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Abstract

We initiate the study of structured encryption schemes with computationally-secure leakage.
Specifically, we focus on the design of volume-hiding encrypted multi-maps; that is, of encrypted
multi-maps that hide the response length to computationally-bounded adversaries. We describe
the first volume-hiding STE schemes that do not rely on naive padding; that is, padding all
tuples to the same length. Our first construction has efficient query complexity and storage but
can be lossy. We show, however, that the information loss can be bounded with overwhelming
probability for a large class of multi-maps (i.e., with lengths distributed according to a Zipf
distribution). Our second construction is not lossy and can achieve storage overhead that is
asymptotically better than naive padding for Zipf-distributed multi-maps. We also show how
to further improve the storage when the multi-map is highly concentrated in the sense that it
has a large number of tuples with a large intersection.

We achieve these results by leveraging computational assumptions. Not just for encryption
but, more interestingly, to hide the volumes themselves. Our first construction achieves this
using a pseudo-random function whereas our second construction achieves this by relying on
the conjectured hardness of the planted densest subgraph problem which is a planted variant
of the well-studied densest subgraph problem. This assumption was previously used to design
public-key encryptions schemes (Applebaum et al., STOC ’10 ) and to study the computational
complexity of financial products (Arora et al., ICS ’10 ).
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1 Introduction

A structured encryption (STE) scheme encrypts a data structure in such a way that it can be
privately queried. An STE scheme is secure if it reveals nothing about the structure and query
beyond a well-specified and “reasonable” leakage profile [15, 12]. An important special case of STE
is searchable symmetric encryption (SSE) which relies on encrypted multi-maps [15, 12, 27, 26, 33,
11, 10, 7, 8, 4, 18, 5, 16] to achieve optimal-time search. Another example is graph encryption
which encrypts various kinds of graphs [12, 30]. STE has received a lot of attention due to its
potential applications to cloud storage and database security. In recent years, much of the work on
STE has focused on supporting more complex queries like Boolean [11, 34, 21, 23] and range queries
[34, 21, 20, 35], more complex structures like relational databases [24] and improving security like
achieving forward-privacy [37, 7, 8, 19, 1].

Leakage. One aspect of STE that is still poorly understood is its leakage. There are currently
two directions to dealing with leakage. The first is cryptanalysis; that is, designing leakage attacks
against various leakage profiles so that we can better understand their concrete security. This was
initiated by Islam, Kuzu and Kantarcioglu in the context of SSE [22] and expanded to PPE by
Naveed, Kamara and Wright [32] and to ORAM by Kellaris, Kollios, Nissim and O’Neill [28]. While
there has been some progress on designing leakage attacks against STE [22, 9, 28, 29], these attacks
remain mostly of theoretical interest due to the strong assumptions they rely on. Assumptions like
knowledge of at least 80%−90% of client data in addition to knowledge of 5% of client queries [22, 9],
or assuming clients make queries uniformly at random, often addition to assumptions about how
client data is distributed [28, 29]. Nevertheless, these attacks do provide us with some guidance as
to which leakage profiles to avoid when designing schemes. Another line of work related to leakage
was initiated recently by Kamara, Moataz and Ohrimenko in [25] where they propose designing
general-purpose techniques to suppress given leakage patterns. In [25], they show how to do this
for the query equality (also known as the search pattern) without making use of ORAM simulation
and, therefore, without incurring its poly-logarithmic multiplicative overhead.

Computationally-secure leakage. In this work, we consider a new approach to dealing with
leakage. Our work starts from the observation that the presence of leakage does not necessarily
imply that this leakage can be exploited. In fact, it could be that this leakage is not exploitable
because it does not convey enough useful information to the adversary. Alternatively, it could be
that the leakage does convey enough information but no computationally-bounded adversary can
extract it. In other words, this leakage would be computationally-secure. The possibility of design-
ing STE schemes with computationally-secure leakage patterns is interesting for several reasons.
From a theoretical point of view, as far as we know, this question has never been considered before
and it raises some intriguing foundational questions; one of which is what kind of computational
assumptions would lend themselves to the design of secure leakage patterns? The traditional as-
sumptions used in cryptography are usually algebraic or number-theoretic in nature and it is not
clear how such assumptions could be used. From a more practical perspective, the ability to lever-
age “computationally-secure leakage” in the design of STE schemes could lead to a whole new set
of techniques and, ultimately, to highly-efficient zero-leakage schemes—computationally speaking.
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Volume-hiding EMMs. In this work, we initiate the study of computationally-secure leakage.
In particular, we focus on the design of volume-hiding encrypted multi-maps or, more precisely, of
encrypted multi-maps that hide the response length to computationally-bounded adversaries. 1 We
focus on encrypted multi-maps because they are by far the most important encrypted structure;
this is illustrated by the fact that they are central to the design of optimal-time single-keyword SSE
[15, 12, 27, 10, 7, 31, 8, 19], sub-linear Boolean SSE [11, 23], graph encryption [12, 30], encrypted
range structures [20, 17] and encrypted relational databases [24]. We consider the response length
leakage pattern for several reasons. The first is that it is a very difficult leakage pattern to suppress.
In fact, though encrypted search has been investigated since 2000, the first non-trivial construction
to even partially hide the response length is the recent PBS scheme of [25]. 2 In fact, response
lengths are leaked even by ORAM-based solutions. The second reason we focus on response lengths
is because of the recent volume attacks of Kellaris et al. [28]. Again, while these attacks are mostly
of theoretical interest, they do suggest that the design of volume-hiding encrypted structures is
well-motivated.

1.1 Naive Approaches

To better understand our techniques and the improvements they provide, we first describe two
possible naive approaches to designing volume-hiding EMMs. Recall that a multi-map is a data
structure that stores a set of pairs {(`,v)}, where ` is a label from a label space L and v is a tuple
of values from some value space V. Multi-maps support get and put operations. Get takes as input
a label ` and returns its associated tuple v whereas Put takes as input a label/value pair (`,v) and
stores it. We denote the get operation by v := MM[`] and the put operation by MM[`] := v.

Naive padding. The first approach to designing a volume-hiding multi-map encryption scheme
is to pad the tuples of the plaintext multi-map MM to their maximum response length t =
max`∈L #MM[`] and encrypt the padded multi-map with any standard multi-map encryption
scheme [12, 10, 7, 1]. It is easy to see that this hides the response lengths. Unfortunately, it
also induce a non-trivial storage overhead.

Using ORAM. We now describe a volume-hiding construction based on ORAM. Note that, as
far as we know, this construction has not appeared before and may be of independent interest. We
first represent the multi-map MM as a dictionary by generating N

def=
∑
`∈L #MM[`] pairs of the

form
{
(`, v)`∈L,v∈MM[`]

}
and storing them in a dictionary DX. We then add t−1 dummy label/value

pairs to DX, where t is the maximum response length of a label in MM. DX is then stored and
managed using ORAM. To get the tuple associated with a label `, we first obliviously access DX.
There are two cases: if #MM[`] = t, then we retrieve all pairs associated with `; otherwise if
#MM[`] < t, we retrieve an additional t−#MM[`] dummies.

It is clear that this hides the response length since the ORAM simulation hides the query
equality and, therefore, an adversary can’t distinguish between a dummy label and a real label.
From an efficiency perspective, if we use a state-of-the-art ORAM [38] then the storage overhead

1Our constructions also reveal the query equality—even to a bounded adversary—but the latter can be suppressed
using the cache-based transform from [25].

2The PBS construction has two variants. One can hide the response length on non-repeating sub-patterns but
has a probability of failure in the sense that the client might not receive all its query responses. The second variant
is always correct but reveals the sequence response length on non-repeating sub-patterns.
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is O(N). The communication complexity, however, is O(t · log2N) which includes a multiplicative
poly-logarithmic factor in addition to a logarithmic round complexity.

1.2 Our Techniques and Contributions

In this work, we describe two volume-hiding multi-map encryption schemes: VLH and AVLH. Both
our constructions work by first transforming an input multi-map into a volume-hiding multi-map
and encrypting the result with a custom multi-map encryption scheme (that itself makes black-box
use of a standard multi-map encryption scheme). These constructions avoid the limitations of the
naive approaches described above either by improving on the storage of naive padding or avoiding
the multiplicative poly-logarithmic overhead of the ORAM-based solution.

A time-efficient construction. Our first construction relies on a simple transformation we call
the pseudo-random transform which is parameterized by a public parameter λ and makes use of
a small-domain pseudo-random function as follows. Each tuple v in the multi-map is transformed
into a new tuple v′ of size n′ = λ + FK(n), where n = #v. If n′ > n, then the elements of v are
stored in v′ and the latter is padded to have length n′. If n′ ≤ n then only the first n′ items of v
are stored in v′ which effectively truncates v (we think of the case n′ = n as a padding). Note that
the multi-map that results from this process is volume-hiding since each tuple has pseudo-random
length. Perhaps surprisingly, we also show that if the lengths of the input multi-map are Zipf-
distributed then the storage overhead and the number of truncations can be kept relatively small
with overwhelming probability (in the number of labels). Our scheme VLH essentially consists of
transforming a multi-map using the pseudo-random transform and encrypting it with a standard
multi-map encryption scheme. The query complexity of VLH is O(λ + ν), where ν is the largest
value in the domain of F . While the pseudo-random transform leads to an efficient construction,
it is lossy since tuples can be truncated. In many practical settings, however, truncations are not
necessarily an issue. For example, in the case of SSE where EMMs are used to store document
identifiers clients can rank the document ids (say, by relevance) at setup time so that truncations
only affect the low-ranked documents. Nevertheless, we also consider the problem of designing
non-lossy volume-hiding EMMs.

A non-lossy transform. Our second construction relies on a different transformation we call the
dense subgraph transform. Unlike the pseudo-random transform which introduces truncations, this
approach is non-lossy. On the other hand, it is less efficient in terms of query complexity. Note,
however, that it is hard to imagine any non-lossy construction being able to hide the response
length of a query and having query complexity o(t), where t is the maximum response length. Our
goal, therefore, is to design a non-lossy scheme that improves on the storage overhead of the naive
padding approach. At a high-level, our non-lossy transform works by re-arranging the data stored
in the multi-map into bins according to a random bi-partite graph. Roughly speaking, we construct
a random (regular) bi-partite graph with labels in one set and bins in the other. We then assign the
values in a label’s tuple to the bins that are incident to the label. The bins are then padded to hide
their size. To ensure that this re-arrangement is still efficiently queryable, we show how to represent
the structure encoded in the bi-partite graph and the data stored in the bins with a pair of standard
data structures; specifically, a multi-map and a dictionary. We show that, with the right choice of
parameters, this version of our transformation already yields a volume-hiding multi-map structure
with better storage overhead than the naive padding approach. More precisely, we show that the
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naive approach produces a volume-hiding multi-map of size SNV = Ω(N), where N is the size of
the original multi-map, whereas our approach yields a volume-hiding multi-map of size O(N) with
overwhelming probability in N . Interestingly, we also show that if the tuple-lengths of the input
multi-map are Zipf-distributed then our transformation yields a multi-map of size o(SNV) with
overwhelming probability. We note that this version of the transformation already makes use of
computational assumptions. In particular, it uses a pseudo-random function to generate the edges
of the random bi-partite graph which allows us to “compress” the size of our data structures by
storing random seeds as opposed to all the graph’s edges. To query our transformed multi-map on
some label `, it suffices to retrieve the bins incident to `. Intuitively, this is volume-hiding because
the bins are padded and the number of bins is fixed. Furthermore, it hides other leakage patterns
because the tuple values are assigned to bins randomly.

Concentration and planted subgraphs. The version of the transformation described so far
already improves over naive padding (with overwhelming probability) but we show that for a certain
class of multi-maps we can do even better—though at the cost of increased query complexity.
Specifically, we consider multi-maps that have a large number of tuples with a large intersection.
We refer to this property as concentration and describe a version of the dense subgraph transform
that leverages the multi-map’s concentration to improve storage efficiency even more. At a high-
level, the idea is as follows. A concentrated multi-map has a number of redundant values which our
transformation assigns to multiple bins. In our improved transform, we instead assign each these
redundant values to a single bin and add edges between these bins and all the labels whose tuples
they appear in. The rest of the bi-partite graph is generated (pseudo-)randomly as above. This has
the benefit of inducing smaller bins and, therefore, of requiring less padding. The bi-partite graph,
however, is not random anymore (even ignoring our use of a pseudo-random function to generate
edges). We observe, however, that by adding the edges to the bins of the redundant values, we are
effectively planting a small dense subgraph inside of a larger random graph. And while the resulting
graph is clearly not random anymore, it can be shown to be computionally indistinguishable from a
random graph. In fact, this reduces to the planted densest subgraph problem which has been used in
the past by Applebaum et al. in the context of cryptography [2] and by Arora et al. in the context
of computational complexity [3]. Based on this assumption, we can show that for multi-maps
with concentration parameters within a certain range (in turn determined by the densest subgraph
assumption) the transformed multi-map is of size O

(
N −

√
m · polylog(m)

)
with overwhelming

probability and where m is the number of labels in the original multi-map. If the input multi-map
is Zipf-distributed, then the output multi-map has size o(SNV).

Our non-lossy construction. As mentioned above, the dense subgraph transform produces
multi-maps that we represent using a combination of a dictionary and a (standard) multi-map.
To encrypt this particular representation, we design a new scheme called AVLH. The resulting
construction has query complexity O

(
t · (polylog(m) −

√
m)
)

for multi-maps with concentration
parameters within a certain range.

Dynamism. Our VLH and AVLH constructions are for static multi-maps. While there are many
important applications of static EMMs, we describe how to extend these constructions to handle
updates. This results in two additional constructions, VLHd and AVLHd. The former handles three
kinds of updates: tuple addition, tuple deletion and tuple edits; and the latter handles tuple edits.
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1.3 Related Work

Structured encryption was introduced by Chase and Kamara [12] as a generalization of searchable
symmetric encryption which was first considered by Song, Wagner and Perrig [36] and formalized
by Curtmola, Garay, Kamara and Ostrovsky [15]. Multi-map encryption schemes are a special
case of STE and have been used to achieve optimal-time single-keyword SSE [15, 27, 10, 7, 19, 8],
sub-linear Boolean SSE [11, 23], encrypted range search [20, 17], encrypted relational databases [24]
and graph encryption [12, 30]. The first leakage attack against volume leakage was described by
Kollios, Kellaris, Nissim and O’Neill [28] under the assumption of uniform query distributions. In
[25], Kamara, Moataz and Ohrimenko describe an STE scheme called PBS which partially hides the
volume pattern. More precisely, the first variant of PBS reveals only the sequence response length
(i.e., the sum of the response lengths of a given query sequence) on non-repeating query sequences.
The second variant reveals nothing (beyond a public parameter independent of the volume) on non-
repeating query sequences. The planted densest graph problem was first used as a computational
assumption by Applebaum, Barak and Wigderson in [2] for the purpose of designing public-key
encryption schemes under new assumptions. It was later used by Arora, Barak, Brunnermeier and
Ge to study the computational complexity of financial products [3].

2 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all
finite binary strings as {0, 1}∗. We write x ← χ to represent an element x being sampled from a
distribution χ, and x

$← X to represent an element x being sampled uniformly at random from a
set X. The output x of an algorithm A is denoted by x ← A. Given a sequence v of n elements,
we refer to its ith element as vi or v[i]. If S is a set then #S refers to its cardinality and 2S to its
powerset.

Basic cryptographic primitives. A private-key encryption scheme is a set of three polynomial-
time algorithms SKE = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a
security parameter k and returns a secret key K; Enc is a probabilistic algorithm takes a key K
and a message m and returns a ciphertext c; Dec is a deterministic algorithm that takes a key K
and a ciphertext c and returns m if K was the key under which c was produced. Informally, a
private-key encryption scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts
it outputs do not reveal any partial information about the plaintext even to an adversary that
can adaptively query an encryption oracle. We say a scheme is random-ciphertext-secure against
chosen-plaintext attacks (RCPA) if the ciphertexts it outputs are computationally indistinguishable
from random even to an adversary that can adaptively query an encryption oracle. In addition to
encryption schemes, we also make use of pseudo-random functions (PRF), which are polynomial-
time computable functions that cannot be distinguished from random functions by any probabilistic
polynomial-time adversary.

3 Definitions

Structured encryption schemes encrypt data structures in such a way that they can be privately
queried. There are several natural forms of structured encryption. The original definition of
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[12] considered schemes that encrypt both a structure and a set of associated data items (e.g.,
documents, emails, user profiles etc.). In [13], the authors also describe structure-only schemes
which only encrypt structures. Another distinction can be made between interactive and non-
interactive schemes. Interactive schemes produce encrypted structures that are queried through
an interactive two-party protocol, whereas non-interactive schemes produce structures that can be
queried by sending a single message, i.e, the token. One can also distinguish between response-
hiding and response-revealing schemes: the former reveal the response to queries whereas the latter
do not. We recall here the syntax of an interactive response-hiding structured encryption scheme.
Definition 3.1 (Structured encryption). An interactive response-hiding structured encryption scheme
ΣDS = (Setup,Query) for data type DS consists of the following polynomial-time algorithms and pro-
tocols:
• (K,EDS)← SetupC(1k,DS): is a probabilistic algorithm that takes as input a security param-

eter 1k and a structure DS of type DS and outputs a secret key K and an encrypted structure
EDS.

• (r,⊥) ← QueryC,S(tk; EDS): is an interactive protocol executed between a client C and a
server S. The client inputs a token tk and the server inputs an encrypted structure EDS. The
client receives a response r and the server receives ⊥.

We refer the reader to, for example [1], for syntax definitions of dynamic STE.

Security. The standard notion of security for STE guarantees that: (1) an encrypted structure
reveals no information about its underlying structure beyond the setup leakage LS; (2) that the
query protocol reveals no information about the structure and the queries beyond the query leakage
LQ. If this holds for non-adaptively chosen operations then the scheme is said to be non-adaptively
secure. If, on the other hand, the operations can be chosen adaptively, the scheme is said to be
adaptively-secure.
Definition 3.2 (Adaptive security of interactive STE). Let Σ = (Setup,Query) be an interactive
STE scheme and consider the following probabilistic experiments where A is a stateful semi-honest
adversary, S is a stateful simulator, LS and LQ are leakage profiles and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS and receives EDS from the chal-
lenger, where (K,EDS) ← Setup(1k,DS). The adversary then adaptively chooses a polyno-
mial number of queries and, for each, executes the Query protocol with the challenger, where
the adversary plays the server and the challenger plays the client. Finally, A outputs a bit b
that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends to the challenger.
Given z and leakage LS(DS) from the challenger, the simulator S returns an encrypted struc-
ture EDS to A. The adversary then adaptively chooses a polynomial number of queries and,
for each one, executes the Query protocol with the simulator, where the adversary plays the
server and the simulator plays the client (note that here, the simulator is allowed to deviate
from Query). Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-secure if there exists a ppt simulator S such that for all ppt
adversaries A, for all z ∈ {0, 1}∗,

|Pr [ RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).
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Let F : {0, 1}k × {0, 1}∗ → {0, 1}s be a pseudo-random function, rank : Rn → Rn be ranking function
and λ ∈ N be a public parameter. Consider the transform PRT defined as follows:

• PRT(1k, λ,MM):

1. sample a key K $← {0, 1}k;
2. instantiate an empty multi-map MM′;
3. for all ` ∈ LMM,

(a) let r := MM[`] and n` = #r;
(b) compute r′ := rank(r);
(c) let n′` = λ+ FK(`‖n`);
(d) if n′` > n`, set MM′[`] :=

(
r′,⊥1, . . . ,⊥n′

`
−n`
)
;

(e) otherwise, set MM′[`] :=
(
r′1, · · · , r′n′

`

)
;

4. output MM′.

• Get(`,MM): output MM[`].

Figure 1: The pseudo-random transform.

Modeling leakage. Every STE scheme is associated with leakage which itself can be composed
of multiple leakage patterns. The collection of all these leakage patterns forms the scheme’s leakage
profile. Leakage patterns are (families of) functions over the various spaces associated with the
underlying data structure. For concreteness, we borrow the nomenclature introduced in [25] and
recall some well-known leakage patterns that we make use of in this work:

• the query equality pattern is the function family qeq = {qeqk,t}k,t∈N with qeqk,t : Dk ×Qt
k →

{0, 1}t×t such that qeqk,t(DS, q1, . . . , qt) = M , where M is a binary t × t matrix such that
M [i, j] = 1 if qi = qj and M [i, j] = 0 if qi 6= qj . The query equality pattern is referred to as
the search pattern in the SSE literature;

• the response identity pattern is the function family rid = {ridk,t}k,t∈N with ridk,t : Dk ×Qt
k →

[2[n]]t such that ridk,t
(
DS, q1, . . . , qt

)
= (DS[q1], . . . ,DS[qt]). The response identity pattern is

referred to as the access pattern in the SSE literature;

• the response length pattern is the function family rlen = {rlenk,t}k,t∈N with rlenk,t : Dk×Qt
k →

Nt such that rlenk,t(DS, q1, . . . , qt) =
(
|DS[q1]|, . . . , |DS[qt]|

)
;

• the domain size pattern is the function family dsize = {dsizek, t}k,t∈N with dsizek, t : Dk → N
such that dsizek,t(DS) = #Q.

4 The Pseudo-Random Transform

We describe the pseudo-random transform (PRT) in Figure 1 and provide a high level description
below.

Overview. PRT is a data structure transformation that takes as input a multi-map MM, a
security parameter k and a public parameter λ. It first generates a random key K and initializes
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an empty multi-map MM′. For each label ` in the multi-map, it ranks the tuple r := MM[`];
resulting in a ranked tuple r′. It then evaluates a PRF on the label ` concatenated to the length
n` of r. The output of this PRF evaluation is then added to λ in order to compute a new length
n′`. There are two possible cases that can occur at this point: (1) if n′` is larger than n`, the ranked
response is padded with dummies and inserted in MM′[`]; (2) if n′` is at most n`, the ranked response
is truncated to its first n′` elements and inserted in MM′[`]. Note that for ease of exposition and
without loss of generality, we consider the case where n′` = n` a padding. Finally, the transform
outputs the multi-map MM′. The get algorithm simply outputs the tuple corresponding to the
label `.

A note on probabilistic analysis. Throughout this work, we model pseudo-random functions
as random functions for the purposes of probabilistic analysis. It should be understood that all our
bounds will have an additional negligible value in the security parameter.

4.1 Analyzing the Number of Truncations

For any label ` of the multi-map, the transform can pad or truncate its ranked response depending
on the output of the PRF. In this Section, we will analyze the number of truncations induced by
our transformation. The number of truncations is defined as

#{` ∈ LMM : #MM′[`] < #MM[`]}.

In the worst-case, the number of truncations can be #LMM which occurs when every label in MM
is truncated. We will show, however, that in practice this is very unlikely to occur. In particular,
we will show that for real-world distributions of response lengths, the number of truncations is
small with high probability. Note that if we set λ ≥ max`∈L #MM[`], then truncations can never
occur since #MM′[`] ≥ max`∈L #MM[`] ≥ #MM[`]. We therefore only consider settings in which
λ < max`∈L #MM[`].

Zipf-distributed multi-maps. To get a concrete bound on the number of truncations, we have
to make an assumption on how the response lengths of the multi-map are distributed. Here, we will
assume that they are distributed according to the Zipf distribution which is a standard assumption
in information retrieval [14, 39]. More precisely, we say that a multi-map MM is Za,b-distributed if
its rth response has length

r−b

Ha,b
·N

where N
def=

∑
`∈L #MM[`] is the volume of MM and Ha,b is the harmonic number

∑a
i=1 i

−b.
Throughout, we will consider multi-maps that are Zm,1-distributed where m = #LMM. From
this assumption, it follows that the set of all response lengths is

L = (L1, . . . , Lm) =
(

N

1 ·Hm,1
, . . . ,

N

m ·Hm,1

)
,

Note that we consider the case where b = 1 for ease of exposition but our analyses generalize to
any b.
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Theorem 4.1. If MM is Zm,1-distributed, then with probability at least 1− ε the number of trun-
cations is at most

m ·
(

N

ν ·H2
m,1
·
(
Hρ,2 −

λ ·Hm,1
N

·Hρ,1

)
+

√
ln(1/ε)

2m

)
,

where ρ = bN/(λ ·Hm,1)c.

Proof. Let `1, . . . , `m denote the labels of MM sorted in decreasing order by their original response
lengths. Let Xi be the random variable that outputs FK(`i‖ni), where ni is the response length of
`i. Modeling F as a random function, note that Xi is the uniform distribution over [0, ν − 1] so,
for all j ∈ [0, ν − 1], Pr [Xi = j ] = 1/ν. Now let Yi be the random variable that outputs the ith
response length ni. Since MM is Zm,1-distributed, we have that Pr [Yi = y ] = 1/(x ·Hm,1), where
y = N/(x ·Hm,1) for all x ∈ [m].

First notice that no truncation occurs if and only if Xi + λ − Yi ≥ 0. In the following, we
compute the probability that this event occurs:

Pr [Xi ≥ Yi − λ ] =
∑
y∈L

Pr [Xi ≥ Yi − λ|Yi = y ] · Pr [Yi = y ]

=
∑
y∈L
y<λ

Pr [Yi = y ] +
∑
y∈L
y≥λ

Pr [Xi ≥ y − λ ] · Pr [Yi = y ] (1)

=
∑
y∈L
y<λ

Pr [Yi = y ] +
∑
y∈L
y≥λ

( ν−1∑
j=y−λ

Pr [Xi = j ]
)
· Pr [Yi = y ]

=
∑
y∈L
y<λ

Pr [Yi = y ] +
∑
y∈L
y≥λ

ν − y + λ

ν
· Pr [Yi = y ]

= 1 +
∑
y∈L
y≥λ

λ− y
ν
· Pr [Yi = y ]. (2)

Equation (1) follows from that fact that for all y ∈ L such that y − λ ≤ 0, the probability that
Xi is larger than a negative integer is always equal to 1. Given Equation (2), we compute the
non-negative integer ρ ∈ [m] such that

N

(ρ+ 1) ·Hm,1
< λ ≤ N

ρ ·Hm,1
,

11



and reformulate the summation in the Equation (2) such that

Pr [Xi ≥ Yi − λ ] = 1 + 1
ν

ρ∑
j=1

(
λ− N

j ·Hm,1

)
· Pr

[
Yi = N

j ·Hm,1

]

= 1 + 1
ν

ρ∑
j=1

(
λ− N

j ·Hm,1

)
· 1
j ·Hm,1

= 1− 1
ν ·Hm,1

( ρ∑
j=1

N

j2 ·Hm,1
− λ

ρ∑
j=1

1
j

)

= 1− N

ν ·H2
m,1

(
Hρ,2 −

λ ·Hm,1
N

·Hρ,1

)
.

Computing the negation of the event above, we obtain the probability that the ith output of the
PRF induces a truncation:

Pr [Xi < Yi − λ ] = N

ν ·H2
m,1

(
Hρ,2 −

λ ·Hm,1
N

·Hρ,1

)
. (3)

Now let Zi be an indicator random variable that equals 1 when Xi < Yi − λ, and 0 otherwise.
Let Z =

∑m
j=1 Zi and note that the Zi’s are independent and identically distributed Bernoulli

distributions with parameter p equal to Equation (3). Z denotes the number of truncations and
has expectation,

E[Z] = m · N

ν ·H2
m,1

(
Hρ,2 −

λ ·Hm,1
N

·Hρ,1

)
.

Using Hoeffding’s first inequality, we have that for all δ ≥ 0,

Pr [Z ≥ E[Z] +m · δ ] ≤ exp(−2 ·m · δ2).

Setting ε = exp(−2 ·m · δ2), we have

Pr

Z < E[Z] +m ·

√
ln(1/ε)
2 ·m

 ≥ 1− ε,

from which the Theorem follows.

4.2 Analyzing the Storage Overhead

As detailed above, PRT can truncate or pad the responses in the multi-map. This has a direct
impact on the storage overhead of the transformed multi-map since padding increases the storage
overhead while truncations decrease it. In the following, we show that the size of the transformed
multi-map MM′ can be upper bounded with high probability without any assumptions on the
distribution of response lengths.
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Theorem 4.2. With probability at least 1− ε, the size of the transformed multi-map is at most

m ·
(
ν − 1

2 + (ν − 1) ·

√
ln(1/ε)

2m + λ

)
,

where λ ≥ 0.

Proof. Let `1, . . . , `m denote the labels of MM sorted in decreasing order by their original response
lengths. Let Xi be the random variable that outputs FK(`i‖ni), where ni is the response length of
`i. Note that Xi is the uniform distribution over [0, ν−1] so, for all j ∈ [0, ν−1], Pr[Xi = j] = 1/ν.
Let X =

∑m
i=1Xi from which it follows that E[X] = m · (ν − 1)/2.

Since the Xi’s are bounded by [0, ν − 1], using Hoeffding’s second inequality we have that, for
all δ ≥ 0,

Pr
[
X ≥ m ·

(
ν − 1

2 + δ

)]
≤ exp

(−2 ·m · δ2

(ν − 1)2

)
.

Given that the transform adds a constant λ to every new response length, the total storage overhead
is Z = X + λ ·m. It follows then that

Pr
[
Z ≥ m ·

(
ν − 1

2 + δ + λ

)]
≤ exp

(−2 ·m · δ2

(ν − 1)2

)
.

Setting

δ = (ν − 1) ·

√
ln(1/ε)

2m
we have

Pr

Z < m ·
(
ν − 1

2 + (ν − 1) ·

√
ln(1/ε)

2m + λ

) ≥ 1− ε.

4.3 Concrete Parameters

In this Section, we will provide concrete parameters for PRT. Our goal is to find parameters that
will provide a good balance between a small number of truncations and a small storage overhead.
To study this, we first introduce two naive transformations that achieve extreme tradeoffs between
truncations and storage:

• the naive padding transform is a transformation that pads the response of every label with
dummies ⊥ so that the length of the new responses are all set to the maximum response’s
length max`∈LMM #MM[`]. Note that there are no truncations in this case and the size of the
transformed multi-map is

SNV
def= m · max

`∈LMM
#MM[`].

• the naive truncating transform truncates the responses of every label to the minimum response
length min`∈L #MM[`]. Note that the number of truncations in this case is TNV

def= #LMM = m
and the storage overhead is m ·min`∈LMM #MM[`], which is optimal.
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In the following Corollary, we set concrete values for λ and s so that we can achieve the best of
both worlds. Specifically, we show that if the input multi-map is Zm,1-distributed, then by setting
the output length of the PRF to s = log(L1 + 1), where L1 is the maximum response length, and
setting λ = O(ν ·α), where 1/2 < α < 1, then we can achieve storage overhead α ·SNV with β ·TNV
truncations with high probability, where β is a function of α and m.

Corollary 4.3. Let 1/2 < α < 1. If MM is Zm,1-distributed and if

log ν = log
(
L1 + 1) and λ = (ν − 1) · (2α− 1)/4

then with probability at least:

• 1− exp
(
−m · (2α− 1)2/8

)
, the total volume of the transformed multi-map is at most α · SNV.

• 1− exp
(
− 2m/ log2m

)
, the number of truncations is at most

1
logm ·Hb 4

2α−1 c,2 · TNV.

Proof. Based on Theorem 4.2, by setting

λ = (ν − 1) · 2α− 1
4 and ε1 = exp

(
− m · (2α− 1)2

8

)
we get a storage overhead of at most

m ·
(
ν − 1

2 + (ν − 1) · 2α− 1
4 + (ν − 1) · 2α− 1

4

)
= α ·m · (ν − 1),

with probability at least 1 − ε1. It is clear that we have to set α < 1 to achieve better storage
overhead than the naive padding approach. On the other hand, we have to set α > 1/2 since λ
must be a strictly nonnegative integer. More precisely, λ > 0 implies

(ν − 1) · 2α− 1
4 > 0

2α− 1 > 0.

Similarly, based on Theorem 4.1, if we set λ = (ν − 1) · (2α− 1)/4 and ε2 = exp(−2m/ log2m),
the number of truncations is at most

θ
def= m ·

(
N

(ν − 1) ·H2
m,1

(
Hρ,2 −

λ ·Hm,1
N

·Hρ,1

)
+ 1

logm

)
where ρ = bN/(λ ·Hm,1)c. If we set log ν = log(L1 + 1) = log(N/Hm,1 + 1) we get,

θ ≤ m ·
( 1
Hm,1

(
Hρ,2 −

2α− 1
4 ·Hρ,1

)
+ 1

logm

)
≤ m ·

( 1
Hm,1

·Hρ,2 + 1
logm

)
<

m

logm ·Hρ,2 (4)

= m

logm ·Hb 4
2α−1 c,2 (5)
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Let STEEMM = (Setup,Get) be a static multi-map encryption scheme and PRT be the pseudo-random
transform. Consider the scheme VLH = (Setup,Get) defined as follows:

• Setup(1k, λ,MM):

1. generate a PRT-transform of MM by computing MM′ = PRT(1k, λ,MM);
2. encrypt the transform by computing

(K, st,EMM)← STEEMM.Setup
(
1k,MM′

)
;

3. output (K, st,EMM).

• GetC,S((K, st, `),EMM): C and S execute

(r,⊥)← STEEMM.GetC,S
(
(K, st, `),EMM

)
.

Figure 2: VLH: A volume-hiding multi-map encryption scheme.

Where Inequality (4) follows from the fact that

Hm,1 < logm+ ζ + 1
2m,

where ζ is the Euler-Mascheroni constant and Equality (5) follows from

ρ =
⌊

N

λ ·Hm,1

⌋
=
⌊
ν − 1
λ

⌋
=
⌊ 4

2α− 1

⌋
.

Given the inequality above, we obtain

Pr
[
Z <

m

logm ·Hb 4
2ε−1 c,2

]
≥ 1− ε2,

from which the Theorem follows.

5 A Volume-Hiding Multi-Map Encryption Scheme

In this Section, we use the PRT to construct a volume-hiding multi-map encryption scheme. Our
construction is described in detail in Figure 2 and works as follows.

Overview. The construction, VLH = (Setup,Get), makes black-box use of an underlying multi-
map encryption scheme STEMM = (Setup,Get). VLH.Setup takes as input a security parameter k,
a public parameter λ and a multi-map MM. It applies the PRT transform on MM which results
in a new multi-map MM′. It then encrypts MM with STEMM, resulting in an encrypted multi-map
EMM, a state st and a key K which it returns as its own output. To execute a Get query ` on
EMM, the client and the server execute STEMM.Get on ` and EMM.
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Efficiency. Assuming that STEMM is an optimal-time multi-map encryption scheme [15, 10, 7, 1],
the get complexity of VLH is O(λ + n′`), where n′` ∈ {0, · · · , ν − 1}. Therefore, the worst-case
complexity is O(λ+ ν) while the best-case complexity is O(λ). The expected complexity is O(λ+
2s−1).

The storage overhead of VLH is

O(N) = O

( ∑
`∈LMM

#MM′[`]
)

= O

(
λ ·m+

∑
`∈LMM

n′`

)
,

where, again, n′` ∈ {0, · · · , ν − 1}. So based on Corollary 4.3, when λ = (ν − 1) · (2α − 1)/4 and
1/2 < α < 1, the storage overhead of VLH is

O
(
α · (ν − 1) ·m

)
with high probability.

Correctness. The correctness of VLH is affected by the number of truncations induced by PRT.
Based on Corollary 4.3, we can show that the number of truncations performed by VLH is at most
O(m/ logm) under the same assumptions stated in the corollary.

Security. We now describe the leakage profile of VLH assuming STEMM is instantiated with one
of the standard optimal-time multi-map encryption schemes [15, 10, 7, 1] all of which have leakage
profile

ΛMM = (LS,LQ) =
(
trlen, (qeq, rlen)

)
.

Theorem 5.1. If STEEMM is a (trlen, (qeq, rlen))-secure multi-map encryption scheme and F in
PRT is a pseudo-random function, then VLH is a

(
dsize, qeq

)
-secure multi-map encryption scheme.

Proof sketch: Let SMM be the simulator guaranteed to exist from the adaptive security of ΣMM.
Consider the simulator SVLH, that works as follows:

Simulating EMM: Given dsize(MM) = m, it computes θ =
∑m
i=1 ri, where r1, . . . , rm

$← {0, 1}k,
and outputs EMM← SMM(θ).

Simulating Get: Given γ = qeq(MM,q), it uses SMM(γ, ρ), to simulate a get on EMM, where
ρ = λ+ r and r $← {0, 1}k (recall that λ is public). ΣMM.Get is an interactive protocol so here
SVLH uses SMM to play the role of the client C.

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
Real(k) outputs 1 is negligibly-close to the probability that Ideal(k) outputs 1. This can be shown
with a standard sequence of games:

• Game0: is the same as RealΣ,A(k).

• Game1: is the same as Game0 except that the pseudo-random function F is replaced with a
random function.

• Game2: is the same as Game1 except that the values generated from the random function are
replaced with values chosen uniformly at random.
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• Game3: is the same as Game1 except that EMM is replaced by the output of SMM(θ), the exe-
cution of ΣMM.Get

(
(K, st, `),EMM

)
is replaced with a simulated execution between SMM(γ, θ)

and the adversary.

Note that Game3 is the Ideal(k) experiment. The probabilities that Game0 and Game1 output 1 are
negligibly-close, otherwise the pseudo-randomness of F would be violated. The probabilities that
Game1 and Game2 output 1 are equal by the properties of a random function. The probabilities
that Game2 and Game3 output 1 are negligibly-close, otherwise the

(
trlen, (qeq, rlen)

)
-security of the

multi-map encryption scheme ΣMM would be violated.

6 DST: The Densest Subgraph Transform

In this section, we introduce a new data structure transformation called the dense subgraph trans-
form (DST). Unlike the PRT which achieves efficient storage by increasing truncations (and there-
fore losing information), this new transform improves on the storage complexity of PRT without
losing any information. The transformation is randomized and, surprisingly, we can show that, with
high probability, it incurs no asymptotic storage overhead. Furthermore, we can also show that,
for the case of Zipf-distributed multi-maps, it produces multi-maps that are asymptotically-smaller
than the naive padding and truncating transforms described in Section 4.3.

The DST takes a multi-map MM as input and creates a new multi-map MM′ that is volume-
hiding. This new structure results from re-arranging the data in the input multi-map according to
a random bi-partite graph. To ensure this re-arrangement is still efficiently queryable, we represent
it using a pair of standard data structures which include a multi-map MMG and a dictionary DX.
As we will show, the storage complexity of the final representation depends on certain properties
of the bi-partite graph which are, in turn, inherited from the original multi-map.

Below, we provide a high-level overview of our transformation. A more detailed description is
given in Section 6.1. The overview is divided in two parts: (1) a variant for general multi-maps; and
(2) a variant for what we refer to as concentrated multi-maps. Note that the transformation handles
both cases but achieves better results for the later. We then provide a more detailed description in
Figure 6.

General multi-maps. Given a multi-map MM we begin creating a bi-partite graph with LMM as
the top vertices and a set of n empty bins as the bottom vertices. For each label/vertex ` in Vtop,
we randomly select t bins and insert in each bin a single value of the tuple MM[`]. Here, t is the
maximum tuple size in the multi-map. If #MM[`] < t, then some of the selected bins won’t receive a
value. At the end of this process, we pad all bins so that they all have the same size. Note that this
process creates a bi-partite graph where the edges incident to some top vertex/label ` correspond
to the bins selected for that label/vertex. We now create two data structures to represent and
efficiently process this bi-partite graph. The first is a dictionary that maps bin identifiers to the
bin’s contents. The second is a multi-map that maps a label to the identifiers of the bins associated
to it. To retrieve the values associated to a given label `, we query the multi-map on ` to retrieve
its t bin identifiers and then query the dictionary on each of the t bin identifier to retrieve the
contents of the bins.
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It is already clear from this high-level description that all labels will have exactly the same
response length: t · α, where α is the maximum size of a bin. It can be shown that with the right
choice of parameters, this transformation results in a small amount of padding compared to the
naive approach.

Concentrated multi-maps. The storage overhead of our approach can be greatly improved
when the multi-map satisfies a certain property we refer to as concentration. At a high level, a
multi-map is concentrated if there exists a large number of values that appear in the tuples of a
large number of labels. More formally, we define this property as follows.

Definition 6.1 (Concentrated multi-maps). Let µ, τ > 0. We say that a multi-map MM is (µ, τ)-
concentrated if there exists a set of µ labels `1, · · · , `µ ∈ LMM such that,

#
µ⋂
i=1

MM[`i] = τ.

We refer to this set of labels as MM’s concentrated component and denote it L̂MM. Throughout, we
will assume the existence of an efficient algorithm FindComp that takes as input a multi-map and
outputs the multi-map’s concentrated component L̂MM. If no such component exists, the algorithm
outputs ⊥. We sometimes refer to the value (µ− 1) · τ as the multi-map’s concentration.

A (µ, τ)-concentrated multi-map has µ labels with an intersection of size τ which means that
there is some redundancy in the structure. Unfortunately, the previous approach does not take
advantage of this since it stores all the values in the multi-map independently. To exploit this
redundancy, we will proceed as follows. We will dedicate a random subset of the bins to store the
tuple values of the multi-map’s concentrated component. Because the component’s tuples have a
large intersection, we will avoid storing the same values over and over again. At a high-level, we
modify the process as follows. We first choose a random subset of τ bins and store, in each one, one
value from the intersection ∩

`∈L̂MM
MM[`]. We then add an edge between each of these bins and the

labels/vertices in the concentrated component. This will result in µ labels/vertices that share the
same bins. Notice the improved storage overhead as we don’t store the values in the intersection
in multiple bins. For the remaining labels, we follow a similar process to the one presented in the
generic case.

Finding the concentration component. Our DST transform relies on an efficient algorithm
FindComp to find the concentration component of a multi-map. We now describe such an algorithm.
The algorithm first determines the set of labels L̃MM with tuples of size larger then τ . For i ∈ [λ],
it selects µ labels uniformly at random with replacement from L̃MM. We refer to this set as LiMM.
The algorithm then computes τi = #

(⋂
`∈LiMM

MM[`]
)

where λ is the number of times the random
selection is computed. The algorithm finally determines ρ = argmaxi∈[λ]{τi : τi ∈ O(τ)} and outputs
L̂MM = LρMM if such ρ exists and L̂MM = ⊥ otherwise. Notice that the algorithm runs in O(λ · µ)
time. So it is sufficient to choose λ and µ to be polynomial in m. In our setting, we need to set
the parameters to align with the the densest subgraph assumption (described in Definition 7.2) so
we need µ = Ω(m0.5+δ) and τ = Õ

(√
max`∈LMM #MM[`]

)
, for some positive δ. We note that this

algorithm is only an example and we believe that more efficient algorithms can be designed.
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A storage optimization. Notice that the auxiliary multi-map MMG associates to every label a
randomly selected set of t bins. In particular this means that the size of MMG is O(m · t) which
could be rather large. Fortunately, storing the identifiers of each bin is not necessary. Instead, we
can choose the bins to assign to a label using a pseudo-random function and store the key in MMG.
This will reduce the size of MMG to O(m).

6.1 Detailed Description

We now provide a detailed description of the DST. The pseudo-code is in Figure 6. The transform
makes black-box use of two pseudo-random functions F and H.

Setup. The Setup algorithm takes as input a security parameter 1k, an integer n and a multi-map
MM. It instantiates a bi-partite graph G = (Vtop,Vbot,E) where the top vertices Vtop = LMM are
the labels in MM, the bottom vertices Vbot are n empty bins denoted B = {B1, . . . , Bn} and the
set of edges E is empty.

The set of edges are generated as follows. Setup first computes the concentrated component of
the multi-map L̂MM := FindComp(MM). If no concentrated component exists, FindComp out-
puts ⊥. If #L̂MM 6= ⊥, it then pseudo-randomly chooses τ bins B′ = {B′1, . . . , B′τ}, where
τ = #

(⋂
`∈L̂MM

MM[`]
)
. More precisely, it samples a k-bit value rand? uniformly at random and

chooses the bins indexed by the set{
FK1(rand?‖1), . . . , FK1(rand?‖τ)

}
.

Note that all these τ positions have to be distinct. If not, then it keeps resampling a new k-bit
value rand? uniformly at random until no collisions are found. Note however that the probability p
that no collision occurs, modeling F as a random function, is equal to

p =
τ−1∏
i=0

(
1− i

n

)
≥
(
1− τ

n

)τ ≈ e−τ2/n,

which tends to 1 when τ = o(n)– which aligns with our concrete parameters that we are going to
detail in Section 6.4.

For all ` ∈ L̂MM, it: (1) adds an edge between ` and every bin in B′; and (2) adds an edge
between ` and t − τ bins outside of B′. To do the latter, it indexes the bins in B \ B′ from 1 to
n− τ , samples a k-bit value rand` uniformly at random, and chooses the bins indexed by the set{

HK2(rand`‖1) + slide1, . . . ,HK2(rand`‖t− τ) + slidet−τ
}
,

where slidei, for i ∈ {1, · · · , t − τ}, is an integer used to deterministically map back the smaller
output of H in [n− τ ] to the corresponding bin identifier in [n] and is computed as follows. First,
it orders the set of bins in B′ in a numerical order such that

B′ =
(
Bpos1 , · · · , Bposτ

)
,
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where posi < posj , for i, j ∈ [τ ]. Then it defines the following quantities based on which the slide
value is determined– refer to Figure 3 for an illustration of the computation,

gapi =


[1, posi − 1] if i = 1
]posi−1 − (i− 1), posi − (i− 1)[ if i ∈ {2, · · · , τ}
]posi−1 − (i− 1), n− τ ] if i = τ + 1

Then, for i ∈ {1, · · · , n − τ}, identify j ∈ {1, · · · , τ + 1} such that HK2(rand`‖i) ∈ gapj , then set
slidei = j − 1.

gap1 gap2 gap3 gap4 gap5 gap6 gap7

Bin index in [n � ⌧ ]

Bin index in [n]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10

Figure 3: Gaps computation for n = 16 and τ = 6. � denotes bins being part of B′ =
{B4, B5, B6, B7, B11, B14} while • denotes bins in B \B′.

Note that rand has also to be chosen in such a way that the selected t− τ positions are distinct.
If not, similarly to above, it resamples a new k-bit value uniformly at random until no collision
occurs. The probability that no collision occurs is approximately equal to e−(t−τ)2/n which tends
to 1 when t = o(n)– which aligns with our concrete parameterization as we are going to detail in
Section 6.4.

For each ` 6∈ L̂MM, it samples a k-bit value rand` uniformly at random and adds an edge between
` and all bins indexed by the set{

FK1(rand`‖1), . . . , FK1(rand`‖t)
}
.

Again, if a collision is found, it keeps resampling a new k-bit value uniformly at random until all
positions are distinct. The probability that no collision occurs is approximately equal to e−t

2/n.
Notice that at the end of this process, each vertex has degree exactly t.

Now Setup will use the graph to load the bins in Vbot as follows. For each ` 6∈ L̂MM, it stores
one value from the tuple MM[`] in one of the bins that are incident to `. When inserting into a bin,
the algorithm concatenates each value with ` (this will be helpful at query time). If #MM[`] < t,
then some of the incident bins will not receive any value. For all ` ∈ L̂MM, it stores one element
from MM[`] \

⋂
`∈L̂MM

MM[`] in the bins from B \ B′ that are incident to `—again concatenating
each value with `. Also if #MM[`] < t, then some of the incident bins will not receive any value.
Finally, it stores each value from the set

r′ :=
⋂

`∈L̂MM

MM[`].

in a distinct bin in B′ in such a way that every bin in B′ will contain one value in r′. Here, the
algorithm concatenates the values with ?. The algorithm then pads all the bins to have the same
size.
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Finally, it creates a dictionary DX and a multi-map MMG. The dictionary maps bin identifiers
to bin contents. The multi-map MMG maps labels ` 6∈ L̂MM to rand` and labels ` ∈ L̂MM to
(rand`, rand?). It outputs MM′ = (MMG,DX).

The storage complexity of MM′ is O(m+ n · λ), where λ is the maximum load of a bin.

Get. Get operations on MM′ = (MMG,DX) work as follows. Given a label `, we first query
MMG on `. If ` 6∈ L̂MM, then MMG returns rand` from which we compute the bin identifiers
{FK1(rand`‖i)}ti=1. We can then query DX on the bin identifiers to recover the bins and output the
elements concatenated with `. If ` ∈ L̂MM, MMG returns a pair (rand`, rand?) from which we can
compute the sets {

FK1(rand?‖i)
}τ
i=1

and
{
HK2(rand`‖i) + slidei

}t−τ
i=1

which we, in turn, use to query DX and recover the bins. From these bins the algorithm recovers
the elements concatenated with ` and ?. The complexity of gets is O(t · λ) where, again, λ is the
maximum load of a bin.

6.2 Analyzing the Load of a Bin

As seen in the previous Section, an important quantity to evaluate the query and storage efficiency
of our transformation is the maximum load of a bin. In this Section, we will show that, with high
probability, the maximum load can be upper bounded by (N − Nds)/n where Nds is the size of
the concentrated component and n is the number of bins. Before stating our result, we recall a
generalization of Chernoff’s inequality for the binomial distribution.

Lemma 6.2. Let X1, . . . , Xm be independent random variables over {0, 1} such that Pr [Xi = 1 ] =
pi and Pr [Xi = 0 ] = 1− pi. If X = X1 + · · ·+Xm, then

Pr [X ≥ E[X] + θ ] ≤ exp
(
− θ2

2(E[X] + θ/3)

)
.

Theorem 6.3. With probability at least 1− ε, the maximum load of a bin is at most

N −Nds
n

+ ln(1/ε)
3

(
1 +

√
1 + 18(N −Nds)

n · ln(1/ε)

)
,

where Nds = (µ− 1) · τ .

Proof. Without loss of generality, the label space LMM can be rewritten as

LMM =
(
`1, · · · , `m−µ, `m−µ+1, · · · , `m

)
,

where the concentrated component L̂MM = (`m−µ+1, · · · , `m). For all i ∈ [n] and j ∈ [m] let
Xi,j be the random variable that outputs 1 if the ith bin is assigned to the jth label. Notice
that for all i ∈ [n] and j ∈ [m − µ], Xi,j is a Bernoulli distribution with parameter n`j/n, where
n`j = #MM[`j ]. This follows from the fact that for all ` outside the concentrated component Setup
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Let n ∈ N be a public parameter, F : {0, 1}k × {0, 1}∗ → {0, 1}n and H : {0, 1}k × {0, 1}∗ → {0, 1}n′

be two pseudo-random functions with n′ < n. Consider the transform DST defined as follows:

• DST(1k, n,MM):

1. instantiate an empty dictionary DX, an empty multi-map MMG, and a bi-partite graph
G =

(
(LMM,B),E

)
where B = (B1, · · · , Bn) and E = ∅;

2. compute L̂MM ← FindComp(MM), set τ = #
(⋂

`∈L̂MM
MM[`]

)
and

t := max`∈LMM MM[`];

3. sample two keys K1
$← {0, 1}k and K2

$← {0, 1}k ;

4. for all ` ∈ LMM \ L̂MM,

(a) sample rand`
$← {0, 1}k and output

(i1, · · · , it) :=
{
FK1(rand`‖1), . . . , FK1(rand`‖t)

}
,

if there exist distinct i, j ∈ [t] for which ii = ij redo the sampling. Add to E{
(`, ij) : j ∈ [t]

}
;

(b) parse MM[`] as (r1, · · · , rn`) and put rj‖` in Bij for all j ∈ [n`];

5. if L̂MM 6= ⊥, sample rand? $← {0, 1}k and set B′ = (Bi1 , · · · , Biτ ) where

(i1, · · · , iτ ) :=
{
FK1(rand?‖1), . . . , FK1(rand?‖τ)

}
,

if there exist distinct i, j ∈ [τ ] for which ii = ij redo the sampling. Otherwise set B′ = ⊥;
6. compute

r′ :=
⋂

`∈L̂MM

MM[`] = (r′1, · · · , r′τ );

7. put r′j‖? in Bj for all j ∈ [τ ] and Bj ∈ B′;

8. for all ` ∈ L̂MM, add to E {
(`, j) : Bj ∈ B′

}
;

Figure 4: DST: The Dense Subgraph Transform (Part 1).
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• DST(1k, n,MM):

9. for all ` ∈ L̂MM,

(a) sample rand`
$← {0, 1}k and output

(i1, · · · , it−τ ) :=
{
HK2(rand`‖1), . . . ,HK2(rand`‖t− τ)

}
,

if there exist distinct i, j ∈ [t− τ ] for which ii = ij , redo the sampling. Add to E{
(`, ij + slidej) : j ∈ [t− τ ]

}
;

where slidej is computed as follows
i. order B′ in a numerical order such that

B′ := (Bpos1 , · · · , Bposτ );

ii. if ij ∈ [1, pos1], set slidej = 0;
iii. if ij ∈]posi−1 − (i− 1), posi − (i− 1)[, set slidej = i− 1, for any i ∈ {2, · · · , τ};
iv. if ij ∈]posτ − τ, n− τ [, set slidej = τ ;

(b) parse MM[`] as (r1, · · · , rn`);
(c) if n` > τ , then for all rj ∈ MM[`] \ r′, then put rj‖` in Bij+slidej ;

10. set θ = maxi∈[n] #Bi and set for all i ∈ [n]

Bi = (Bi,⊥1, · · · ,⊥θ−#Bi);

11. for all i ∈ [n], set DX[i] = Bi;

12. for all ` ∈ LMM, if ` ∈ L̂MM, set MM[`] := (rand`, rand?), otherwise set MM[`] := rand`;
13. output the key K = (K1,K2) and MM′ = (DX,MMG).

• Get(K, `,MM):

1. parse K as (K1,K2) and MM as (DX,MMG) and instantiate an empty set Result;
2. if MMG[`] = rand, then

(a) add DX[`i] to Result, where for all i ∈ [t],

`i := FK1(rand‖i);

(b) keep all values of the form ·‖`;
3. if MMG[`] = (rand, rand?), then

(a) add DX[`i] to Result, where for all i ∈ [t− τ ],

`i := HK2(rand‖i) + slidei,

and for all i ∈ [τ ],
`i := FK1(rand?‖i);

(b) keep all values of the form ·‖` or ·‖?;
4. output Result.

Figure 5: DST: The Dense Subgraph Transform (Part 2).
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assigns bins uniformly at random. This is not the case, however, for labels outside the concentrated
component. For all i ∈ [n] and j ∈ {m − µ + 1, · · · ,m}, Xi,j is a Bernoulli distribution with
parameter n′`j/n where

n′`j =
{

0 if n`j = τ

n`j − τ otherwise.

This follows from the fact that Setup assigns ` to n′`j − τ bins chosen uniformly at random. Finally,
Setup also select τ bins uniformly at random to form B′. Let Yi be the random variable that
outputs 1 if the ith bin is selected and 0 otherwise. It is clear that Yi is a Bernoulli distribution
with parameter τ/n.

Let Xi = Yi +
∑m
i=1Xi,j and note that Xi is the load of the ith bin. Its expectation is

E[Xi] =
m−µ∑
j=1

n`j
n

+
m∑

j=m−µ+1

n′`j
n

+ τ

n

=
m−µ∑
j=1

n`j
n

+
m∑

j=m−µ+1

n′`j + τ

n
− µ · τ

n
+ τ

n

=
m−µ∑
j=1

n`j
n

+
m∑

j=m−µ+1

n`j
n
− µ · τ

n
+ τ

n

= N

n
− Nds

n

where Nds = (µ − 1) · τ and N =
∑
`∈LMM

n`. The third equality follows from the definition of n′`
above. By Lemma 6.2 and by solving the quadratic equation

θ2

2(E[X] + θ/3) = ln(1/ε)

we have

Pr
[
X <

N −Nds
n

+ ln(1/ε)
3

(
1 +

√
1 + 18(N −Nds)

n · ln(1/ε)

)]
≥ 1− ε.

6.3 Query and Storage Efficiency

We now give the storage and query efficiency of the DST transform.

Storage efficiency. The output of DST consists of a multi-map MMG and a dictionary DX. The
multi-map MMG has tuples of size 1 or 2 depending on the label. That is, the size of the multi-map
is upper bounded by 2m. The dictionary DX stores the content of the padded bins. From Theorem
6.3 and the union bound, we have that the size of the dictionary is at most

N −Nds + n · ln(1/ε)
3 ·

(
1 +

√
1 + 18(N −Nds)

n · ln(1/ε)

)

with probability 1− n · ε.
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Get efficiency. The Get algorithm first retrieves either a random value or a pair of random
values from MMG. In the former case, t PRF evaluations are computed and t bins are retrieved.
In the later case, 2t PRF evaluations are computed (using F and H) and t bins are retrieved.3
Assuming that both MMG and DX are data structures with optimal query complexity, the Get
query complexity is at most

t · N −Nds
n

+ t · ln(1/ε)
3 ·

(
1 +

√
1 + 18(N −Nds)

n · ln(1/ε)

)

with probability 1− n · ε.

6.4 Concrete Parameters

In this Section, we propose concrete parameters for the DST. In particular, we will be interested in
parameters that guarantee better storage overhead than the naive padding transform. Note that
we do not compare to the naive truncating approach since the DST does not lose any information.

General multi-maps. Recall that the naive padding transform has a storage overhead

SNV
def= m · max

`∈LMM
#MM[`] = Ω(N),

where N def=
∑
`∈L #MM[`]. From Theorem 6.3, we have the following corollary.

Corollary 6.4. Let n ≥ 1 and m ≥ 0. If N > n logn, then with probability at least 1 − 1/eN/5n,
the size of the resulting multi-map is at most O(N).

Notice that if the original multi-map is Zm,1-distributed (but not necessarily concentrated),
then SNV = N ·m/Hm,1 where Hm,1 = Θ(logm) is the harmonic number (please refer to Section 4).
It follows that, in this case, N = o(SNV) so the storage overhead of DST is small-o of the overhead
of the naive padding transform.

Concentrated multi-maps. We now consider a multi-map MM with a concentrated component
of size (µ − 1) · τ . We show below that in this case, the storage overhead induced by DST can
be considerably smaller than the storage overhead of the naive padding transform. The following
Corollary is a consequence of Theorem 6.3.

Corollary 6.5. Let n ≥ 1 and m ≥ 0. If N > n logn,

µ = O

(√
m · polylog(m)

)
and τ = O

(
polylog(m)

)
,

then with probability at least 1− 1/eN/5n, the size of the resulting multi-map is at most

O

(
N −

√
m · polylog(m)

)
.

As above, if the original multi-map MM is Zm,1-distributed, then the storage overhead of DST
is small-o of the overhead of the naive padding transform.

3Note that the computation of the slidei’s is O(t) which is dominated by the total query complexity.
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A remark on security. As we will see in Section 7, the parameters µ and τ have to satisfy certain
constraints for our multi-map encryption scheme to be secure. In particular, the parameters have
to be chosen in such a way that they verify the densest subgraph assumption which we detail in
Definition 7.2. We note here that to satisfy both this assumption and the constraints of Corollary
6.5, it is sufficient that

µ = O

(√
m · polylog(m)

)
, τ = O(t) = O

(
polylog(m)

)
and n = Θ

(
polylog(m)

)
.

Note that this is only an example and is not the only choice of parameters that can be used.

7 AVLH: Advanced Volume Hiding Multi-Map Encryption Scheme

In this Section, we use the DST to construct a volume-hiding multi-map encryption scheme. Our
construction is described in detail in Figure 6 and works as follows.

Overview. The construction, AVLH = (Setup,Get), makes black-box use of an underlying response-
hiding dictionary encryption scheme STERH

DX = (Setup,Get). AVLH.Setup takes as input a security
parameter k, a public parameter n, and a multi-map MM. It first applies the DST transform on MM
which results in a key K1 = (K1,1,K1,2) and two structures: a multi-map MMG and a dictionary
DX. It then encrypts the dictionary DX, resulting in an encrypted dictionary EDX, a state stDX
and a key K2. It finally outputs a key K = (K1,K2), a state st = (MMG, stDX) and an encrypted
multi-map EMM = EDX. To execute AVLH.Get, the client differentiates two cases: if MMG[`] is
a tuple composed of a single value rand, then the client and server execute the STERH

DX.Get on `i
where `i is a new label equal to FK1,1(rand‖i), for all i ∈ [t], and t = max`∈LMM #MM[`]. In this
case the client C only outputs values of the form ·‖`. Otherwise, if MMG[`] is a tuple composed
of a pair (rand, rand?), then the client and server execute STERH

DX.Get on `i where now `i is equal
to FK1,1(rand?‖i) for i ∈ [τ ], and HK1,2(rand‖i) + slidei for all i ∈ {1, · · · , t − τ}. Note that slidei,
for which the computation was detailed in Section 6.1, is used to deterministically map the smaller
output of H in [n− τ ] into a value in [n]. In this case, the client C only outputs values of the form
·‖` or ·‖?.

Efficiency. Assuming that STERH
DX is an optimal-time dictionary encryption scheme [15, 10, 7, 1],

the get complexity of AVLH is O(t · λ) where t = max`∈LMM #MM[`] and λ is the load of a bin.
Given the parameters detailed in the previous section and if N > n · logn then the get complexity
is

O

(
N −

√
m · polylog(m)

polylog(m)

)
.

when

µ = O

(√
m · polylog(m)

)
, τ = O

(
t

)
= O

(
polylog(m)

)
and n = Θ

(
polylog(m)

)
.

The storage overhead of AVLH is, with high probability,

O
( n∑
i=1

#DX[`i]
)

= O(n · λ) = O(N −
√
m · polylog(m)).
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7.1 Security

We will now study the security of our construction. More precisely, we will show that it is volume-
hiding in the sense that its query leakage does not include the response length. The proof relies
on a computational assumption known as the densest subgraph assumption. We first recall this
assumption and then proceed to stating our security theorem.

The densest subgraph problem. The hardness of the (decisional) densest subgraph problem
problem was first used by Applebaum, Barak, and Wigderson in [2] to design public-key encryption
schemes based on new assumptions. It was later used by Arora et al. [3] to study the hardness of
financial products. Informally, the DSP asks whether it is possible to distinguish between a random
regular bi-partite graph and a random regular bi-partite graph with a planted random subgraph.

Definition 7.1 (The (decision) densest subgraph problem.). Let m,n, t, µ, ν, τ > 0. The decisional
unbalanced expansion problem is to distinguish between the two following distributions:

• R samples an (m,n, t)-bi-partite graph uniformly at random. In other words, for each vertex
in Vtop it samples t neighbors from Vbot uniformly at random.

• P is obtained as follows. First, two sets T ⊂ Vtop and B ⊂ Vbot, such that #T = µ and
#B = 2ν, are sampled uniformly at random. Then, for each vertex in T , we choose t − τ
random neighbors in Vbot and τ random neighbors in B. For each vertex in Vtop \ T , we
choose t random neighbors in Vbot.

The following hardness assumption, used in [2, 3], is based on state-of-the-art algorithms of
Bhaskara, Charikar, Chlamtac, Feige, and Vijayaraghavan in [6].

Definition 7.2 (The DSP assumption). There is no ε > 0 and ppt adversary A that can distinguish
between R and P with advantage ε when

n = o(m · t),
(
µ · τ2

ν

)2
= o

(
m · t2

n

)
, ν = Ω(n0.5+δ),

µ = Ω(m0.5+δ) and τ = Õ(
√
t)

for some positive δ.

Leakage profile. We now describe the leakage profile of AVLH assuming STERH
DX is instantiated

with one of the standard optimal-time dictionary encryption schemes [15, 10, 7, 1] all of which have
leakage profile

ΛDX = (LS,LQ) =
(
trlen, qeq

)
.

Theorem 7.3. If STERH
DX is a (trlen, qeq)-secure dictionary encryption scheme, F and H are pseudo-

random functions, and the DSP assumptions holds, then AVLH is a
(
(trlen, conc), qeq

)
-secure multi-

map encryption scheme; where conc is the leakage pattern that outputs a multi-map’s concentration.

Proof sketch: Let SDX be the simulator guaranteed to exist from the adaptive security of ΣDX.
Instantiate an empty graph G = ((Vtop,Vbot),E). Consider the simulator SAVLH, that works as
follows:
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Simulating EMM: Given θ = trlen(MM) and Nds = conc(MM), it computes and outputs EDX ←
SDX(θ −NDS).

Simulating Get: Given γ = qeq(MM,q), SAVLH parses γ as a binary matrix M . If there exists no
j ∈ [i − 1] such that M [qi] = M [qj ] then it computes (i1, · · · , it)

$← [n] and adds the edges
(i, il) to E, the vertex i to Vtop and the vertex il to Vbot, for all l ∈ [t]. Otherwise if there
exists j ∈ [i − 1] such that M [qj ] = M [qi], then it identifies (i1, · · · , it) such that (j, il) ∈ E,
for l ∈ [t]. It then computes, for all l ∈ [t], SDX(γl), where γj = qeq(DX, (i1, . . . , ij)). Recall
that ΣMM.Get is an interactive protocol so SAVLH is using SDX to play the role of the client C.

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
Real(k) outputs 1 is negligibly-close to the probability that Ideal(k) outputs 1. This can be shown
with a standard sequence of games:

• Game0: is the same as RealΣ,A(k).

• Game1: is the same as Game0 except that the pseudo-random function F is replaced with a
random function f .

• Game2: is the same as Game1 except that the values of the random function f are sampled
uniformly at random (and recalled when needed).

• Game3: is the same as Game2 except that the pseudo-random function H is replaced with a
random function h.

• Game4: is the same as Game3 except that the values of the random function h are sampled
uniformly at random (and recalled when needed).

• Game5: is the same as Game2 except that the values previously generated from [n] or from
[n− τ ], are now solely generated from [n].

• Game6: is the same as Game3 except that EMM is replaced by the output of SDX(trlen?),
the execution of ΣMM.Get

(
(K, st, `),EMM

)
is replaced with a simulated execution between

SDX(γl), and the adversary, for l ∈ [t] and where il are computed as above.

Note that Game6 is the Ideal(k) experiment. The probabilities that Game0 and Game1 output 1
are negligibly-close, otherwise the pseudo-randomness of F would be violated. The probabilities
that Game1 and Game2 output 1 are equal by the definition of a random function. The probabilities
that Game2 and Game3 output 1 are negligibly-close, otherwise the pseudo-randomness of H would
be violated. The probabilities of Game3 and Game4 are equal, again, by the definition of a random
function. The probabilities that Game4 and Game5 output 1 are negligibly-close, otherwise the DSP
assumption would be violated. To see why, notice that that the bi-partite graph G in Game4 is
distributed similarly to the distribution P whereas the distribution of the bi-partite graph G in
Game5 is distributed similarly to the distribution R (see Definition 7.1). The probabilities that
Game5 and Game6 output 1 are negligibly-close, otherwise the

(
trlen, qeq

)
-security of the dictionary

encryption scheme ΣDX would be violated.
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Let STERH
DX = (Setup,Get) be a response-hiding dictionary encryption scheme and DST the densest

subgraph transform. Consider the scheme AVLH = (Setup,Get) defined as follows:

• Setup(1k, n,MM):

1. generate a DST-transform of MM by computing

(K1,MMG,DX)← DST(1k, n,MM);

2. encrypt DX by computing

(K2, stDX,EDX)← STERH
DX.Setup

(
1k,DX

)
;

3. set K = (K1,K2), st = (MMG, stDX), and EMM = EDX and output (K, st,EMM).

• GetC,S((K, st, `),EMM):

1. C parses K as ((K1,1,K1,2),K2), st as (MMG, stDX) and S parses EMM as EDX;
2. if MMG[`] = rand, then

(a) C and S execute STERH
DX.GetC,S((K2, stDX, `i),EDX), for all i ∈ [t], where

`i := FK1,1(rand‖i);

(b) C outputs values of the form ·‖`;
3. if MMG[`] = (rand, rand?), then

(a) C and S execute STERH
DX.GetC,S((K2, stDX, `i),EDX), where for all i ∈ [τ ],

`i := FK1,1(rand?‖i),

and for all i ∈ {1, · · · , t− τ},

`i := HK1,2(rand‖i) + slidei,

where slidej is computed as follows
i. order {

FK1,1(rand?‖i)
}
i∈[τ ]

as (pos1, · · · , posτ );
ii. if HK1,2(rand‖i) ∈ [1, pos1], set slidei = 0;

iii. if HK1,2(rand‖i) ∈]posj−1 − (j − 1), posj − (j − 1)[, set slidei = j − 1, for any
j ∈ {2, · · · , τ};

iv. if HK1,2(rand‖i) ∈]posτ − τ, n− τ ], set slidei = τ ;
(b) C outputs all values of the form ·‖` or ·‖?.

Figure 6: AVLH: An Advanced Volume Hiding Multi-Map Encryption Scheme.
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Improving communication complexity. The communication (query) complexity of AVLH is
equal to O(t ·λ) where λ is the size of the bin and t the maximum response length. In the following
we introduce a simple modification of AVLH such that the communication complexity becomes
sub-linear in λ.

At a high level, the idea consists of replacing the retrieval of the entire bin’s content by an
oblivious retrieval that only fetches the value of interest (note that a bin will always contain at
most one value associated to any label). Therefore this technique would reduce the overhead from
λ to the overhead of a single oblivious access into an array of size λ. The (informal) modified
AVLH works as follows. At setup time, we parse the content of each bin as an array (a RAM) and
encrypt it using a state-of-the-art ORAM algorithm. Note that now, instead of using a response-
hiding dictionary, we use a response-revealing one. The get algorithm works similarly to the one in
AVLH except that the dictionary’s get algorithm outputs an ORAM that we access separately. In
terms of efficiency, the communication complexity becomes O(t · log2 λ) assuming that we use Path
ORAM [38] as the underlying ORAM. Note that we can achieve better communication complexity
by leveraging techniques from [25]. The storage complexity however remains the same since Path
ORAM does not asymptotically increase the load of the bin.

8 Dynamic Volume Hiding Multi-Map Encryption Schemes

In this section, we show how to extend both VLH and AVLH to be dynamic. In particular, we will
be interested in the following class of updates:

• tuple addition: this update operation adds a new tuple (`,v) to the multi-map where ` is a
label that was not part of the original label space LMM.

• tuple deletion: this update operation removes an entire label/tuple pair (`,v) from the
multi-map.

• editing: this update operation modifies the content of a specific tuple v associated to ` by
replacing an old value vold ∈ v by a new one vnew.

In particular, we do not consider updates that add or remove a value to/from an existing tuple
in the multi-map. In the following, we detail how to extend VLH to handle these three update
operations and AVLH to handle the third update operation.

8.1 VLHd: a dynamic variant of VLH.

We describe VLHd in detail in Figure 7. It works as follows.

Overview. VLHd = (Setup,Get,Put) makes black-box use of a dynamic response-hiding multi-
map encryption scheme STERH

EMM = (Setup,Get,Put,Remove) and of the volume-hiding multi-map
encryption scheme VLH = (Setup,Get).4 Both the Setup algorithm and the Get protocol are exactly
the same as of those of VLH. The Put algorithm takes as input an update u and processes it as
follows. If u = (add, (`,v)), then the client first computes the PRT transform on a single-pair

4Note that the same multi-map encryption scheme STERH
EMM = (Setup, Get, Put, Remove) has to be used as the

underlying multi-map encryption scheme for VLH.
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multi-map defined as {(`,v)} and outputs a new single-pair multi-map {(`,v′)}. The client and
server then execute STERH

EMM.Put on the label/tuple pair (`,v′). If u = (rm, `), then the client and
server execute STERH

EMM.Remove on the label `. If u = (edit, (`, vold, vnew)), then the client and server
first execute VLH.Get, the client receives the tuple v associated to the label `. The client and server
then execute STERH

EMM.Remove on the label `. The client locally replaces the value vold by vnew in
the tuple v and then executes STERH

EMM.Put with the server on the modified label/tuple pair.

Efficiency analysis. In our analysis, assume STERH
EMM is an optimal-time dynamic multi-map

encryption scheme [27, 10, 7]. It is clear that the get and storage complexity of VLHd are exactly
the same as VLH. The Put complexity varies depending on the type of the update operation. If u
is a tuple addition or a tuple edit, then the Put complexity is O(λ+n′`) where n′` ∈ {0, · · · , 2s− 1}.
The worst-case is O(λ+ 2s) while the best case is O(λ). The expected complexity is O(λ+ 2s−1).
If u is a tuple deletion, then the put complexity has constant time.

Security analysis. We now describe the leakage of VLHd assuming that STERH
EMM is instantiated

with one of the standard optimal-time forward-private multi-map encryption schemes [7, 8, 1] all
of which have leakage profile

ΛMM = (LS,LQ,LU) = (trlen, (qeq, rlen), (op, rlen))

Theorem 8.1. If STERH
EMM is a (trlen, (qeq, rlen), (op, rlen))-secure multi-map encryption scheme, F

in PRT is a pseudo-random function and VLH is a
(
m, qeq

)
-secure multi-map encryption scheme,

then VLHd is a
(
m, qeq, (op, ueq)

)
-secure multi-map encryption scheme.

The update equality pattern ueq leaks if and when a label edit has occurred. The proof of this
theorem is similar to Theorem 5.1 and deferred to the full version of this work.

8.2 AVLHd: dynamic variant of AVLH.

We describe AVLHd in details in Figure 8 and it works as follows.

Overview. The construction, AVLHd, makes black box use of a dynamic response-hiding dictio-
nary STERH

EDX = (Setup,Get,Put,Remove) and of the volume hiding multi-map encryption scheme
AVLH = (Setup,Get).5 The Setup algorithm and the Get protocol are exactly the same as of
those of AVLH. The Put algorithm takes as input an update u and processes it as follows. Parse
u as (edit, (`,v)), the client and server execute (r,⊥) ← AVLH.GetC,S

(
(K, st, `),EMM

)
where

r = (Bi1 , · · · , Bit) and the client here does not dismiss any value from the retrieved bins. The
client and server then execute STERH

EDX.Remove on all retrieved bins. The client then identifies
the bin that contains the value vold‖` (or vold‖?) that it replaces with vnew‖` (or by vnew‖? if
concentrated). The client and server then execute STEEDX.Put on the pairs (ij , Bij ), for all j ∈ [t].

5Note that the same dictionary encryption scheme STERH
EDX = (Setup, Get, Put, Remove) has to be used as the

underlying dictionary encryption scheme for AVLH.
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Let STERH
EMM = (Setup,Get,Put,Remove) be a dynamic response-hiding multi-map encryption scheme,

PRT be the pseudo-random transform and VLH = (Setup,Get) be the volume hiding multi-map en-
cryption scheme. Consider the scheme VLHd = (Setup,Get,Put) defined as follows:

• Setup(1k, λ,MM): C and S execute (K, st,EMM)← VLH.Setup
(
1k, λ,MM

)
.

• GetC,S((K, st, `),EMM): C and S execute (r,⊥)← VLH.GetC,S
(
(K, st, `),EMM

)
.

• PutC,S((K, st, λ, u),EMM):

1. if u = (add, (`,v)), then
(a) compute {(`,v′)} ← PRT(1k, λ, {(`,v)});
(b) C and S execute (st′,EMM′)← STERH

EMM.Put
(
(K, st, (`,v′)),EMM

)
;

2. if u = (rm, `), then C and S execute (st′,EMM′)← STERH
EMM.Remove

(
(K, st, `),EMM

)
;

3. if u = (add, vold, vnew), then
(a) C and S execute (v,⊥)← VLH.GetC,S

(
(K, st, `),EMM

)
;

(b) C and S execute (st′,EMM′)← STERH
EMM.Remove

(
(K, st, `),EMM

)
;

(c) replace vold with vnew in v;
(d) C and S execute (st′′,EMM′′)← STERH

EMM.Put
(
(K, st′, (`,v)),EMM′

)
.

Figure 7: VLHd: A dynamic variant of VLH.

Let STERH
EDX = (Setup,Get,Put,Remove) be a dynamic response-hiding dictionary encryption scheme

and AVLH = (Setup,Get) be the advanced volume hiding multi-map encryption scheme. Consider the
scheme AVLHd = (Setup,Get,Put) defined as follows:a

• Setup(1k, n,MM): C and S execute (K, st,EMM)← AVLH.Setup
(
1k, n,MM

)
.

• GetC,S((K, st, `),EMM): C and S execute (r,⊥)← AVLH.GetC,S
(
(K, st, `),EMM

)
.

• PutC,S((K, st, u),EMM):

1. parse u as (add, vold, vnew);
2. C and S execute (r,⊥)← AVLH.GetC,S

(
(K, st, `),EMM

)
;

3. parse r = (Bi1 , · · · , Bit);
4. S parses EMM as EDX;
5. C and S execute (st′,EDX′)← STERH

EDX.Remove
(
(K, st, ij),EDX

)
, for all j ∈ [t];

6. identify is such that vold‖` ∈ Bis and replace it with vnew‖`;
7. C and S execute (st′,EDX′)← STERH

EDX.Put
(
(K, st, (ij , Bij )),EDX

)
, for all j ∈ [t].

aThis pseudo-code only details the case where the edited label does not belong to the concentrated compo-
nent.

Figure 8: AVLHd: A dynamic variant of AVLH.
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Efficiency analysis. We assume STERH
EDX is an optimal-time dynamic dictionary encryption

scheme [27, 10, 7]. Clearly, the get and the storage complexity of AVLHd are exactly the same
as AVLH. The Put complexity is equal to O(t · λ), where t = max`∈LMM #MM[`] is the maximum
response length and λ is the size of the bin– which is the same as the get complexity. Refer to
Section 7 for a more detailed and concrete analysis of the bin size λ.

Security analysis. We now describe the leakage of AVLHd assuming that STERH
EDX is instantiated

with one of the standard optimal-time forward-private dictionary encryption scheme [7, 8, 1] all of
which have a leakage profile at most

ΛDX = (LS,LQ,LU) = (trlen, qeq, op)

Theorem 8.2. If STERH
EDX is a (trlen, qeq, op)-secure dictionary encryption scheme and AVLH is a(

trlen, qeq
)
-secure multi-map encryption scheme, then VLHd is a

(
trlen, qeq, (op, ueq)

)
-secure multi-

map encryption scheme.

The proof of this theorem is similar to Theorem 7.3 and deferred to the full version of this
work.
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