
Distributed Single Password Protocol
Framework

Devriş İşler, Alptekin Küpçü

Koç University, İstanbul, Turkey
{disler15,akupcu}@ku.edu.tr

Abstract. Passwords are the most widely used factor in various areas
such as secret sharing, key establishment, and user authentication. Single
password protocols are proposed (starting with Belenkiy et. al [4]) to
overcome the challenges of traditional password protocols and provide
provable security against offline dictionary, man-in-the-middle, phishing,
and honeypot attacks. While they ensure provable security, they allow
a user securely to use a single low-entropy human memorable password
for all her accounts. They achieve this with the help of a cloud or mobile
storage device. However, an attacker corrupting both the login server and
storage can mount an offline dictionary attack on user’s single password.

In this work, we introduce a framework for distributed single password
protocols (DiSPP) that analyzes existing protocols, improves upon them
regarding novel constructions and distributed schemes, and allows ex-
ploiting alternative cryptographic primitives to obtain secure distributed
single password protocols with various trade-offs. Previous single pass-
word solutions can be instantiated as part of our framework. We further
introduce a secure DiSPP instantiation derived from our framework en-
forcing the adversary to corrupt several cloud and mobile storage devices
in addition to the login server in order to perform a successful offline
dictionary attack. We also provide a comparative analysis of different
solutions derived from our framework.

Keywords: Password, authentication, offline dictionary attack.

1 Introduction

Passwords are used in many different contexts such as authentication, key ex-
change, and sensitive information storage. In password-based authentication, a
user registers with a server using her low-entropy password. The server stores
the user’s information (e.g. < username, hash(password) >). Later on, the user
authenticates herself to the server whenever she wants to get a service. In pass-
word authenticated key exchange, following registration, a user and a server wish
to establish a session key for a secure and authenticated channel [5,12,13,35,36].
In password protected sensitive information storage, a user stores her sensitive

2 D. İşler and A. Küpçü

information (e.g. credentials) among a server or multiple servers using her pass-
word [11, 15, 16, 28, 30]. Whenever she wants to reconstruct the sensitive infor-
mation, she has to convince the server(s) that she is the legitimate user holding
the correct password.

However, passwords are vulnerable to many prevalent online and offline at-
tacks such as phishing, man-in-the-middle, honeypot, and offline dictionary at-
tacks. The damage of a successful attack increases with password reuse, which is
common in practice [22]. This brings many issues, where an attacker compromis-
ing user’s password can use it to gain access to the services on behalf of the user.
Such an attacker may be a malicious server (as in phishing, honeypot, or man-
in-the-middle attacks), or hackers obtaining the server database and mounting
offline dictionary attacks. Indeed, such attacks are very prevalent, and recent
studies even propose improved offline dictionary attacks [40].

Single password protocols (starting with Acar et al. [2] with their patent
application dating 2010 [4], Jarecki et al. [31], and İşler and Küpçü [26]) are
proposed to provide provable security against the aforementioned attacks that
traditional password protocols are vulnerable to. These protocols enable users to
use a single password for all their accounts securely, where users do not store any
information locally. They achieve this with the help of a cloud or mobile storage
device. Among previous works, only İşler and Küpçü [26] employ a distributed
protocol for cloud storage.

The general idea of a distributed single password protocol (DiSPP) is to
create a high entropy secret independent of the user’s password and registering
a verification information based on this secret with the login server(s). Later,
the user stores the secret among storage providers (e.g. personal devices, online
storage providers) using her password. Whenever the user wants to authenticate
herself (implicitly or explicitly) to the login servers, she reconstructs the secret
and authenticates with the server accordingly.

In this paper, we present a framework for distributed single password pro-
tocols that can employ possibly more than one storage provider (any combina-
tion of cloud and mobile devices) and more than one login server. Our frame-
work consists of four phases: registration and authentication (between a user
and login servers) and secret storage and retrieval (between a user and storage
providers). We discuss possible cryptographic building blocks that can be em-
ployed in these phases so that the combination of these building blocks constitute
a secure DiSPP solution.

In our framework, we employ a total of nstor storage providers and nls login
servers with a threshold 1 ≤ tstor ≤ nstor for the storage providers and a thresh-
old 1 ≤ tls ≤ nls for the login servers. This setting serves two purposes. Firstly,
for an adversary to be able to successfully mount an offline dictionary attack, he
must corrupt tls-many login servers in addition to tstor-many storage providers.
Secondly, to login, the user must access tstor storage providers out of nstor; thus
availability can be balanced against security easily by setting these parameters.
While the underlying techniques are different, in terms of security, all previous

Distributed Single Password Protocol Framework 3

solutions correspond to setting tls = nls = 1 and tstor = nstor = 1 (except for
İşler and Küpçü [26]).

Our contributions can be summarized as follows:

1. We present a framework for distributed single password protocols (DiSPP),
where we discuss the features of a DiSPP to resist against offline dictio-
nary, phishing, man-in-the-middle, and honeypot attacks.

2. We identify cryptographic building blocks to build a secure DiSPP. We pro-
vide possible solutions with or without server-side changes and various net-
work channel requirements (e.g. secure-but-unauthenticated channel).

3. We present a distributed single password protocol instantiation derived from
our framework where a user can define an access control mechanism for stor-
age providers (e.g. a personal mobile device must participate to reconstruct
the secret). Our instantiation is secure against offline dictionary attacks
where an adversary corrupts tls-1 login servers and all storage providers
except an authorized set of storage providers.

4. Our DiSPP instantiation is also secure against phishing and man-in-the-
middle attacks during authentication, after a secure registration, and hon-
eypot attacks during registration and authentication.

5. We present performance evaluations numerically, showing the efficiency of
different existing building blocks employed in our framework.

Related Work: In the literature, Acar et al. [2] (with their patent ap-
plication dating 2010 [4]), Jarecki et al. [31], and İşler and Küpçü [26] are the
only known provably secure DiSPP solutions (against offline dictionary attacks).
Similarly, Bicakci et al. [8] present a solution idea, but without a formal security
proof. These solutions include a single storage provider (which is either a cloud
storage or a mobile device) for the secret storage, except İşler and Küpçü [26]
employ a threshold of cloud storage providers. These DiSPP instantiations are
realized by our framework. Therefore, we discuss how the existing works can be
instantiated within our framework (see Section 6.1) and what kind of features
they provide (e.g. no server-side change, security against eavesdropping, man-in-
the-middle). Moreover, our proposed DiSPP construction is inspired from and
improves upon them.

Overview: A DiSPP achieves full threshold security as follows: A k-bit en-
tropy secret (e.g., a k-bit random string rnd) independent of the password pwd
is created and a verification information based on this secret is computed (e.g.,
Hash(rnd||ls) where ls is the domain name of the login server). Then, the ver-
ification information is shared with the login servers whereas the secret is se-
curely shared with the storage providers (e.g., mobile devices, online storage
providers). But, these shares are not directly sent to the storage providers, since
these shares should be retrieved only by the legitimate user holding the correct
password. Therefore, the shares are stored using a password protected secret
sharing solution, where only the user holding the correct password can recon-
struct the secret and up to threshold-many storage providers cannot perform an
offline dictionary attack on the user password. Using this k-bit entropy secret,
the user may authenticate or establish keys with the login servers.

4 D. İşler and A. Küpçü

For authentication, the user interacts with threshold-many storage providers,
and reconstructs the original secret by running the password protected secret
sharing reconstruction protocol using her password. Then, the user computes
the authentication protocol with threshold-many login servers using the secret.
Only when at least threshold-many (tls) login servers and an authorized set of
(or threshold-many) storage providers collude, they can reconstruct the secret
via an offline dictionary attack by trying different passwords and running the
authentication protocol internally. Otherwise, offline dictionary attacks are im-
possible. Consider, for example, an adversary corrupting tls login servers and
tstor − 1 storage providers. He needs to interact online with at least one honest
storage provider to be able to reconstruct the secret, which is an online attack
whose rate or the number of attempts can be limited. Moreover, consider that
tstor-many storage providers are colluding while the login servers are honest. In
this case, even though they can reconstruct a secret, since all passwords yield
to a valid secret (in terms of format), they can only try to authenticate online
with the login server to verify whether or not the secret they constructed is the
correct one.1 Again, this online attack can easily be rate limited.

2 Preliminaries

Let λ ∈ N be the security parameter. A probabilistic polynomial time (PPT)
algorithm A is a probabilistic algorithm taking 1λ as an input and has running
time bounded by a polynomial in λ. We say that a function negl(λ) is negligible
if for every positive polynomial poly(λ) there exists a constant λ′ ∈ N such that
∀λ > λ′ negl(λ)<1/poly(λ). || denotes concatenation.

Hash Function: A hash function H (chosen from a family of such functions)
is a deterministic function from an arbitrary size input to a fixed size output,
denoted H : {0, 1}∗ → {0, 1}l. The hash function is assumed to be collision
resistant if it is hard to find two different inputs x 6= y that hash to the same
output H(x) = H(y).

Oblivious Pseudorandom Function (OPRF): A pseudorandom function
(PRF) F is a deterministic function that takes two inputs: a secret key k and
an input x to compute on, and outputs Fk(x). A function chosen randomly
from a PRF family (a PRF with random key k) is secure if it is distinguishable
from a random function with the same domain and range with only negligible
probability for all PPT distinguishes given oracle access. An Oblivious PRF
(OPRF) [24] is a protocol between two parties (sender and receiver) that securely
computes Fk(x) where k and x are the inputs of sender and receiver, respectively,
such that the sender learns nothing from the interaction and the receiver learns
only Fk(x). Threshold Oblivious Pseudorandom Function (TOPRF), introduced
by [30], is a PRF between multiple senders and a receiver. A Unique Blind

1 Some early password protected secret sharing methods perform authentication of the
user by the storage providers (e.g. [16]), which would mean security up to a collusion
of tstor − 1 storage providers.

Distributed Single Password Protocol Framework 5

Signature [10] (where the signer acts as the sender) can be used as an alternative
to OPRF.

Symmetric Encryption Scheme: It consists of three PPT algorithms:
KeyGen(1λ) generates a secret key sk, Encsk(msg) encrypts the message us-
ing the secret key and outputs the ciphertext c, and the decryption algorithm
Decsk(c) uses the secret key sk to decrypt the ciphertext c, and outputs the
original message msg. The encryption scheme we use needs to be semantically
secure (encryptions of different messages are indistinguishable).

Message Authentication Code (MAC): A MAC scheme is a symmetric
scheme consisting of three PPT algorithms: MACKeyGen(1λ) generates a key
K, MACK(msg) generates a MAC tag sig on the message msg using the MAC
key K, and MACV erifyK(sig,msg) outputs accept if the sig is valid for the
given message msg using the MAC key K, and outputs reject otherwise. The
MAC we employ needs to be secure against adaptive existential forgery attacks
[33], meaning that even though the adversary adaptively obtains many msg, sig
pairs on his choice of messages, he cannot forge a valid sig on a new message.

Digital Signature: A digital signature scheme is an asymmetric scheme con-
sisting of three PPT algorithms, where SignKeyGen(1λ) generates a secret sign-
ing key ssk and a public verification key svk, Signssk(msg) generates a signature
σ on the message msg using secret signing key ssk, and SignV erifysvk(σ,msg)
outputs accept if the given signature σ is a valid signature on msg given the
public verification key svk, and outputs reject otherwise. The digital signature
scheme we employ needs to be secure against adaptive existential forgery attacks
(no PPT adversary holding svk can come up with a valid signature on a new
message that the oracle has not created a signature on).

2.1 Secret Sharing (SS)

A secret sharing (SS) scheme is a method such that a dealer holding a secret (user
in our context) distributes the secret among participants in a way that only the
authorized set of participants can reconstruct the secret. The authorized subset
varies depending on the secret sharing scheme (e.g. any subset with threshold
many participants). The security is that any unauthorized subset of participants
cannot reveal any partial information about the secret. For simplicity, let the
access structure Γ be a collection of sets of authorized participants who can
reconstruct the original secret, and γ denote an authorized set such that γ ∈ Γ .
{sγi } refers all elements (shares) in an authorized set γ. An SS protocol consists
of two PPT algorithms: {siγ}γ∈Γ ← SS(S, Γ) to create the shares of the secret
S, and we use S ← SSRecon({sγi }, Γ) to reconstruct the original secret.

Threshold Secret Sharing (TSS): In a TSS protocol [9, 39], any subset
containing threshold-many participants is an authorized set (i.e. for each γ, we
have |γ| = t). The security is that fewer than threshold-many (t) shares provide
no information regarding the original secret.

Access Controlled Secret Sharing (ACSS): An ACSS [6,7,14,19,27] is
the general form of secret sharing, where Γ is defined explicitly, as long as it is
monotonic (i.e. if some γ ∈ Γ then for any χ such that γ ⊂ χ we have χ ∈ Γ).

6 D. İşler and A. Küpçü

Non-Interactive Verifiable Secret Sharing (NIVSS): NIVSS was in-
troduced by [37], where the shareholder can verify whether or not the share
received is consistent with other shares without learning the secret itself. The
secret sharing and reconstruction algorithms employ some verification informa-
tion regarding the shares: {sγi , v

γ
i }γ∈Γ ← NIV SS(S, Γ) to create the shares si

and corresponding proofs vi and S ← NIV SSRecon({sγi , v
γ
i }, Γ) to reconstruct

and verify the original secret. In addition to secret sharing and reconstruction
algorithms, an NIVSS has a third PPT algorithm 0/1← NIV SSV erify(si, vi)
that is used to verify that the share si is a valid share using the proof vi. Any
party holding si, vi can run NIV SSV erify(si, vi) offline.

Password Protected Secret Sharing (PPSS): A PPSS [1,3,16,28–30] is
an SS with the password being involved both in secret sharing and reconstruc-
tion steps: {shareγi }γ∈Γ ← PPSS(pwd, S, Γ) to create the shares of the secret
S protected by the password pwd, and S ← PPSSRecon(pwd, {shareγi }, Γ) to
reconstruct the original secret. The security is that fewer than threshold-many
shares provide no information regarding the original secret and only the legiti-
mate user who knows the password can reconstruct the secret.

2.2 Server-Side Password Protocols

A server-side password protocol is a protocol between a user and nls-many lo-
gin servers. Basically, a user holding a low entropy human-memorable password
registers with the servers. During registration, the servers store a verification in-
formation based on user password and/or a key. Later on, the user and threshold-
many (tls) servers jointly compute a password protocol where the user and each
server receive outputs as outputU and outputi, respectively. A server-side pass-
word protocol has two purposes in the literature (to the best of our knowledge):

1. Key Establishment: A user and (login) server(s) jointly compute a pass-
word authenticated key exchange (PAKE) protocol to establish a joint session
key K. Later on, they use K for establishing secure and authenticated com-
munication channel between the server(s) and the user. This is also called
implicit authentication, since establishment of a joint key ensures that
the user is the one who indeed previously registered with the server. The
key K can be generated from symmetric (PAKE) or asymmetric (APAKE)
information. [5, 12,13,31,32,35,36] are some examples.
Observe that standard (A)PAKE solutions depend on the complexity of
the password for security, and are vulnerable to offline dictionary attacks,
whereas in DiSPP, security will depend on the k-bit entropy secret gener-
ated independently of the password and offline dictionary attacks will not
be possible.

2. User Authentication: A user and login server(s) compute a password pro-
tocol where server(s) authenticate the user. The authentication can be ei-
ther symmetric (e.g. based on stored hashes) or asymmetric (e.g. based on
signature verification). Message authentication code (MAC) [41], digital sig-
natures [25], and identification schemes [20, 21, 38] are some of the known
examples of such explicit authentication schemes.

Distributed Single Password Protocol Framework 7

3 Distributed Single Password Protocol (DiSPP)
Framework

In a DiSPP, there are three types of players. There are users who register
with one or more login servers using (possibly) the same password, and later
on compute a server-side password protocol with these login servers. For this
purpose, the users securely store some secret information (that is needed for the
password protocol with the login servers) at one or more storage providers,
which consist of personal user devices (e.g. mobile phone, tablet) and online
storage providers (e.g. Dropbox, Google Drive). The main objective of a DiSPP
solution is to protect the user’s password against offline dictionary attacks by
the storage providers, the login servers, and many other adversaries (including
honeypots and phishing sites).

In a DiSPP, the user creates a k-bit entropy secret (e.g., k-bit random string
rnd) independent of the password pwd (which only has l-bit entropy such that
l << k). The password is assumed to resist only online dictionary attacks,
but is not secure enough to resist offline dictionary attacks. Then, associated
verification information based on the secret is computed (e.g., H(rnd||ls) where
ls is the domain name of the login server) and shared with the login servers
depending on the server-side protocol, whereas the k-bit entropy secret is securely
shared with the storage providers. This independent generation of the k-bit
entropy secret for each registration enables a DiSPP to employ a single low-
entropy password securely. But to authenticate or establish keys with the login
server, the user needs to retrieve this secret from the storage providers (because
it is of high entropy, it is not human-memorable). During the secure storage
and retrieval of the secret at the storage providers, a DiSPP should ensure that
only the legitimate user holding the correct password can retrieve these shares
and reconstruct the secret. Since verifying whether or not the user is legitimate
requires another authentication step (causing a chicken-egg problem), a DiSPP
solves this paradox by enforcing the user (and hence any attacker) to employ an
online protocol with the storage providers (e.g. OPRF).

A DiSPP consists of four main phases (see Figure 1): Registration where
the user registers with login server(s) creating a high entropy secret and its asso-
ciated verification information, Secret Storage where the user securely stores
the secret using her password at the storage providers, Secret Retrieval where
the user reconstructs the secret using her password employing (an authorized
subset of) storage providers, and Authentication where the user implicitly
or explicitly authenticates herself to the login server(s) using the secret recon-
structed during the secret retrieval phase.2

The registration phase is for the user to register with the login server(s)
with domain name ls. The user registers using a low-entropy password pwd (only
secure against online attacks). Each login server obtains the user’s verification
information vInfoi such that the login server can authenticate the legitimate

2 Protocols may include some username information, but we choose not to complicate
our presentation with things not directly associated with security.

8 D. İşler and A. Küpçü

user (implicitly via a key establishment protocol or explicitly). The user obtains
a k-bit entropy secret information S that is associated with the verification
information to facilitate later protocols. More formally we have the following
multi-party protocol:

Registration:

– The user’s input is a password pwd and the server identifier ls (e.g. do-
main/url).

– Each login server’s input is an identifier ls.

– The user receives as output a secret S (which will be used in secret
storage) associated with the verification information.

– Each login server receives as output a verification information vInfoi
based on the secret S, and stores this information in his database. The
verification information vInfoi is used by the login servers to authenticate
the user implicitly or explicitly during the authentication protocol.

The secret storage phase is for the user to store the k−bit entropy secret S
(generated during registration) among nstor-many storage providers using a low
entropy password. Each storage provider obtains a secret share sharei, while the
user obtains nothing.

Secret Storage:

– The user’s inputs are a password pwd, and the secret S.

– Each storage provider receives as output a share sharei and stores the
data received in its database.

The secret retrieval phase is for the user to retrieve and reconstruct the
secret needed for authentication by interacting with an authorized subset of (e.g.
threshold tstor-many) storage providers.

Secret Retrieval:

– The user’s input is the password pwd.

– Each storage provider’s input is the share sharei that they hold for that
user.

– The user receives as output the reconstructed secret S.

4 Dispp Construction

We now present how to achieve a secure DiSPP in our framework by employing
secure cryptographic building blocks. We firstly discuss possible cryptographic
solutions for registration and authentication between a user and one login server
(and later extend to nls-many login servers). Secondly, we present possible cryp-
tographic solutions for the secret storage and retrieval phases that takes place
between a user and storage provider(s).

Distributed Single Password Protocol Framework 9

Fig. 1. DiSPP Overview

Registration

User
(pwd,ls)

Login Servers
LSi (ls)

pwd, ls ls

S vInfoi

Secret Storage

Storage Providers
Stori

pwd,S

sharei

Secret Retrieval

Storage Providers
Stori (sharei)

sharei pwd

S

Authentication

User
(pwd,ls)

pwd, S, ls

Login Servers
LSi (vInfoi,ls)

vInfoi, ls

outputioutputu

4.1 Registration and Authentication Phases

Since registration and authentication phases are both server-side protocols, they
need to be picked to work together. In a DiSPP, the essential step in the registra-
tion phase is to create a k-bit entropy secret independent of the user password,
together with the associated verification information. Depending on the pass-
word protocol employed, the structures of the secret S and verification informa-
tion vInfo generated vary. Below we present and discuss various schemes that
can be employed for registration and authentication purposes securely. We start
by implicit authentication (key establishment) and then continue with explicit
authentication methods.

Key Establishment (Implicit Authentication): A user and login server(s)
run a setup phase where later on they can jointly compute a password authen-
ticated key exchange protocol to establish a session key for a secure and au-
thenticated channel. Standard PAKE protocols keep the password and APAKE
protocols keep a deterministic function of the password (e.g. H(pwd)) at the
server database, they are insecure against offline dictionary attacks. In a DiSPP,
to provide provable security, key establishment works over the k-bit entropy se-
cret S rather than the passwork. The registration and authentication of key
exchange protocol is as follows;

Registration: The user:

– generates a k-bit entropy random string rnd as rnd← {0, 1}k or by running
a key generation scheme of OPRF as K ← OPRFKeyGen(1λ).

– computes the verification information vInfo as H(rnd) or FK(pwd) using
the random string or OPRF key respectively.

– sends vInfo and assigns random strings rnd or K as the secret S.

10 D. İşler and A. Küpçü

The login servers receive vInfo and store it.
Authentication: The user and login server(s) jointly compute a password

authenticated key exchange protocol to establish a session key K. Later on, they
can use K for establishing a secure and authenticated communication channel,
where the server(s) implicitly authenticate the user. A PAKE protocol is com-
puted as follows;

– The user holding the secret S, password pwd and domain name of login
server ls computes a PAKE protocol with the login server(s) [5,12,13,31,32,
35, 36], where each login server holds a verification information vInfoi and
domain name ls (see Figure 2).

– The user and the login server(s) receive a session key Ki, where the user
receives a session key per login server.

The security at the login server side can be increased using a threshold-PAKE
(TPAKE) solution [28,34,36]. TPAKE settings involve nls login servers such that
a threshold tls of them must participate in the user authentication. An attacker
corrupting any fewer than tls servers cannot perform an offline dictionary attack
on the user’s password.

Fig. 2. Password authenticated key exchange protocol for implicit authentication.

User(pwd,S,ls) Login Servers
 𝐿𝑆𝑖(𝑣𝐼𝑛𝑓𝑜𝑖 , 𝑙𝑠)

𝑃𝐴𝐾𝐸

𝐾𝑖

𝑣𝐼𝑛𝑓𝑜𝑖 , 𝑙𝑠 𝑝𝑤𝑑, 𝑆, 𝑙𝑠

𝐾𝑖

Explicit Authentication: We categorized explicit authentication protocols
into two: interactive (e.g. challenge-response) and non-interactive (e.g. H(S||ls)).
In explicit authentication, we assume a single login server (i.e. tls = nls = 1).3

Firstly, we describe the registration and authentication phases of interactive
authentication protocols and later we discuss the non-interactive authentication
protocols.

For all interactive authentication protocols below, the login server sends a
challenge chal to the user.Then, the user runs the authentication scheme (based
on the registration phase) to generate a response resp based on the challenge
chal using her secret S and the domain name ls of the login server.

3 [23] proposed two-servers setting, where there is a main login server the user wants
to authenticate herself with, and a helper login server such that the adversary needs
to corrupt both.

Distributed Single Password Protocol Framework 11

MAC-based Registration: The user:

– generates a MAC key K by running key generation algorithm as K ←
MACKeyGen(1λ) (see Figure 3(a)).,

– sends the MAC key K as the verification information key vInfo to the login
server,

– assigns the MAC key as the secret (S = K).

The login server receives and stores vInfo = K.
MAC-based Authentication: The user runs resp←MACK(chal||ls) and

sends the response resp to the login server, who runsMACV erifyK(resp, chal||ls)
(see Figure 3(b)).

Digital Signature-based Registration: The user

– generates signing and verification keys by running digital signature key gen-
eration algorithm as ssk, svk ← SignKeyGen(1λ) (see Figure 3(c)),

– sends the signature verification key svk as the verification information key
vInfo to the login server,

– assigns the signing key as the secret (S = ssk).

The login server receives and stores vInfo = svk.
Digital Signature-based Authentication:

The user runs resp← Signssk(chal||ls) and sends the response resp to the login
server, who runs SignV erifysvk(resp, chal||ls) (see Figure 3(d)).

OPRF-based Registration: The user

– generates a key K by running OPRF key generation algorithm as K ←
OPRF (1λ) (see Figure 3(e)),

– sends verification information as vInfo = FK(pwd),
– assigns the OPRF key as the secret (S = K).

The login server receives and stores vInfo = FK(pwd). OPRF-based
Authentication: The user computes vInfo← FK(pwd) where K is the secret
S (see Figure 3(f)) and then sends the response as resp = H(chal||ls||vInfo)
to the login server, who checks whether locally computed H(chal||ls||vInfo) is
equal to the response of the client or not.

Hash-based Registration: The user:

– generates a k-bit entropy random string rnd as rnd ← {0, 1}k (see Figure
3(g)),

– sends the verification information as vInfo = H(rnd||ls) to the login server,
– assigns the generated random as the secret (S = rnd).

The login server receives and stores vInfo = H(rnd||ls).
Hash-based Authentication: The user computes the response as resp←

H(chal||ls||H(rnd||ls)) (see Figure 3(h)) and sends resp to the login server, who
checks whether locally computed H(chal||ls||vInfo) is equal to the response of
the client or not.

12 D. İşler and A. Küpçü

Fig. 3. Registration and authentication phases of interactive authentication schemes.
(a) MAC-based registration.

 User Login Server
(𝑝𝑤𝑑, 𝑙𝑠) (𝑙𝑠)

𝑣𝐼𝑛𝑓𝑜

𝐾 ← 𝑀𝐴𝐶𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆)

𝑣𝐼𝑛𝑓𝑜 = 𝐾

𝑆 = 𝐾

(b) MAC-based authentication.

User Login Server
(𝑝𝑤𝑑, 𝑆 = 𝐾, 𝑙𝑠) (𝑣𝐼𝑛𝑓𝑜 = 𝐾, 𝑙𝑠)

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑐ℎ𝑎𝑙

𝑠𝑖

𝑠𝑖

,…,

𝑟𝑒𝑠𝑝

𝑟𝑒𝑠𝑝 = 𝑀𝐴𝐶𝐾(𝑐ℎ𝑎𝑙||𝑙𝑠)

𝑐ℎ𝑎𝑙

𝑀𝐴𝐶𝑉𝑒𝑟𝑖𝑓𝑦𝐾(𝑟𝑒𝑠𝑝, 𝑐ℎ𝑎𝑙||𝑙𝑠)

(c) Digital signature-based registration

User Login Server
(𝑝𝑤𝑑, 𝑙𝑠) (𝑙𝑠)

𝑣𝐼𝑛𝑓𝑜

𝑠𝑠𝑘, 𝑠𝑣𝑘 ← 𝑆𝑖𝑔𝑛𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆)

𝑣𝐼𝑛𝑓𝑜 = 𝑠𝑣𝑘

𝑆 = 𝑠𝑠𝑘

(d) Digital signature-based authentication.

User Login Server
(𝑝𝑤𝑑, 𝑆 = 𝑠𝑠𝑘, 𝑙𝑠) (𝑣𝐼𝑛𝑓𝑜 = 𝑠𝑣𝑘, 𝑙𝑠)

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑐ℎ𝑎𝑙

𝑠𝑖

𝑠𝑖

,…,

𝑟𝑒𝑠𝑝

𝑐ℎ𝑎𝑙

𝑆𝑖𝑔𝑛𝑉𝑒𝑟𝑖𝑓𝑦𝑠𝑣𝑘 (𝑟𝑒𝑠𝑝, 𝑐ℎ𝑎𝑙||𝑙𝑠)

𝑟𝑒𝑠𝑝 = 𝑆𝑖𝑔𝑛𝑠𝑠𝑘 (𝑐ℎ𝑎𝑙||𝑙𝑠)

(e) OPRF-based registration

User Login Server
(𝑝𝑤𝑑, 𝑙𝑠) (𝑙𝑠)

𝑣𝐼𝑛𝑓𝑜

𝐾 ← 𝑃𝑅𝐹𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆)

𝑣𝐼𝑛𝑓𝑜 = 𝐹𝐾(𝑝𝑤𝑑)

𝑆 = 𝐾

(f) OPRF-based authentication

User Login Server
(𝑝𝑤𝑑, 𝑆 = 𝐾, 𝑙𝑠) (𝑣𝐼𝑛𝑓𝑜 = 𝐹𝐾(𝑝𝑤𝑑), 𝑙𝑠)

𝑟𝑒𝑠𝑝 = 𝐻(𝑐ℎ𝑎𝑙| 𝑙𝑠 |𝐹𝐾 𝑝𝑤𝑑)

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑐ℎ𝑎𝑙

𝑠𝑖

,…,

𝑠𝑖

𝑟𝑒𝑠𝑝

𝑐ℎ𝑎𝑙

𝑟𝑒𝑠𝑝 =? 𝐻(𝑐ℎ𝑎𝑙||𝑙𝑠||𝑣𝐼𝑛𝑓𝑜)

(g) Hash-based registration

User Login Server
(𝑝𝑤𝑑, 𝑙𝑠) (𝑙𝑠)

𝑣𝐼𝑛𝑓𝑜

𝑟𝑛𝑑 ← {0,1}𝑘

𝑣𝐼𝑛𝑓𝑜 = 𝐻(𝑟𝑛𝑑||𝑙𝑠)

𝑆 = 𝑟𝑛𝑑

(h) Hash-based authentication

User Login Server
(𝑝𝑤𝑑, 𝑆 = 𝑟𝑛𝑑, 𝑙𝑠) (𝑣𝐼𝑛𝑓𝑜 = 𝐻(𝑟𝑛𝑑| 𝑙𝑠 , 𝑙𝑠)

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑐ℎ𝑎𝑙

𝑠𝑖

𝑠𝑖

,…,

𝑟𝑒𝑠𝑝

𝑐ℎ𝑎𝑙

𝑟𝑒𝑠𝑝 =? 𝐻(𝑐ℎ𝑎𝑙| 𝑙𝑠 |𝑣𝐼𝑛𝑓𝑜)

𝑟𝑒𝑠𝑝 = 𝐻(𝑐ℎ𝑎𝑙| 𝑙𝑠 |𝐻(𝑟𝑛𝑑| 𝑙𝑠)

Distributed Single Password Protocol Framework 13

Non-interactive authentication: In non-interactive authentication, the
user sends only one message to the login server as a login request. Such a round-
optimal solution can be based on challenge-response (non-interactive transfor-
mation of interactive authentication) or one-way functions such as a hash or
a pseudo-random function. Non-interactive authentication requires a secure
and server-authenticated communication channel, since it does not pro-
vide security against eavesdropping and replay attacks (except maybe some syn-
chronous time-based measures). The reason is that an attacker can use the mes-
sages captured in earlier authentications to impersonate the user to the login
server.

To convert the interactive protocols above to their non-interactive versions,
the registration phases of the protocols above do not change. During authen-
tication, the user picks a challenge chal randomly and sends chal, resp to the
server, who performs the same verification as above.

Alternatively, assuming vInfo = H(rnd||ls) can be seen as a site-specific
password, the hash-based authentication method can be simplified to the user
computing resp← H(rnd||ls) and sending resp to the login server, who checks
it against the locally stored vInfo (or H(vInfo) or H(vInfo, salt)) without
the need to modify the existing login servers.

4.2 Secret Storage and Secret Retrieval Phases

We discuss possible building blocks for the secret storage and retrieval phases.
The user stores the secret S (generated during the registration phase) among
nstor storage providers using her single password. Password protected secret
sharing (PPSS) enables only the user who has the correct password to recon-
struct the secret during secret retrieval. We firstly describe overview of password
protected secret sharing employed in secret storage and retrieval phases. Later,
we show how existing building blocks can be employed to have a secure PPSS.

PPSS-based Secret Storage:
The user runs {shareiγ}γ∈Γ ← PPSS(pwd, S, Γ) and sends sharei to storage
provider i, who stores it in its database.

PPSS-based Secret Retrieval:
The user communicates with threshold-many storage providers to reconstruct
the secret S via running the S ← PPSSRecon(pwd, {shareiγ}, Γ) protocol
with tstor-many storage providers where sharei and pwd are the inputs of each
authorized storage provider and the user, respectively.

A PPSS can be constructed using any secret sharing scheme together with
an OPRF as follows: The user (dealer) runs the secret sharing method on a
secret S to create its shares. To protect the shares, the user encrypts each share
using OPRF evaluation result on the password. In details, the secret sharing and
OPRF based solution (storage and retrieval) works as follows;

Secret Sharing and OPRF-based Secret Storage:

– The user
1. generates an OPRF key ki ← OPRFKeyGen(1λ) per storage provider,

14 D. İşler and A. Küpçü

Fig. 4. PPSS secret storage and reconstruction based on SS-and-OPRF.

(a) SS-and-OPRF-based secret storage.

Storage Providers User
𝑆𝑡𝑜𝑟𝑖 (𝑝𝑤𝑑, 𝑆)

𝑠ℎ𝑎𝑟𝑒𝑖 =< 𝑐𝑖 , 𝑘𝑖 >

 𝑠𝑖
𝛾 𝛾∈Γ ← 𝑆𝑆(𝑆, Γ)

𝑠𝑖

 𝑐𝑖 ← 𝐸𝑛𝑐𝐹𝑘𝑖
(𝑝𝑤𝑑) 𝑠𝑖

𝑘𝑖 ← 𝑂𝑃𝑅𝐹𝐾𝑒𝑦𝐺𝑒𝑛 1𝜆

(b) SS-and-OPRF-based secret reconstruction.

Storage Providers User
Stori (𝑠ℎ𝑎𝑟𝑒𝑖 =< 𝑐𝑖 , 𝑘𝑖 >) (𝑝𝑤𝑑, Γ)

𝑂𝑃𝑅𝐹

𝑐𝑖

𝑆 ← 𝑆𝑆𝑅𝑒𝑐𝑜𝑛(𝑠𝑖
𝛾 , Γ)

𝐹𝑘𝑖
(𝑝𝑤𝑑)

𝑝𝑤𝑑 𝑘𝑖

𝑠𝑖 ← 𝐷𝑒𝑐𝐹𝑘𝑖
(𝑝𝑤𝑑) 𝑐𝑖

2. runs a secret sharing scheme on the secret S to create the shares as
{siγ}γ∈Γ ← SS(S, Γ),

3. encrypts each share using oblivious pseudorandom function of the pass-
word pwd using generated OPRF key of each storage provider obtaining
ci ← EncFki

(pwd)(si),
4. sends sharei = (ci, ki) to each storage provider.

– Each storage provider receives a share sharei and stores it in his database.

Secret Sharing and OPRF-based Secret Retrieval:

1. The user and each storage provider jointly execute the oblivious pseu-
dorandom function (OPRF) protocol. Each storage provider acts as the
sender and the user acts as the receiver in these protocol executions. The
user obtains the OPRF value (with key ki) of the password Fki(pwd) ←
OPRF (pwd, ki) as the output.
Remark: The OPRF result is received only by the user and the storage

Distributed Single Password Protocol Framework 15

providers are oblivious to the password. It is enough that this protocol is
run among some authorized subset of storage providers and the user, rather
than all storage providers.

2. Each storage provider sends ci to the user.
3. The user decrypts each ciphertext ci using the corresponding OPRF out-

put already received to obtain the secret shares si ← DecFki
(pwd)(ci) and

computes threshold secret sharing reconstruction algorithm to reconstruct
the secret as S ← SSRecon({sγi }, Γ).

The secret sharing employed takes an important role for security of DiSPP. In
the following, we investigate the secure secret sharing and OPRF instances. If a
threshold secret sharing scheme is employed [2,26,30,31], the user runs the se-
cret retrieval phase with threshold-many (tstor) storage providers. Alternatively,
one can employ an access control secret sharing solution. Our framework
allows usage of such a solution securely, and this brings more flexibility to the
protocol as discussed below.

Consider, for example, a user employing nstor storage providers in total,
which consist of nmob user personal devices (e.g. mobile phone, tablet) and nos
online storages (e.g. Dropbox). The user can define the authorized set of partic-
ipants by choosing the thresholds as tmob and tos for specified personal devices
and online storage providers, respectively. This means, to reconstruct the se-
cret, (at least) tmob personal devices and tos online storage providers need to be
involved in the secret retrieval phase.

For instance, consider a user who stores the secret by employing Dropbox
(D) and GoogleDrive (G) as online storage providers and her mobile phone
(M) and tablet (T) as personal devices. The scenario described above with
mobile and online storage thresholds being one correspond to setting Γ =
{{D,M}, {D,T}, {G,M}, {G,T}} (and sets containing these subsets). Thus, the
user retrieves the secret by accessing one of the online storage providers and one
of her personal devices. Any attacker, who corrupts a set χ such that for any
γ ∈ Γ we have γ * χ, cannot perform an offline dictionary attack to find user
password. In particular, in the scenario above, consider an attacker who corrupts
both online storage providers. As long as the attacker does not additionally have
access to a personal device of the user, the protocol remains secure against offline
dictionary attacks.

5 Inappropriate uses of primitives

5.1 Offline dictionary attack on NIVSS-and-OPRF-based solution

In DiSPP, the security property of secret sharing plays an important role. If
NIVSS and OPRF based PPSS is employed in a distributed password protocol
as secret storage, then an attacker can successfully perform an offline dictionary
attack to find user password. The attack scenario is as follows;

A user runs secret storage protocol with nstor storage providers described as
in Figure 4(a), where NIVSS is employed as SS along with OPRF.

16 D. İşler and A. Küpçü

Consider an attacker A, holding a dictionary D containing the user password,
corrupts one of the storage providers called Storc, where the storage provider is
holding a share as < kc, cc >. The attacker A runs the attack code as described
in Algorithm 1 to find the user password. Since NIVSS is non-interactive, share
verification algorithm can be computed by A without communicating with other
stakeholders. If share verification is successful, then it would mean that the
correct password was chosen while decrypting the cc. Therefore, a DiSPP solution
must not employ a NIVSS-and-OPRF-based PPSS solution.

Input: D, cc, kc
Output: password
foreach pwd′ ∈ D do

Fkc(pwd′)← OPRF (pwd′, kc);
sc

′||vc′ ← DecFkc (pwd′)(cc);

b = NIV SSV erify(sc
′, vc

′);
if b == 1 then

return pwd′;
end

end
Algorithm 1: Attack code on PPSS based on NIVSS-and-OPRF

5.2 How to encrypt secret shares

The particular attack above works because inside the ciphertext cc, some ex-
tra information is stored that enables the adversary to verify the decryption
password offline. To generalize the attack above, as long as the decryption of
the ciphertext cc may lead to some verifiable information, the solution would
be insecure. For instance, in Shamir [39] secret sharing, a share consists of a
share number i (essential to reconstruct the secret) and the secret share si. If
one encrypts this information as ci ← EncFki

(pwd)(si||i), the above attack still
works simply by decrypting with the passwords in the dictionary and checking
whether or not a proper integer i is obtained.

Therefore, for SS-and-OPRF-based secret storage and retrieval to remain
secure, it is important to only encrypt the random values, as observed by Acar
et al. [2] and later supported by Demay et al. [18]. Since, in Shamir [39] secret
sharing, the share number i is a public value that does not allow reconstruction
of the secret by itself, it can be sent in clear, and only the random share value si
is encrypted: ci ← EncFki

(pwd)(si) and each storage provider receives sharei =
(ci, ki, i) during secret storage, and sends ci, i during secret retrieval.

5.3 Malware and Phishing Protection

We consider a strong phishing attack with man-in-the-middle between the user
and the login server(s) during authentication (not registration). This means, the

Distributed Single Password Protocol Framework 17

user registered with a legitimate server with ls (e.g. ls = paypal.com), but now
is trying to authenticate with an attacker with ls′ (e.g. ls′=paypa1.com).

During the authentication protocol between the user and login server(s), a
DiSPP should employ ls information as an input to the cryptographic function
evaluation (e.g. MAC). For instance, while computing the response resp during
authentication, the ls is concatenated with chal (see Figure 3) and used as part
of server-side verification. Therefore, if a phishing man-in-the-middle attacker
with ls′ exists, the user’s response will be on chal||ls′, whereas the real server
would verify using chal||ls, making the attack impossible. Without the use of ls
during authentication, such attacks would have been possible.

(A)PAKE settings already ensure security against man-in-the-middle attacks
intrinsically.

6 Dispp instances

6.1 Existing DiSPP Instantiations

We discuss the DiSPP systems in the literature that provide provable security,
employ a storage provider (e.g. mobile device or online storage provider) and
ensure security with a single password. We investigate how these proposed sys-
tems fit in our DiSPP framework. Acar et al. [2] (with their patent application
dating 2010 [4]), Bicakci et al. [8], Jarecki et al. [31], and İşler and Küpçü [26] are
the known examples of DiSPP. These DiSPP systems are secure against offline
dictionary attacks, even by the server, hackers obtaining the server database,
or up to threshold-many storage providers that are corrupted by the same ad-
versary. We compare the aforementioned DiSPP systems in Table 1. All the
existing DiSPP solutions ([2,8,31]) except İşler and Küpçü [26] are built on an
environment where there is one storage provider and one login server. İşler and
Küpçü [26] proposed a DiSPP where there are nstor online storage providers and
one login server. We discuss an instantiation that generalizes these solutions in
the next subsection.

Table 1. DiSPP solutions. TO: Threshold for online storage providers (tos), TM:
Threshold for personal devices (tmob), TL: Threshold for login servers (tls)

TO TM TL

Acar et. al [2] Cloud Version 1 0 1

Acar et. al [2] Mobile Version 0 1 1

Bicakci et. al [8] 1 0 1

Jarecki et. al [31] 0 1 1

İşler and Küpçü [26] tos 0 1

Our instantiation tos tmob tls

Acar et. al [2] proposed four DiSPPs in different settings with different con-
cerns such as storage provider optimality, login server optimality, user anonymity,

18 D. İşler and A. Küpçü

and mobile device as a storage provider. For our framework, user’s anonymity
is not a major concern since revealing the identity of the user does not break
the security captured in our model, and we assume the user identifiers (e.g.
usernames) already leak this information. Below, we only discuss their server
optimal DiSPP instance which employs digital signatures for registration and
authentication, and unique blind signatures instead of OPRF.
Registration:

– The user and login server run the digital signature registration as in Figure
3(c) where the secret S is the signing key ssk.

Secret Storage:

– The user and the storage provider run the secret storage protocol as in Figure
4(a). Since there is only one storage provider (tstor = nstor = 1), the user
does not run a secret sharing on S and sends only the encryption of the S
to the storage provider.

Secret Retrieval:

– The user and the storage provider run the secret reconstruction as in Figure
4(b) where the user receives the secret S as an output.
Remark: As in the secret storage phase, the user does not run a secret shar-
ing reconstruction. She computes one unique blind signature (as an OPRF)
with the storage provider and performs one decryption locally to obtain the
secret without further reconstruction.

Authentication:

– The user and login server run the digital signature authentication as shown
in Figure 3(d).

Jarecki et. al [31] is an instance of DiSPP that employs the mobile device
as storage provider. In Jarecki et. al [31], PAKE is embedded as server-side
password protocol.
Registration:

– The user and the login server compute the registration of a PAKE protocol.
The login server stores an OPRF evaluation of password FK(pwd) as in
Figure 3(e).

Secret Storage:

– The user and mobile device compute the secret storage protocol as described
in Figure 4(a).
Remark: In their setting, since there is only one storage provider, secret
sharing is not employed, and the user sends the secret (which is the OPRF
key K) as it is without an encryption (share = K).

Distributed Single Password Protocol Framework 19

Secret Retrieval: The user holding her password and the storage provider (mo-
bile device) compute the secret retrieval solution as in Figure 4(b).
Remark: They only run the OPRF part, and no decryption or secret sharing
is employed.
Authentication: The user holding the FK(pwd) retrieved from the secret re-
trieval runs PAKE with the login server as described in Figure 2.

Bicakci et. al [8] proposed a DiSPP (without a formal security proof),
where they employed one login server and one storage provider. Their model is
captured by our framework as follows;
Registration:

– The user generates a pair of keys (ssk, svk) for a unique blind signature
based on (deterministic) RSA, where the high entropy secret is generated
as sig ← Signssk(H(pwd||username)) and the verification information is
computed as vInfo = H(sig||ls).

Secret Storage:

– The user and the storage provider compute the secret storage protocol as in
Figure 4(a).
Remark: Since there is only one storage, secret sharing is not computed as
well as no encryption on the secret (share = ssk).

Secret Retrieval:

– The user runs secret retrieval as in Figure 4(b) where unique blind signature
is employed instead as OPRF (recall both OPRF and unique blind signature
provides the same functionality and security). The output to the user is
sig ← Signssk(H(pwd||username)).

Authentication:

– The user runs (non-interactive) hash-based authentication protocol with the
login server as described in Section 4.1.

İşler and Küpçü [26] introduced the first DiSPP with a threshold on online
storage providers, where in their system there are tstor online storage providers
and one login server. The solution by İşler and Küpçü [26] fits in our model as
follows;
Registration:

– The user and login server run the hash-based registration as in Figure 3(g)
where the secret S is k-bit entropy random string rnd.

Secret Storage:

– The user and the storage providers compute the secret storage protocol as
in Figure 4(a).

Secret Retrieval:

20 D. İşler and A. Küpçü

– The user runs the secret retrieval as in Figure 4(b) with tstor storage providers.
At the end, the user obtains the secret, which is the k-bit entropy random
string rnd.

Authentication:

– The user and login server compute hash-based non-interactive authentication
as described in Section 4.1.

6.2 Another DiSPP Instantiation

Our framework enables us to derive other DiSPP instances not in the literature.
Registration:

– uses the hash-based registration as described in Figure 3(g) that outputs a
high entropy random-string rnd as the secret S and verification information
as vInfo = H(rnd||ls).
Remark: To further strengthen login servers against offline dictionary at-
tacks, rather than employing a single server, threshold password authenti-
cated key exchange (TPAKE) can be employed so that an attacker is required
to compromise threshold-many login servers in addition to threshold-many
storage providers to mount a successful offline dictionary attack.

Secret Storage:

– employs ACSS-and-OPRF-based secret storage as described in Section 4.2.

Secret Retrieval:

– runs ACSS-and-OPRF-based secret retrieval protocol with an authorized set
of storage providers to retrieve the secret S = rnd.

Authentication:

– runs hash-based authentication as shown in 3(h) using the reconstructed
secret S during the secret retrieval.
Remark: Alternatively, one may employ non-interactive version or TPAKE
as discussed above.

Note that while we do not provide a formal security proof of this instantia-
tion, it can easily be seen that the definitions and proof theorems in [26] apply
here with only minor modifications. They employ a TSS-and-OPRF-based PPSS
solution, and prove security of their full protocol assuming that the adversary
can corrupt at most threshold-many storage providers or fewer than threshold-
many storage providers together with the login server. In our case, this can be
easily converted to a proof where the adversary can corrupt any set of stor-
age providers that are not authorized together with the login server, or some
minimal set of authorized storage providers. Moreover, if TPAKE is employed
during the authentication phase, the adversary needs to corrupt threshold-many

Distributed Single Password Protocol Framework 21

login servers rather than one. Lastly, if a challenge-response based interactive
authentication is employed (or a TPAKE is employed), then the authentication
protocol does not need a secure and server-authenticated channel as opposed
to [26]. Intuitively, this instantiation is a secure DiSPP assuming that OPRF is
secure, {KeyGen,Enc,Dec} is a semantically secure encryption scheme, ACSS
is a secure monotone access controlled secret sharing solution, and the hash
function is picked from a collision resistant family.

6.3 Performance Evaluation

In this section, we first evaluate the performance of some building blocks, and
then look at the performance of the DiSPP instance proposed above. We omit
the evaluations of registration and authentication for the login servers, since
schemes employed are run in constant time and with non-interactive hash-based
registration and authentication, the login servers remain unmodified.

Performance measurements are processed on a standard laptop machine with
Intel Core(TM) i7-5600U CPU 2.60 GHz, 8.00 GB RAM, 64-bit OS, and imple-
mented in Java. For our implementation, we chose AES [17] for encryption,
implemented OPRF in [31], TSS in [39], ACSS in [6], TOPRF in [30], and PPSS
in [16] with various thresholds. Table 2 shows the local computations of the
secret storage and retrieval phases at the user side. For the secret storage and
registration, the storage providers and the login server do not compute anything;
they only receive and store some values.

Table 2. Performance evaluation of DiSPP phases (in milliseconds).

User-Secret Storage

ACSS-OPRF TOPRF PPSS
[6,31] [30] [16]

2-5 Threshold 9.30 3.6 66.35

3-6 Threshold 11.88 4.6 66.60

5-10 Threshold 17.8 7.8 68.40

User-Secret Retrieval

ACSS-OPRF TOPRF PPSS
[6,31] [30] [16]

2-5 Threshold 5.22 4.0 952.18

3-6 Threshold 7.8 5.5 1273.12

5-10 Threshold 12.4 8.4 1603.21

Storage Provider-Secret Retrieval

ACSS-OPRF TOPRF PPSS
[6,31] [30] [16]

2-5 Threshold 2.1 3.3 807.15

3-6 Threshold 3.15 3.9 901.34

5-10 Threshold 5.2 6.5 1523.02

22 D. İşler and A. Küpçü

Finally, we show the performance evaluation of our proposed instantiation
for the user and storage providers in Table 3. From the communication round
perspective, the user can communicate with the storage providers in parallel,
which decreases the network round trip to 1.5 rounds for secret retrieval and
authentication in total.

Table 3. Performance evaluation of our DiSPP instantiation (in milliseconds).

User User Storage Provider Login
(Reg.) (Auth.) (Retrieval) Total

2-5 Threshold 9.90 5.96 2.1 8.06

3-6 Threshold 12.48 8.56 3.15 11.71

5-10 Threshold 18.40 13.13 5.2 18.33

7 Conclusion

For the last decade, several single password protocols have been proposed [2, 8,
26,31], where only [26] among them provides threshold security where an adver-
sary is required to corrupt threshold-many storage providers to mount an offline
dictionary attack on the user’s password. For the first time in the literature, we
provide a framework for distributed single password protocols that are secure
against offline dictionary, man-in-the-middle, phishing, and honeypot attacks.
We discussed correct and incorrect ways of using proper cryptographic build-
ing blocks, and concluded that use of non-interactive verifiable secret sharing
schemes would result in an offline dictionary attack by a single storage provider.
Our framework not only encompasses existing protocols, but also enables deriva-
tion of new DiSPP constructions. Finally, we implemented several building blocks
and measured performance of our proposed DiSPP instance.

8 Acknowledgment

We acknowledge the support of TÜBİTAK (the Scientific and Technological
Research Council of Turkey) under the project number 115E766, and the Royal
Society of UK Newton Advanced Fellowship NA140464.

References

1. M. Abdalla, M. Cornejo, A. Nitulescu, and D. Pointcheval. Robust password-
protected secret sharing. In European Symposium on Research in Computer Secu-
rity. Springer, 2016.

2. T. Acar, M. Belenkiy, and A. Küpçü. Single password authentication. Computer
Networks, 2013.

Distributed Single Password Protocol Framework 23

3. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret shar-
ing. In Proceedings of the 18th ACM conference on Computer and Communications
Security. ACM, 2011.

4. M. Belenkiy, T. Acar, H. Morales, and A. Küpçü. Securing passwords against
dictionary attacks. 2011. US Patent 9,015,489.

5. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In Research in Security and Privacy, 1992.
Proceedings., 1992 IEEE Computer Society Symposium on. IEEE, 1992.

6. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions.
In Proceedings on Advances in cryptology. Springer., 1990.

7. M. Bertilsson and I. Ingemarsson. A construction of practical secret sharing
schemes using linear block codes. In International Workshop on the Theory and
Application of Cryptographic Techniques. Springer, 1992.

8. K. Bicakci, N. B. Atalay, M. Yuceel, and P. C. van Oorschot. Exploration and
field study of a browser-based password manager using icon-based passwords. In
Workshop on Real-Life Cryptographic Protocols and Standardization, 2011.

9. G. R. Blakley et al. Safeguarding cryptographic keys. In Proceedings of the national
computer conference, 1979.

10. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In International Workshop on
Public Key Cryptography. Springer, 2003.

11. X. Boyen. Hidden credential retrieval from a reusable password. In Proceedings of
the 4th International Symposium on Information, Computer, and Communications
Security. ACM, 2009.

12. X. Boyen. HPAKE: Password authentication secure against cross-site user imper-
sonation. In Cryptology and Network Security. Springer, 2009.

13. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using diffie-hellman. In EUROCRYPT 2000. Springer, 2000.

14. E. F. Brickell. Some ideal secret sharing schemes. In Workshop on the Theory and
Application of of Cryptographic Techniques. Springer, 1989.

15. J. Camenisch, R. R. Enderlein, and G. Neven. Two-server password-authenticated
secret sharing uc-secure against transient corruptions. PKC 2015, 2015.

16. J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. Memento: How to re-
construct your secrets from a single password in a hostile environment. In CRYPTO
2014. Springer, 2014.

17. J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media, 2013.

18. G. Demay, P. Gazi, U. Maurer, and B. Tackmann. Per-session security: Password-
based cryptography revisited. In ESORICS, 2017.

19. O. Farràs, J. Mart́ı-Farré, and C. Padró. Ideal multipartite secret sharing schemes.
Journal of cryptology, 2012.

20. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of
cryptology, 1988.

21. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO’86, 1986.

22. D. Florencio and C. Herley. A large-scale study of web password habits. In Pro-
ceedings of the 16th international conference on World Wide Web. ACM, 2007.

23. W. Ford and B. S. Kaliski. Server-assisted generation of a strong secret from a
password. In Enabling Technologies: Infrastructure for Collaborative Enterprises,
2000.(WET ICE 2000). IEEE, 2000.

24 D. İşler and A. Küpçü

24. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and obliv-
ious pseudorandom functions. In Theory of Cryptography Conference. Springer,
2005.

25. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 1988.

26. D. İşler and A. Küpçü. Threshold single password authentication. In ESORICS
DPM’17. Springer, 2017.

27. M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general ac-
cess structure. Electronics and Communications in Japan (Part III: Fundamental
Electronic Science), 1989.

28. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-Optimal Password-Protected
Secret Sharing and T-PAKE in the Password-Only Model. ASIACRYPT’14, 2014.

29. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).

30. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Toppss: Cost-minimal password-
protected secret sharing based on threshold oprf. In International Conference on
Applied Cryptography and Network Security. Springer, 2017.

31. S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Device-enhanced password
protocols with optimal online-offline protection. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security. ACM, 2016.

32. S. Jarecki, H. Krawczyk, and J. Xu. Opaque: An asymmetric pake protocol secure
against pre-computation attacks. In EUROCRYPT 2018, 2018.

33. J. Katz and Y. Lindell. Introduction to modern cryptography. CRC press, 2014.
34. J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-server password-only au-

thenticated key exchange. In International Conference on Applied Cryptography
and Network Security, 2005.

35. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key ex-
change using human-memorable passwords. In EUROCRYPT 2001. Springer, 2001.

36. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-
authenticated key exchange. In CRYPTO 2002. Springer, 2002.

37. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Annual International Cryptology Conference. Springer, 1991.

38. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
1991.

39. A. Shamir. How to share a secret. Communications of the ACM, 1979.
40. E. I. Tatli. Cracking more password hashes with patterns. Information Forensics

and Security, IEEE Transactions on, 2015.
41. J. M. Turner. The keyed-hash message authentication code (hmac). Federal Infor-

mation Processing Standards Publication, 2008.

