEDAY and LOS) almost every set Q̂ contained the correct query. However, both attributes
have an extremely skewed distribution, so for almost all queries Q̂ contained almost every possible query.
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Thus, the “reconstruction” achieved for most queries is not better than baseline guessing. The attack
performed well on AMONTH, and there the sets Q̂ were much smaller—over 30% of the recovered
queries had |Q̂| ≤ 8. The auxiliary data was quite good for AMONTH: the median KS distance was
only 0.02.

The results for NDX, NPR, and NCHRONIC are more surprising. All three had relatively large
median KS distances, but a substantial fraction (around 15%) of all queries were correctly recovered
and had small |Q̂|. For NDX and NPR, around 15% of queries were recovered and had |Q̂| ≤ 14, and
for NCHRONIC around 10% of queries had |Q̂| ≤ 35. The overall recovery rate was high as well. AGE
also had many correctly-recovered queries with small Q̂, despite a high KS distance. In fact, in more
than 80% of hospitals there were correctly-recovered queries with |Q̂| ≤ 15, which corresponds to only
0.4% of possible range queries! Despite having a poor auxiliary distribution, for all these attributes
the attack was able to recover fine-grained information about many queries. Further, the analysis (in
particular Theorem 2), which formally only holds when the auxiliary distribution is nearly perfect, is
still partially predictive for accuracy in a noisy setting.

The conclusions we draw from these experiments are twofold: (1) simple query reconstruction attacks
can reveal fine-grained information about queries and damage privacy even in practical settings and with
poor auxiliary data, and (2) idealized models of these attacks proven under seemingly strong assumptions
(such as perfect auxiliary data or i.i.d. samples) maintain much of their predictive power when these
assumptions are violated.

Database reconstruction. If enough queries are reconstructed with high accuracy, it is possible to
reconstruct the database as well. If we write each query q = [a, b] as a 0-1 row vector where qi = 1
if a ≤ i ≤ b and zero otherwise, the database DB (a vector with N components whose sum is R) is
an (integer) solution to the system of linear equations Q ·DB = ~v where Q is a matrix of row vectors
for each recovered query, and ~vi is the volume of the ith query. If the rank of the matrix Q is N , the
matrix-vector equation has a unique solution and the database can be recovered exactly.

Even if only a few queries are recovered correctly and the rank of the matrix is less than N , the set
of integer solutions to Q ·DB = ~v (with

∑
iDBi = R) is exactly the set of possible databases having

all the observed volumes. With knowledge of the database distribution, the “maximum-likelihood”
database for any set of recovered queries can be constructed using integer convex programming: observe
that for πDB = (p1, . . . , pN ) and a candidate solution DB = (x1, . . . , xN ), the log of the probability
Pr [DB ; πDB ] =

(
R!

x1!···xN !

)
px11 · · · p

xN
N can be well-approximated by a convex function (using Stirling’s

approximation for log xi!). Using a standard relax-and-round approach to convert the integer problem to
one over RN , a convex programming solver can reconstruct the database with all the observed volumes
having the highest probability. Of course, one can use the attack from Section 3 to reconstruct the
database; the advantage of this approach is that it requires far fewer queries. We leave a more detailed
treatment to future work.

6 Countermeasures

In this section we briefly discuss some possible countermeasures to our attacks. There are two basic
kinds of countermeasures: client processing and adding noise.

Volume information can be hidden if the client does some additional processing of queries and
results. If instead of issuing a single query, the client batches several queries together, the volume of
any individual query will not be revealed. If queries are infrequent, this could incur a high latency
penalty. Another approach is putting a lower limit on the width of a range query. If the client wants
to query a small range, it queries a larger range and filters the unneeded results locally. This incurs
bandwidth overhead, but may be feasible in some settings. The database could be bucketed, meaning
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records which are close in value are treated as one logical “value” for the purposes of retrieval [HMT04].
Bucketing would not generally prevent reconstruction, but would ensure the exact counts of individual
elements are not revealed.

Adding noise to the volumes can be done by adding dummy records to the database, incurring
server storage overhead. It seems inherent that the security benefit is directly related to the storage
overhead: a small number of dummy records (yielding low storage overhead) will give little or no
security benefit. One principled way of adding dummy records is using differential privacy (DP), as
suggested by KKNO in a follow-up work [KKNO17]. Rather than querying the database directly,
they query the output of a DP mechanism for range queries. Intuitively, the DP mechanism prevents
reconstruction of the exact count of every element in the database. Crucially, their guarantees do not
extend to query reconstruction: while query reconstruction should be less accurate, no formal guarantee
precludes accurate query reconstruction. Since a thorough examination of DP countermeasures would
be quite involved, we leave it to future work.

7 Related Work

Aside from KKNO, there are two recent works on reconstruction attacks which are related to ours. The
first is by Cash et al. [CGPR15], who present an attack for revealing keyword search queries on natural-
language documents based on the number of results returned. Their sole attack in the volume-only
setting requires perfect knowledge of the documents in the database and simply matches an observed
volume with the query having that count. Our query reconstruction attack with exact counts (discussed
in Section 5) can be seen as a version of their count attack.

The other recent paper related to our attacks is by Lacharité et al. [LMP18]. Their auxiliary data
attack is similar in some ways to the CDF matching attack in Section 5. They target full reconstruction,
assuming both access pattern and rank leakage, but do not provide a formal analysis. In contrast, our
CDF matching attack targets query reconstruction with fewer assumptions. Moreover, it is accompanied
by an analysis which gives tight theoretical guarantees and maintains its predictive ability even if the
auxiliary data is inaccurate.

In the security community, communication volume and other traffic features like packet timings have
long been used to perform traffic analysis and website fingerprinting attacks. For example, Wright et
al. [WBC+08] recovered spoken phrases from encrypted VoIP traffic by training a model on packet sizes
and timings. Both the settings and goals of these works are distinct from ours; in particular they rely
on information that is not available in our setting.

Some countermeasures for communication volume leakage exist. For example, IPSec has an optional
“Traffic Flow Confidentiality” mode that adds padding. TLS 1.3 and SSH also allow packets to be
padded. These countermeasures are not widely used in practice, both because they are usually too
expensive to deploy in large systems and because prior work [DCRS12] has shown the overall usefulness
of these countermeasures is quite low.

In a recent follow-up [KKNO17] to their reconstruction attacks, KKNO combine ORAM and differ-
ential privacy with the goal of preventing database reconstruction attacks based on either access pattern
or communication volume. We discuss this work in Section 6.

8 Conclusions and Future Directions

In this work we demonstrate practical reconstruction attacks which use only volume leakage. In the
context of encrypted databases, it is worth noting that while ORAM protects against attacks that require
access pattern leakage, it remains vulnerable to volume attacks. Given the rich volume information that
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can be recovered from a database snapshot [GRS17], one unavoidable and surprising conclusion of this
work is that ORAM by itself is insufficient to argue security even against reconstruction attacks carried
out by a snapshot attacker. An empirical study of whether our attacks can be carried out using only a
database snapshot is an interesting direction for future work.
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[Bol98] Béla Bollobás. Random graphs. In Modern graph theory. Springer, 1998.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmet-
ric encryption: improved definitions and efficient constructions. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 06, pages 79–88. ACM
Press, October / November 2006.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, edi-
tors, ACM CCS 15, pages 668–679. ACM Press, October 2015.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu,
and Michael Steiner. Highly-scalable searchable symmetric encryption with support for
Boolean queries. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 353–373. Springer, Heidelberg, August 2013.

[DCRS12] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail. In 2012 IEEE Symposium
on Security and Privacy, pages 332–346. IEEE Computer Society Press, May 2012.

[DKW56] Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator. The Annals of
Mathematical Statistics, 1956.

[FGT92] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier. Birthday paradox, coupon collectors,
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A Detailed Description of KKNO Reconstruction Attacks

In this appendix we reproduce, for completeness, the reconstruction attacks presented in [KKNO16].
We also give some evidence that it is difficult (or perhaps even impossible) to adapt to non-uniform
query distributions, and conclude by noting some surprising limitations of KKNO’s attack.

A.1 KKNO’s Factorization Attack

Suppose the database contains R records with values val1 ≤ val2 ≤ . . . ≤ valR in {1, . . . , N}. For ease
of notation, define val0 := 0 and valR+1 := N + 1. Define the distance dk between the kth and (k+ 1)st
records as dk := valk+1 − valk. Let uk be the number of distinct queries matching k records, for any
0 ≤ k ≤ R. (Note that since there are only N(N + 1)/2 distinct queries, at most this many uk’s can be
non-zero.) The uk’s then satisfy the following equations:

uR = d0 · dR
uR−1 = d0 · dR−1 + d1 · dR

...

uR−m =
m∑
k=0

dk · dR−(m−k)

...

u1 = d0 · d1 + d1 · d2 + . . .+ dR−1 · dR

u0 = 1/2

(
R∑
k=0

dk
2 − (N + 1)

)

The key observation from KKNO’s work is that if queries are uniformly distributed, then it is possible
to determine the uk’s by observing enough queries, after which it is possible to construct a polynomial
that can be factored into two polynomials whose coefficients are the dk’s. That polynomial is

F (x) = uR + . . .+ u1 · xR−1 + û0 · xR + u1 · xR+1 + . . .+ uR · x2R,

where the coefficient of xR is not u0, but û0 := 2 · u0 + N + 1. The polynomial can then be factored
into two degree-R polynomials, specifically, F (x) = d(x) · dr(x), where

d(x) = d0 + d1 · x+ . . .+ dR · xR, and

dr(x) = dR + dR−1 · x+ . . .+ d0 · xR.

Polynomial F may not have a unique factorisation into factors of this form, in which case KKNO’s
algorithm picks one of the possibilities arbitrarily.

The first step of the attack is to observe enough queries to determine the uk’s. Let ck be the number
of queries (out of the observed Q queries) that have volume k, for any k between 0 and R. Then as the
number of queries Q grows, the quantity ck/Q gets arbitrarily close to uk · 1

N(N+1)/2 , and therefore it

is possible to solve for the uk’s and proceed with constructing and factorizing F (x). KKNO show that
the approach we just sketched correctly recovers all uk’s after Ω(N4 logN) queries, except with inverse
polynomial (in N) probability. Note that this attack can also cope with some di values being zero.
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A.2 KKNO for Non-Uniform Query Distributions

The assumption that the query distribution is uniform is inherent to KKNO’s algorithm; without such
an assumption, it is not clear how to determine the uk’s from the ck’s. In fact, with non-uniform
query distributions, it is sometimes not possible to uniquely determine the uk’s. Consider the following
example with N = 3, R = 3, and query distribution as follows:

Pr([1, 1]) = 1/4 Pr([1, 2]) = 1/6 Pr([1, 3]) = 1/6

Pr([2, 2]) = 1/8 Pr([2, 3]) = 1/8

Pr([3, 3]) = 1/6.

Suppose that after sufficiently many queries Q have been observed, the counts are as follows:

c0/Q = 1/6 c1/Q = 1/4 c2/Q = 1/4 c3/Q = 1/3.

In this case, it is impossible to distinguish whether the element counts are {1, 2, 0} (or the reflection
{0, 2, 1}) or {2, 1, 0} (or the reflection {0, 1, 2}). Note that with a uniform query distribution, KKNO’s
algorithm would have succeeded in both cases since the corresponding polynomials factor into unique
pairs of degree-3 polynomials:

F1(x) = 2 + 2x+ x2 + 6x3 + x4 + 2x5 + 2x6

= (x3 + x2 + 2)(2x3 + x+ 1), and

F2(x) = 2 + x+ 2x2 + 6x3 + 2x4 + x5 + 2x6

= (x3 + x+ 2)(2x3 + x2 + 1).

Understanding the uis via linear algebra. One way to view the ui values for non-uniform dis-
tributions is as components of a matrix-vector product, as follows. For a database DB containing R
records drawn from plaintext space [N ], define the volume matrix VDB of DB to be a binary matrix
with R + 1 rows and N(N + 1)/2 columns. Each column corresponds to a query, with the columns
numbered by some canonical ordering on queries. The entry vij of VDB is 1 if the jth query has volume
i. Each column has exactly one nonzero entry (since a query can only have one volume) and a row may
have zero, one, or more than one nonzero entry (since different queries can have the same volume).

Next, define the vector P . It has N(N + 1)/2 entries, each of which is equal to 2/(N(N + 1)).
Some algebra shows that right-multiplying the matrix VDB with P results in a vector U with R + 1
entries with the property that Ui is exactly the ui value as defined in the KKNO attack. The vector
U is a probability distribution over volumes in the case where the query distribution (the vector P ) is
uniformly random. Thus, the goal of the KKNO attack is to estimate the entries of U . Viewed this
way, it is simple to generalize the goal of the KKNO attack to non-uniform query distributions: every
query distribution can be written as a vector with N(N + 1)/2 positive entries which sum to one.

This viewpoint also gives a way to reason about KKNO’s attack with non-uniform query distribu-
tions. The above counterexample shows that with non-uniform query distributions some databases can
be indistinguishable which would be distinguishable with uniform query distributions. In fact, we can
write an expression for any two databases that, if satisfied, means that there exists a query distribution
for which the two databases cannot be distinguished (i.e. KKNO’s attack must fail). First, let Ker(T )
be the kernel of a linear transformation T (i.e. the vectors sent to 0 by T ). Let P be the set of all
probability distributions on N(N + 1)/2 elements.

Take two distinct databases, DB1 and DB2, and their volume matrices VDB1 and VDB2 . For sim-
plicity, assume they have the same set of unique volumes (meaning the sum of the ith row of VDB1
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is 0 iff the sum of the ith row of VDB2 is zero). Next, look at Ker(VDB1 − VDB2). This is the set of
vectors v for which VDB1v = VDB2v (and the set of probability distributions for which the ui values for
DB1 and DB2 are the same). In general there are no guarantees about the vectors in this set, but if
Ker(VDB1 − VDB2) ∩ P 6= ∅ then there exists a probability distribution over queries for which DB1 and
DB2 cannot be distinguished.

Clearly there are always some vectors in the intersection—for example, the query distribution where
the query [1, N ] occurs with probability 1 and all other queries occur with probability zero is in this set.
One can take a subset of P satisfying certain “non-triviality” conditions to get a more meaningful result,
but arguing about Ker(VDB1 −VDB2)∩NT for a non-trivial subset NT ⊂ P seems difficult. Techniques
from optimization (in particular, linear programming) may be useful here, since if the non-triviality
conditions for the set NT can be written as constraints on a linear program, that program has the
property that there is a feasible solution only if Ker(VDB1 − VDB2) ∩NT 6= ∅.

Impossibility of perfectly correct reconstruction. Interestingly, even under KKNO’s precise
assumptions about the query distribution, there are databases that cannot be reconstructed (even up
to reflection). This is because the function that takes a database and outputs its ui values is not
injective—there are databases on which this function collides! KKNO themselves noted that sometimes
the polynomials defined by the ui values in their main attack do not have a unique factorization; our
experiment below indicates the lack of unique factorization is fundamental to the setting (rather than
a deficiency of their particular attack). This implies, surprisingly, that the most natural notion of
correctness for reconstruction attacks (that for a fixed database, as the number of observed queries goes
to infinity, the attack should be able to reconstruct up to reflection with probability 1) is impossible to
achieve when the query distribution is uniform, because there are some distinct databases that generate
the same set of volumes. We implemented a simple brute-force experiment that computes the ui values
and runs KKNO’s attack on every possible database where N = 17 and with 2 ≤ R ≤ 15. With R = 15
there are just over 300 million possible databases, and KKNO failed due to ui collision on 49,000 of
them. Here are two databases which have the same ui values:

{0, 0, 0, 3, 1, 0, 0, 1, 0, 1, 0, 6, 1, 0, 1, 0, 1}
{1, 1, 2, 1, 1, 0, 2, 2, 2, 2, 0, 0, 0, 1, 0, 0, 0}

We found ui collisions on dense databases as well. Understanding this phenomenon seems to be a difficult
but interesting combinatorics question which we leave to future work. The theory of Golomb rulers may
give some insight here—observe that two databases whose elementary volumes are Golomb rulers (i.e.
sets of numbers that generate every possible value below some threshold via pairwise subtraction) can
never be distinguished from volume alone. Two databases with different numbers of elements N can
also generate the same volume set.

B Description of Experimental Data

In this appendix we will describe the HCUP datasets used in our experiments, as well as the steps
we took to extract and process the data. First, we will provide some background on the data. The
Agency for Healthcare Research and Quality (AHRQ) is a US government agency which collects a vast
amount of data on the American healthcare industry. One of their core projects is the Healthcare
Cost and Utilization Project (HCUP), which tracks how healthcare is used and paid for by different
demographic groups. Within HCUP there are samples of different types taken every year and made
available to researchers. We use the National Inpatient Sample (NIS) as our source of experimental
data in this paper. Below and in the main body, when we refer to “HCUP data” we mean the NIS.
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The NIS is processed in a de-identifying way that protects patient privacy. We did not attempt
to deanonymize any of the data, nor are our attacks designed to deanonymize medical
data. All authors underwent the HCUP Data Use Agreement training and submitted signed Data Use
Agreements to the HCUP Central Distributor.

Figure 7 contains information about the number of hospitals contained in each year’s HCUP release
and the minimum, maximum, and quartiles for the number of records per hospital. There is not too
much year-to-year variation in the number of records per hospital for these years, which makes sense
considering that until 2012 the HCUP data was collected as a random sample from all hospitals in
the USA. This provides evidence that our experiments would be predictive of our attacks’ performance
(were they carried out on a real hospital database). In 2012, the sampling methodology for HCUP
changed—more recent HCUP data is collected using a random sample of patients instead of hospitals.
We used the 2013 HCUP data (which contains about seven million patient records) in our query recon-
struction experiment in Section 5 as a source of auxiliary data. Despite the 2013 auxiliary data being a
somewhat poorer estimate of per-hospital distributions for earlier years, our query reconstruction attack
still performed well with the 2013 auxiliary data (even when attacking 2004 hospitals!).

Attribute-specific processing. Information about the different types of attributes is provided in
Figure 7. Every year the AHRQ prescribes a format and size for each attribute collected in the various
samples. In extracting per-attribute experimental data from HCUP we faced three main complications:
(1) hospitals do not generally abide by these prescriptions, (2) the prescribed formats change from year
to year, and (3) not all attributes exist in all years of HCUP data. We will describe how we address
each of these complications in turn.

Hospitals are strongly encouraged (but not required) to report data in the format dictated by
the AHRQ, and some hospitals choose to report their data in incorrect or outdated formats. The
AHRQ corrects some of these mistakes before making samples available publicly, but many mistakes
still occurred in our data. For example, the attributes NDX, NPR, and NCHRONIC are capped by the
AHRQ, but some hospitals still report greater values, which we simply ignored.

In extracting NPR, NDX, and NCHRONIC we also faced the second complication, namely that
the number of values changed (increasing from 16 to 26) in 2009. One other attribute whose format
changed is AGE. In 2012, for privacy reasons the AHRQ mandated that ages be “top-coded” (i.e. all
values above a threshold be grouped into one category) at 90 in all samples. Prior HCUP data was
not top-coded; however, for our experiments we chose to top-code all AGE data for two main reasons:
(1) to ensure results for AGE are comparable across years and (2) to make our experiments address
practical security risks to real deployments (in which ages may be top-coded). In Section 3 we discuss
how this impacts the accuracy of our clique-finding attack.

The only attribute which did not appear in all years (namely not in 2004) of HCUP data was
NCHRONIC. Since we had several other datasets for that attribute and the performance of all attacks
on that attribute was similar across experiments, we were not concerned. We were not able to obtain
the full 2008 NIS, and as a result we did not have MRISK or SEV data for that year. Our attacks
performed well on the 2004 and 2009 MRISK and SEV attributes.
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# Patient records per hospital

Year # Hospitals Min 25% 50% 75% Max

2004 1004 15 1199 4300 11523 71580

2008 1056 3 889 3439 11170 117372

2009 1050 1 750 3278 10487 121668

Attribute name Abbrev. Size # Queries 2004 2008 2009

Age (in days) AGEDAY 365 66795 X X X

Length of stay LOS 365 66795 X X X

Age (years) AGE 91 4186 X X X

Admission month AMONTH 12 78 X X X

# Chronic condi-
tions

NCHRONIC 16 136 X

NCHRONIC 26 351 X

# Diagnoses NDX 16 136 X X

NDX 26 351 X

# Procedures NPR 16 136 X X

NPR 26 351 X

ZIP code income
quartile

ZIPINC 4 10 X X X

Mortality risk MRISK 4 10 X X

Disease severity SEV 4 10 X X

Figure 7: (Top) Number of hospitals and quartiles for number of records per hospital for 2004, 2008 and 2009
HCUP data. (Bottom) Attributes used in our experiments, their sizes, abbreviations, and their availability for
each target year.
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C Analytical Model of the Main Attack

In this section, we provide an analytical model for the behavior of our main attack from Section 3. The
goal is to provide insight into the values of relevant quantities, such as the number of volume collisions,
relative to the number of values N and the number of records R. The main takeaway is that the ratio
R/N2 (or its square root

√
R/N) emerges as the critical value that determines whether our main attack

succeeds (this also holds for the update attack from Section 4). This observation aligns well with our
experiments: if the critical value R/N2 is much below 1 our attacks typically fail; and if it is 1 or higher
our attacks typically succeed easily. The exact cutoff depends on other parameters of the attack, and
especially the underlying data distribution.

For the purpose of our analytical model, we assume that the data is distributed uniformly, i.e.
each record is assigned a uniform and independent value in [1, N ]. As a result, the number of records
matching any particular value (or indeed any range of values) follows a binomial distribution. As
explained in Section 3.2, the main idea behind our model is to approximate the volume of each range as
an independent Poisson variable—the Poisson distribution being a good approximation of the binomial
in our parameter range. This is of course a heuristic assumption, and in general our computations
will aim to provide simple, readable formulas rather than exact ones. This will rely on approximating
some values: for this purpose, we focus on approximations that hold within the relevant parameter
range where our attack is close to either succeeding or failing; we do not try to cover extreme ranges
(typically R � N2 or R � N2, where our attack always fails or always succeeds, respectively). That
these assumptions and approximations ultimately yield meaningful predictions will be validated by
experiments in Appendix C.4.

Intuitively, the fact that the ratio between R and N2 is the critical quantity to assess the success
of our attack is not surprising: indeed, our attacks all essentially require that there are relatively few
collisions between the volumes of different ranges (where by few collisions we mean that no more than,
say, 1/2 of volumes are in collision—so a constant ratio, rather than a negligible one). From this
perspective, the number of possible ranges is

(
N
2

)
≈ N2/2; and all volumes must lie within [0, R]. Hence

on a rough intuitive level, it makes sense that having relatively few collisions should require that the
ratio R/N2 should not be too low. The model we now present, and call the Poisson model, will further
support this intuition.

C.1 Number of Volume Collisions

For a given database, we say that two volumes collide iff two distinct range queries have the same volume
(i.e. match the same number of records). As a first step, we compute an estimate of the total number of
collisions between volumes. For the purpose of this estimate, we will only count the number of pairwise
collisions, as this provides a good enough estimate within the relevant parameter range. Furthermore
we only count the number of collisions between ranges of the same length: indeed experiments show
that this case generates the vast majority of collisions. Moreover this simplification will allow for easily
readable closed-form formulas, as we shall see.

We now set out to approximate the probability of collision between the volumes of two range queries
of length d. Since each range contains d values, and there are R uniformly distributed records, each
range matches Rd/N records on average. Accordingly, and following the Poisson model outlined in the
introduction of this section, we model the distribution of the corresponding volume as a Poisson variable
with parameter Rd/N .

The difference between two Poisson variables is equal to a Skellam distribution, and so the probability
that the two volumes collide is exactly the value of the appropriate Skellam distribution at 0. For two
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Poisson variables with parameter µ = Rd/N , this is:

p(µ)
def
= e−2µI0(2µ)

where I0 denotes the modified Bessel function of the first kind.
In our parameter range where µ > 1 (and µ is typically much larger), I0(2µ) can be closely approx-

imated by e2µ/
√

4πµ, so that we get:

p(µ) ≈ 1

2
√
πµ

=
1

2
√
πRd/N

. (1)

It may be worth pointing out that the Poisson distribution with parameter µ tends towards a Gaussian
distribution with mean µ and variance µ for larger µ’s, and if we were to use such a Gaussian model
instead of our Poisson model, while it would less closely match the multinomial distribution for smaller
µ’s, it would still yield precisely the same collision probability.

Since there are N + 1 − d ranges of length d, it follows that the total number of volume collisions
can be approximated by:

N∑
d=1

(
N + 1− d

2

)
· 1

2
√
πRd/N

≈ 1

4
√
πR

N∑
d=1

(N − d)2√
d/N

=
N3

4
√
πR

N∑
d=1

1

N
· (1− d/N)2√

d/N

≈ N3

4
√
πR

∫ 1

x=0

(1− x)2√
x

≈ N3

4
√
πR

where the last line uses the fact that the integral on the right-hand side is equal to 16/15 ≈ 1.
In the end, we get that the total number of volume collisions can be approximated by N3/(4

√
πR).

Our experiments in Appendix C.4 show that this is in fact quite a good estimate.
Since there are

(
N+1
2

)
≈ N2/2 possible ranges, it also follows that the ratio of volumes in collision

among all possible volumes can be estimated to:

N3

4
√
πR
· 2

N2
=

N

2
√
πR

.

As foreshadowed in the introduction of this section, we see that the critical quantity for a constant ratio
of volumes to be collision-free is N/

√
R. In particular, the model predicts that for R = Ω(N2), the ratio

of collisions among volumes is O(1).
Another relevant observation is that requiring no collision at all between volumes would impose

R = Ω(N6), which is unreasonable for typical databases. Hence it is crucial that our algorithms should
be tolerant to collisions between volumes, as they indeed are.

It is also interesting as a side note to observe that the database counts C such that C(k) is the
number of records with value k satisfies that there are no collision between volumes iff the set of partial
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sums
∑n

k=1C(k) forms a Golomb ruler, i.e. a set of integers such that distances between pairs of
integers in the set are pairwise distinct. From this perspective our model predicts that throwing R balls
uniformly at random into N bins generates a Golomb ruler for R = Ω(N6).

In the next sections we make further use of our analytical model to compute relevant quantities in
the graph from our main reconstruction algorithm, namely the number of vertices and edges.

C.2 Number of Vertices in the Graph

We now consider the graph from our main attack in Section 3. We say that an integer is a volume iff
it is the volume of some range, i.e. the number of records whose value lies within that range (we also
say that the records are matched by the range).

Recall that the number of vertices in the graph is the number of complemented volumes: that
is, the number of volumes v such that R − v is also a volume. There are 2(N − 1) volumes that
are automatically complemented, namely those arising from ranges [1, 1], [1, 2], . . . , [1, N − 1] and their
complements [2, N ], . . . , [N,N ]. Indeed the volumes of these ranges form the clique that our main
algorithm seeks. We now set out to estimate the number of volumes v that are complemented by
accident, i.e. not because the complement of the queried range is also a range as previously, but because
R− v happens to collide with the volume of some other range.

If we disregard ranges that are automatically complemented, the number of ranges of length d is
N − 1 − d. Each one of these ranges is complemented by accident iff the number of records matched
by the complement of the range collides with the volume of a range. Note that the number of records
R−v in the complement of a range of length d follows the same distribution as the number of records in
a range of length N − d: indeed, as far as the number of records matched by some values is concerned,
only the number of values matters, not the fact that they form a range. It follows per Equation (1)
that the probability that R− v collides with a given range of length N − d can be approximated by:

1

2
√
πR(N − d)/N

.

Since there are d+ 1 ranges of length N − d, it follows that the probability that a range of length d
is complemented by accident is close to d+ 1 times the previous value. Since there are N − 1− d ranges
of length d that are not automatically complemented, we get that the number of ranges complemented
by accident can be estimated by

N∑
d=1

(N − 1− d)
d+ 1

2
√
πR(N − d)/N

≈ N3

2
√
πR

N∑
d=1

1

N
· (d/N) · (1− d/N)√

1− d/N

≈ N3

2
√
πR

∫ 1

x=0
x
√

1− x

≈ N3

8
√
πR

.

Taking into account the 2(N − 1) ≈ 2N volumes that are automatically complemented, we deduce
that the total number of complemented volumes, and hence the number of vertices in the graph, can
be approximated by:

2N +
N3

8
√
πR

.
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C.3 Number of Edges in the Graph

Recall that two vertices in the graph share an edge iff the (absolute value of) the difference of the
corresponding volumes is itself a volume. Since the graph contains two cliques arising from initial
segment ranges [1, 1], [1, 2], . . . , [1, N ] and their complements, it must contain (approximately) N2 edges
arising from these two cliques. Moreover it also contains edges that occur by accident, in the sense
that the difference in volumes is a volume not because the set difference of the two ranges is itself a
range, but because it happens to collide with the volume of some range. We now set out to estimate
the number of such accidental edges.

For a given range of length d, the analysis from Appendix C.2 shows that the number of comple-
mented volumes (i.e. vertices) arising from ranges of length d can be approximated by:

d(N − d)

2
√
πR(N − d)/N

=
d
√
N − d

2
√
πR/N

.

Following the same line of reasoning as in the previous section, the difference between the volumes of
two ranges of length d1 and d2 is going to accidentally match the volume of some range of length |d2−d1|
with probability close to:

N − |d2 − d1|
2
√
πR|d2 − d1|/N

.

As a result of the previous observations, the number of accidental edges may be approximated by:

N∑
d1=1

N∑
d2=d1+1

d1
√
N − d1

2
√
πR/N

· d2
√
N − d2

2
√
πR/N

· N − (d2 − d1)
2
√
πR(d2 − d1)/N

=
N7

8
√
πR

3

N∑
d1=1

N∑
d2=d1+1

1

N2
· d1/N

√
1− d1/N · d2/N

√
1− d2/N ·

1− (d2 − d1)/N√
(d2 − d1)/N

≈ N7

8
√
πR

3

∫ 1

x=0

∫ 1

y=x
x
√

1− x · y
√

1− y · 1− (y − x)√
y − x

≈ N7

80
√
πR

3

Thus in the end, the total number of edges can be approximated by:

N2 +
N7

80
√
πR

3 .

In the previous section, we have seen that the number of vertices can be approximated as O(N3/
√
R),

hence the edge density of the graph (i.e. number of edges divided by the number of vertex pairs) can be
estimated to O(N/

√
R). It should be noted that edge density is quite relevant to our main algorithm.

Indeed our clique-finding algorithm succeeds as long as the initial range segments [1, 1], [1, 2], . . . , [1, N ]
and their complements induce the only two N -cliques in the graph. Heuristically, other cliques of size
N or greater will only exist if the edge density is close to 1.

To substantiate this, if we were to model our graph as a random graph as far as its clique number is
concerned (and disregarding the two N -cliques that necessarily exist), the clique number of a random
graph with n vertices and edge density p is Θ(− log n/ log p) [Bol98]; since the number of vertices is
polynomial in N , having the clique number grow above N would thus require that the edge density
should be 1−O(logN/N), i.e. very close to 1. On the other hand, by our previous estimate, the edge
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# Volumes # Vertices # Edges

R Real Est. Real Est. Real Est.

N = 50

1250 710 776 375 349 52381 42183

2500 907 922 313 276 26787 16530

5000 1034 1025 230 224 10949 7460

10000 1098 1098 179 188 5966 4253

N = 100

5000 2803 3055 1406 1197 730625 644936

10000 3553 3639 1116 905 323943 234483

20000 3979 4052 784 698 120779 89367

40000 4291 4344 607 552 60511 38060

N = 200

20000 11061 12121 5344 4389 10448021 10198981

40000 13885 14458 4144 3220 4465672 3631742

80000 15927 16110 2793 2394 1376980 1309872

160000 17158 17279 1836 1810 458622 488967

Table 1: Experimental evaluation of the Poisson model.

density is O(N/
√
R). Hence requiring that the edge density not be close to 1 (so that no clique of size

N or more exists by accident due to edge density) would imply R = Ω(N2): once again, we see that
this statement appears critical to the success of our algorithm.

C.4 Experimental Validation of the Poisson Model

To evaluate the accuracy of the estimates given in the previous sections, and retroactively validate
the assumptions and approximations made in the course of computing these estimates, we have run
experiments computing the predictions of our model for the number of distinct volumes, as well as
vertices and edges in the graph, compared to the experimental value of these same numbers obtained
by running the actual algorithm on a uniform data distribution and averaging over 30 runs, for various
choices of N and R. The results are given in Table 1.

In each case, we have compared the estimates from our model to experimental values, for R =
N2/2, N2, 2N2, 4N2. It can be seen that the estimates provided by our model are fairly accurate,
especially regarding the number of distinct volumes. The estimated number of edges fares the worst,
being sometimes 40% lower than the experimental value—although that is still in the right order of
magnitude, which was our goal. Below N2/2, the model breaks down. Nevertheless the model does
provide reasonably accurate estimates within the relevant parameter range where R is close to N2.
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D Query Complexity of Update Recovery Attack

In this section we present an analysis of the query complexity of the update attack from Section 4,
based on the same model as Appendix C.

We assume that the value k of the new record being added into the database is less than N/2. Due
to the reflection symmetry, this is without loss of generality. For simplicity we assume N is a multiple
of 4 (the analysis in other cases is very similar). For the sake of the analysis, a distribution needs to be
assumed on the set of queries: for that purpose we assume that range queries are uniformly distributed.
This is not a requirement of the algorithm.

As a preliminary step, let us assume that for every volume, one of the two conditions in lines 12
and 14 of Algorithm 4 is satisfied. That is, for every range query, the adversary does learn from its
volume whether the range matches the value k of the new record, and what the queried range is. The
question is then how fast that information enables the adversary to home in on k.

What needs to happen for the adversary to determine k exactly is that the singleton {k} should be
constructible from the set of queried ranges using basic set operations (intersections and set differences).
A sufficient condition is simply that a range [k, y] is queried with y ∈ [k, k + N/4], and another range
[k+ 1, y′] is queried with y′ ∈ [k+N/4, k+N/2]. Indeed in that case the first query will trigger line 12
of Algorithm 4, and so the set of possible values will be intersected with [k, y]; while the second query
triggers line 14 and ensures that [k + 1, y′] is subtracted from the set of possible values. It follows that
after these two queries the set of possible values is included in [k, y] \ [k + 1, y′] = {k}.

Assuming uniform queries, the probability of a query of the first type is:

N/4 + 1

N(N + 1)/2
≥ 1

2N
.

The same result holds for a query of the second type. It follows that the expected number of queries
before a query of each type has occurred is O(N).2

The previous analysis, however, assumes that for every query, the adversary is able to determine the
queried range from its volume, and whether it includes the new record—that is, either one of the two
conditions in lines 12 and 14 of Algorithm 4 is satisfied. In reality, it is possible that neither condition
is fulfilled (as a result of collisions in range volumes). The question then is how much this impacts
query complexity. What we are going to show is that in the same parameter range where our main
algorithm succeeds, i.e. essentially R = Ω(N2), the previous results still hold (albeit with a worse
constant, dependant on N/

√
R).

If we focus on the first condition on line 12, a query containing the target value k is discarded by
the algorithm whenever its volume v is such that v or v − 1 is in collision with the volume of another
range. According to the Poisson model introduced in Section 3.2 (and developed in Appendix C), the
probability that a range of length d is in collision with the volume of another range can be approximated
by:

N − d
2
√
πRd/N

. (2)

Since we are in the parameter range where R = Ω(N2), and assuming a uniform distribution of records
across values for the sake of the Poisson model, a range of length d contains on average dR/N = Ω(N)
records; so we are dealing with Poisson distributions with parameters Ω(N), which entails that the
probability of two values drawn according to such a distribution being equal, or differing by 1, is nearly
the same (more formally this amounts to approximating the corresponding Skellam distribution at 1
by its value at 0, which is a very good approximation in this setting). By the union bound, this means

2Conversely, it is straightforward to prove that the expected number of queries needed for exact recovery is Ω(N).
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that the probability that either v or v− 1 is in collision with another volume can be upper-bounded by
twice the value of Equation (2).

Hence the probability that a range of length d containing the target value k passes the condition of
line 12 in the algorithm can be lower-bounded by 1− (N − d)/

√
πRd/N .

It follows that the probability that a query on range [k, y] with y ∈ [k, k +N/4] is issued, and that
the query passes the condition of line 12 can be lower-bounded by:

2

N2

N/4∑
d=1

(
1− N − d√

πRd/N

)
≈ 1

2N

(
1− 4N√

πR

)
.

Hence the expected number of queries until both events occur is still O(N). Thus, as long as
R = Ω(N2), the behavior is the same as in the initial analysis where the effects of volume collisions
were disregarded. In the end, the value k of the new record is recovered within an expected number of
queries O(N).

Let us now turn our attention to the approximate recovery of k within an additive error εN . From
now on we assume k ≥ εN holds.3 The previous reasoning can be adapted to this case in a natural way:
instead of requiring a range [k, y] with y ∈ [k, k+N/4], and a range [k+1, y′] with y′ ∈ [k+N/4, k+N/2],
which together allow exact recovery of k, it suffices to ask for a range [x, y] with x ∈ [k − εN, k] and
y ∈ [k, k+N/4− 1], and a range [x′, y′] with x′ ∈ [k+ 1, k+ εN ] y′ ∈ [k+N/4, k+N/2]. Indeed the set
difference of these two ranges is included in [k− εN, k+ εN ]. Observe that compared to exact recovery,
the number of possible ranges has been multiplied by εN , and so the probability of a uniform query
being of either type becomes O(ε) instead of O(1/N) in the exact case. Hence the same reasoning as
the exact case yields that the required number of queries is O(1/ε).

In the end, if R = Ω(N2), our model predicts that the required number of queries for exact recovery
is O(N), and approximate recovery within εN requires O(1/ε) queries. Of course the previous analysis
relies on the heuristics of our Poisson model, including assuming a uniform distribution of records across
values. In Section 4.2 we evaluate the accuracy of our model by running Algorithm 4 on real-world
datasets.

E Query Reconstruction When Exact Counts Are Known

In this section we describe our experiment which tested the ability of an adversary to reconstruct queries
with knowledge of the exact counts of every element in the database. It is reasonable to suspect that
knowing exact counts makes query reconstruction trivial; however in Appendix C we showed that in
certain parameter ranges, many volume collisions (i.e. two queries having the same volume) occur.
When two queries have the same volume they cannot be distinguished, even with exact counts. Thus,
the relevant quantity for the effectiveness of query reconstruction with exact counts is the number of
queries with unique volumes or with volumes that very few other queries also have. Our experiment
measures this by computing the volume of every query for every HCUP hospital and counting the
number that have unique volumes. We also count the number of queries with volumes that at most five
other queries have. The results of this experiment are in Figure 8. The results for different years of
HCUP data are not meaningfully different, so we present only one experiment for each attribute.

3Such an assumption is necessary; e.g. if k = o(εN), then the probability that a uniform query contains k is o(ε), and
from there it can be shown that ω(1/ε) uniform queries will be required for any algorithm to recover k within εN .
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Attribute Size # Queries % Unique % w/in 5

AGEDAY 365 66795 0 0

LOS 365 66795 0 0

AGE 91 4186 15 70

NCHRONIC 26 351 25 29

NDX 16 136 70 100

NPR 16 136 10 26

AMONTH 12 78 95 100

ZIPINC 4 10 100 100

MRISK 4 10 100 100

SEV 4 10 100 100

Figure 8: Per-attribute results for query reconstruction with exact counts.

F Correctness Proofs

This section contains proof of correctness for some algorithms used in the main body.

Lemma 1 (Correctness of Alg. 1). Let DB be a database with at most N different values, let V be
the set of all possible range query volumes, and let Velem be the set of elementary range volumes that
contains the minimum complemented volume. Then, after running Algorithm 1 on (N,V ) to obtain the
sets Vnec and Vcand of necessary and candidate nodes, we have

Vnec ⊆ Velem ⊆ Vcand.

Proof. We show that Vnec ⊆ Velem ⊆ Vcand holds throughout Alg. 1. After line 11, we have Vnec ⊆ Velem
since R = vol([1, N ]) is in Velem, and vmin is in Velem by design. After line 12, we have Velem ⊆ Vcand since
all elementary volumes are complemented. To complete the proof, we show that if Vnec ⊆ Velem ⊆ Vcand,
then (i) Augment NEC (Vcand, Vnec) ⊆ Velem, and (ii) Velem ⊆ Reduce CAND(Vcand, Vnec).

First, consider the three ways in which Augment NEC can add elements to Vnec.

• (line 23) If |Vcand| = Nmin and Velem ⊆ Vcand, then clearly Velem = Vcand since |Velem| ≥ Nmin.

• (line 26) Let e be a non-complemented volume. Since Velem ⊆ Vcand, we know that every volume,
including e, arises as a node or an edge (or both) in the graph induced by Vcand. The volume e
has no complement, so it must arise as an edge, i.e., as the absolute difference of two volumes in
Vcand. If all such edges are incident to one node Vcand, then it must be in Velem.

• (line 30) Let v be a non-necessary complemented volume in Vcand. Every volume, including v,
arises as a node or an edge (or both) in the graph induced by Vcand. If the volume v arises only
as itself and maybe edges incident to itself, then it must be in Velem.

Next, consider Reduce CAND. Let v be a non-necessary complemented volume in Vcand. Since Vnec ⊆
Velem, and the volumes in Velem are all adjacent to each other, any node that is not adjacent to a subset
of volumes in Velem cannot be in Velem.
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Lemma 2 (Correctness of Alg. 2). Let DB be a database of elements with N possible different values,
let V be the set of all range query volumes, and let Velem be the set of elementary range volumes that
contains the minimum complemented volume. Suppose we are given two sets Vnec and Vcand such that
Vnec ⊆ Velem ⊆ Vcand. Then, after running Algorithm 2 on (N,Vcand, Vnec, V ) to obtain the set solutions,
we have

• Velem ∈ solutions if 0 /∈ V (the data is dense), or

• Velem ⊇ s for at least one s ∈ solutions (if the data is sparse).

Proof. First, if the data is dense (0 /∈ V ), then clearly the number of elementary volumes is Nmin =

Nmax = N . If the data is sparse, there must be at least Nmin
def
=
⌈
−0.5 + 0.5 ·

√
1 + 8 · |V |

⌉
elementary

volumes, otherwise there would be strictly fewer than |V | range query volumes. There can be at most
N − 1 because the occurrence of the volume 0 means at least one of the N values did not appear in
DB, and at most |Vcand| because it is known that Velem ⊆ Vcand.

Now consider the graph G = (Vcand, E) with edge set

E
def
= {(v1, v2) ∈ Vcand × Vcand : |v2 − v1| ∈ V \ {0}}

and the induced subgraph Gnn
def
= G(Vcand \ Vnec). Since the subgraph induced by Velem is a clique in

G, the subgraph induced by Velem \ Vnec will also be a clique in Gnn. Therefore, at least one of the
maximal cliques in Gnn output by Find Maximal Cliques (line 14), say V ∗k , will have Velem \ Vnec as
a subclique. The size of V ∗k must be at least Nmin − |Vnec|, so the algorithm will proceed to line 19 in
this iteration. Since Velem ⊆ {Vnec ∪ V ∗k } generates all volumes in V (and maybe others), solutions will
be updated to include the output of Min Subcliques (line 20).

Since Velem \Vnec is a subset of V ∗k , it will arise as a subclique on line 39 of Min Subcliques. Velem
generates all volumes in V and no others, so the algorithm will proceed to line 41. If the data is dense,
then subcliques may contain only sets of size N = Nmin = Nmax, so Velem cannot be a superset of any
other element in subcliques, so it will be added to this set. If the data is not dense, however, then either
(i) there is already a strict subset of Velem in subcliques that generates exactly the volumes in V , or
(ii) there is no such set, and Velem is added to subcliques. In all cases, any element added to subcliques
in Min Subcliques will form part of the solutions output by Get Elem Volumes, completing the
proof.
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