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Abstract

Constrained pseudorandom functions (CPRFs) allow learning “constrained” PRF keys that can
evaluate the PRF on a subset of the input space, or based on some sort of predicate. First introduced by
Boneh andWaters [AC’13], Kiayias et al. [CCS’13] and Boyle et al. [PKC’14], they have been shown
to be a useful cryptographic primitive with many applications. The full security definition of CPRFs
requires the adversary to learn multiple constrained keys in an arbitrary order, a requirement for many
of these applications. Unfortunately, existing constructions of CPRFs satisfying this security notion
are only known from exceptionally strong cryptographic assumptions, such as indistinguishability
obfuscation (IO) and the existence of multilinear maps, even for very weak constraints. CPRFs from
more standard assumptions only satisfy selective security for a single constrained key query.

In this work, we give the first construction of a CPRF that can adaptively issue a constant
number of constrained keys for bit-fixing predicates (or more generally t-conjunctive normal form
predicates), only requiring the existence of one-way functions (OWFs). This is a much weaker
assumption compared with all previous constructions. In addition, we prove that the new scheme
satisfies 1-key privacy (otherwise known as constraint-hiding). This is the only construction for any
non-trivial predicates to achieve adaptive security and collusion-resistance outside of the random
oracle model or relying on strong cryptographic assumptions. Our technique represents a noted
departure from existing CPRF constructions.

1 Introduction

Historically, pseudorandom functions (PRFs) provide the basis of a huge swathe of cryptography. Intu-
itively, such a function takes a uniform key and some binary string x as input, and outputs (deterministi-
cally) some value y. The pseudorandomness of the function dictates that y is indistinguishable from the
output of a uniformly sampled function operating solely on x. PRFs typically provide useful sources of
randomness in cryptographic constructions that take adversarially-chosen inputs. Simple constructions
of PRFs exist based on well-known standard assumptions: Goldreich, Goldwasser, and Micali give a

∗This work is a merged version of [DN18] and [KY18] with additional results.
†This work was done part in while the author undertook a research internship at NTT.
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construction based on the existence of pseudorandom generators [GGM86]; Naor and Reingold give a
simple construction from assumptions related to the discrete log problem [NR04].

There have been numerous expansions of the definitional framework surrounding PRFs. In this work,
we focus on a strand of PRFs that are known as constrained PRFs or CPRFs. CPRFs were first introduced
by Boneh and Waters [BW13] alongside the concurrent works of Kiayias et al. [KPTZ13] and Boyle et
al. [BGI14]. They differ from standard PRFs in that they allow users to learn ‘constrained’ keys that can
evaluate the function on a subset of the input space defined by a function predicate. Specifically, keys can
be constrained with respect to predicates C ∈ C where C is some specific function class of constraints.
Using this formulation, the value CPRF.Eval(K, x) can only be evaluated using a constraint key for C if
C(x) = 1. If C(x) = 0 then the result of the evaluation is no longer defined (or correctness is lost).

There are various security requirements for CPRFs considered in the literature. One of the most
natural and well-studied ones is pseudorandomness on constrained points. Formally, the adversary is
permitted to make queries for learning PRF evaluations on arbitrary points as with standard PRFs. The
adversary is also permitted to learn constrained keys for any predicatesCi ∈ C and i ∈ [Q] forQ = poly.1
The security requirement dictates that the CPRF remains pseudorandom on an input point x†, where
Ci(x†) = 0 for all i. Here, we differentiate the strength of the security notion in two measures: when
the adversary can query the constrained keys in an arbitrary manner, then we say the CPRF is adaptively
secure on constrained points, and when Q > 1, then we say the CPRF is collusion-resistant.

In this work, our main question is:

Canwe construct constrained PRFs that are adaptively secure on constrained points with
collusion-resistance, for expressive classes of predicates based on standard assumptions?

Above, the notion of an expressive predicate is largely subjective, the most expressive predicates
that are considered for CPRFs are based around circuit-based predicates of varying depths. Previous
works have managed to achieve CPRF functionality for expressive circuit-based predicates, but without
achieving adaptive security and collusion-resistance [BV15, CC17, BTVW17, CVW18, PS18] (i.e., only
permitting one constraint key query before the public parameters are generated by the challenger).2
CPRFs for circuit-based predicates that do achieve adaptive security and/or collusion-resistance require
making assumptions over the existence of cryptographically blunt instruments such as multilinear maps,
indistinguishability obfuscation (IO) and random oracles (ROM) [BW13, BLW17, HKKW14]. The
most expressive predicates that have been achieved in CPRF constructions — without requiring strong
assumptions or the ROM — that attain adaptive security and collusion-resistance are only limited to
predicates that match bit-strings x against some specified prefix [BFP+15].

Thus, in this work, we will consider classes of ‘expressive predicates’ to be those that provide more
than the prefix functionality achieved previously. We will also consider whether it is possible to attain
stronger security properties such as privately constrained keys [BLW17]. We will discuss and compare
the existing CPRF schemes in more detail in Section 1.1.

Predicates. We briefly review the predicates that have been considered in the literature to illustrate
the types of predicates that are of interest. Let x = x1 . . . x` ∈ {0, 1}` be a PRF input, and let
x|l2l1 = xl1 . . . xl2 . The following predicates are listed in ascending order of expressibility:3

• puncturing: Cv(x) = 1 iff x 6= v;

• prefix-fixing: Cv(x) = 1 iff x|l = v where l ≤ `;

• left-right-fixing: Cvb(x) = 1 iff x|(b+1)·l
b·l = vb where b ∈ {0, 1}, ` = 2l, and vb ∈ {0, 1}l;

1Throughout the introduction, poly will denote an arbitrary polynomial in the security parameter.
2If more than one query is permitted, then all of the constructions admit attacks that result in a complete loss of security.
3To be precise, we note that the class of prefix-fixing is not necessarily more expressive than puncturing. In particular, they

are incomparable.
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• bit-fixing: Cv(x) = 1 iff (xi = vi) ∨ (vi = ∗) for each i ∈ [`], where vi ∈ {0, 1, ∗}`;

• t-conjunctive normal form (t-CNF): Ct-cnf(x) = 1 iff Ct-cnf(x) = ∧iCi(x) and Ci ∈ NC0
t where

NC0
t is the class of NC0 circuits that read at most t indices of the input;

• general circuits in {NC1,P/poly}: C(x) = 1 where C ∈ {NC1,P/poly}.

In this work the predicates that we will be considering are the bit-fixing predicates and the t-conjunctive
normal form (t-CNF) predicates. Note that bit-fixing predicates are strictly included in t-CNF predicates
for t = 1. We explicitly include bit-fixing predicates for ease of presentation and understanding. Circuit-
based predicates are the only class of predicates more expressive than t-CNF predicates that have been
considered in the literature.

1.1 Existing Constructions

Since the originalworks of [BW13,KPTZ13, BGI14], numerous constructions of CPRFs have been given,
relying on different primitives and providing a range of functionality. We summarise, to the best of our
knowledge, all known constructions in Table 1. It was observed in the original works that the GGM-PRF
[GGM86] can be used as a CPRF for puncturing or prefix-fixing predicates [BW13, KPTZ13, BGI13].
While these original works were unable to achieve adaptive security (without sub-exponential security
losses), the work of Fuchsbauer et al. [FKPR14] show that the proof technique can be modified to achieve
adaptive security with a quasi-polynomial security loss. This proof technique was adapted and simplified
by Jafargholi et al. [JKK+17]. However, it is still an open problem whether the CPRF for prefix-fixing
predicates is adaptively secure under a polynomial-reduction loss.

CPRFs supporting more flexible predicates such as left-right-fixing, bit-fixing, and P/poly circuit
predicates were also considered in the original works of [BW13]. They showed such constructions in
the random oracle model (ROM) or by assuming the existence of multilinear maps. With the help of
the ROM or strong assumptions, these CPRFs for flexible predicates satisfy collusion-resistance for any
polynomial number of constrained keys. Moreover, CPRFs for the left-right-fixing predicate satisfy
adaptive-security in the ROM.

Recently, constructions of CPRFs for flexible predicates from much weaker assumptions have been
considered, at the expense of providing weaker guarantees. The CPRF schemes of [BV15, CC17,
BTVW17, PS18, CVW18] derive security from the learning with errors (LWE) assumption, and other
lattice-based assumptions. All of these CPRFs allow for (the powerful) circuit-based constraints for
either the NC1 or P/poly classes. However, all of these constructions are only selectively secure and do
not satisfy collusion resistance. The work of Attrapadung et al. [AMN+18] provides CPRFs for bit-fixing
and NC1 from traditional groups. However, their constructions too do not satisfy adaptive security or
collusion resistance without relying on the ROM.

Therefore, thus far, all known CPRF constructions from standard assumptions in the standard model
do not achieve adaptive security (for non-trivial predicates) or collusion resistance (even for 2 keys!).

1.1.1 Achieving Private Constraints.

An additional security requirement that was introduced by Boneh et al. [BLW17] is that the constrained
keys do not reveal the constraint that is encoded in them. In other words, given a constrained key
for one of two adversarially-chosen constraints, the same adversary is unable to distinguish which
constraint is encoded with more than a negligible advantage. A CPRF satisfying this definition of
security is known as a private CPRF or PCPRF.4 The CPRF for the prefix-fixing predicates based on the
GGM-PRF [BW13, KPTZ13, BGI13] trivially achieves 1-key privacy. The constructions of [BLW17]

4They are also known as ‘constraint-hiding’ CPRFs.
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satisfy poly-key privacy (hence poly constrained key queries) for circuit predicates under the existence
of IO. The PCPRFs of [CC17, BTVW17, PS18, CVW18] satisfy 1-key privacy for circuit predicates.
Achieving privacy for m > 1 seems challenging, since it would imply the existence of IO for P/poly
from LWE [CC17]. Finally, CPRF for left-right fixing predicates shown in [BW13] satisfies poly-key
privacy in the random oracle model and the CPRF for bit-fixing predicates shown in [AMN+18] satisfies
1-key privacy.

1.2 Our Contribution

In this work, we develop a new CPRF construction for the t-CNF predicate, which in particular includes
the bit-fixing predicate as a special case. While this predicate is less expressive than general bounded-
depth circuit predicates, our construction is derived only from the existence of one-way functions; which
is a remarkably weaker assumption than all other CPRF constructions for the bit-fixing predicate [BW13,
BLW17, CC17, AMN+18].

Our construction is the first to satisfy adaptive security or collusion-resistance for bit-fixing from
any standard assumption and within the standard model. Specifically, our construction is secure against
PPT adversaries who learnQ = O(1) constrained keys in an arbitrary order (i.e., a constant number with
respect to the security parameter). Our construction also provides a simple solution to an adaptively secure
CPRF for prefix-fixing predicates where prior works incurred at least a quasi-polynomial reductions loss
[BW13, KPTZ13, BGI13, FKPR14, JKK+17] since prefix-fixing predicates are are a special case of
bit-fixing predicates.

Finally, our construction satisfies (weak) 1-key privacy by the definition of [BLW17] (see Remark 3.6
for more details on the definition of key privacy). We are unable to achieve security for the setting where
m > 1 and we leave this open as an interesting future research direction. We summarize our contribution
alongside the previous state-of-the-art in Table 1.

Applications. The CPRF construction that we describe can be used as a building block in realising
adaptively-secure t-CNFattribute-based-encryption (ABE) based on lattices, as shownbyTsabary [Tsa19].
Other than identity-based encryption [ABB10, CHKP10] and non-zero inner product encryption [KY19],
this is the first lattice-based ABE satisfying adaptive-security for a non-trivial class of policies. The ABE
scheme by Tsabary shows that our bit-fixing PRF is not only a theoretical interest but also a useful tool
to achieve higher security of advanced encryption.

2 Technical Overview

The original starting point for this work was an attempt to modify the bit-fixing CPRF of Canetti and
Chen [CC17] (CC17) so that it achieved collusion-resistance. The CC17 construction was the first to
make explicit use of a directed line evaluation procedure. At each node i there is a choice between two
matrices D

(b)
i for b ∈ {0, 1}, and there is also a public matrix A. Evaluating the CPRF amounts to

computing the rounded product Y ← bA
∏`
i=1 D

(xi)
i e for some input x ∈ {0, 1}`.5 See Figure 1 for a

diagrammatic representation of this procedure.
For constraining their CPRF with respect to some wildcard string v ∈ {0, 1, ∗}`, the user receives

D
(vi)
i for each vi ∈ {0, 1}, and D

(b)
i (b ∈ {0, 1}) for vi = ∗. Constrained evaluation is clearly then

possible for any input x that satisfies the bit-fixing predicate specified by v.
The security of the scheme is derived from the fact that any constrained point x† must satisfy

(x†i 6= vi)∧ (vi 6= ∗) for some i ∈ [`]. Then the evaluation on such a point comprises the product above,

except where D
(x†

i )
i is unknown to the adversary. In the evaluation, this allows the simulator to argue

5The rounding is used to ensure deterministic output for the PRF.
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Table 1: List of existing constructions of CPRFs along with their functionality and the assumptions required.
In column ‘Predicate’, LR stands for left-right-fixing predicates, BF stands for bit-fixing predicates, and t-CNF
stands for t-conjunctive normal form predicates. In column ‘Assumption‘, BDDH stands for bilinear decisional
Diffie-Hellman assumption, MDDH stands for multilinear decisional Diffie-Hellman assumption, LWE stands for
learning with errors assumption, SGH stands for subgroup hiding assumption, andL-DDHI stands forL-decisional
Diffie-Hellman inversion assumption. We do not consider the CPRFs of [Bit17, GHKW17] since they do not permit
evaluation queries. (†) We note [BW13] and [BGI14] did not originally consider key-privacy.

Adaptive Collusion-resistance Privacy Predicate Assumption
[BW13] × 1 1† Prefix OWF

X poly poly LR BDDH & ROM
× poly 0 BF MDDH
× poly 0 P/poly MDDH

[KPTZ13] × 1 1 Prefix OWF
[BGI14] × 1 1† Prefix OWF

[HKKW14] X poly 0 P/poly IO & ROM
[BFP+15] × poly 0 Prefix LWE
[BV15] × 1 0 P/poly LWE

[HKW15] X poly 0 Puncturing SGH & IO
[BLW17] × poly 1 Puncturing MDDH

× poly 1 BF MDDH
× poly poly P/poly IO

[BTVW17] × 1 1 P/poly LWE
[CC17] × 1 1 BF LWE

× 1 1 NC1 LWE
[AMN+18] × 1 1 BF DDH

× 1 0 NC1 L-DDHI
X 1 1 BF ROM
X 1 0 NC1 L-DDHI & ROM

[CVW18] × 1 1 NC1 LWE
[PS18] × 1 1 P/poly LWE

[AMN+19] X 1 0 NC1 SGH & IO
This work X O(1) 1 BF OWF

X O(1) 1 t-CNF OWF

· · ·

D
(0)
1

D
(1)
1

D
(0)
2

D
(1)
2

D
(0)
3

D
(1)
3

D
(0)
`

D
(1)
`

Figure 1: Directed line representation used in CC17. The choices of matrices correspond to some input
x = 011 . . . 0. The CPRF is computed by multiplying each of these matrices as well as by the public
matrix A on the LHS.
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using the learning with errors (LWE) assumption with a public uniform matrix on the LHS, and the small

secret matrix D
(x†

i )
i , that the entire product is distributed uniformly randomly [BLMR13].

Allowing > 1 constrained key query. The difficulty with allowing more than one constrained key
query is that all of the matrices in CC17 can be revealed to the adversary, while there are still numbers
of points constrained. When all of the matrices are uncovered, then the LWE assumption can no longer
be used to prove security since there are no private elements utilised in the product. As an example
of how all such matrices can be uncovered. Consider the two wildcard string v = 0 ∗ ∗ . . . ∗ ∗0 and
v̄ = 1 ∗ ∗ . . . ∗ ∗1. Notice that any binary string x of the form x = 0 . . . 1 or x = 1 . . . 0 does not satisfy
the predicate and so such an input string would be constrained with respect to constrained keys v, v̄.
However, all matrices would also have to be revealed to the adversary to be able to evaluate the CPRF
using the constrained keys for v, v̄. As such, it is impossible to argue that the pseudorandomness of the
CPRF holds in such a setting.

2.1 Combinatorial Techniques for Collusion-Resistance

In this work, we observe twoways of redefining the directed line evaluation of CC17 that result in concrete
improvements in the scheme. For ease of presentation, we consider our CPRF for bit-fixing predicates
in the technical overview rather than the more general CPRF for t-CNF predicates. The high-level idea
is very similar and generalizes naturally.

Firstly, notice that the technique that CC17 uses is fundamentally independent of the LWEassumption.
In essence, their security proof requires that for a given node, a hidden element (not revealed to the
adversary) can be used to evaluate some intermediate pseudorandom output; each of these intermediate
outputs is then combined into a single output for the entire PRF. The LWE assumption naturally gives
methods for generating such pseudorandom samples. Secondly, it is clear that CC17 only allows one
constrained key query because each input bit of the evaluation/wildcard predicate is analysed individually.

Removing the LWE assumption. We can remove the LWE assumption (and replace it with a much
weaker assumption) by generating pseudorandom samples using different primitives. We reconfigure
the CC17 construction such that there is an underlying pseudorandom function PRF, where PRF.Eval :
{0, 1}κ × {0, 1}` 7→ {0, 1}n, and then replace each of the matrices with uniformly sampled keys
Ki,b ∈ {0, 1}κ for i ∈ [`] and b ∈ {0, 1}. The master key of the CPRF is K = {Ki,b}i∈[`],b∈{0,1} and
evaluation on some x ∈ {0, 1}` is computed as the output of:

CPRF.Eval(K, x) =
⊕̀
i=1

PRF.Eval(Ki,xi , x).

A modified depiction of the construction is given in Figure 2.

· · ·

K1,0

K1,1

K2,0

K2,1

K3,0

K3,1

K`,0

K`,1

Figure 2: Modified directed line representation with keys for PRF representing each node, instead of
small LWE matrices as in CC17. Here, the choices of PRF keys correspond to some input x = 011 · · · 0.

The constraining algorithm for a wildcard string predicate v ∈ {0, 1, ∗}` reveals individual keys Ki,vi

where vi ∈ {0, 1} and pairs Ki,b (b ∈ {0, 1}) where vi = ∗. Constrained evaluation follows in the natural
way defined by CC17, except using the underlying keys that are revealed to the user.

6



The security of the scheme still rests upon the fact that for a single constrained key, with respect to
v, then for a constrained input x† there exists a j ∈ [`] such that (x†j 6= vj) ∧ (vj 6= ∗) is satisfied. The
pseudorandomness of y ← CPRF.Eval(K, x†) is achieved because

y ←
⊕̀
i=1

PRF.Eval(K
i,x†

i
, x†) = PRF.Eval(K

j,x†
j
, x†)⊕

⊕
i 6=j

PRF.Eval(Ki,b, x†)


where PRF.Eval(K

j,x†
j
, x†) is a PRF evaluation using a key that is unknown to the adversary. As such, it

is possible to replace this evaluation with a uniformly sampled yj ∈ {0, 1}n by the pseudorandomness of
PRF. In turn, this results in a uniformly distributed CPRF output y and so pseudorandomness is ensured.
It is possible to instantiate pseudorandom functions using only one-way functions [GGM86, HILL99].

Collusion-resistance for two constrained key queries. It should be clear that, while we may have
achieved a CPRF from a much weaker assumption than the assumptions used in CC17, we have still
not achieved collusion-resistance. As we mentioned in the case of CC17, the reason that more than one
constrained key query is not permitted is that it would reveal all of the underlying PRF keys, while there
would still be constrained inputs. The reason for this is that we examine each of the input bits individually
for choosing the underlying keys, and then evaluate the PRF accordingly.

Consider a scheme that instead of considering one input bit at each node in Figure 2, instead it
considered two input bits. For example, a modified depiction of the construction is given in Figure 3.
In the set-up shown in Figure 3 at each node (i, j) we now consider the ith and jth input bits of the
string x ∈ {0, 1}` and choose the key K(i,j),(b1,b2) where b1 = xi and b2 = xj ; the master key is the
combination of all such keys.

· · · · · ·

{K(1,1),(x1,x1)} {K(1,`),(x1,x`)} {K(2,1),(x2,x1)} {K(`,`),(x`,x`)}

Figure 3: Directed line considering two input bits at each node, where (xi, xj) ∈ {0, 1} × {0, 1} for all
i, j ∈ [`].

Evaluation is then carried out by adding the PRF values along the directed line illustrated in Figure 3:

CPRF.Eval(K, x) =
⊕

(i,j)∈[`]×[`]
PRF.Eval(K(i,j),(xi,xj), x),

and constrained keys for v ∈ {0, 1, ∗}` contain the key K(i,j),(b1,b2), for all b1, b2 ∈ {0, 1} such that(
(vi = b1) ∨ (vi = ∗)

)∧(
(vj = b2) ∨ (vj = ∗)

)
,

is satisfied.
To see how this combinatorial change in the construction has an impact on the collusion-resistance of

the scheme, consider a pair of constrained key queries for bit-fixing predicates v, v̄ ∈ {0, 1, ∗}`. For an
input x† to be constrained with respect to both v, v̄, then there exists an i′ ∈ [`] where (x†i′ 6= vi′)∧ (vi′ 6=
∗) and likewise (x†j′ 6= v̄j′) ∧ (v̄j′ 6= ∗) for some j′ ∈ [`]. Equivalently, we must have x†i′ = 1− vi′ and
x†j′ = 1 − v̄j′ for some i′, j′ ∈ [`]. As a result, for these constrained key queries we observe that the
underlying PRF key K(i′,j′),(1−vi′ ,1−v̄j′ ) will not have been revealed to the adversary. Moreover, such a
pair (i′, j′) exists for all constrained input queries x†.
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Using this fact, we can prove that our new CPRF construction achieves collusion-resistance for two
constrained key queries using essentially the same aforementioned proof technique. We rewrite the
CPRF evaluation on x† as:

CPRF.Eval(K, x†) =
⊕

(i,j)∈[`]×[`]
PRF.Eval(K(i,j),(x†

i ,x
†
j), x

†)

= PRF.Eval(K(i′,j′),(x†
i′ ,x

†
j′ )
, x†)⊕

 ⊕
(i,j)6=(i′,j′)

PRF.Eval(K(i,j),(x†
i ,x

†
j), x

†)

 .
Notice that, since K(i′,j′),(x†

i′ ,x
†
j′ )

is never revealed to the adversary, this evaluation is indistinguishable

from a uniformly sampled value y†. In a simulation where y† replaces the underlying PRF evaluation,
the entire CPRF evaluation on x† is distributed uniformly and pseudorandomness follows accordingly.

Expanding to O(1) collusion-resistance. The technique that we demonstrate in this work is a
generalisation of the technique that we used for two-key collusion-resistance. Instead of considering two
input bits at a time, we considerQ input bits at a time and index each node in the evaluation by the vector
(i1, . . . , iQ) ∈ [`]Q. Then we evaluate the CPRF on x ∈ {0, 1}` as the output of:

CPRF.Eval(K, x) =
⊕

(i1,...,iQ)∈[`]Q
PRF.Eval(K(i1,...,iQ),(xi1 ,...,xiQ

), x).

The constraining algorithm works for a bit-fixing predicate defined by v ∈ {0, 1, ∗}` by providing all
keys K(i1,...,iQ),(b1,...,bQ) such that ∧

j∈[Q]
(bj = vij ) ∨ (vij = ∗)

is satisfied. Constrained evaluation is then possible for any input x satisfying the bit-fixing predicate
defined by v.

For any set of Q constrained key queries associated with strings v(1), . . . , v(Q) and any constrained
input x†, there must be a vector (i′1, . . . , i′Q) such that (x†i′j 6= v

(j)
i′j

) ∧ (v(j)
i′j
6= ∗) for all j ∈ [Q].

Therefore, the key K(i′1,...,i′Q),(x†
i′
1
,...,x†

i′
Q

) is never revealed to the adversary. Finally, we can prove the

pseudorandomness of the CPRF on input x† using exactly the same technique as mentioned in the case
when Q = 2. The proof of security is given in the proof of Theorem 4.2.

Importantly, we cannot achieve collusion-resistance for unboundedQ because there is an exponential
dependency on Q associated with the size of the CPRF. For instance, for the node indexed by the vector
(i1, . . . , iQ), there are 2Q underlying PRF keys associated with this node; moreover, there are `Q such
nodes. Therefore the total size of K is (2`)Q. As a result, considering ` = poly since this is the input
length of PRF, we are only able to affordQ = O(1). This bound is inherent in the directed line paradigm
because our technique is purely combinatorial.

2.2 Achieved Security Properties

Finally, we assess the security properties achieved by our CPRF. In particular, we observe that our
construction satisfies adaptive security when the underlying pseudorandom functions satisfy adaptive
pseudorandomness. Moreover, we observe that the constrained keys are constraint-hiding.

Adaptive security. Our construction arrives at adaptive security essentially for free. Previous construc-
tions for bit-fixing predicates (or as a matter of fact, any non-trivial predicates) incur sub-exponential
security loss during the reduction from adaptive to selective security, or relies on the random oracle
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model or IO; see Table 1 for an overview. The sub-exponential security loss is incurred as previous
constructions achieve adaptive security by letting the reduction guess the challenge point x† that the
adversary uses. We can achieve adaptive security with a polynomial security loss (e.g. 1/poly(κ)): by
instead guessing the key (not the challenge input) that is implicitly used by the adversary (i.e. K

T †,x†
T

for T † ⊂ [`], |T †| = Q). If this key is not eventually used by the challenge ciphertext, or it is revealed
via a constrained key query, then the reduction algorithm aborts. This is because the entire proof hinges
on the choice of this key, rather than the input itself. Since there are only polynomially many keys (for
Q = O(1)), we can achieve adaptive security with only a 1/poly(κ) probability of aborting. Finally, we
note that, due to the non-trivial abort condition, there is a subtle technical issue we must resolve which
is addressed in Lemma 4.3. Similar problems were identified by Waters [Wat05] who introduced the
‘artificial abort step’.

1-key privacy. The construction of CC17 achieves 1-key privacy by adding a set of dummy matrices
D̄

(b)
i to the master secret for each i ∈ [`] and b ∈ {0, 1}. These matrices are distributed similarly to the

non-dummy (functional) matrices. When revealing the constrained key to the adversary, for any matrix
D

(1−vi)
i that is not revealed, instead the matrix D̄

(1−vi)
i is revealed. Since the functional and non-dummy

matrices are distributed similarly, the constrained key that the adversary learns is always distributed in
the same way. Therefore the constrained key hides the constraint that is encoded.

For our construction, a similar philosophy follows by introducing dummy PRF keys that are sampled
uniformly. Then, K contains only uniformly distributed keys from {0, 1}κ, and so the constraint is
perfectly hidden. Recall the indistinguishability security game for weak key privacy of Boneh et
al. [BLW17]. In this game, the adversary chooses two bit-fixing predicates (v(0), v(1)) and the challenger
flips a bit b and returns Kv(b) . The adversary has to distinguish which constraint has been encoded into
the key. Since both keys are simply made up of uniformly sampled PRF keys, then the resulting CPRF
key is perfectly indistinguishable for either value of b ∈ {0, 1}. See the proof of Theorem 4.5 for more
details.

We cannot obtain key privacy form > 1 queries because 2 constrained keys would reveal where the
constrained keys differ since the underlying functional keys have to be consistent across constrained keys.
Therefore, receiving more than one constrained key, it will become obvious which keys correspond to
which constraint. For a similar reason, we cannot obtain stronger simulation-based security [CC17] for
our CPRF. In this model, Q-key privacy and Q-collusion-resistance are considered in parallel, and this
would break the 1-key privacy of our scheme.

3 Preliminaries

3.1 Pseudorandom Functions

We first define the standard notion of pseudorandom functions (PRFs).
Syntax. Let ` = `(κ), and n = n(κ) be integer-valued positive polynomials of the security parameter κ.
A pseudorandom function is defined by a pair of PPT algorithms ΠPRF = (PRF.Gen,PRF.Eval) where:

PRF.Gen(1κ)→ K: The key generation algorithm takes as input the security parameter 1κ and outputs
a key K ∈ {0, 1}κ.

PRF.Eval(K, x) :→ y: The evaluation algorithm takes as input x ∈ {0, 1}` and outputs y ∈ {0, 1}n.

Pseudorandomness. We define the notion of (adaptive) pseudorandomness for the PRF ΠPRF =
(PRF.Gen,PRF.Eval) using the following game between an adversary A and a challenger:

Setup: At the beginning of the game, the challenger prepares the key K ← PRF.Gen(1κ) and a set S
initially set to be empty.
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Evaluation Queries: During the game, A can adaptively query an evaluation on any input. When A
submits x ∈ {0, 1}` to the challenger, the challenger evaluates y ← PRF.Eval(K, x) and returns
y ∈ {0, 1}n to A. It then updates S ← S ∪ {x}.

Challenge Phase: At some point, A chooses its target input x† ∈ {0, 1}` such that x† 6∈ S and submits
it to the challenger. The challenger chooses a random bit b $← {0, 1}. If b = 0, it evaluates
y† ← PRF.Eval(K, x†). If b = 1, it samples a random value y† $← {0, 1}n. Finally, it returns y†
to A.

Evaluation Queries: After the challenge phase, A may continue to make evaluation queries with the
added restriction that it cannot query x†.

Guess: Eventually, A outputs b′ as a guess for b.

We say the adversary A wins the game if b′ = b.

Definition 3.1. A PRF ΠPRF is said to be (adaptive) pseudorandom if for all PPT adversary A, the
probability of A winning the above game is negligible.

It is a well known fact that PRFs can be built entirely from one-way functions [GGM86, HILL99].

3.2 Constrained Pseudorandom Functions

We now define constrained pseudorandom functions (CPRFs).
Syntax. Let ` = `(κ), and n = n(κ) be integer-valued positive polynomials of the security parameter
κ. Let C = {Cκ}κ∈N be a family of circuits, where Cκ is a set of circuits with domain {0, 1}` and range
{0, 1} whose sizes are polynomially bounded. In the following we drop the subscript for clarity.

A constrained pseudorandom function for C is defined by the four PPT algorithms ΠCPRF =
(CPRF.Gen, CPRF.Eval,CPRF.Constrain,CPRF.ConstrainEval) where:

CPRF.Gen(1κ)→ K: The key generation algorithm takes as input the security parameter 1κ and outputs
a master key K ∈ {0, 1}κ.

CPRF.Eval(K, x) :→ y: The evaluation algorithm takes as input the master key K and input x ∈ {0, 1}`
and outputs y ∈ {0, 1}n.

CPRF.Constrain(K, C) :→ KC : The constrained key generation algorithm takes as input the master key
K and a circuit C ∈ C specifying the constraint and outputs a constrained key KC .

CPRF.ConstrainEval(KC , x) :→ y: The constrained evaluation algorithm takes as input the constrained
key KC and an input x ∈ {0, 1}` and outputs y ∈ {0, 1}nx.

Correctness.We define the notion of correctness for CPRFs. We say a CPRF ΠCPRF is correct if for all
κ ∈ N, `, n ∈ poly(κ), K ∈ CPRF.Gen(1κ), C ∈ Cκ, KC ∈ CPRF.Constrain(K, C), x ∈ {0, 1}` such
that C(x) = 1, we have CPRF.Eval(K, x) = CPRF.ConstrainEval(KC , x).
Pseudorandomness on Constrained Points. We define the notion of (adaptive) pseudorandomness on
constrained points for CPRFs. Informally, we require it infeasible to evaluate on a point when only
given constrained keys that are constrained on that particular point. For any C : {0, 1}` → {0, 1}n, let
ConPoint : C → {0, 1}` be a function which outputs the set of all constrained points {x | C(x) = 0}.
Here ConPoint is not necessarily required to be efficiently computable.

Formally, this security notion is defined by the following game between an adversary A and a
challenger:
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Setup: At the beginning of the game, the challenger prepares the master key K ← CPRF.Gen(1κ) and
two sets Seval, Scon initially set to be empty.

Queries: During the game, A can adaptively make the following two types of queries:

-Evaluation Queries: Upon a query x ∈ {0, 1}`, the challenger evaluates y ← CPRF.Eval(K, x)
and returns y ∈ {0, 1}n to A. It then updates Seval ← Seval ∪ {x}.

-Constrained Key Queries: Upon a queryC ∈ C, the challenger runsKC ← CPRF.Constrain(K, C)
and returns KC to A. It then updates Scon ← Scon ∪ {C}.

Challenge Phase: At some point, A chooses its target input x† ∈ {0, 1}` such that x† 6∈ Seval and
x† ∈ ConPoint(C) for all C ∈ Scon. The challenger chooses a random bit b $← {0, 1}. If b = 0,
it evaluates y† ← PRF.Eval(K, x†). If b = 1, it samples a random value y† $← {0, 1}n. Finally, it
returns y† to A.

Queries: After the challenge phase,Amay continue tomake evaluation queries with the added restriction
that it cannot query x† as the evaluation query and cannot query any circuitC such thatC(x†) = 1
as the constrained key query.

Guess: Eventually, A outputs b′ as a guess for b.

We say the adversary A wins the game if b′ = b.

Definition 3.2. A CPRF ΠCPRF is said to be (adaptive) pseudorandom on constrained points if for all
PPT adversary A, |Pr[A wins]− 1/2| = negl(κ) holds.

Remark 3.3 (Selective Security of Constrained Keys). In case all the constrained key queries made by the
adversary must be provided before the Setup phase, we say it is selective pseudorandom on constrained
points. All known constructions of CPRFs for non-trivial predicates based on standard assumptions in
the standard model satisfy only selective security. Constructions that achieve adaptive security are based
on stronger assumptions (e.g. IO, multilinear maps) or are situated in the ROM.

Remark 3.4 (Collusion Resistance). We can adjust the strength of the above notion by imposing a
restriction on the number of constrained keys an adversary can query. In case the adversary can query at
most one constrained key, it is called single-key secure. In case we can tolerate up to Q constrained key
queries, we say it is Q-collusion resistance. Except for the CPRF for the limited class of prefix-fixing
predicates of [BFP+15], similarly with adaptive security above, we require strong assumptions or RO to
achieve collusion resistance.

1-key privacy. We adopt the indistinguishability notion of 1-key privacy that was introduced by Boneh
et al. [BLW17].6 This property is sometimes known better as ‘constraint-hiding’. We note that the
simulation-based definition of Canetti and Chen [CC17] is stronger, but we are unable to prove security
in this setting. Essentially, there is a disparity between the number of constrained queries that we permit,
and the number of constraint-hiding keys that we can prove security for.

Let C denote the class of predicates that are associated to constrained keys.

Setup: At the beginning of the game, the challenger prepares the master key K← CPRF.Gen(1κ).

Constrained Key Query: A specifies two predicate circuits C0, C1 ∈ C. The challenger chooses a
random bit b $← {0, 1}. The challenger then runs Kb ← CPRF.Constrain(K, Cb) and returns Kb
to A.

6Note that the original definition is for m-key privacy but we only consider that m = 1 only, as this is relevant to our work.
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Guess: A outputs b′ as a guess for b.

We say the adversary A wins b′ = b.

Definition 3.5. A CPRF ΠCPRF is said to satisfy perfect weak 1-key privacy if for all PPT adversaries A,
then |Pr[A wins]− 1/2| = 0 holds.

Remark 3.6. The version of key privacy that we use above is better known as weak key privacy [BLW17].
This is because the adversary has no access to an evaluation oracle. We note that the main applications
of PCPRFs are instantiable under weak key privacy. As a result, we do not lose anything by considering
the weaker security guarantee.7 It should also be noted that the previous definitions of key privacy were
settled computationally. In this work we actually satisfy the notion of perfect key privacy due to the lack
of structure in our constrained keys.

4 CPRFs for Bit-Fixing Predicates from Standard PRFs

In this section, we provide a construction of an adaptive pseudorandom on constrained points, Q-
collusion resistant CPRFs for the bit-fixing predicate from any PRF, where Q can be set to be any
constant independent of the security parameter. In particular, the result implies the existence of such
CPRFs from one-way functions [GGM86, HILL99]. Recall that no other CPRFs are known to be adaptive
and/or to achieveQ-collusion resistance for anyQ > 1 in the standard model, excluding the CPRF for the
trivial singleton sets F = {{x} | x ∈ {0, 1}`} [BW13] or the selectively-secure and collusion-resistant
CPRF for prefix-fixing predicates by [BFP+15].

4.1 Preparation: Bit-Fixing Predicates

Here, we provide the constraint class we will be considering: bit-fixing predicates.

Definition 4.1 (Bit-Fixing Predicate). For a vector v ∈ {0, 1, ∗}`, define the circuit CBF
v : {0, 1}` →

{0, 1} associated with v as

CBF
v (x) =

∧̀
i=1

((
vi

?= xi
)∨(

vi
?= ∗
))
,

where vi and xi denote the ith bit of the string v and x, respectively. Then, the family of bit-fixing
predicates (with input length `) is defined as

CBF
` := {CBF

v | v ∈ {0, 1, ∗}`}.

Since we can consider a canonical representation of the circuit CBF
v given the string v ∈ {0, 1, ∗}`, with

an abuse of notation, we may occasionally write v ∈ CBF
` and view v as CBF

v when the meaning is clear.
We also define a helper function GBF

auth which, informally, outputs a set of all the authorized inputs
corresponding to a bit-fixing predicate. For any v ∈ {0, 1, ∗}` and T = (t1, · · · , tQ) ∈ [`]Q such that
Q ≤ `, let us define vT ∈ {0, 1, ∗}Q as the string vt1vt2 · · · vtQ , where vi is the ith index of v. Then we
define the function GBF

auth as follows.

GBF
auth(vT ) = {w ∈ {0, 1}Q | CBF

vT
(w) = 1}.

In words, it is the set of all points with the same length as vT that equals to vT on the non-wild card
entries. For example, if ` = 8, Q = 5, v = 011 ∗ 01 ∗ 1, and T = (4, 1, 2, 6, 1), then vT = ∗0110 and
the authorized set of points would beGBF

auth(vT ) = {00110, 10110}. Here, with an abuse of notation, we
define the function GBF

auth for all input lengths.

7There is also no need for an admissibility requirement.

12



4.2 Construction

Let ` = `(κ), and n = n(κ) be integer-valued positive polynomials of the security parameter κ and Q
be any constant positive integer smaller than `. Let CBF := {Cκ}κ∈N := {CBF

`(κ)}κ∈N be a set of family of
circuits representing the class of constraints. Let ΠPRF = (PRF.Gen,PRF.Eval) be any PRF with input
length ` and output length n.

Our Q-collusion resistance CPRF ΠCPRF for the constrained class CBF is provided as follows:

CPRF.Gen(1κ)→ K: On input the security parameter 1κ, it runs KT,w ← PRF.Gen(1κ) and K̂T,w ←
PRF.Gen(1κ) for all T ∈ [`]Q and w ∈ {0, 1}Q. Then it outputs the master key as

K =
(
(KT,w), (K̂T,w)

)
T∈[`]Q,w∈{0,1}Q

.

CPRF.Eval(K, x) :→ y: On input the master key K and input x ∈ {0, 1}`, it first parses(
(KT,w), (K̂T,w)

)
T∈[`]Q,w∈{0,1}Q ← K.

It then computes

y =
⊕

T∈[`]Q
PRF.Eval(KT,xT

, x),

where recall xT ∈ {0, 1}Q is defined as the string xt1xt2 · · ·xtQ and T = (t1, · · · , tQ). Finally, it
outputs y ∈ {0, 1}n.

CPRF.Constrain(K, CBF
v ) :→ Kv: On input the master key K and a circuit CBF

v ∈ CBF
` , it first parses(

(KT,w), (K̂T,w)
)
T∈[`]Q,w∈{0,1}Q ← K and sets v ∈ {0, 1, ∗}` as the representation of CBF

v . Then
it outputs the constrained key

Kv =
(
K̃T,w

)
T∈[`]Q,w∈{0,1}Q

,

where K̃T,w = KT,w if w ∈ GBF
auth(vT ), and K̃T,w = K̂T,w otherwise. Recall that GBF

auth(vT ) =
{w ∈ {0, 1}Q | CBF

vT
(w) = 1}.

CPRF.ConstrainEval(Kv, x) :→ y: On input the constrained key Kv and an input x ∈ {0, 1}`, it first
parses

(
K̃T,w

)
T∈[`]Q,w∈{0,1}Q ← Kv. It then uses the PRF keys included in the constrained key

and computes

y =
⊕

T∈[`]Q
PRF.Eval(K̃T,xT

, x).

Finally, it outputs y ∈ {0, 1}n.

4.3 Correctness

We check correctness of our CPRF. Let CBF
v be any bit-fixing predicate in CBF

` . Put differently, let us fix
an arbitrary v ∈ {0, 1, ∗}`. Then, by construction we have

Kv =
(
K̃T,w

)
T∈[`]Q,w∈{0,1}Q

← CPRF.Constrain(K, CBF
v ).
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Now, for any x ∈ {0, 1}` such that CBF
v (x) = 1, by definition of the bit-fixing predicate, we have

∧̀
i=1

((
vi

?= xi
)∨(

vi
?= ∗
))

= 1.

Then, by definition of function GBF
auth, we have xT ∈ GBF

auth(vT ) for any T ∈ [`]Q since we have
CBF
vT

(xT ) = 1 if CBF
v (x) = 1. In particular, we have

K̃T,xT
= KT,xT

∈ Kv for all T ∈ [`]Q.

Therefore, since CPRF.Eval and CPRF.ConstrainEval are computed exactly in the same way, using the
same PRF keys, correctness holds.

4.4 Pseudorandomness on Constrained Points

Theorem 4.2. If the underlying PRF ΠPRF is adaptive pseudorandom, then our above CPRF ΠCPRF for
the bit-fixing predicate CBF is adaptively pseudorandom on constrained points andQ-collusion resistant
for any Q = O(1).

Proof. We show the theorem by considering the following sequence of games between an adversary A
against the pseudorandomness on constrained points security game and the challenger. In the following,
for simplicity, we say an adversary A against the CPRF pseudorandomness game. Below, let Ei denote
the probability that b′ = b holds in Gamei. Recall that A makes at most Q-constrained key queries,
where Q is a constant.

Game0: This is defined as the ordinary CPRF pseudorandomness game played between A and the
challenger. In particular, at the beginning of the game the challenger prepares the empty sets
Seval, Scon. In this game, the challenger responds to the queries made by A as follows:

• WhenA submitsx ∈ {0, 1}` as the evaluation query, the challenger returns y ← CPRF.Eval(K, x)
to A and updates Seval ← Seval ∪ {x}.

• When A submits CBF
v(j) ∈ CBF

` as the jth (j ∈ [Q]) constrained key query, the challenger
returns Kv(j) ← CPRF.Constrain(K, CBF

v(j)) to A and updates Scon ← Scon ∪ {CBF
v(j)}.

Furthermore, recall that when A submits the target input x† ∈ {0, 1}` as the challenge query, we
have the restriction x† /∈ Seval and x† ∈ ConPoint(CBF

v(j)) for all CBF
v(j) ∈ Scon. Here, the latter

condition is equivalent to

∧̀
i=1

((
v

(j)
i

?= x†i
)∨(

v
(j)
i

?= ∗
))

= 0 for all CBF
v(j) ∈ Scon. (1)

By definition, we have |Pr[E0]− 1/2| = ε.

Game1: In this game, we add an extra abort condition for the challenger. Specifically, at the end of
the game, the challenger samples a random set T † $← [`]Q. Let us set T † = (t1, · · · , tQ). The
challenger further samples b†tj

$← {0, 1} for all j ∈ [Q]. Let b†
T † := bt1bt2 · · · btQ ∈ {0, 1}Q.

Then, the challenger checks whether the following equation holds with respect to the constrained
key queries and the challenge query made by the adversary A at the end of the game:

• The challenger aborts if there exists j ∈ [Q] such that(
(v(j)
tj 6= b†tj )

∧
(v(j)
tj 6= ∗)

)
= 0 (2)

is satisfied.
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• The challenger aborts if x† does not satisfy

(b†
T †

?= x†
T †) =

∧
j∈[Q]

(b†tj
?= x†tj ) = 1. (3)

• The challenger aborts if (T †, b†
T †) chosen by the challenger does not equal to the first pair

(with respect to some pre-defined order over [`]Q × {0, 1}Q such as the lexicographic order)
that satisfies Equation (2) for all j ∈ [Q] and Equation (3). Note that it is possible to efficiently
find such a pair by enumerating over [`]Q × {0, 1}Q since Q = O(1).8

When the challenger aborts, it substitutes the guess b̂ outputted by A with a random bit. We call
this event abort.
As we will show in Lemma 4.3, there exists at least a single pair (T †, b†

T †) ∈ [`]Q × {0, 1}Q that
satisfies Equation (2) for all j ∈ [Q] and Equation (3). Therefore, the event abort occurs with
probability 1 − 1/(2`)Q. Furthermore, it can be seen that abort occurs independently from the
view of A. Therefore, we have

|Pr[E1]− 1/2| = |Pr[E0] · Pr[¬abort] + (1/2) · Pr[abort]− 1/2|
= |Pr[E0] · (1/(2`)Q) + (1/2) · (1− 1/(2`)Q)− 1/2|
= ε/(2`)Q,

where we used the fact that b̂ is randomly chosen and thus equals to b with probability 1/2 when
abort occurs.

Game2: Recall that in the previous game, the challenger aborts at the end of the game, if the abort
condition is satisfied. In this game, we change the game so that the challenger chooses T † and
b†
T † at the beginning of the game and aborts as soon as either A makes a constrained key query
CBF
v(j) ∈ CBF

` that does not satisfy Equation (2) or a challenge query for x† that does not satisfy
Equation (3). Furthermore, it aborts if (T †, b†

T †) is not the first pair that satisfies Equation (2) for
all j ∈ [Q] and Equation (3). Since this is only a conceptual change, we have

Pr[E2] = Pr[E1].

Game3: In this game, we change how the challenger responds to the challenge query when b = 0.
For all the evaluation query and constrained key query, the challenger acts exactly the same way
as in the previous game. In the previous game Game2, when the adversary submits the target
input x† ∈ {0, 1}` as the challenge query, the challenger first checks whether the condition in
Equation (3) holds. If not it aborts. Otherwise, it samples b $← {0, 1}. In case b = 0, it computes
CPRF.Eval(K, x†) as

y† =
⊕

T∈[`]Q
PRF.Eval(K

T,x†
T
, x†) (4)

using the master key
K =

(
(KT,w), (K̂T,w)

)
T∈[`]Q,w∈{0,1}Q

8One may wonder why the final condition for the abort is necessary, because the reduction in the proof of Lemma 4.4
works even without it. This additional abort step is introduced to make the probability of abort to occur independently of the
choice of the constrained key queries and the challenge query made by the adversary. Without this step, we cannot lower bound
|Pr[E1]− 1/2|. Similar problem was identified by Waters [Wat05], who introduced “the artificial abort step" to resolve it. Our
analysis here is much simpler because we can compute the abort probability exactly in our case.
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that it constructed at the beginning of the game, where KT,w, K̂T,w ← PRF.Gen(1κ) for all
T ∈ [`]Q and w ∈ {0, 1}Q. Due to the condition in Equation (3), i.e., b†

T † = x†
T † ∈ {0, 1}Q, we

can rewrite Equation (4) as

y† = PRF.Eval(K
T †,b†

T †
, x†)⊕

 ⊕
T∈[`]Q\{T †}

PRF.Eval(K
T,x†

T
, x†)

 . (5)

In this game Game3, when b = 1, the challenger instead samples a random ȳ†
$← {0, 1}n and

returns the following to A instead of returning y† to A as in Equation (5):

y† = ȳ† ⊕

 ⊕
T∈[`]Q\{T †}

PRF.Eval(K
T,x†

T
, x†)

 . (6)

We show in Lemma 4.4 that

|Pr[E2]− Pr[E3]| = negl(κ)

assuming pseudorandomness of the underlying PRF ΠPRF. In this game Game3, the distribution
of y† for b = 0 and b = 1 are exactly the same since A has not made an evaluation query on x†
and K

T †,b†
T †

is not given through any of the constrained key query. Concretely, ȳ† is distributed
uniform random regardless of whether b = 0 or b = 1 and thus the value of b is information
theoretically hidden to A. Therefore, we have

Pr[E3] = 1/2.

Combining everything together with Lemma 4.3 and Lemma 4.4, we have

ε = |Pr[E0]− 1/2| ≤ (2`)Q · (|Pr[E3]− 1/2|+ negl(κ)) = negl(κ),

where the last equality follows by recalling that ` = poly(κ) and Q a constant.

Lemma 4.3. In Game1, we have{
(T †, b†

T †) ∈ [`]Q × {0, 1}Q
∣∣∣∣∣ (T †, b†

T †) satisfies Equation (2)
for all j ∈ [Q], and Equation (3)

}
6= ∅.

Proof. By the restriction posed on A in the game, for all j ∈ [Q], there exists t(j) ∈ [`] such that

v
(j)
t(j) = 1− x†

t(j) .

Let us denote T̄ := (t(1), · · · , t(Q)) ∈ [`]Q and b̄T̄ := x†
T̄
∈ {0, 1}Q. It is easy to check that Equation (2)

for all j ∈ [Q] and Equation (3) hold if T † = T̄ and b†
T † = b̄T̄ .

Lemma 4.4.We have |Pr[E2]− Pr[E3]| = negl(κ) assuming that the underlying PRF ΠPRF satisfies
adaptive pseudorandomness.

Proof. For the sake of contradiction, let us assume an adversary A that distinguishes Game2 and Game3
with non-negligible probability ε′. We then construct an adversary B that breaks the pseudorandomness
of ΠPRF with the same probability. The adversary B proceeds as follows.

At the beginning of the game B samples a random tuple T † = (t1, · · · , tQ) $← [`]Q and b†tj
$← {0, 1}

for all j ∈ [Q] as in the Game2-challenger. Let b†T † := bt1bt2 · · · btQ ∈ {0, 1}Q. Then, it further samples
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KT,w ← PRF.Gen(1κ) for all T ∈ [`]Q andw ∈ {0, 1}Q except for (T †, b†
T †). It then sets the (simulated)

master key K† as

K† =
(
(KT,w)

T∈[`]Q,w∈{0,1}Q\{(T †,b†
T † )}, (K̂T,w)T∈[`]Q,w∈{0,1}Q

)
.

Here, B implicitly sets K
T †,b†

T †
as the PRF key used by its PRF challenger. Finally, B prepares two empty

sets Seval, Scon. B then simulates the response to the queries made by A as follows:

• When A submits x ∈ {0, 1}` as the evaluation query, B checks whether xT † = b†
T † . If not, then it

can use the simulated master key K† to compute

y =
⊕

T∈[`]Q
PRF.Eval(KT,xT

, x).

Otherwise, it makes an evaluation query to its PRF challenger on the input x. When it receives
back ȳ from the PRF challenger, B computes the output as

y = ȳ ⊕

 ⊕
T∈[`]Q\{T †}

PRF.Eval(KT,xT
, x)

 .
Finally, B returns y to A and updates Seval ← Seval ∪ {x}. Note that by the specification of the
PRF challenger, we have ȳ = PRF.Eval(K

T †,b†
T †
, x).

• When A submits CBF
v(j) ∈ CBF

` as the jth (j ∈ [Q]) constrained key query, B checks whether the
condition in Equation (2) holds. If not it aborts and outputs a random bit. Otherwise, it returns
the following constrained key Kv(j) to A:

Kvj =
(
K̃T,w

)
T∈[`]Q,w∈{0,1}Q

,

where K̃T,w = KT,w if and only if w ∈ GBF
auth(v(j)

T ) = {w ∈ {0, 1}Q | CBF
v

(j)
T

(w) = 1} and

K̃T,w = K̂T,w otherwise. Here, B can prepare all the PRF keys since the condition in Equation (2)
guarantees us that we have b†

T † 6∈ GBF
auth(v(j)

T † ), or equivalently,CBF
v

(j)
T †

(b†
T †) = 0. Namely, K̃

T †,b†
T †

=

K̂
T †,b†

T †
and so K

T †,b†
T †

is not included in Kv(j) .

• When A submits the target input x† ∈ {0, 1}` as the challenge query, B checks whether the
condition in Equation (3) holds. If not it aborts and outputs a random bit. Otherwise, B queries
its PRF challenger on x† as its challenge query and receives back ȳ†. It then computes y† as in
Equation (6) and returns y† to A. Here, since Equation (3) holds, K

T †,b†
T †

must be required to

compute on input x†.

Finally, A outputs its guess b′. B then checks whether (T †, b†
T †) is the first pair that satisfies

Equation (2) for all j ∈ [Q] and Equation (3). If it does not hold, B outputs a random bit. Otherwise, B
outputs b′ as its guess.

This completes the description of B. It is easy to check that in case b = 0, B receives ȳ† ←
PRF.Eval(K

T †,b†
T †
, x†), hence B simulates Game2 perfectly. Otherwise in case b = 1, B receives

ȳ†
$← {0, 1}n, hence B simulates Game3 perfectly. Therefore, we conclude that B wins the PRF

pseudorandomness game with probability exactly ε′. Assuming that ΠPRF is pseudorandom, this is a
contradiction, hence, ε′ must be negligible.
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This completes the proof.

Theorem 4.5. If the underlying PRF ΠPRF is adaptive pseudorandom, then our above CPRF ΠCPRF for
the bit-fixing predicate CBF satisfies perfect weak 1-key privacy.

Proof. Notice that the master key is of the form:(
(KT,w), (K̂T,w)

)
T∈[`]Q,w∈{0,1}Q

,

where KT,w, K̂T,w ← PRF.Gen(1κ). Let v(0), v(1) ∈ {0, 1, ∗}` be the two bit-fixing strings that the
adversary A queries. Then, A receives either one of the following two distributions:

•
(
K̃(0)
T,w

)
T∈[`]Q,w∈{0,1}Q

where K̃(0)
T,w = KT,w if and only if w ∈ GBF

auth(v(0)
T ), and K̃T,w = K̂T,w

otherwise.

•
(
K̃(1)
T,w

)
T∈[`]Q,w∈{0,1}Q

where K̃(1)
T,w = KT,w if and only if w ∈ GBF

auth(v(1)
T ), and K̃T,w = K̂T,w

otherwise.

Notice that both the distributions are made up entirely of keys sampled from PRF.Gen. Moreover, A
cannot compare outputs under the constrained key and the real master key since A has no access to the
evaluation oracle in this setting. Therefore, the two distributions are perfectly indistinguishable and the
proof of weak key privacy is complete.

5 CPRFs for t-CNF from Standard PRFs

In this section, we provide a construction of an adaptive pseudorandomon constrained points,Q-collusion
resistant CPRFs for t-CNF predicates from any PRF, where Q can be set to be any constant independent
of the security parameter. Similarly to the result in Section 4, our result implies the existence of such
CPRFs from one-way functions [GGM86, HILL99].

5.1 Preparation: t-CNF Predicates

We first define the class of predicates which we will be using: t-conjunctive normal form (t-CNF).
Informally, it contains the class of conjunction of NC0 circuits.

Definition 5.1 (t-CNF Predicates). Let S denote the set S := {(a1, · · · , at) ∈ [n]t | a1 < · · · < at}.
Then, a t-CNF predicate Ct-cnf : {0, 1}n → {0, 1} such that t ≤ n is a set of clauses Ct-cnf :=
{(J,CJ)}J∈S where CJ : {0, 1}t → {0, 1}. For all x ∈ {0, 1}n, a t-CNF predicate C is computed as
follows:

Ct-cnf(x) =
∧
J∈S

CJ(xJ),

where xJ ∈ {0, 1}t denotes the bit string consisting of the bits of x in the indices of J . Finally, a family
of t-CNF predicate Ct-cnf

n is the set of t-CNF predicates with input length n.

Here, it is easy to see that the family of bit-fixing predicates (for length n inputs) CBF
n is included

in Ct-cnf
n for any t ≥ 1. In particular, when t = 1, we have S = [n]. Therefore, each circuit

CJ : {0, 1}t → {0, 1} in the clause {(J,CJ)}J∈[n] only looks at the J th-bit of the input x ∈ {0, 1}n as
required by the bit-fixing predicates. We note that we could have defined Ct-cnf to be a set of circuits of
the form

∧
J∈T CJ for some T ⊆ S , however, the above definition is without loss of generality because
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we can always add dummy circuits that output the constant 1 function so that C includes a circuit CJ for
each J ∈ S.

Similarly to the case in Section 4.1, we prepare a helper function Gt-cnf
auth which would come in handy

during the construction; it is responsible for outputting the set of authorized inputs corresponding to a
t-CNF predicate. Formally, the function Gt-cnf

auth takes as input a t-CNF predicate Ct-cnf = {(J,CJ)}J∈S
and a tuple J = (J1, · · · , JQ) ∈ SQ and outputs a tuplew = (w1, · · · , wQ) ∈ ({0, 1}t)Q. The value of
Gt-cnf

auth is computed as

Gt-cnf
auth (Ct-cnf , J) =

{
w ∈ ({0, 1}t)Q |

∧
i∈[Q]

CJi(wi) = 1
}
.

Here, with an abuse of notation, we define the functionGt-cnf
auth for all t-CNF predicate family and positive

integer Q.

Remark 5.2. In case t = O(1) and Q = O(1), the size of SQ and ({0, 1}t)Q are both polynomial in n.

5.2 Construction

Let ` = `(κ), n = n(κ) be integer-valued positive polynomials of the security parameter κ, and t
and Q be any constant positive integer smaller than `. Let Ct-cnf := {Ct-cnf

`(κ) }κ∈N be a set of family of
circuits representing the class of constraints where each circuit in Ct-cnf

`(κ) takes `(κ) bits of input. Let
ΠPRF = (PRF.Gen,PRF.Eval) be any PRF with input length ` and output length n.

Our Q-collusion resistance CPRF ΠCPRF for the constrained class Ct-cnf is provided as follows:

CPRF.Gen(1κ)→ K: On input the security parameter 1κ, it runs KJ,w ← PRF.Gen(1κ) and K̂J,w ←
PRF.Gen(1κ) for all J ∈ SQ and w ∈ ({0, 1}t)Q. Then it outputs the master key as

K =
(
(KJ,w), (K̂J,w)

)
J∈SQ,w∈({0,1}t)Q

.

Here, recall S := {(a1, · · · , at) ∈ [`]t | a1 < · · · < at}.

CPRF.Eval(K, x) :→ y: On input the master key K and input x ∈ {0, 1}`, it first parses(
(KJ,w), (K̂J,w)

)
J∈SQ,w∈({0,1}t)Q

← K.

It then computes

y =
⊕
J∈SQ

PRF.Eval(KJ,xJ , x),

where xJ is defined as the string (xJ1 , · · ·xJQ
) ∈ ({0, 1}t)Q, J = (J1, · · · , JQ). Finally, it outputs

y ∈ {0, 1}n.

CPRF.Constrain(K, Ct-cnf) :→ KC : On input the master key K and a circuit Ct-cnf ∈ Ct-cnf
` , it first

parses
(
(KJ,w), (K̂J,w)

)
J∈SQ,w∈({0,1}t)Q ← K and {(J,CJ)}J∈S ← Ct-cnf . Then it outputs the

constrained key

KC =
(
K̃J,w

)
J∈SQ,w∈({0,1}t)Q

,

where K̃J,w = KJ,w if w ∈ Gt-cnf
auth (Ct-cnf , J), and K̃J,w = K̂J,w otherwise. Here, recall that

Gt-cnf
auth (Ct-cnf , J) = {w ∈ ({0, 1}t)Q |

∧
i∈[Q]CJi(wi) = 1}.
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CPRF.ConstrainEval(KC , x) :→ y: On input the constrained key KC and an input x ∈ {0, 1}`, it first
parses

(
K̃J,w

)
J∈SQ,w∈({0,1}t)Q ← KC . It then uses the PRF keys included in the constrained key

and computes

y =
⊕
J∈SQ

PRF.Eval(K̃J,xJ , x),

Finally, it outputs y ∈ {0, 1}n.

5.3 Correctness

We check correctness of our CPRF. Let Ct-cnf be any t-CNF predicate in Ct-cnf
` . Put differently, let us fix

an arbitrary {(J,CJ)}J∈S . By construction we have

KC =
(
K̃J,w

)
J∈SQ,w∈({0,1}t)Q

← CPRF.Constrain(K, Ct-cnf).

Now, for any x ∈ {0, 1}` such that Ct-cnf(x) = 1, by definition of the t-CNF predicate, we have∧
J∈S

CJ(xJ) = 1.

In particular, for all J ∈ SQ, we have
∧
i∈[Q]CJi(xJi) = 1. Then, by definition of function Gt-cnf

auth , we
have xJ ∈ Gt-cnf

auth (Ct-cnf , J) for any J ∈ SQ. Hence, we have

K̃J,xJ = KJ,xJ ∈ KC for all J ∈ SQ.

Therefore, since CPRF.Eval and CPRF.ConstrainEval are computed exactly in the same way, using the
same PRF keys, correctness holds.

5.4 Pseudorandomness on Constrained Points

In this section we show security of our CPRF ΠCPRF for the t-CNF predicate Ct-cnf . The following proofs
follow essentially the same structure as the proof in Theorem 4.2.

Theorem 5.3. If the underlying PRF ΠPRF is adaptive pseudorandom, then our above CPRF ΠCPRF
for the t-CNF predicate Ct-cnf for t = O(1) is adaptively pseudorandom on constrained points and
Q-collusion resistant for any Q = O(1).

Proof. We show the theorem by considering the following sequence of games between an adversary A
against the pseudorandomness on constrained points security game and the challenger. In the following,
for simplicity, we say an adversary A against the CPRF pseudorandomness game. Below, let Ei denote
the probability that b′ = b holds in Gamei. Recall that A makes at most Q-constrained key queries,
where Q is a constant.

Game0: This is defined as the ordinary CPRF pseudorandomness game played between A and the
challenger. In particular, at the beginning of the game the challenger prepares the empty sets Seval
and Scon. In this game, the challenger responds to the queries made by A as follows:

• WhenA submitsx ∈ {0, 1}` as the evaluation query, the challenger returns y ← CPRF.Eval(K, x)
to A and updates Seval ← Seval ∪ {x}.

• When A submits Ct-cnf (k) ∈ Ct-cnf
` as the kth (k ∈ [Q]) constrained key query, the challenger

returns KC(k) ← CPRF.Constrain(K, Ct-cnf (k)) to A and updates Scon ← Scon∪{Ct-cnf (k)}.
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Furthermore, recall that when A submits the target input x† ∈ {0, 1}` as the challenge query, we
have the restriction x† /∈ Seval and x† ∈ ConPoint(Ct-cnf (k)) for all Ct-cnf (k) ∈ Scon. Here, the
latter condition is equivalent to∧

J∈S
C

(k)
J (x†J) = 0 for all Ct-cnf (k) ∈ Scon, (7)

where we express Ct-cnf (k) := {(J,C(k)
J )}J∈S . By definition, we have |Pr[E0]− 1/2| = ε.

Game1: In this game, we add an extra abort condition for the challenger. Specifically, at the end of
the game, the challenger samples a random element J† = (J1, · · · , JQ) $← SQ. The challenger
further samples w† = (w1, · · · , wQ) $← ({0, 1}t)Q for all k ∈ [Q]. Then, the challenger checks
whether the following equation holds with respect to the constrained key queries and the challenge
query made by the adversary A at the end of the game:

• The challenger aborts if there exists k ∈ [Q] such that

Ct-cnf (k)
Jk

(wk) = 1 (8)

is satisfied.
• The challenger aborts if x† does not satisfy(

w
† ?= x†J†

)
=

∧
k∈[Q]

(
wk

?= x†Jk

)
= 1 (9)

• The challenger aborts if (J†,w†) chosen by the challenger does not equal to the first pair (with
respect to some pre-defined order over SQ× ({0, 1}t)Q such as the lexicographic order) that
satisfies Equation (8) for all k ∈ [Q] and Equation (9). Note that it is possible to efficiently
find such a pair by enumerating over SQ × ({0, 1}t)Q since t, Q = O(1).9

When the challenger aborts, it substitutes the guess b̂ outputted by A with a random bit. We call
this event abort.
As we will show in Lemma 5.4, there exists at least a single pair (J†,w†) ∈ SQ × ({0, 1}t)Q
that satisfies Equation (8) for all k ∈ [Q] and Equation (9). Therefore, the event abort occurs
with probability 1− 1/(|S| · 2t)Q where |S| =

(`
t

)
. Furthermore, it can be seen that abort occurs

independently from the view of A. Therefore, we have

|Pr[E1]− 1/2| = |Pr[E0] · Pr[¬abort] + (1/2) · Pr[abort]− 1/2|
= |Pr[E0] · (1/(|S| · 2t)Q) + (1/2) · (1− 1/(|S| · 2t)Q)− 1/2|
= ε/(|S| · 2t)Q,

where we used the fact that b̂ is randomly chosen and thus equals to b with probability 1/2 when
abort occurs. As in Remark 5.2, if t, Q = O(1), then (|S| · 2t)Q = poly(κ).

Game2: Recall that in the previous game, the challenger aborts at the end of the game, if the abort
condition is satisfied. In this game, we change the game so that the challenger chooses J† and
w
† at the beginning of the game and aborts as soon as either A makes a constrained key query

Ct-cnf (k) ∈ Ct-cnf
` that does not satisfy Equation (8) or a challenge query for x† that does not satisfy

Equation (9). Furthermore, it aborts if (J†,w†) is not the first pair that satisfies Equation (8) for
all k ∈ [Q] and Equation (9). Since this is only a conceptual change, we have

Pr[E2] = Pr[E1].
9The reason why we require aborting the simulation is identical to that described in the proof of Theorem 4.2.
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Game3: In this game, we change how the challenger responds to the challenge query when b = 0.
For all the evaluation query and constrained key query, the challenger acts exactly the same way
as in the previous game. In the previous game Game2, when the adversary submits the target
input x† ∈ {0, 1}` as the challenge query, the challenger first checks whether the condition in
Equation (9) holds. If not, it aborts. Otherwise, it samples b $← {0, 1}. In case b = 0, it computes
CPRF.Eval(K, x†) as

y =
⊕
J∈SQ

PRF.Eval(KJ,xJ , x), (10)

using the master key
K =

(
(KJ,w), (K̂J,w)

)
J∈SQ,w∈({0,1}t)Q

that it constructed at the beginning of the game, where KJ,w, K̂J,w ← PRF.Gen(1κ) for all J ∈ SQ

and w ∈ ({0, 1}t)Q. Due to the condition in Equation (9), i.e.,
∧
k∈[Q]

(
wk

?= x†Jk

)
= 1, we can

rewrite Equation (10) as

y† = PRF.Eval(KJ†,w† , x†)⊕

 ⊕
J∈SQ\{J†}

PRF.Eval(KJ,x†
J
, x†)

 . (11)

In this game Game3, when b = 1, the challenger instead samples a random ȳ†
$← {0, 1}n and

returns the following to A instead of returning y† to A as in Equation (11):

y† = ȳ† ⊕

 ⊕
J∈SQ\{J†}

PRF.Eval(KJ,x†
J
, x†)

 . (12)

We show in Lemma 5.5 that

|Pr[E2]− Pr[E3]| = negl(κ)

assuming pseudorandomness of the underlying PRF ΠPRF. In this game Game3, the distribution
of y† for b = 0 and b = 1 are exactly the same since A has not made an evaluation query on x† and
KJ†,w† is not given through any of the constrained key query. Concretely, ȳ† is distributed uniform
random regardless of whether b = 0 or b = 1 and thus the value of b is information theoretically
hidden to A. Therefore, we have

Pr[E3] = 1/2.

Combining everything together with Lemma 5.4 and Lemma 5.5, we have

ε = |Pr[E0]− 1/2| ≤ (|S| · 2t)Q · (|Pr[E3]− 1/2|+ negl(κ)) = negl(κ),

where the last equality follows by recalling that ` = poly(κ), |S| =
(`
t

)
, and t and Q are constants.

Lemma 5.4. In Game1, we have{
(J†,w†) ∈ SQ × ({0, 1}t)Q

∣∣∣∣∣ (J†,w†) satisfies Equation (8)
for all k ∈ [Q], and Equation (9)

}
6= ∅.
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Proof. By the restriction posed on A in the game, for all k ∈ [Q], there exists J (k) ∈ S such that

C
(k)
J(k)(x

†
J(k)) = 0.

Let us denote J̄ := (J (1), · · · , J (Q)) ∈ SQ and w̄ := (x†
J(1) , · · · , x

†
J(Q)) ∈ ({0, 1}t)Q. It is easy to

check that Equation (8) for all k ∈ [Q] and Equation (9) hold if J† = J̄ and w† = w̄.

Lemma 5.5.We have |Pr[E2]− Pr[E3]| = negl(κ) assuming that the underlying PRF ΠPRF satisfies
adaptive pseudorandomness.

Proof. For the sake of contradiction, let us assume an adversary A that distinguishes Game2 and Game3
with non-negligible probability ε′. We then construct an adversary B that breaks the pseudorandomness
of ΠPRF with the same probability. The adversary B proceeds as follows.

At the beginning of the game B samples a random tuple J† = (J1, · · · , JQ) $← SQ and w† =
(w1, · · · , wQ) $← ({0, 1}t)Q as in the Game2-challenger. Then, it further samples KJ,w, K̂J,w ←
PRF.Gen(1κ) for all J ∈ SQ and w ∈ ({0, 1}t)Q except for K̂J†,w† . It then sets the (simulated) master
key K† as

K† =
(
(KJ,w)J∈SQ,w∈({0,1}t)Q\{(J†,w†)}, (K̂J,w)J∈SQ,w∈({0,1}t)Q

)
.

Here, B implicitly sets KJ†,w† as the PRF key used by its PRF challenger. Finally, B prepares two empty
sets Seval, Scon. B then simulates the response to the queries made by A as follows:

• When A submits x ∈ {0, 1}` as the evaluation query, B checks whether xJ† = w†. If not, then it
can use the simulated master key K† to compute

y =
⊕
J∈SQ

PRF.Eval(KJ,xJ , x).

Otherwise, it makes an evaluation query to its PRF challenger on the input x. When it receives
back ȳ from the PRF challenger, B computes the output as

y = ȳ ⊕

 ⊕
J∈SQ\J†

PRF.Eval(KJ,xJ , x)

 .
Finally, B returns y to A and updates Seval ← Seval ∪ {x}. Note that by the specification of the
PRF challenger, we have ȳ = PRF.Eval(KJ†,w† , x).

• When A submits Ct-cnf (k) ∈ Ct-cnf
` as the kth (k ∈ [Q]) constrained key query, B checks whether

the condition in Equation (8) holds. If not it aborts and outputs a random bit. Otherwise, it returns
the following constrained key KC(k) to A:

KC(k) =
(
K̃J,w

)
J∈SQ,w∈({0,1}t)Q

,

where K̃J,w = KJ,w if and only ifw ∈ Gt-cnf
auth (Ct-cnf (k)

, J) = {w ∈ ({0, 1}t)Q |
∧
i∈[Q]C

(k)
Ji

(wi) =
1} and K̃J,w = K̂J,w otherwise. Here, B can prepare all the PRF keys since the condition in Equa-
tion (8) guarantees us that we havew† 6∈ Gt-cnf

auth (Ct-cnf (k)
, J), or equivalently,

∧
i∈[Q]C

(k)
Ji

(wi) = 0.
Namely, K̃J†,w† = K̂J†,w† and so KJ†,w† is not included in KC(k) .
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• When A submits the target input x† ∈ {0, 1}` as the challenge query, B checks whether the
condition in Equation (9) holds. If not it aborts and outputs a random bit. Otherwise, B queries
its PRF challenger on x† as its challenge query and receives back ȳ†. It then computes y† as in
Equation (12) and returns y† to A. Here, since Equation (9) holds, KJ†,w† must be required to
compute on input x†.

Finally,A outputs its guess b′. B then checkswhether (J†,w†) is the first pair that satisfies Equation (8)
for all k ∈ [Q] and Equation (9). If it does not hold, B outputs a random bit. Otherwise, B outputs b′ as
its guess.

This completes the description of B. It is easy to check that in case b = 0, B receives ȳ† ←
PRF.Eval(KJ†,w† , x†), hence B simulates Game2 perfectly. Otherwise in case b = 1, B receives
ȳ†

$← {0, 1}n, hence B simulates Game3 perfectly. Therefore, we conclude that B wins the PRF
pseudorandomness game with probability exactly ε′. Assuming that ΠPRF is pseudorandom, this is a
contradiction, hence, ε′ must be negligible.

This completes the proof.

Theorem 5.6. If the underlying PRF ΠPRF is adaptive pseudorandom, then our above CPRF ΠCPRF for
the t-CNF predicate Ct-cnf satisfies perfect weak 1-key privacy.

Proof. Notice that the master key is of the form:(
(KJ,w), (K̂J,w)

)
J∈SQ,w∈({0,1}t)Q

.

whereKJ,w, K̂J,w ← PRF.Gen(1κ). LetCt-cnf (0) andCt-cnf (1) be the two t-CNF predicates the adversary
A queries. Then, A receives either one of the following two distributions:

•
(
K̃(0)
J,w

)
J∈SQ,w∈({0,1}t)Q

where K̃(0)
J,w = KJ,w if and only if w ∈ Gt-cnf

auth (Ct-cnf (0)
, J), and K̃J,w =

K̂J,w otherwise.

•
(
K̃(1)
J,w

)
J∈SQ,w∈({0,1}t)Q

where K̃(1)
J,w = KJ,w if and only if w ∈ Gt-cnf

auth (Ct-cnf (1)
, J), and K̃J,w =

K̂J,w otherwise.

Notice that both the distributions are made up entirely of keys sampled from PRF.Gen. Moreover, A
cannot compare outputs under the constrained key and the real master key since A has no access to the
evaluation oracle in this setting. Therefore, the two distributions are perfectly indistinguishable and the
proof of weak key privacy is complete.

6 Conclusion and future work

In conclusion, we have developed the first adaptively-secure CPRF construction with O(1) collusion-
resistance for t-CNF predicates, which in particular includes as a special case the bit-fixing predicates.
Our technique signals a noted departure from existing techniques and uses much weaker assumption than
any previous constructions for comparable predicates. Our construction is the first to achieve adaptive
security and/or collusion-resistance in the standard model and without strong assumptions (e.g., IO,
multilinear maps) for non-trivial predicates. Finally our construction achieves 1-key privacy for free.

We believe that there are a number of interesting future directions for our work. Since our technique
is substantially different from existing constructions, we believe that our methods could widen the
possibilities for constructing CPRFs. We summarise the most interesting avenues in the following items.
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• Adapt our technique to construct adaptively-secure constant collusion-resistantCPRFs for bounded-
depth circuits. Here, even constructing CPRFs for inner products already seems to require new
ideas as it requires some sort of algebraic structure absent in standard PRFs.

• Devise a construction that satisfies p(κ)-collusion-resistance for some possibly bounded polyno-
mial p(κ) for bit-fixing predicates.

• Satisfy key privacy for > 1 constrained keys for bit-fixing predicates.

The first point would immediately give a more expressive CPRF. The second point would lead to
applications (such as those envisioned by [BW13]) with far more utility. Since the number of constrained
keys would be linked to the size of the security parameter. As for the last point, we remark that
constructing CPRF for r-key privacy for r > 1 supporting general circuits from a standard assumption
seems to be out of our current reach since it immediately implies IO for general circuits via the results of
Canetti and Chen [CC17]. However, CPRF for r-key privacy for bit-fixing predicatesmay be much easier
to construct. It merely implies IO for bit-fixing predicates, which is trivial to construct since the bit-
fixing predicates have an efficiently computable standard form. We also remark that distributional VBB
obfuscation for bit-fixing predicates is a different thing from IO for bit-fixing predicates in that its security
is defined in a situation where the predicate is chosen randomly following certain distribution. As for the
distributional VBB obfuscation, we know several constructions from various assumptions [BVWW16,
WZ17, GKW17, BLMZ18] and even unconditionally [BLMZ18] in certain regime of parameters.
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