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Abstract. Authenticated Encryption (AE) achieves confidentiality and
authenticity, the two most fundamental goals of cryptography, in a sin-
gle scheme. A common strategy to obtain AE is to combine a Message
Authentication Code (MAC) and an encryption scheme, either nonce-
based or iv-based. Out of the 180 possible combinations, Namprempre
et al. [25] proved that 12 were secure, 164 insecure and 4 were left un-
resolved: A10, A11 and A12 which use an iv-based encryption scheme
and N4 which uses a nonce-based one. The question of the security of
these composition modes is particularly intriguing as N4, A11, and A12
are more efficient than the 12 composition modes that are known to be
provably secure.
We prove that: (i) N4 is not secure in general, (ii) A10, A11 and A12
have equivalent security, (iii) A10, A11, A12 and N4 are secure if the
underlying encryption scheme is either misuse-resistant or “message mal-
leable”, a property that is satisfied by many classical encryption modes,
(iv) A10, A11 and A12 are insecure if the underlying encryption scheme
is stateful or untidy. All the results are quantitative.

1 Introduction

Authenticated encryption and generic composition. From its start, the goal of
cryptography is to prevent that anyone but the intended receiver can read a
message (privacy) and that anyone can send a message impersonating someone
else (authenticity). In order to answer this privacy (resp. authenticity) require-
ment, encryption schemes (resp. Message Authentication Codes (MACs)) were
designed independently. When there is a need for both privacy and authenticity,
Authenticated Encryption (AE) can be used [7,16,18,6]. Moreover, AE may be
used to authenticate associated data (AD), which are data attached to a message
which do not need to be private, but do need to be authenticated (e.g., message
header [32]). We suppose that both the sender and the receiver share the same
private key (symmetric scenario).
There are two possible ways to create an AE scheme: the first is to design
it from scratch, using a single key, and the second is to combine an Encryp-
tion scheme with a MAC. Examples of the first path are AES-GCM [12], AES-
CCM [21], CHACHA20 POLY305 [26] (used in TLS 1.3 [14]), SCT [30] and the



CAESAR candidates [8]. When following the second path, the problem is to de-
cide how to compose the ingredients. This problem is called generic composition
and was introduced and studied first by Bellare and Namprempre [6]. They and
Krawczyk proved the well-known result that Encrypt-then-MAC is secure [7,18].
Namprempre et al. have made a deeper analysis [25], which considered in detail
the assumptions on the Encryption scheme, whether it is iv-based (ivE [with the
iv randomly picked]) or nonce-based (nE [with the nonce n never repeated]) and
assumed that the MACs are PRFs. Out of all the possible composition modes, 12
(9 with ivE, 3 with nE) were proved to be secure, 164 to be insecure and 4 were
unresolved: N4 which uses a nE and A10, A11, A12 which use an ivE. These
four modes, which are depicted in Fig. 1, are based on the Tag-then-Encrypt
paradigm: given a nonce n, an associated data a and a message m, the resulting
AEs simply output c = EncnkE (m‖τ) or c = EncivkE (m‖τ) for some n/iv, where
τ is the tag provided by the MAC, and is computed either as MackM (a,m) or
as MackM (m) depending on the mode. When an ivE scheme is used, the iv is
computed using a PRF MAC that takes as input either n or (n, a). Interestingly
three of these modes (N4, A11 and A12) use the n, a and m only once in to-

tal during both the computation of iv (MacIVkM ) and τ (MacTagkM
), which makes

them the most efficient among all Tag-then-Encrypt schemes. In this paper, we
investigate the security of these four composition modes, focusing on ciphertext
integrity, as Namprempre et al. already established the expected confidentiality
guarantees.

Fig. 1. The four modes A10, A11, A12, and N4.

Our contribution Our investigation gives several new results.

First, the mode N4 does not guarantee ciphertext integrity in general, and we
offer a counterexample. The idea of this counterexample is to carefully inject a
kind of Trojanin the nE encryption scheme, which can only be activated during
the decryption queries using well-crafted ciphertext. The Trojan is triggered
through the nonce and a block of the message.

Second, we show that A10, A11 and A12 have equivalent security, by offering
security reductions between these three modes. Different techniques are used in
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these reductions, which are based on the uniqueness of the nonce and, in other
cases, recrafting these nonces.

Third, we push our analysis further, by investigating the security of these
3 modes by making some additional hypothesis on the ivE scheme. We found
that these modes are secure if the ivE scheme is either misuse-resistant (that
is, repeated nonces can only lead to repeated ciphertexts without further secu-
rity degradation) or “message-malleable” (that is, given a triple (iv,m, c) with
c = Enciv(m), it is possible to compute correctly every other triple (iv,m′, c′)
with c′ = Enciv(m′) [resp. m′ = Deciv(c′)] for the same iv from m′ [resp. c′]).
Many common schemes, like CTR and OFB [15], CHACHA20 [26] or any other
stream ciphers, are “message-malleable”, thus we have proved that the three
composition modes are secure if implemented with these encryption schemes.
This is another evidence of the “generic composition’s sensitivity to definitional
and algorithmic adjustments” [25]. While the proof for misuse-resistant ivE-
schemes is relatively straightforward, the proof for “message-malleable” ivE is
more interesting as it uses a reduction of a INT-CTXT (ciphertext integrity)
adversary to a CPA (Chosen Plaintext Attack) adversary and not only to the
properties of the MAC schemes. Interestingly, the N4 mode also becomes secure
when the same extra requirements are made for the nE encryption scheme. With
respect to the Namprempre et al. [25], we have still to use an additional hy-
pothesis (they used Knowledge of Tag [KoT]), but ours are much easier to prove
although they are less general.

Fourth, we find two insecure variants for all three modes, one if the ivE
encryption scheme is not tidy, the other if it is stateful. Although Namprempre et
al. [25] already used tidiness in security proofs, our ivE scheme correctly encrypts
the tag and it decrypts in the “natural” way. Thus, our analysis supports the
idea that tidiness is also a security property (already present in Namprempre et
al. [25] and in Paterson et al. [28], with respect to CRD). Concerning the attack
using a secure stateful scheme (AE stateful schemes were defined by Bellare et
al. [4] and their security redefined by Rogaway and Zhang [36]), the idea is to
use the state in order to emulate the trojan approach that was used in our attack
against mode N4. Namprempre et al. considered only stateless schemes, but it
is interesting to see how the security of a mode may depend on the fact of being
stateful or stateless. Moreover, stateful AE schemes are an interesting subject of
studies [28,5,17,11].

Structure of the paper We give a section introducing all the notions we need
(Sec. 2); after that we present the four modes N4, A10, A11 and A12 which
we investigate (Sec. 3). Then, we show the proof that mode N4 is not secure
(Sec. 4) and the security relations among modes A10, A11 and A12 (Sec. 5).
After that, we prove that these modes are secure if we add some hypothesis on
the ivE scheme (Sec. 6) and we end analyzing our insecure variants of modes
A10, A11, and A12 (Sec. 7).

3



2 Background

2.1 Notations

We use finite binary strings. The length of the string x is denoted by |x| and
the concatenation of the strings x and y is denoted by x‖y. The set of all finite
strings is denoted by {0, 1}∗. We denote the set of all n-bit strings as {0, 1}n and
the set of strings of at most n bits as {0, 1}≤n. Given a string x = (x1, x2, ..., xl)
of l bits, we denote with πt(x) the string (x1, ..., xT ) where T = min(|x|, t).
We reserve calligraphic notation for sets. In particular we denote with K,N ,
IV, A, M, T W, T , X and C respectively the key space, nonce space, iv-space,
associated data space, message space, tweak space, tag space, input space of the
MAC and the ciphertext space. We suppose thatM = A = {0, 1}∗, that is, these
spaces contain all the finite binary strings. We suppose that C ⊆ {0, 1}∗.
Given the set Y, we write y ← Y to denote the uniformly random selection of y
in Y.
We reserve sans serif (Alg) notations for algorithms. If the algorithm Alg is
probabilistic, we can think of its output as a distribution. We denote with a←
Alg(b, c, d) the fact that we sample from the distribution induced by algorithm
Alg on inputs (b, c, d), and we obtain a. We may write part of the arguments
of the algorithm as subscripts or superscripts, that is, Algcb(d) = Algb(c, d) =
Alg(b, c, d).
A (q, t)-adversary A is a probabilistic algorithm which can make at most q queries
to the oracle(s) he is granted access to, and runs in time bounded by t.
Let algorithm Alg be an algorithm whose inputs are in S1× · · · × Sn and whose
output is in Y. We say that algorithm Alg does not reveal, via the length of its
output, any information about its inputs apart from their lengths if there exists
a deterministic function f : Nn 7−→ N s.t. |y| = f(|s1|, ..., |sn|) for all possible
inputs (s1, ..., sn). We assume that all the Enc and AEnc algorithms we use have
this property.
Given a game, where the adversary A is allowed to query many oracles, we use
a single counter for all the queries made by adversary A, during the game. The
oracle ⊥(·, ·) always answers ⊥. When an adversary is playing a game where
he has access either to an oracle implemented with algorithm Alg(·, ·) or the
oracle $(·, ·) it means that the oracle $(·, ·) answers a random bit string of length
|Alg(·, ·)|.
We write Pr[B;A1, A2, ...] for the probability of event B after the experiment
described by steps A1, A2, ... .

2.2 Pseudorandom functions (PRF)

We now define the PRF-security notion, the base of many cryptographic primi-
tives:

Definition 1. A function F : K×M 7−→ T is a (q, t, ε)-pseudorandom function
(PRF) if for every (q, t) adversary A, the advantage :

AdvPRF
F (A) := |Pr[AFk(·) ⇒ 1 ]−Pr[Af(·) ⇒ 1 ]|

4



is upper bounded by ε where k and f are chosen uniformly at random from their
domains, namely K and the set of functions from M to T , FUNC(M, T ).
In a similar way, F is a pseudorandom permutation (PRP) if Fk is a permutation
and the above advantage is ε bounded when f is selected as a random permutation.

We remind that a PRP is a PRF (see Proposition 3.27 [15]).
In some of our constructions, we will also use tweakable pseudorandom func-

tions [20]. They are PRFs with an additional input, the tweak: E : K × T W ×
M 7−→ T , and their security advantage is then defined as AdvTPRF

E (A) :=
AdvPRF

F (A) where F(k, (tw,m)) := E(k, tw,m). In a similar way, tweakable pseu-
dorandom permutations require that E is indistinguishable from a random per-
mutation for any choice of k and tw.

2.3 Nonce-based Authenticated Encryption (nAE) and Encryption
(nE and ivE) schemes

For the syntax of encryption schemes we follow the approach of Namprempre
et al. [25] (taken by the work of Rogaway [34]) where the encryption algorithm
is deterministic and an “initialization vector”(IV) iv is surfaced (and it may be
seen as part of the AD [35]). Using this approach we classify encryption schemes
according to the requirements of this extra input to provide CPA-security.

Definition 2 ([25]). A scheme for nonce-based authenticated encryption (nAE)
is a triple Π := (K,AEnc,ADec), where the keyspace K is a nonempty set, the
encryption algorithm AEnc is a deterministic algorithm which takes as input the
tuple (k, n, a,m) ∈ K×N ×A×M and outputs a string c← AEncn,ak (m) called
ciphertext.
The decryption algorithm ADec is a deterministic algorithm which takes as input
the tuple (k, n, a, c) ∈ K×N×A×C and outputs m← ADecn,ak (c) which is either
a string m ∈M or the symbol ⊥ (”invalid”).
We require that the algorithms AEnc and ADec are the inverse of each other,
that is:

– (Correctness) if AEncn,ak (m) = c then ADecn,ak (c) = m
– (Tidiness) if ADecn,ak (c) = m 6=⊥ then AEncn,ak (m) = c

If ADecn,ak (c) =⊥ we say that the algorithm rejects c, otherwise it accepts c.
A sloppy nAE scheme satisfies everything but the tidiness condition.
A nonce-based Encryption scheme (nE) is a triple Π = (K,Enc,Dec), where
Enc and Dec do not take input the AD, that is, Enc : K × N ×M 7−→ C and
Dec : K ×N × C 7−→M.
An iv -based encryption scheme ivE is synctactically equivalent to a nE scheme,
with the only difference that the nonce space N is replaced with an IV space IV.

Tidiness, as correctness, is usually seen as a syntactic requirement (for ex-
ample Namprempre et al., [25]). Instead, in this paper, we show an explicit case
where this property is fundamental to provide security (see Section 7.1).
Paterson et al. [28] defined the ”collision-resistant decryption” (CRD), which is
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a security property. Tidy schemes are inherently CRD-secure, since there is one
and only valid ciphertext for each input, but the converse is not valid (because
CRD-security is obtained when adversaries are able to break it with negligible
probability, while tidiness always works).

The difference between nE schemes and ivE schemes lies in their security
requirements. A complete survey about nAE, nE and ivE schemes can be found
in Supp. Mat. A.

2.4 Security for nAE, nE and ivE schemes

The security definitions for nAE, nE and ivE schemes are inspired from those
in [25] and [35].

Definition 3. A nonce-based authenticated encryption scheme (nAE) Π := (K,
AEnc, ADec) is (q, t, ε)-nAE-secure if the advantage

AdvnAEΠ (A) :=
∣∣∣Pr
[
AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ (1)

is bounded by ε for every (q, t)-adversary A that respects the following two con-
ditions: (i) If A queried the first (encryption) oracle on input (n, a,m) and was
answered c, then he is not allowed to query the second (decryption) oracle on
input (n, a, c). (ii) A is not allowed to repeat the first component (the nonce) on
different left oracle queries.
Π is (q, t, ε)-nAE− E secure, if the advantage

AdvnAE−EΠ (A) :=
∣∣∣Pr
[
AAEnck(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]∣∣∣ (2)

is bounded by ε for every (q, t)-adversary A that respects Condition (ii) above.
A nonce-based encryption scheme (nE) Π := (K,Enc,Dec) is (q, t, ε)-nE-

secure if the advantage,

AdvnEΠ (A) :=
∣∣∣Pr
[
AEnck(·,·) ⇒ 1

]
− Pr

[
A$(·,·) ⇒ 1

]∣∣∣ (3)

is bounded by ε for every (q, t)-adversary A that respects Condition (ii) above.
An iv-based encryption scheme ivE Π := (K,Enc,Dec) is (q, t, ε)-ivE-secure

if the advantage

AdvivEΠ (A) :=
∣∣∣Pr
[
AEnc$k(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]∣∣∣ (4)

is bounded by ε for every (q, t)-adversary. Here the oracle Enc$(m) picks a ran-
dom iv ← IV, then computes c← Enck(iv,m) and returns (iv, c).

As a result of this definition, the only difference between ivE and nE security
is the requirement on their auxiliary input: non-repeating nonces for nE and ran-
dom ivs for ivE. We observe that ivE-security implies nE security when uniformly
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random ivs are expected to differ with overwhelming probability. The contrary
does not hold: the CTR mode is well-known illustration (details are provided in
Supp. Mat. G.1).

In some cases, it is desirable to guarantee some security even if nonces are
repeated: this is called resistance to nonce misuse, or simply misuse resistance.

Definition 4. If we drop Condition (ii) on the non repetition of the nonces
in the nAE (resp. nE) security definitions, then we augment the security notions
with misuse resistance. Namely, we say that the nAE (resp. nE) scheme is (q, t, ε)-
mrAE (resp. (q, t, ε)-mrE) secure.

We point out that in the mrE definition the adversary has only access to an
encryption oracle. An example of an nE scheme which is mrE and not mrAE is
given in Supp. Mat. H.
The mrE definition is trivially extended to ivE schemes, since the syntax of nE
schemes and ivE schemes is identical.

2.5 Chosen-plaintext attack security with chosen nonce

We define mCPA security for nE and ivE schemes in the multi-challenge setting,
following [15], [6]. This security notion is implied by the ivE, nE, and nAE security
notions, and is equivalent to the more common single-challenge notion (details
are provided in Supp. Mat. A.5 and A.6).

Definition 5. A nonce-based Encryption scheme nE Π = (K,Enc,Dec) is (q, t, ε)-
mCPA secure, or (q, t, ε)-secure against chosen plaintext attacks for multiple en-
cryptions, if:

AdvmCPA
Π (A) :=

∣∣∣∣12 − Pr
[
b′ = b; b← {0, 1}, b′ ← AEncbk(·,·,·)

]∣∣∣∣
is bounded by ε for any (q, t)-adversary. Here the oracle Encbk(·, ·, ·) is an oracle,
which on input (n,m0,m1) ∈ N ×M2 outputs c ← Enck(n,mb) for a random
secret bit b← {0, 1}, which the oracle has picked at the start of the game. When
the adversary A queries Encbk(·, ·, ·), he must choose two messages m0 and m1 s.t.
|m0| = |m1|. Moreover he cannot repeat the first input (the nonce) in different
queries.

There is a completely similar definition for ivE schemes. We only have to
replace Encbk(·, ·, ·) with Encb,$k (·, ·), and to adapt the $(·, ·, ·) oracle accordingly.
Similarly there is a similar notions for nAE schemes, obtained from the previous
one by replacing Enck(·, ·) with AEnck(·, ·, ·) and adapting $(·, ·, ·) accordingly.

2.6 Authenticity (INT-CTXT)

Following Bellare et al. [6], we focus on the notion of ciphertext integrity with
a single decryption query. Several variants are available in the literature, which
we present and prove to be equivalent in Supp. Mat. A.7.
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Definition 6. A nonce-based authenticated encryption scheme nAE Π = (K,
AEnc, ADec) is (q, t, ε)-INT-CTXT1(Ciphertext integrity with only 1 decryption
query)-secure if

AdvINT-CTXT1Π (A) := Pr
[
⊥6= m∗ ← ADeck(n∗, a∗, c∗); (n∗, a∗, c∗)← AAEnck(·,·,·)

]
is bounded by ε for every (q, t) adversary. The adversary A is not allowed to
repeat the first component (the nonce) on different oracle queries. Moreover he
is not allowed to output (n∗, a∗, c∗) if he received c∗ as c∗ ← AEnck(n∗, a∗,m∗)
for a certain input (n∗, a∗,m∗) that he asked to the first oracle.

As we can expect, an nAE scheme that offers both mCPA and INT-CTXT1
security is an nAE scheme, and we prove this in Supp. Mat. A.7.

2.7 Message Authentication Code (MAC)

Apart from an encryption scheme, all our composition modes are based on a
deterministic notion of Message Authentication Code (MAC).

Definition 7. A Message Authentication Code MAC is a triple Π = (K,Mac,Vrfy)
where the keyspace K is a non-empty set, the tag-generation algorithm Mac is
a deterministic algorithm that takes as input the couple (k,m) ∈ K ×M and
outputs the tag τ ← Mack(m) from the tag space T . The verification algorithm
Vrfy takes as input a triple (k,m, τ) in K ×M× T and outputs > (accept) or
⊥ (reject). We ask that Vrfy(k,m,Mac(k,m)) = >.
A string-input MAC strMAC has as input space a set of strings, that is M ⊆
{0, 1}∗.
A vector-input MAC vecMAC has as input space M which has one or more
component and it can accept tuples of strings as input.

Usually the security for MACs is expressed as unforgeability, but our compo-
sition modes rely on a Mac function that is a (q, t, εPRF)− PRF.

Definition 8. ([25]) A MAC Π = (K,Mac,Vrfy) is (q, t, ε)− PRF-secure if

AdvPRF
Π (A) := AdvPRF

Mac (B)

is bounded by ε for any (q, t) adversary B and if Vrfy(k,m,Mac(k,m)) = > iff
τ = Mac(k,m).

For completeness, the standard definitions are put in Supp. Mat. A.9.

3 Problem

As discussed earlier, Namprempre et al. [25] left open the problem of the nAE
security of 4 modes based on the Tag-then-Encrypt paradigm, which have been
shown in Fig. 1.

Formally, the first three modes compose an ivE scheme Π = (KE ,Enc,Dec)
and two vecMAC schemes using the same key, MACIV = (KM ,MacIV,VrfyIV) and
MACTag = (KM ,MacTag,VrfyTag) in this way:
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– A10: AEncn,akE ,kM (m) := c with iv = MacIVkM (n, a), τ = MacTagkM
(a,m) and

c = EnckE (iv,m||τ)

– A11: AEncn,akE ,kM (m) := c with iv = MacIVkM (n, a), τ = MacTagkM
(m) and c =

EnckE (iv,m||τ)

– A12: AEncn,akE ,kM (m) := c with iv = MacIVkM (n), τ = MacTagkM
(a,m) and c =

EnckE (iv,m||τ)

The fourth mode composes a nE Encryption scheme Π = (KE ,Enc,Dec) and a
vecMAC = MAC = (KM ,Mac,Vrfy):

– N4: AEncn,akE ,kM (m) := c with τ = MacTagkM
(a,m) and c = EnckE (n,m||τ)

For clarity we reserve bold notations m for the messages inputs of the nAE
scheme Π and normal notations m for the messages inputs to the underlying
nE (or ivE)-scheme Π (so, we typically have that m = m‖τ).

If Π is tidy and the MAC is PRF-secure, then the AE scheme Π, obtained
composing these components, is tidy. These modes also offer CPA security, which
directly results from the underlying encryption schemes (a proof of this statement
is available in Supp. Mat. Thm. 3 and 4).

As a result, the open question lies in the INT-CTXT security of these modes.

4 Attack against mode N4

We provide here an attack against the mode N4, explicitly presenting an nAE-
schemeΠ, based on an nE Encryption schemeΠ = (KE ,Enc,Dec) and a vecMAC
MAC = (KM ,Mac,Vrfy) which is PRF-secure. For simplicity, we consider only
the case when the message m ofΠ isN -bit long and the tag isN -bit long, leaving
the general case to Supp. Mat. D. The nE Encryption scheme, which encrypts
2N -bit long message, is nE-secure and tidy, but the nAE-scheme Π obtained
composing them according to mode N4, is not secure and, in particular, it is not
INT-CTXT1-secure as we show a forgery.
The idea of the forgery is to force the tag τ of a couple (a,m) to be encrypted
identically for two different nonces, while keeping the nE-security.

4.1 Construction

Following the definition of mode N4, an authenticated ciphertext is computed
as c = EnckE (n,m||MackM (a,m)), for which Mac is a PRF. We now define the
nE scheme Π.

The keys produced in Π are made of two components (k, v∗): the key k ∈ K
of a TPRF E and a random value v∗, which has the size of block of E, that
is, N bits. This value v∗ will be leaked to Adv when asking for the encryption
of a message with the nonce n = 1, and will then be used to trigger a kind of
Trojan in the encryption scheme. That Trojan will have the following behavior:
for nonces n = 1, 2, and if the first message block is v∗, then the last ciphertext
block will be computed in a way that ignores the value of n.
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This behavior is benign when considering the nE security of Π: the only way
to observe it would be to make two encryption queries with nonces 1 and 2, and
first message block v∗. But doing this would require guessing v∗ before querying
with nonce 1 (the nE adversary is nonce respecting), and this cannot be done
but with probability 2−N : it would require guessing v∗.

As we will see, it is not benign anymore when considering the ciphertext
integrity property: there, Adv is free to use the nonces 1 and 2 in its decryption
query, even if these nonces were used in encryption queries.

To make things concrete, we define the encryption process Enc of Π using
a TPRF E : K × T W × {0, 1}N 7−→ T = {0, 1}N with tweak space T W =
{0, 1, 2}×{0, 1}. For a messagem = (m1,m2) ∈ {0, 1}2N , the ciphertext Encnk (m)
is made of three blocks (c0, c1, c2) computed as follows:

– c0 = E
(0,0)
k (n) unless n = 1, in which case c0 := v∗.

– c1 = m1 ⊕ E
(1,0)
k (n).

– c2 = m2⊕E
(2,0)
k (n), unless the condition [(n = 1∨n = 2)∧m1 = v∗] is met,

in which case c2 = m2 ⊕ E
(2,1)
k (0).

With such a definition, the block c0 looks random for any input, and its only
purpose is to leak v∗ when n = 1. The block c1 is a traditional encryption of the
message block m1 using the TPRF E. The block c2 is computed in the same way
(just incrementing the tweak), except under a very specific condition: the nonce
is either 1 or 2, and the first message block m1 = v∗. Under that condition,
the ciphertext block becomes independent of the nonce. As explained above,
this condition is designed in such a way that it cannot lead to any observable
event when Adv can only access an encryption oracle in a nonce respecting way:
that would require querying Enc on a message starting with v∗ on both n = 1
and n = 2, but v∗ is only learned after a query with n = 1, and it is then not
permitted to make a second query with n = 1 and v∗ as message block.

The decryption of Π works in the natural way. In particular, in order to guar-
antee the tidiness of the nE encryption scheme, Dec must verify the correctness
of the first ciphertext block c0.

The proofs that Π is nE-secure (Prop. 10) and tidy (Prop. 11) can be found
in Supp. Mat. F.2.

4.2 Forgery

The composition of the previous nE scheme Π with a PRF-secure MAC according
to mode N4 is not INT-CTXT1-secure. In fact, we provide a forgery where the
adversary A asks the encryption of only two messages:

1. It first asks for an encryption of (1, a,m), for arbitrary choices of a and
m. This returns a ciphertext whose first block is v∗, second block is c1 =

m⊕ E
(1,0)
k (1), and third block is ignored.

2. It then asks for an encryption of (2, a, v∗). This returns a ciphertext whose

last block is c2 = MackM (a, v∗)⊕ E
(2,1)
k (0).
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Eventually, Adv makes a decryption query on (1, a, (v∗, c1 ⊕ m ⊕ v∗, c2)),
which is different of the two previously obtained ciphertexts, and has a valid
decryption to v∗, hence violating the ciphertext integrity property.

This shows that N4 is not a secure composition mode, in general.

5 Security relations among A10, A11 and A12

While we are able to prove the generic insecurity of N4, we are not able to prove
that modes A10,A11 and A12 are either secure or insecure in general. Still, in
this section, we prove that these three modes are either all secure or all insecure.

To prove it we need to replace the two vecMACs vecMACIV and vecMACTag

with two vecMACs based on the random functions f IV and fTag. Now the key of
the new nAE scheme is k := (kE , f

IV, fTag). To highlight these changes, we call
the new modes A10,A11 and A12 and the new nAE-schemes Π. The security
relations among modes A10,A11 and A12 immediately lift to modes A10,A11
and A12. The standard details are discussed in Appendix F.3 (Lemma 3).

We show the security equivalence of A10, A11 and A12 based on two events,
B and C, that we define below. Consider a INT-CTXT1 adversary A against an
nAE scheme Π (which is made according to any of A10, A11 or A12). If the q-th
decryption query (nq, aq, cq) is valid, then cq = AEnck(nq, aq,mq) for a certain
message mq, as a result of tidiness. Depending on the value of (nq, aq) (or only
nq for A12), we distinguish between two possibilities, which define event B:

– (nq, aq) is fresh, that is, (nq, aq) 6= (nj , aj) ∀j = 1, ..., q−1 (we call this event
B) [for mode A12, we only demand that nq is fresh, that is nq 6= nj ∀j =
1, ..., q − 1].

– (nq, aq) = (nj , aj) for a j ∈ {1, ..., q − 1} (This j is unique since the nonce
n cannot be repeated) [for mode A12, we only demand that nq = nj for a
j ∈ {1, ..., q − 1}].

With regard to (aq,mq) (or only mq for mode A11), we again consider two
possibilities, which define event C:

– (aq,mq) is fresh, that is (aq,mq) 6= (aj ,mj) ∀j = 1, ..., q − 1 (we call this
event C) [for mode A11, we only demand that mq is fresh, that is mq 6=
mj ∀j = 1, ..., q − 1].

– (aq,mq) = (aj ,mj) for some j ∈ {1, ..., q−1} (there can be several such j’s)
[for mode A11, we only demand mq = mj for some j ∈ {1, ..., q − 1}].

Clearly by total law of probability

Pr[A wins] = Pr[A wins ∩ C] + Pr[A wins ∩B ∩ C] + Pr[A wins ∩B ∩ C]

With the following lemma we treat the first two addends of the previous
equation:
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Lemma 1. Let f IV : N × A 7−→ IV [for mode A12, f IV : N 7−→ IV ] and
fTag : A×M 7−→ T [for mode A11, fTag :M 7−→ T ] be two random functions
and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption scheme. Let Π
be the nAE scheme obtained composing f IV, fTag and Π according to mode A10
or A11 or A12. Then we can bound

Pr[A wins ∩ C] + Pr[A wins ∩B ∩ C] ≤ q|T |−1 + (q − 1)εivE

The proof is completely standard and can be found in Supp. Mat. F.3 (the
ideas of this proof are already present in Namprempre et al. [25]. The proofs of
the security implications between the 3 “A” modes then results from implications
in the case A wins ∩B ∩ C, which we examine in the rest of this section.

In order to make our notations more precise, if either f IV or fTag have different
signatures for two modes that we compare, we use a subscript to denote the mode
that is used (e.g. f IV10 for mode A10).
In some proves we use hash function and their collision resistance, for more
details about this see Katz and Lindell [15] or Supp. Mat. A.10.

5.1 The INT-CTXT1-security of A12 implies the INT-CTXT1-security
of A10

Proposition 1. Let f IV10 : N × A 7−→ IV and fTag : A ×M 7−→ T be two
random functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure en-
cryption scheme. Then, if mode A12 implemented with the random function
f IV12 : N 7−→ IV is (q − 1, t, εINT-CTXT1)-INT-CTXT1-secure then mode A10
is (q − 1, t, q|T |−1 + (q − 1)εivE + εINT-CTXT1)-INT-CTXT1-secure

The proof can be found in Supp. Mat. F.3.
Let f ′IV12 : N × A 7−→ IV be defined f ′IV12(n, a) := f IV12(n) ∀n ∈ N , a ∈ A
(it is an extension of f IV12). The proof is based on the fact that it is impossible
using only encryption queries to mode A10 to distinguish if it is used f IV10 or
f ′IV12 (as in mode A12), since it is not possible for the adversary A to force the
nAE algorithm to call f IV10 on inputs (n, a1) and (n, a2) (with a1 6= a2) during
encryption queries. Moreover, the couple (nq, aq) of the decryption query must
not be fresh (due to event B), thus, using f ′IV12 is indistinguishable from using
f IV10 .

5.2 The INT-CTXT1-security of A11 implies the INT-CTXT1-security
of A10

Proposition 2. Let f IV : N ×A 7−→ IV and fTag10 : A×M 7−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let H : A 7−→ {0, 1}N be a (0, t, εcr) collision resistant hash function.
Then, if mode A11, implemented with the random function fTag11 :M 7−→ T and

with any (q, t, εivE+ q2

2|IV| )−ivE-secure Encryption scheme, is (q−1, t, εINT-CTXT1)-

INT-CTXT1-secure then mode A10 is (q − 1, t, ε)-INT-CTXT1-secure, where

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.
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The complete proof can be found in Supp. Mat. F.3.
The idea is to reduce the INT-CTXT1 adversary A against scheme Π (mode
A10), which uses the ivE scheme Π, to a INT-CTXT1 adversary C against
scheme Π ′ (mode A11), which uses the ivE scheme Π ′. When the adversary
A makes an encryption query (ni, ai,mi) the adversary C makes an encryption
query (ni, ai,m′i) with m′i = H(ai)‖mi. The ivE scheme Π ′ encrypts m′i =
(H(ai)‖mi[= mi‖τ i]) in this way: Enc′(m′i) := H(ai) ⊕ fEnc(ivi)‖Enc(ivi,mi),
where fEnc is a random function (and it is part of the key the scheme Π ′). When
the adversary A makes his decryption query (nq, aq, cq) the adversary C simply
asks the decryption of (nq, aq,

[
fEnc(ivq)⊕ H(aq)

]
‖cq) (the ivq must be not fresh

due to event B).

5.3 The INT-CTXT-security of A10 implies the INT-CTXT-security
of A12

Proposition 3. Let f IV12 : N 7−→ IV and fTag : A ×M 7−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let Π be the nAE-scheme obtained composing these components accord-
ing to mode A12. Let H : A 7−→ {0, 1}N be (0, t, εcr).
Then, if mode A10, implemented with the random function f IV10 : N ×A 7−→ IV
and with any (q, t, εivE+ q2

2|IV| )−ivE-secure Encryption scheme, is (q, t, εINT-CTXT1)-

INT-CTXT1-secure then mode A12 is (q − 1, t, ε)-INT-CTXT1-secure with

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.

The complete proof can be found in Supp. Mat. F.3.
The idea of the proof is similar to the previous one (Propo. 2), where we replace
mi with m’i = (H(ai‖mi).

5.4 The INT-CTXT-security of A10 implies the INT-CTXT-security
of A11

Proposition 4. Let f IV : N × A 7−→ IV and fTag11 : M 7−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let Π be the nAE scheme obtained composing these components accord-
ing to mode A11. Let H : A 7−→ {0, 1}N be a (0, t, εcr)-collision resistant hash
function.
Then, if mode A10, implemented with the random function fTag10 : A×M 7−→ T ,
is (q, t, εINT-CTXT1)-INT-CTXT1-secure then mode A11 is (q−1, t, ε′)-INT-CTXT1-
secure with

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.

The complete proof can be found in Supp. Mat. F.3.
The idea is to reduce the INT-CTXT1 adversary A against scheme Π (mode
A11) to a INT-CTXT1 adversary C against scheme Π10 (mode A10). When the
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adversary A makes an encryption query (ni, ai,mi), the adversary C makes an
encryption query (ni‖H(ai), a,mi). When the adversary A makes his decryption
query (nq, aq, cq) the adversary A′ simply asks the decryption of (nq‖H(aq), a, cq).

6 Secure variants of modes N4, A10, A11 and A12

As a step towards the proof of the generic (in-)security of A10, A11 and A12,
we consider two natural conditions on the ivE scheme that are sufficient to guar-
antee a secure composition. More precisely, we show that, if the ivE scheme is
misuse resistant or if it is “message-malleable” (a condition that is satisfied by
many standard modes, and that we formalize precisely below), then these modes
are secure. Interestingly, these two properties are the two extreme of the range
(clearly, it is impossible for a scheme to have both properties).

We prove everything only for mode A10, since the proofs can be straight-
forwardly extended to the other two modes. In this section we use the same
replacement as in the previous one (we replace mode A10 with mode A10). Sur-
prisingly, we prove the same results for mode N4.

Then, we conclude this section, comparing our partial results about the (in)-
security of modes A10, A11 and A12 with those of Namprempre et al. [25].

6.1 Misuse-resistant ivE scheme

Proposition 5. Let the ivE scheme Π be a (q, t, εmrE)-misuse resistant mrE and
(q, t, εivE) − ivE secure, let f IV : N × A 7−→ IV and fTag : A ×M 7−→ T be two
random functions. Then, the scheme Π obtained composing these components
according to mode A10, is (q − 1, t, (q − 1)|T |−1 + (q − 1)εivE + (q − 1)εmrE) −
INT-CTXT1-secure.

The details of the proof are available in Supp. Mat. F.4. As seen above, we
only need to consider the case not studied in Lemma 1. The idea of the proof is
to reduce the INT-CTXT1 adversary to a mrE-adversary. Since we are not in the
cases studied in Lemma 1, the couples (nq, aq) and (aq,mq) are not fresh, and it
is enough for the mrE adversary to ask one more encryption query guessing that
the message encrypted mq‖τ q is one of the message the INT-CTXT1 adversary
has already asked to encrypt with the same AD aq (that is, mq ∈ Maq where
Maq := {mi i = 1, ..., q − 1 s.t.ai = aq}). If the ciphertext obtained is the
ciphertext cq that he is asked to decrypt, then he outputs 1 and, otherwise, 0.
The mrE adversary wins only if he guesses correctly and he can guess correctly
at most with probability (q − 1)−1.
Allowing the mrE adversary to ask (2q − 2) encryption queries the scheme A10
would be (q, t, 2q−1|T | + 2εmrE) − INT-CTXT1-secure, because the mrE adversary

may try every possible message in Maq (see for more details Supp. Mat. F.4
Propo. 12).
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We remember that for the misuse-resistance of Enc (Def. 3) the adversary has
only access to encryption queries.

6.2 “Message-malleable” nE scheme

Definition 9. A nonce-based encryption scheme nE Π = (K,Enc,Dec) is message-
malleable if, given an encryption c of a message m with nonce n, an adver-
sary can efficiently decrypt all couples (n, c′), i.e., he is able to compute m′ s.t.
m′ ← Deck(n, c′) without having access to a decryption oracle.

The same definition may be done for ivE schemes. Many standard schemes (as
CTR and OFB [15]) have this “insecurity” property when they are used for
fixed length messages. We detail some examples in Supp. Mat. G. Message-
malleability is easy to prove in many cases, e.g., when the ciphertext c =
Encivk (m) is computed as a pseudorandom bitstream r computed from the iv and
it is XORed with the message m (that is, c = r⊕m), then Decivk (c′) = c⊕c′⊕m.

Message-malleability allows us to prove the following proposition for A10,
which can be easily extended to modes A11 and A12).

Proposition 6. Let the ivE scheme Π be (q, t, εivE)-ivE-secure, (q− 1, t, εmCPA)-
mCPA-secure and “message-malleable”, let f IV : N × A 7−→ IV and fTag : A ×
M 7−→ T be two random functions. Then, the scheme Π obtained composing
these components according to mode A10, is (q, t, (q−1)εivE +q|T |−1 +8εmCPA)−
INT-CTXT1-secure.

The details of the proof are available in Supp. Mat. F.4.
Again, we only need to consider the case that is not covered by Lemma 1. The
idea of the proof is to reduce the INT-CTXT1 adversary to an mCPA-adversary.
Since we are not in the cases studied in Lemma 1, the couples (nq, aq) (thus ivq)
and (aq,mq) are not fresh. The mCPA adversary, when he is asked to simulate
the AEnc oracle on input (ni, ai,mi) simply computes ivi and τ i using the ap-
propriate functions and asks his Enc oracle on input (ivi,mi‖τ i,mi‖ri) where ri

is a random value picked in T , receiving ci which he forwards to the INT-CTXT
adversary. When this latter adversary outputs (nq, aq, cq), the mCPA adversary
computes ivq, which, due to the fact that we are in the case not covered by
Lemma 1, is ivj for a j ∈ {1, ..., q − 1}. Now using the fact that Π is “nonce-

message-malleable”, he can decrypt cq as if ci = Enciv
i

kE (mi‖τ i). He outputs 0 if

the decryption query is valid, 1 otherwise. We observe that if ci = Enciv
i

kE (mi‖ri)
the decryption query may be valid with probability |T |−1 since the tags have
never been used before the decryption query.

6.3 Extension to N4

Surprisingly, although mode N4 is not secure in general (see Sec. 4), if the nE
scheme is either misuse-resistant or message-malleable, mode N4 is INT-CTXT1-
secure and, thus, nAE secure. It is easy to prove easily adapting the proofs of
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Propo. 5 and Propo. 6 to the nE case (Prop. 13.
This implies that for N4 it is capital that the adversary can efficiently decrypt
everything. In fact, the nE scheme used in Sec. 4 is message-malleable except in
the case if n = 1 or 2 when trying to decrypt or encrypt (v∗, ·).

6.4 Comparison to Namprempre et al. [25]

Namprempre et al. [25] gave partial results using the Knowledge-of-Tag property
(KoT) (introduced in Supp. Mat. B). That is, adversaries must forge without
any (extractable) knowledge of the tag used in the decryption query [25].
With respect to their work, although the main ideas of the proofs are very
similar, it is much easier to prove that a scheme is mrE or message-malleable,
than to prove that a scheme is KoT-secure (while it may be easy to prove that
it is not KoT-secure). In fact, to prove that a scheme is message-malleable it is
enough to provide an algorithm which efficiently computes the result. On the
other hand to prove that a scheme is not message-malleable (a part from proving
that it is mrE), it must be proved that all efficient adversaries are not able always
to decrypt. Similarly to prove the KoT security it must be proved that for all
possible efficient extractors the scheme has this property, while to prove that a
scheme is not KoT secure, it is enough to provide a counterexample.

7 Insecure variants of modes A10, A11 and A12

While, in the previous section, we proved the security of A10, A11 and A12
by making some extra requirements on the ivE scheme, this section considers
the relaxation of some of the requirements on ivE that makes these 3 modes to
become insecure. More precisely, we show how to compute forgeries against the
INT-CTXT property of mode A10 when the ivE scheme is non tidy or stateful.
These attacks imply that the three modes are not nAE-secure, when implemented
with such schemes.

7.1 Tidiness as a security property

Given an IV-based encryption Π = (K,Enc,Dec), our idea is to turn Π into a
sloppy IV-based scheme. This modification augments the ciphertext c = Enck(iv,m)
with c′ = Enck′(iv,m), leading to a double and independent encryption m with
the same iv. It is easy to see that, for random iv, the new scheme has pseu-
dorandom ciphertext C = (c, c′) as long as Π has pseudorandom ciphertext,
(that is, if Π is ivE-secure). However, given iv, if we define the decryption of
C = (c, c′) simply as Deck(iv, c) without any validity consideration on c′, the
new scheme is not tidy whether Π is tidy or not. Therefore, since the c′ part of
C is “out of control”, any ciphertext C ′ = (c, c′′) decrypts to m and is deemed
valid. Moreover, the A10 composition mode with two PRF-secure vecMACs does
not rule out this malleability so that we can build a forgery with a single en-
cryption query. Dropping the tidiness requirement of ivE, and then of nAE, is
thus sufficient to leave a security breach in the resulting nAE.
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More formally, we build Π ′ = (K,Enc′,Dec′) with keyspace K2, message
space M and ciphertext space C2 as follows: Enc′(k,k′)(iv,m) outputs C = (c, c′)

where c = Enck(iv,m) and c′ = Enck′(iv,m); Dec′(k,k′)(iv, C) parses the cipher-
text as C = (c, c′) and outputs m = Deck(iv, c). For any c′′ 6= c′, we have
Enc′(iv,Dec′(iv, (c, c′′))) = (c, c′) 6= (c, c′′) so that Π ′ is not tidy.

Let nAE be the authenticated encryption obtained from the A10 mode whose
ciphertext has the form C = (c, c′) where c = Enck(iv,m‖τ) and c′ = Enck′(iv,m‖τ)

with iv = MacIVkM (n, a) and τ = MacTagkM
(a,m). Now, we consider the forger

A which makes a single encryption query on any triple (n, a,m) and receives
back C = (c, c′) as above. Then, A picks any (samplable) c′′ ∈ C distinct
of c′ and outputs C? = (c, c′′). Following the description of the A10 mode
we find that the decryption starts by running iv = MacIVkM (n, a) and then

Dec′(k,k′)(iv, C
?) = Deck(iv, c) = m‖τ . Finally, since the check τ = MacTagkM

(a,m)
passes m 6= ⊥ is returned although C? 6= C.

Message-malleability. In order to further emphasize the crucial role of the tidi-
ness in the insecurity of the authenticated encryption based on Π ′, we stress that
if the underlying IV-based scheme Π is tidy and message-malleable (Def. 9), the
A10 composition implemented with Π leads to an nAE-secure scheme (as shown
in Sec. 6.2). However, even if Π ′ is not tidy, it is easy to see that Π ′ remains
message-malleable while we proved that it never leads to a nAE-secure scheme.
As a summary, (non) tidiness alone has an intrinsic propensity to degrade the
nAE-security of the AEnc based on the Tag-then-Encrypt paradigm.

7.2 Forgery against stateful A10, A11 & A12

In stateful AE schemes the AEnc and ADec algorithms receive at the start of
the game an additional input, the state, which is updated during every call and
kept in memory to be reused in the following call. The scheme we use has a
stateless ADec algorithm, that is, it does not use the state and every reordering
and omission is tolerable (L0 of Rogaway et al. [36]). (for more details see Supp.
Mat. F.5). With respect to their work we allow the adversary to choose the
state at the start of the game.

The idea of this forgery is to use the state, which in our case is simply a
counter of the encryption queries, as the nonce was used in the attack against
mode N4 (Sec. 4). At the end of the section we discuss the meaning of tidiness
for stateful schemes.

The ivE we present is an adaptation of the nE scheme used in Sec. 4. As there,
we present it only for N-bit long message, leaving the general case in Supp. Mat.
‘E. The main changes are:

– We use a TPRP E : K × T W × {0, 1}N 7−→ {0, 1}N instead of a TPRF.
– A new block c−1 is added to the ciphertext, in order to give the decryption

algorithm the actual value of the counter ctr which is an internal state only

of the encryption device, and c−1 = E
(0,1)
k (ctr). The Dec algorithm inverts
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this to retrieve the correct ctr. The block c−1 is random since it is always
obtained with different inputs (as long as the number of encryption queries
is << 2n).

– To compute this block, the TPRF E is called with a tweak (0, 1) that is never
used else

– The boxed if is triggered by the value of the counter ctr (not of the nonce)
and m

– The iv replaces the nonce n in the input of the TPRF E.

Note again that, due to mode A10, the messages which the nAE scheme Π can
encrypt, are N bits long, while those which Π can encrypt are 2N bits long. The
full details can be found in Supp. Mat. F.5 as well with the general scheme for
any message in {0, 1}∗.

The forgery is an easy adaptation of that presented in Sec. 4 (the full details
are in Supp. Mat. F.5).

The scheme Π is clearly ivE-secure (the details are in Supp. Mat. F.5), the
only important change with Sec. 4 is the fact that we have to consider also the
block c−1). Now we have to discuss what means for a stateful nAE (or nE or ivE)
scheme to be tidy.
For stateless nAE schemes the definition was given in Def. 12 (similarly for nE
and ivE): if ADecn,ak (c) = m 6=⊥ then AEncn,ak (m) = c.

Now if the nAE scheme is stateful it means that AEncn,ak (m) is no more de-

fined, because the state s may influence the output of AEnc
(·,·)
k (·). Thus, denoting

with S the set of possible states, we redefine tidiness as:

Definition 10. We say that an nAE scheme is tidy if ADecn,ak (c) = m then
c ∈ {AEncn,ak,s (m)}s∈S .

Similarly an nE (resp. an ivE) scheme is tidy if Decn,ak (c) = m (resp. Deciv,ak (c) =

m then c ∈ {Encn,ak,s (m)}s∈S (resp. c ∈ {Enciv,ak,s (m)}s∈S).

According with this new definition, the ivE scheme Π which we have just
used, presented in Fig. 7 is tidy, as it follows from a close inspection of the pseu-
docode provided, thus the nAE scheme Π is tidy.

We have also to redefine for stateful schemes all the notions presented in
Sec. 2. We do it allowing the adversary at the start of the game to set the state
of the scheme as he wishes.

8 Conclusion

In this paper we have studied four generic composition modes, N4, A10, A11
and A12, for building authenticated encryption for an encryption scheme and a
PRF MAC. The security of these four modes was left open in previous works,
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and three of them are the most efficient among the 180 possible modes based on
these building blocks.

We have proved that mode N4 is not secure in general, and that modes A10,
A11 and A12 have equivalent security. Moreover we have proved that if these
four modes are instantiated with many common schemes (like CTR, OFB) they
are all secure. Finally, we have showed that tidiness (again) and being stateless
can have a decisive impact on security, as the application of A10, A11 and A12
on untidy or stateful modes can lead to insecure solutions.

Our analysis still leaves as an open problem to decide if modes A10, A11,
and A12 are secure in general.
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Supplementary material

A Detailed background

A.1 Pseudorandom functions (PRF)

For completeness we represent the PRF section, expanding them:

Definition 1. A function F : K×M 7−→ T is a (q, t, ε)-pseudorandom function
(PRF) if for every (q, t) adversary A, the advantage :

AdvPRF
F (A) := |Pr[AFk(·) ⇒ 1 ]−Pr[Af(·) ⇒ 1 ]|

is upper bounded by ε where k and f are chosen uniformly at random from their
domains, namely K and the set of functions from M to T , FUNC(M, T ).
In a similar way, F is a pseudorandom permutation (PRP) if Fk is a permutation
and the above advantage is ε bounded when f is selected as a random permutation.

We remind that a PRP is a PRF (see Propo. 3.27 [15]).

A function, which is PRF-secure is often the base which encryption schemes
are based on (see, for example, [15]). To add more flexibility the notion of tweak-
able pseudorandom functions was introduced by Liskov et al. [20].

Definition 11. [20] A tweakable pseudorandom function E : K×T W×M 7−→
T is (q, t, ε)−TPRF ( tweakable pseudorandom)-secure if for every (q, t)−TPRF
-adversary A the advantage

AdvTPRF
E (A) :=

∣∣∣Pr
[
AEk(·,·) ⇒ 1

]
− Pr

[
Af(·,·) ⇒ 1

]∣∣∣
is bounded by ε for any (q, t) adversary.
Here f(·, ·) is a random function, that is a function picked uniformly at random
from the sets of all the functions having the same signature as Ek(·, ·).
If M = T and, for every k ∈ K and for every tw ∈ T W, the function Etwk (·)
is a permutation, E is called a (q, t, ε)-tweakable pseudorandom permutation
(TPRP). In the advantage expression, f(tw, ·) is then selected as an independent
random permutation on M for every value of tw.

There are many ways to build a TPRF from a PRF (and a TPRP from a
PRP), for example see [33], [23], [23], and [22] or directly [19], and [24].

A.2 Nonce-based Authenticated Encryption (nAE) schemes

Definition 12 ([25]). A scheme for nonce-based Authenticated Encryption
(nAE) is a triple Π := (K,AEnc,ADec), where the keyspace K is a nonempty
set, the encryption algorithm AEnc is a deterministic algorithm which takes as
input the tuple (k, n, a,m) ∈ K×N×A×M and outputs a string c← AEncn,ak (m)
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called ciphertext.
The decryption algorithm ADec is a deterministic algorithm which takes as input
the tuple (k, n, a, c) ∈ K×N×A×C and outputs m← ADecn,ak (c) which is either
a string m ∈M or the symbol ⊥ (”invalid”).
We require that the algorithms AEnc and ADec are the inverse of each other,
that is:

– (Correctness) if AEncn,ak (m) = c then ADecn,ak (c) = m

– (Tidiness) if ADecn,ak (c) = m 6=⊥ then AEncn,ak (m) = c

If ADecn,ak (c) =⊥ we say that the algorithm rejects c, otherwise it accepts c.
A sloppy nAE scheme satisfies everything but the tidiness condition.

Tidiness, as correctness, is usually seen as a syntactic requirement (for ex-
ample Namprempre et al., [25]). Instead, in this paper, we show an explicit case
where this property is fundamental to provide security (see Section 7.1).

Definition 13 ([25]). A nonce-based authenticated encryption scheme (nAE)
Π := (K,AEnc,ADec) is (q, t, ε)− nAE-secure if the advantage

AdvnAEΠ (A) :=
∣∣∣Pr
[
AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣
is bounded by ε for every (q, t)-adversary.
If the adversary A queried the first (encryption) oracle on input (n, a,m) and he
was answered c, the adversary A is not allowed to query the second (decryption)
oracle on input (n, a, c). Moreover the adversary A is not allowed to repeat the
first component (the nonce) on different left oracle queries.

If we want that the nAE scheme provides only privacy, we can use the fol-
lowing definition:

Definition 14. A nonce-based authenticated encryption scheme (nAE) Π :=
(K,Enc,Dec) is (q, t, ε)− nAE− E-secure if the advantage

AdvnAE−EΠ (A) :=
∣∣∣Pr
[
AAEnck(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]∣∣∣
is bounded by ε for every (q, t)-adversary.
The adversary A is not allowed to repeat the first component (the nonce) on
different oracle queries.

In our paper, as in Namprempre et al. [25], to obtain an authenticated en-
cryption scheme we combine an encryption scheme (either ivE or nE) and a MAC.
We present now these constructions along with their security properties, after
having introduced their key component, the PRFs.
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A.3 Encryption schemes (nE and ivE)

Definition 15 ([25]). A nonce-based Encryption scheme (nE) is a triple Π =
(K,Enc,Dec), where the keyspace K is a non-empty set, the encryption algo-
rithm Enc is a deterministic algorithm that takes as input the tuple (k, n,m) ∈
K ×N ×M and outputs a string c← Encnk (m).
The decryption algorithm Dec is a deterministic algorithm which takes as input
the tuple (k, n, c) ∈ K×N ×C and outputs either a string m ∈M or the symbol
⊥ (”invalid”).
As for nAE the properties of correctness and tidiness are required, making Enc
and Dec one the inverse of the other, that is, Decnk (Encnk (m)) = m and if
Decnk (c) 6=⊥, Encnk (Decnk (c)) = c.

We observe that an nAE scheme is an nE scheme: in fact it is enough to
consider as the nonce n′ := (n‖a) and it is syntactically an nE scheme.

Definition 16. A nonce-based encryption scheme (nE) Π := (K,Enc,Dec) is
(q, t, ε)− nE-secure if the advantage

AdvnEΠ (A) :=
∣∣∣Pr
[
AEnck(·,·) ⇒ 1

]
− Pr

[
A$(·,·) ⇒ 1

]∣∣∣
is bounded by ε for every (q, t)-adversary.
The adversary A is not allowed to repeat the first component (the nonce) on
different oracle queries.

If instead of a nonce, an iv is used, we have:

Definition 17 ([25]). An iv-based encryption scheme (ivE) is a triple Π =
(K,Enc,Dec), where the keyspace K is a non-empty set, the encryption algorithm
Enc is a deterministic algorithm which takes as input the tuple (k, iv,m) ∈ K ×
IV ×M and outputs the string c← Encivk (m).
The decryption algorithm Dec is a deterministic algorithm which takes as input
the tuple (k, iv, c) ∈ K×IV×C and outputs either a string m ∈M or the symbol
⊥ (”invalid”).
As for nAE and nE, the properties of correctness and tidiness are required, making
Enc and Dec one the inverse of the other.

The two Definitions 15 and 17 are semantically identical. However the secu-
rity properties they aim are different. In fact:

Definition 18 ([35]). An iv-based Encryption scheme ivE Π := K,Enc,Dec) is
(q, t, ε)− ivE-secure if the advantage

AdvivEΠ (A) :=
∣∣∣Pr
[
AEnc$k(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]∣∣∣
is bounded by ε for every (q, t)-adversary.

Here the oracle Enc$(m) first picks a random iv ← IV, then it computes c ←
Enck(iv,m) and it returns (iv, c).
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We can observe that ivE-security implies nE security, because if the iv are
picked uniformly at random, they are all different with overwhelming probability.
The contrary does not hold, e.g. CTR (for details see Supp. Mat. G.1). The
difference between ivE-security and nE-security is how the nonces or the ivs
are treated, that is the nonce must be unique, while the iv must be randomly
chosen.
When the only request is not to repeat the nonce, it is possible to allow the
adversary to completely control the nonce, since it is efficiently checkable if
the adversary respects the non-repeating property. This is not the case if it is
necessary to check if the ivs are picked uniformly at random, so it is not possible
to give the control of the ivs to the adversary.

A.4 Nonce(iv)-misuse

Naturally we may wonder what happens if we get rid of the requirements about
the nonces or the ivs in Definitions 13, 16, 14 and 18. For certain schemes it is
devastating. We have already observed that, if the ivs are not randomly picked,
some iv -based encryption schemes may have problems, e.g. CTR and OFB (see
Supp. Mat. G.1).
This can be the case even for nonce-based encryption schemes. In fact, if to an
adversary A, who had asked the encryption of (n,m) receiving the ciphertext c,
is given the ciphertext c′ obtained as the encryption of (n,m′), the adversary A
may recover m′. Examples of such Encryption schemes are given in Supp. Mat.
G.1 for a fixed length scheme, that is, schemes that encrypt only messages of the
same fixed length, or in Supp. Mat. G.2 for a various length scheme. We have
called these schemes “message malleable” (Def. 9). Moreover, there are schemes,
which are not message-malleable, but which are insecure if the nonces are re-
peated (for example, the scheme used in Sec. 4 or CBC).

However, it is possible to produce encryption schemes whose outputs look still
completely random even if the nonces are repeated, provided that the nonces
are not repeated with the same message. This security property (mrAE) was
introduced by Rogaway and Shrimpton [35] for nonce-based Authenticated En-
cryption schemes nAE:

Definition 19 ([35]). A nonce-based Authenticated Encryption scheme (nAE)
Π := (K,AEnc,ADec) is (q, t, ε)−mrAE-secure (misuse resistant) if the advan-
tage

AdvmrAE
Π (A) :=

∣∣∣Pr
[
AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣
is bounded by ε for every (q, t)-adversary.
If the adversary A queried the first (encryption) oracle on input (n, a,m) ob-
taining c, he is not allowed to query the second (decryption) oracle on input
(n, a, c).
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This is exactly Def. 13 where we have got rid of the hypothesis about the
non-repeating of the nonces in encryption queries.

A similar notion can be given for nonce-based encryption scheme:

Definition 20. A nonce-based encryption scheme (nE) Π := (K,Enc,Dec) is
(q, t, ε)−mrE-secure (misuse resistant) if the advantage

AdvmrE
Π (A) :=

∣∣∣Pr
[
AEnck(·,·) ⇒ 1

]
− Pr

[
A$(·,·) ⇒ 1

]∣∣∣
is bounded by ε for every (q, t)-adversary.

This is exactly Def. 16 where we have got rid of the hypothesis about the
non-repeating of the nonces in encryption queries.

Clearly this security notion is stronger than the nE one, that is mrE implies
nE (similarly mrAE implies nAE). In fact, in these two security definition we have
got rid of the hypothesis that the nonce is a nonce, that is, it is never repeated.
Such schemes are called nonce misuse resistant and there is a flourishing litera-
ture about them [30], [9], [10], [13], [3], and [35].

An nAE scheme may be mrE and not mrAE: consider an mrE scheme, for which
the decryption algorithm gives, for invalid ciphertexts the key. The example is
given in Sec. H.

A.5 The Chosen-Plaintext Attack(CPA) security

The ivE and the nE (and the nAE− E) notions implies the natural extention of
CPA (Chosen-Plaintext Attack) security IV-based and nonce-based encryption:

Definition 21. A nonce-based scheme nE Π = (K,Enc,Dec) is (q, t, ε)−CPA(Chosen
Plaintext Attack)-secure if the advantage

AdvCPAΠ (A) :=

∣∣∣∣12 − Pr
[
b′ = b; b

$← {0, 1}, (st, n,m0,m1)← A
Enck(·,·)
1 ,

c← Encnk (mb), b
′ ← A

Enck(·,·)
2 (st, c)

]∣∣∣
is bounded by ε for every (q, t) adversary. The adversary A is composed by two
algorithms A = (A1,A2). The first algorithm A1, after having queried its oracle
q1 times, outputs st, which is the information it wants to give to the second
algorithm A2, a nonce n and two messages m0 and m1 in M, which have the
same length |m0| = |m1|. The algorithm A1 may not repeat the first component
on different oracle queries. The nonce n in the output of adversary A1 cannot
be a nonce used in an oracle query.
The algorithm A2 may ask at most q2 oracle queries, provided that q1 + q2 ≤ q.
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It may not repeat the first component on different oracle queries. Moreover it
cannot use, as the first component of one of its queries, the nonce n output by
algorithm A1, or a nonce used in an oracle query by the first algorithm A1 (that
is, a nonce can never be repeated during the whole game).
The ciphertext c← Enck(n,mb) is called challenge ciphertext.

This is the CPA-definition of Katz and Lindell [15] tailored for nE schemes.
There is a completely similar definition for ivE schemes. We have only to replace
Enck(·, ·) with Enc$k(·), and to change the $(·, ·) oracle accordingly. Similarly
there is a similar notions for nAE schemes, obtained from the previous one by
replacing Enck(·, ·) with AEnck(·, ·, ·) and changing $(·, ·, ·) accordingly. The CPA
security of ivE corresponds to the usual CPA security notion when the encryp-
tion is made probabilistic: it picks itself the random IV.

The nE (and the ivE) security implies the CPA-security since after having
replaced the encryption Enc algorithm with $ it is not possible to guess better
than with a random guess what plaintext the challenge ciphertext encrypts.
Thus, we have proved the following:

Proposition 7. Let Π = (K,Enc,Dec) be a (q, t, εnE)−nE secure (r. (q, t, εivE)−
ivE) encryption scheme. Then Π is (q−1, t, εnE)−CPA secure (r. (q−1, t, εivE)−
CPA secure).

On the other hand, the nE (r. ivE) security is stronger. In fact, given the
nE (r. ivE) CPA-secure scheme Π = (K,Enc,Dec), then the nE (r. ivE) scheme
Π ′ = (K,Enc′,Dec′), defined by Enc′k(n,m) := Enck(n,m)‖1 (r. Enc′k(iv,m) :=
Enck(iv,m)‖1), is as CPA secure as Π, but it is not nE (r. ivE) secure since the
last bit of every ciphertext is 1 (and not random).

There is also a version of the CPA security, where, instead of having a single ci-
phertext c which is either the encryption of (n,m0) or (n,m1) (with |m0| = |m1|),
the adversary A has multiple ciphertexts ci which are either all the encryptions
of (ni,mi

0) or all the encryptions of (ni,mi
1) (as usual with |mi

0| = |mi
1|). Thus

we have the following definition, which we have already introduced:

Definition 5. A nonce-based Encryption scheme nE Π = (K,Enc,Dec) is (q, t, ε)-
mCPA secure, or (q, t, ε)-secure against chosen plaintext attacks for multiple en-
cryptions, if:

AdvmCPA
Π (A) :=

∣∣∣∣12 − Pr
[
b′ = b; b← {0, 1}, b′ ← AEncbk(·,·,·)

]∣∣∣∣
is bounded by ε for any (q, t)-adversary. Here the oracle Encbk(·, ·, ·) is an oracle,
which on input (n,m0,m1) ∈ N ×M2 outputs c ← Enck(n,mb) for a random
secret bit b← {0, 1}, which the oracle has picked at the start of the game. When
the adversary A queries Encbk(·, ·, ·), he must choose two messages m0 and m1 s.t.
|m0| = |m1|. Moreover he cannot repeat the first input (the nonce) in different
queries.
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This is the IND−CPA of Bellare and Namprempre [6] tailored for nE schemes.
We observe that the mCPA-security is a generalization of the CPA-security be-
cause the adversary A can use the oracle Encbk(·, ·, ·) to emulate the oracle
Enck(·, ·) simply asking (n,m,m) (in fact, in that case the answer will be c ←
Enck(n,m) independently of the value of b).
An analogous definition exists for ivE encryption schemes.
As already stated, the security properties mCPA and CPA are equivalent. In fact:

Theorem 1. Let Π = (K,Enc,Dec) be a nonce-based encryption scheme nE
which is (q − 1, t, ε)-CPA-secure. Then the scheme is (q, t, 2(q − 1)ε) − mCPA-
secure.

The proof, inspired by the proof of an analogous theorem (Theorem 11.6 for
Public Key Encryption schemes in Katz and Lindell [15]) can be found in the
following section (Supp. Mat. A.6).
An analogous statement exists for ivE encryption schemes.
The adversaries against the mCPA security need to have one more oracle query
then the adversaries against the CPA security they are reduced to, because the
CPA adversaries obtain for free the ciphertext c← Enck(n,mb).

A.6 Proof of Theorem 1

We want to prove here that the mCPA (Chosen Plaintext for multiple encryp-
tions) security is equivalent to the CPA security. We remind the theorem we
stated in Sec. 2.5 and in Supp. Mat. A.5.

Theorem 1. Let Π = (K,Enc,Dec) be a nonce-based encryption scheme nE
which is (q − 1, t, ε)-CPA-secure. Then the scheme is (q, t, 2(q − 1)ε) − mCPA-
secure.

The proof, inspired by the proof of an analogous theorem (Theorem 11.6 for
Public Key Encryption schemes in Katz and Lindell [15]).

Proof. Let A be a (q, t) − mCPA adversary who asks the q queries (ni,mi
0,m

i
1)

for i = 1, ..., q during the game.
To prove the equivalence we use a sequence of q+1 games and q (q−1, t)−CPA
adversaries to do the transition between this games.

Game 0 Let Game 0 be the game where the oracle Encbk(·, ·) answers always
Enck(ni,mi

0). This happens in the normal mCPA game when b = 0. At the end
of the game the adversary outputs a bit. Let E0 be the probability that at the
end of the game the adversary outputs 1 (if he is an mCPA adversary, he looses).

Game j Let Game j be the game where the oracle Encbk(·, ·) answers Enck(ni,mi
1)

for the first j queries (that is i ≤ j) and Enck(ni,mi
0) for the remaining q − j

queries. At the end of the game the adversary outputs a bit. Let Ej be the
probability that at the end of the game the adversary outputs 1.
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Game q Let Game 0 be the game where the oracle Encbk(·, ·) always answers
Enck(ni,mi

1). This happens in the normal mCPA game when b = 1. At the end
of the game the adversary outputs a bit. Let E0 be the probability that at the
end of the game the adversary outputs 1 (if he is an mCPA adversary, he wins).

Transition from Game j to Game j + 1 To do the transition from Game j to
Game j+ 1 we use a (q−1, t)−CPA adversary Aj based on the mCPA adversary

A. At the start of the Game a random bit b
$← is computed. For the first j queries

when the mCPA adversaries queries his oracle on input (ni,mi
0,m

i
1), i ≤ j, the

algorithm Aj,0 queries his oracle Enck(·, ·) on input (ni,mi
0) receiving ci which

is forwarded to the adversary A.
For the j+1 query (nj+1,mj+1

0 ,mj+1
1 ) the algorithm Aj,0 outputs (nj+1,mj+1

0 ,mj+1
1 )

(He does not give any information to algorithm Aj,1). Then c← Enck(ni,mj
b) is

computed and it is given to the algorithm Aj,1 (along with no information due
to the choice of Aj,0). The algorithm Aj,1 forwards c to the mCPA adversary.
For the last q − j − 1 queries when the mCPA adversaries queries his oracle on
input (ni,mi

0,m
i
1), j < i ≤ q, the algorithm Aj,1 queries his oracle Enck(·, ·) on

input (ni,mi
1) receiving ci which is forwarded to the adversary A.

At the end of the game the mCPA adversary outputs a bit b′ which is sent to
the algorithm Aj,1. The algorithm Aj,1 outputs this bit as his guess.
When the bit b = 0 the CPA adversary Aj is playing Game j, otherwise he is
playing Game j + 1.

Bound between Pr[Ej ] and Pr[Ej+1] We have now to bound |Pr[Ej ]−Pr[Ej+1]|.
We observe that

Pr[Aj wins the CPA Game] = Pr[Ej |b = 0] Pr[b = 0]+Pr[Ej+1|b = 1] Pr[b = 1] =
Pr[Ej ] + Pr[Ej+1]

2

Since the nE scheme Π is (q − 1, t, ε)− CPA-secure and Aj is a (q − 1, t)− CPA
adversary, the probability he wins is bounded by 1

2 + ε. Thus

Pr[Ej ] + Pr[Ej+1]

2
=

1− Pr[Ej ] + Pr[Ej+1]

2
≤ 1

2
+ ε

|Pr[Ej+1]− Pr[Ej ]| ≤ 2ε

Bound between Pr[E0] and Pr[Eq] Now we are able to bound |Pr[E0]− Pr[Eq].
It is simply bounded by

|Pr[E0]− Pr[Eq]| ≤
q−1∑
i=0

|Pr[Ej+1]− Pr[Ej ]| = 2(q − 1)ε

Now we observe that Game 0 simulates correctly the mCPA Game when the
secret bit b = 0, while Game q simulates correctly the mCPA Game when the
secret bit b = 1. Thus

Pr[b = b′; b′ ← A] = Pr[E0|b = 0] Pr[b = 0] + Pr[Eq|b = 1] Pr[b = 1] =
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1− Pr[E0] + Pr[Eq]

2
=

1

2
+ Pr[Eq]− Pr[E0] ≤ 1

2
+ 2(q − 1)ε

which concludes the proof.

A.7 Ciphertext-Integrity

For sake of completeness we give the different definitions of ciphertext integrity
present in the literature and we prove the relations among them.

Definition 22. A nonce-based authenticated encryption scheme nAEΠ = (K,AEnc,ADec)
is (q + 1, t, ε)− INT-CTXT(Ciphertext integrity)-secure if

AdvINT-CTXTΠ (A) :=
∣∣∣Pr
[
AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1

]
− Pr

[
AAEnck(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣
is bounded by ε for every (q, t) adversary. The adversary A is not allowed to query
its second oracle on input (n, a, c) if he received c as answer c← AEnck(n, a,m)
to a certain input (n, a,m) that he asked to its first oracle. Moreover the adver-
sary is not allowed to repeat the first component (the nonce) on different queries
to the first oracle.

Since the goal of authenticated encryption is to provide both privacy and
authenticity it is normal to expect that if an nAE scheme Π = (K,AEnc,ADec)
provides both privacy (nAE− E, Def. 14) and authenticity (INT-CTXT, Def. 22),
it is nAE-secure. This is the case. In fact, for any adversary A:

AdvnAEΠ (A) :=
∣∣∣Pr
[
AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ =∣∣∣Pr
[
AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1

]
− Pr

[
AAEnck(·,·,·),⊥(·,·,·) ⇒ 1

]
+

Pr
[
AAEnck(·,·,·),⊥(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ ≤∣∣∣Pr
[
AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1

]
− Pr

[
AAEnck(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣+∣∣∣Pr
[
AAEnck(·,·,·),⊥(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ ≤
AdvINT-CTXTΠ (A) + AdvnAE−EΠ (A)

(in the last inequality, the bound of the second absolute modulus is based on
the fact that the oracle ⊥ (·, ·, ·) is easily emulated by anyone).

Thus we have proved the following theorem:

Theorem 2. Let Π be an nAE scheme which is (q, t, εnAE−E)− nAE− E secure
and (q, t, εINT-CTXT) − INT-CTXT secure. Then Π is (q, t, εnAE) − nAE secure
where εnAE = εnAE−E + εINT-CTXT.

Often, in the literature [6], this definition is presented in an equivalent way
where the adversary try to forge a fresh valid ciphertext. To arrive to this we
have to pass through this second definition INT-CTXT1, where the adversary is
allowed to do only one decryption query (query to the second oracle):
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Definition 23. A nonce-based authenticated encryption scheme nAEΠ = (K,AEnc,ADec)
is (q+ 1, t, ε)− INT-CTXT1v2(Ciphertext integrity with only 1 decryption query
[version 2])-secure if

AdvINT-CTXT1Π (A) :=
∣∣∣Pr
[
AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1

]
− Pr

[
AAEnck(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣
is bounded by ε for every (q, t) adversary. Here the oracle ⊥ (·, ·, ·) always answers
⊥. The adversary A is not allowed to query its second oracle on input (n, a, c)
if he received c as answer c ← AEnck(n, a,m) to a certain input (n, a,m) that
he asked to its first oracle. Moreover the adversary is not allowed to repeat the
first component (the nonce) on different queries to the first oracle. Furthermore
he is allowed to query the second oracle only once.

The two previous notions of authenticity can be easily related. In fact, clearly
if an nAE scheme Π is (q, t, ε)− INT-CTXT secure, it is (q, t, ε)− INT-CTXT1v2
secure. For the converse the following proposition holds

Proposition 8. Let Π be a (q, t, ε)− INT-CTXT1v2 secure nAE scheme. Then
it is (q, t, qε)− INT-CTXT secure.

Before proving it, we consider the following Lemma, which shows one of the
best strategy for any adversary to maximize the INT-CTXT advantage:

Lemma 2. Let Π = (K,AEnc, Dec) be an nAE scheme. Let A be a (q, t) −
INT-CTXT adversary. Let B be the (q + 1, t)− INT-CTXT adversary based on A
in this way: he makes the same encryption and decryption queries as A, but
he outputs 1 iff at least one decryption query is valid (that is, 6=⊥). Then,
AdvINT-CTXTΠ (A) ≤ AdvINT-CTXTΠ (B).

Proof. Let event B be the event that at least one of the decryption queries made
by A is valid, that is

B := [∃j ∈ {1, ..., q} s.t. ⊥6= mjADeck(nj , aj , cj); (nj , aj , cj)← AAEnc(·,·,·),ADec\⊥(·,·,·)]

The event B does not depend if A has access to the ADec or the ⊥ oracle, because
the ⊥ oracle is behaving correctly until the first valid decryption query made by
A. But, when this happens, event B is already happened, so the fact that ⊥ is
no longer correct does not change the fact that event B has happened or not.
We observe that for A

AINT-CTXT
Π (A) =

∣∣∣Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1]− Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]
∣∣∣

=
∣∣∣Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1|B] Pr[B] + Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1|B] Pr[B]

− Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1|B] Pr[B] Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1|B] Pr[B]
∣∣∣ =

since if event B does not happen, the oracle ⊥ answers correctly

=
∣∣∣Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1|B] Pr[B]− Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1|B] Pr[B]

∣∣∣
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On the other hand, for B

AINT-CTXT
Π (B) =

∣∣∣Pr[BAEnc(·,·,·),ADec(·,·,·) ⇒ 1|B] Pr[B] + Pr[BAEnc(·,·,·),ADec(·,·,·) ⇒ 1|B] Pr[B]

− Pr[BAEnc(·,·,·),⊥(·,·,·) ⇒ 1|B] Pr[B] Pr[BAEnc(·,·,·),⊥(·,·,·) ⇒ 1|B] Pr[B]
∣∣∣

by construction of B

= Pr[BAEnc(·,·,·),ADec(·,·,·) ⇒ 1|B] Pr[B] = Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1|B] Pr[B] = Pr[B]

since B asks the same queries as A and outputs 1 iff one of his decryption queries
is valid (this may never happen if B has access to the ⊥ oracle instead of the
ADec one.
Thus

AINT-CTXT
Π (A) =

∣∣∣Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1|B] Pr[B]− Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1|B] Pr[B]
∣∣∣

≤ Pr[B] = AINT-CTXT
Π (B)

which concludes the proof.

Now we can prove Prop. 8. The proof is a standard proof where the adversary
guesses what decryption query made by A is the correct one.

Proof. Let A be a (q, t) − INT-CTXT adversary against scheme Π, we suppose
that he outputs 1 iff he receives one answer for a decryption query different from
invalid (⊥) [As we have seen (Lem. 2) this is one of the best strategy]. We build
a (q, t)− INT-CTXT1v2 adversary B based on him. The INT-CTXT1v2 adversary
B picks a random number ig in {1, ..., q}. When A asks an encryption query
on input (ni, ai,mi) he asks the same query to his oracle, receiving ci which
he forwards to A. When A asks a decryption query (ni, ai, ci) he simply sees if
i = ig. If it is the case, he asks this as his only decryption query and forwards
the answer to A; otherwise he answers ⊥ to the query made by A. At the end
of the game, B outputs the bit b that A has output. With probability at least
q−1 the INT-CTXT1v2 adversary guesses the first valid decryption query made
by the INT-CTXT adversary A if A has made at least a valid decryption query.
Thus

ε ≥ Pr[BAEnck(·,·,·),ADeck(·,·,·) ⇒ 1] ≥ Pr[ig correct ] Pr[AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1]

Thus Pr[AAEnck(·,·,·),ADeck(·,·,·) ⇒ 1] ≤ qε.
This concludes our proof since neither A nor B outputs 1 when they are facing
the ⊥ (·, ·, ·) oracle instead of ADeck(·, ·, ·) by construction.

This bound in general is tight, that is, there exists at least a scheme for which
the equality in the bound holds.

Without loss of generality we may suppose that the decryption query is the
last query made by the INT-CTXT1v2 adversary. In fact the following proposition
holds
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Proposition 9. Let Π be a (q, t, ε)− INT-CTXT1v2 secure nAE scheme. If we
restrict the INT-CTXT1v2 adversaries to ask the decryption query as their last
one, the bound does not change.

Proof. We observe that since by our hypothesis on the behaviour of A (Lem. 2),
what happens after A has asked is decryption query does not change his output
bit. This concludes the proof.

The previous proposition leads to the following definition of INT-CTXT1 pre-
sented by Bellare and Namprempre, which is equivalent to the single query ver-
sion of the strong unforgeability of Bellare et al. [2], which we stated in Sec. 2.6:

Definition 6. A nonce-based authenticated encryption scheme nAE Π = (K,
AEnc, ADec) is (q, t, ε)-INT-CTXT1(Ciphertext integrity with only 1 decryption
query)-secure if

AdvINT-CTXT1Π (A) := Pr
[
⊥6= m∗ ← ADeck(n∗, a∗, c∗); (n∗, a∗, c∗)← AAEnck(·,·,·)

]
is bounded by ε for every (q, t) adversary. The adversary A is not allowed to
repeat the first component (the nonce) on different oracle queries. Moreover he
is not allowed to output (n∗, a∗, c∗) if he received c∗ as c∗ ← AEnck(n∗, a∗,m∗)
for a certain input (n∗, a∗,m∗) that he asked to the first oracle.

The two definitions INT-CTXT1v2 and INT-CTXT1 are clearly equivalent
due to the previous proposition (because outputting 1 only when his decryption
query is valid is the best strategy to maximize the advantage). There is one less
encryption query, because the decryption query of Def. 23 is given for free here.

Usually, for simplicity, we denote the advantage used in Def. 6 as

Pr[AEnc wins ].

A.8 Stateful schemes

Stateful schemes uses an additional input: the state s. This input is set at the
start of the game and it is updated in every query.

Definition 24 ([36]). A scheme for stateful nonce-based Authenticated En-
cryption (snAE) is a triple Π := (K,AEnc,ADec), where the keyspace K is a
nonempty set, the encryption algorithm AEnc is a deterministic algorithm which
takes as input the tuple (k, s, n, a,m) ∈ K×S×N ×A×M and outputs a string
c← AEncn,ak,s (m) called ciphertext. Moreover a new state s′ is computed and kept
in memory.
The decryption algorithm ADec is a deterministic algorithm which takes as input
the tuple (k, s, n, a, c) ∈ K×S ×N ×A× C and outputs m← ADecn,ak,s (c) which
is either a string m ∈ M or the symbol ⊥ (”invalid”). Moreover a new state s′

is computed and kept in memory.

We require that the algorithms AEnc and ADec are the inverse of each other,
that is:
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– (Correctness) if AEncn,ak,s (m) = c then ADecn,ak,s (c) = m

– (Tidiness) if ADecn,ak,s (c) = m 6=⊥ then AEncn,ak,s (m) = c

If ADecn,ak,s (c) =⊥ we say that the algorithm rejects c, otherwise it accepts c.
A sloppy snAE scheme satisfies everything but the tidiness condition.

For the security, we have to choose if we allow reorderings, omissions and
replays in the decryption queries. This problem was studied in detail by Rog-
away and Zhang [36]. Since we only use a stateless decryption algorithm, (level
L0 of [36]), we allow everything in decryption.

For security notions, we decide to allow the adversary to choose at the start
of the game the state of the encryption algorithm. The rest is equivalent.

A.9 Message Authentication Code (MAC)

We define a deterministic notion of Message Authentication Code (MAC) since
we are not interested in probabilistic ones (see Katz and Lindell [15] for further
details about probabilistic MACs, in particular for their definitions and security
properties).

Definition 7. A Message Authentication Code MAC is a triple Π = (K,Mac,Vrfy)
where the keyspace K is a non-empty set, the tag-generation algorithm Mac is
a deterministic algorithm that takes as input the couple (k,m) ∈ K ×M and
outputs the tag τ ← Mack(m) from the tag space T . The verification algorithm
Vrfy takes as input a triple (k,m, τ) in K ×M× T and outputs > (accept) or
⊥ (reject). We ask that Vrfy(k,m,Mac(k,m)) = >.
A string-input MAC strMAC has as input space a set of strings, that is M ⊆
{0, 1}∗.
A vector-input MAC vecMAC has as input space M which has one or more
component and it can accept tuples of strings as input.

Usually the security for MACs is given by the unforgeability security notion.
We start presenting the MAC− forge experiment:

Definition 25 ([15]). Given a MAC Π = (K,Mac,Vrfy) and a (q, t)-adversary
A, the MAC− forgeAΠ experiment is run in this way:

1. A random key k is picked uniformly at random k ← K.
2. The adversary A is given access to Mack(·). He can do at most q queries to

this oracle. He outputs a couple (m, τ). Let Q denote the set of all queries
that A asked to its oracle.

3. The output of the experiment is 1 iff Vrfyk(m, τ) = > and m /∈ Q; otherwise,
the output is 0.

The probability that the adversary A wins the previous experiment, gives
birth to the following definition:
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Definition 26 ([15]). A MAC Π = (K,Mac,Vrfy) is (q, t, ε)-unforgeable-secure
if for every (q, t)-adversary A

Pr
[
MAC− forgeAΠ = 1

]
≤ ε

However, in our paper as already stated, we need this stronger notion of
security:

Definition 8. ([25]) A MAC Π = (K,Mac,Vrfy) is (q, t, ε)− PRF-secure if

AdvPRF
Π (A) := AdvPRF

Mac (B)

is bounded by ε for any (q, t) adversary B and if Vrfy(k,m,Mac(k,m)) = > iff
τ = Mac(k,m).

In reality we are simply asking that the Mac algorithm is implemented with
a PRF (Def. 1).
This notion is stronger because if a MAC is (q, t, ε) − PRF-secure it is (q, t, ε +
|T |−1)-unforgeable. (A proof of this can be found in Theorem 4.4 [15]).

The unforgeability is not equivalent to the PRF security. As an example
consider a MAC scheme MAC = (K,Mac,Vrfy) which is PRF-secure (thus un-
forgeable). Now we build the MAC scheme MAC′ = (K,Mac′,Vrfy′), where
Mac′k(m) := (Mack(m)‖1). Clearly MAC′ is as unforgeable as MAC, because
an adversary A′ able to forge this scheme is easily reduced to an adversary A
able to forge MAC, but it is no more PRF-secure, since the last bit of the output
of Mac′k(·) is easily predictable.

A.10 Hash functions

We also need hash functions:

Definition 27 ([15]). An hash function is a pair of probabilistic polynomial-
time algorithms H = (Gen,Map), where
– Gen is a probabilistic algorithm which outputs a key s← S picked uniformly

at random
– Map : {0, 1}∗ 7−→ H

The hash functions which are used in practice have the target space H which is
much more little than the input space {0, 1}∗. On the other hand, it should be
difficult to find a collision for them, thus their security property is:

Definition 28. A (0, t, εcr)-collision resistant hash function H : S×{0, 1}∗ → H
is a function that is such that, for every (0, t)-bounded adversary A, the prob-
ability that A(s) outputs a pair of distinct messages (m0,m1) ∈ {0, 1}∗ such
that Maps(m0) = Maps(m1) is bounded by εcr, where s is selected uniformly at
random.

We would like to observe that the key of the hash function is given to the
adversary. There is no need to keep it secret. Thus, and to make the notation
easier, we will omit the key for hash functions.
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B Knowledge-of-Tag

We present here the Knowledge-of-Tag (KoT) security definition, which was
used by Namprempre et al. [25] to prove that modes A10, A11 and A12 are
secure if the encryption scheme is KoT secure. We use the same formalism as
Namprempre et al. [25].
We use a plaintext extractor (Ext), that is, an algorithm that takes as input
all the inputs explicitly available to the forging adversary and outputs a string.
The forger wins if he is able to produce a new forgery which uses an old ivi

and old couple mj‖τ j for which he does not know τ j and the extractor fails to
determine this mj‖τ j . Moreover he can ask to reveal some tag used (which he is
not allowed to reuse if he wants to win the game). The idea is that if the forger
wins the KoT game he is able to do so without any (extractable) knowledge of
the tag τ i (see pag. 26 [25]).
The details of the game are presented in Tab. 1.

Definition 29. Let Π = (K,Enc,Dec) be an iv-based encryption scheme, let
Ext be a plaintext extractor, Tagsel be a tag-input selection function.
The ivE scheme Π is (q, t, εKoT )−KoTExt,Tagsel,τ -secure if for every (q, t)−KoT-
adversary the advantage

AdvKoTEnc,Ext,Tagsel,τ
(A) := Pr[KoTEnc,Ext,Tagsel,τ (A) = 1]

is bounded by εKoT .

KoTEnc,Ext,Tagsel,τ (A) experiment

KoTEnc,Ext,Tagsel,τ (A): Oracle Enc(n, a,m): Oracle Test(j∗, c∗):

i = 0;win = 0 i = i+ 1 x← Ext(j∗, c∗,Q, T AG)
k ← K (ni, ai,mi) = (n, a,m) valid = xgood = 0

Run AEnc,Reveal,Test ivi ← IV if ∃xi s.t.:

Return win si ← Tagsel(n
i, ai,mi) 1) c∗ = Enck(ivj

∗
, xi) and

if Tag[si] =⊥ then 2) (·, τ i) ∈ T AG and
Tag[si]← T 3) xi = xj

τ [si] = Tag[si] then
xi = mi‖τ i valid = 1
ci ← Enck(ivi, xi) if x = xi then xgood = 1
Q = Q∪ {(i, ivi,mi, ci)} if valid ∧ ¬xgood then
Return (ivi, ci) win = 1

Return 1
OracleReveal(j): Return 0
T AG = T AG ∪ {(j, τ j)}
Return τ j

Table 1. The Knowledge-of-Tag (KoT) experiment
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C Allowing the vecMACs to share their key

Namprempre et al. [25] allowed the two vecMACs MACIV and MACTag to share
the same key kM . They did it for practice. Here we want to discuss why this
choice does not harm the security of the mode. For this, as Namprempre et
al. [25], we suppose that for any couple of vecMACs (MACIV,MACTag), used to
instantiate the scheme Π according to the modes A10, A11 and A12, their tag
generation functions (MacIV,MacTag), can be derived from an underlying PRF
Mac.
This is formalized with :

Definition 30 ([25]). Given two vecMAC MAC1 = (K,Mac1,Vrfy1), with Mac1 :
K×M1 7−→ T 1 = {0, 1}l1 , and MAC2(K,Mac2,Vrfy2), with Mac2 : K×M2 7−→
T 2 = {0, 1}l2 , which share the same key k, we say that the PRF Mac1 and Mac2

are derived from an underlying PRF if there exists a PRF Mac : K×{0, 1}∗ 7−→
{0, 1}max(l1,l2) from which the two PRF MacIV and MacTag can be derived by
either:

Mac1k(x) = Mack(x)[1, ..., l1] and Mac2k(x) = Mack(x)[1, ..., l2] or

Mac1k(x) = Mack(c1, x)[1, ..., l1] and Mac2k(x) = Mack(c2, x)[1, ..., l2]

for distinct constant c1 and c2

The first possibility is given only when there is a domain separation, that is the
domains of the function Mac1 and Mac2 are two disjoint sets.

In this way we encompass more vecMACs, with or without domain separa-
tion. For the A modes which we are interested in, the two vecMACs (MACIV

and MACTag) have a domain separation. So we can drop the domain-separation
constants of the second equation in Def. 30.

D Attack vs mode N4

We provide here the nAE-scheme Π used to attack mode N4 with various
length input (if the message has N bit the attack was presented in Sec. 4),
based on an nE Encryption scheme Π = (KE ,Enc,Dec) and a vecMAC MAC =
(KM ,Mac,Vrfy) which is PRF-secure. The nE Encryption scheme, which en-
crypts message of at most LN bits, is nE-secure and tidy, but the nAE-scheme
Π obtained composing them according to mode N4, is not secure and, in par-
ticular, it is not INT-CTXT1-secure as we show a forgery.
The idea of the forgery is to force the tag τ of a couple (a,m) to be encrypted
identically for two different nonces, while keeping the nE-security (adversaries
have only access to the Enc oracle in the nE-definition).

D.1 Construction

According to mode N4, an authenticated ciphertext is computed as
c = EnckE (n,m||MackM (a,m)), for which Mac is a PRF. We now define the nE
scheme Π that provides Enc.
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Π can encrypt messages of at most LN bits, i.e. M = {0, 1}≤LN (that is,
all strings with at most LN bits. As a result, and assuming that the output
of Mac is N -bit long, the nAE scheme Π can be used to encrypt messages
which are at most (L − 1)N bits long. We outline the definition of Π below,
based on a TPRF E : K × T W × {0, 1}N 7−→ T = {0, 1}N with tweak space
T W = {0, 1, . . . , L} × {0, 1} (Fig. 5).

The keys produced in Π are made of two components (k, v∗): the key k ∈ K
of the TPRF E and a random value v∗. This value v∗ will trigger a kind of Trojan
in the encryption scheme, as it will make it possible to force the last ciphertext
block to take identical values when two messages with identical last block ml

are encrypted with the two different nonces n = 1, 2. This trigger value v∗ will
be leaked to Adv when asking for the encryption of a message with the nonce
n = 1, thus only once.

Encryption with Π proceeds as follows:

– The parsing of the message m is done in such a way that the last block ml

(thus the tag τ of the message m) is always full.
– The first ciphertext block c0 is an arbitrary pseudo-random value if the nonce
n 6= 1. Instead, if n = 1, then c0 := v∗.

– For i = 1, ..., l − 1, the i-th ciphertext block is computed as mi ⊕ E
(i,0)
k (n).

– The second to last ciphertext block cl, which encrypts the only message block

ml−1 which may not be full is computed as ml−1 ⊕ πlen(E
(l−1,0)
k (n)), with

len = |ml−1|.
– The last ciphertext block cl, which is expected to encrypt the tag τ of the

message m, is cl = E
(l,0)
k (n)⊕ml (as for the previous blocks) if the condition

(∗) : [(n = 1 ∨ n = 2) ∧ml−1 = v∗] is not met. Instead if this condition is

met, cl = E
(l,1)
k (0) ⊕ml. We observe that, in that case, cl does not depend

on n, which can be 1 or 2.

Condition (∗) is chosen in order to be met easily once, but hardly twice during
the encryption queries. But it is not difficult to ask a decryption query for which
this condition holds. The decryption of Π works as expected. In particular, in
order to guarantee the tidiness of the nE encryption scheme, ADec verifies the
correctness of the first ciphertext block c0.

D.2 Forgery

The composition of the previous nE scheme Π with a PRF-secure MAC according
to mode N4 is not INT-CTXT1-secure. In fact we provide a forgery where the
adversary A asks the encryption of only two (l−1)N -bits long messages, for any
number of message block l, then he outputs a valid forgery:

– The adversary A asks to encrypt (1, a,m1) for any a and m1 = (m1
1, ...,m

1
l−1)

(with |m1
l−1| = N). He obtains c1 = (c10, c

1
1, ..., c

1
l−1, c

1
l ). In particular c10 = v∗

and c1i = Ei,0k (1)⊕m1
i for i = 1, ..., l − 1.
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– The adversary A asks to encrypt (2, a,m2) for m2 = (m2
1, ...,m

2
l−1) with

m2
l−1 = v∗. He obtains c2 = (c20, ..., c

2
l ) where c2l = El,1k (0) ⊕ m2

l [ with
m2
l = τ2 = MackM (a,m2)].

– The adversary A asks to decrypt (1, a, c3) where c30 = v∗ = c10, c3i = c1i ⊕
m1
i ⊕m2

i[
= Ei,0k (1)⊕m1

i ⊕m1
i ⊕m2

i

]
and c3l = c2l = El,1k (0)⊕m2

l

The decryption query (1, a, c3) is valid. In fact since the nonce is 1, c30 must
be equal to v∗. Then the the message retrieved from the first l − 1 blocks is
m3 = (m3

1, ...,m
3
l−1) with m3

i = m2
i ∀i = 1, ..., l − 1. In particular, given the

choice of m2 made by A, m3
l−1 = v∗. Thus, Condition (∗) holds and to retrieve

the tag τ3 (last block of the message) we compute m3
l = El,1k (0)⊕ c3l .

The correct tag for the decryption query is τ3 = τ2, since m2 = m3 and ad-
versary A uses the same associated data for both queries. Since Condition (∗)
holds, the correct encryption of the tag τ3 is c3l = E

(l,1)
k (0)⊕ τ3 = c2l . Thus the

decryption query is valid.

The proofs that Π is nE-secure (Prop. 10) and tidy (Prop. 11) can be found
in Supp. Mat. F.2 with quantitative results. Here, we want only to highlight
that the only problem may come only if the adversary is able to enter twice in
Condition (∗). Since he can only learn v∗ by asking an encryption query with
n = 1 and message m1, it is highly improbable that m1

l1
= v∗.

E Attack vs stateful scheme

We provide here the stateful nAE-scheme Π used to attack stateful mode A10
with various length input (if the message has N bit the attack was presented
in Sec. 7.2), based on an ivE Encryption scheme Π = (KE ,Enc,Dec) and a
vecMAC MAC = (KM ,Mac,Vrfy) which is PRF-secure. The ivE we present is an
adaptation of the nE scheme used in Supp. Mat. D. The main changes are:

– We use a TPRP E instead of a TPRF.
– A new block c−1 is added to the ciphertext, in order to give the decryption

algorithm the actual value of the counter ctr which is an internal state only

of the encryption device, and c−1 = E
(0,1)
k (ctr). The Dec algorithm inverts

this to retrieve the correct ctr. The block c−1 is random since it is always
obtained with different inputs (as long as the number of encryption queries
is << 2n).

– To compute this block, the TPRF E is called with a tweak (0, 1) that is never
used else

– The boxed if is triggered by the value of the counter ctr (not of the nonce)
and ml−1

– The iv replaces the nonce n in the input of the TPRF E.

Note again that, due to mode A10, the messages which the AE scheme Π can
encrypt, are at most L− 1 blocks long, while those which Π can encrypt are at
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most L blocks long. The full details can be found in Fig. 7.

Tidiness of this scheme follows from a close inspection of the code, while the
ivE security of this scheme is presented in Prop. 14 (Supp. Mat. F.5).

Forgery We give the details only for the various length scheme (the details for
the scheme presented in Sec. 7.2 are an easy adaptation of this section).
The forgery attack is a straightforward adaptation of the attack presented in
Supp. Mat. D.2.

– The adversary A set the counter ctr to 1
– The adversary A asks to encrypt (n1, a,m1) for any a and m1 = m1

1, ...,m
1
l−1

(with |m1
l−1| = N). He obtains c =

(
c1−1, c

1
0, c

1
1, ..., c

1
l−1, c

1
l

)
. In particular

c1−1 = E0,1
k (ctr), c10 = v∗ and c1i = Ei,0k (iv1)⊕m1

i for i = 1, ..., l − 1.
– The adversary A asks to encrypt (n2, a,m2) for m2 = m2

1, ...,m
2
l−1, v

∗. He

obtains c2 =
(
c2−1, c

2
0, ..., c

2
l

)
where c2l = El,1k (0) ⊕ m2

l [ with m2
l = τ2 =

MackM (a,m2)].
– The adversary A asks to decrypt (n1, a, c3) where c3−1 = c1−1, c30 = v∗ = c10,

implying ctr = 1, c3i = c1i ⊕ m1
i ⊕ m2

i = (Ei,0k (iv1) ⊕ m1
i ) ⊕ m1

i ⊕ m2
i and

c3l = c2l = El,1k (0)⊕m2
l

The decryption query (n1, a, c3) is valid, substantially for the same reason as in
Sec. 4.2, since c3−1 encrypts correctly ctr = 1. Then, c3i correctly encrypts m2

i .
Since m3

l−1 = m2
l−1 = v∗ then c3l correctly encrypts τ which is the right tag for

(a,m3).

F Proofs

F.1 If modes A10,A11 and A12 (and N4) are INT-CTXT secure
they are nAE secure

We want to prove that ciphertext integrity is the only problem to prove the nAE
security of the mode.

Theorem 3. Let Π be a (q, t, εivE) ivE-secure ivE scheme, let MAC be a (q, t, εprf )-
PRF-secure MAC. Let Π be the nAE scheme obtained composing these compo-
nents according to mode A10 (r. A11 or A12). Then, if Π is (2q, t, εINT-CTXT)-
secure, then it is (q, t, εINT-CTXT + εivE + εprf )− nAE secure.

The proof is really easy, since the output of Π is (iv, c) where c is the output
of Π. We reuse the proof of Thm. 2

Proof. In the proof of Thm. 2 we have proved that
εnAE ≤ εINT-CTXT + εnAE−E.
In particular we have that

AdvnAEΠ (A) =
∣∣∣Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]

∣∣∣ ≤
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∣∣∣Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]
∣∣∣+∣∣∣Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]− Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1]
∣∣∣ ≤∣∣∣Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]

∣∣∣+ εINT-CTXT

So, we have to only prove that Π is nAE− E-secure. From now on we consider
A as an nAE− E adversary. We do it with a series of Games:

Game 0 Is the nAE− E game played by the adversary B against scheme Π.

The nAE− E adversary B The adversary B is based on A making the same
encryption queries as A and answering all decryption query with ⊥. That is,
when the nAE adversary A asks an encryption query on input (ni, ai,mi), the
nAE− E adversary B asks the same query to his oracle, obtaining ci which B
forwards to A; when A makes a decryption query on input (ni, ai, ci), B first
checks if ci is not an answer to an encryption query (nj , aj ,mj), if it is the case
he answers mj to A, otherwise ⊥. At the end of the game A outputs a bit b which
is chosen by B as its output bit b′.

Equivalence between A and B Since, by hypothesis, A does not make any valid
decryption hypothesis, if B answers ⊥ to every decryption queries, he correctly
simulates the decryption oracle for A. Then:

Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1] = Pr[BAEnc(·,·,·) ⇒ 1]

With the same argument we can prove that

Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1] = Pr[B$(·,·,·) ⇒ 1].

Game 1 Is the nAE− E game where the adversary B is playing against scheme
Π ′, where Π ′ = (K,AEnc′,ADec′) is the scheme Π where we have replaced Mac
with a random function f.

The PRF adversary C We build a PRF-adversary C based on the nAE− E ad-
versary. This adversary faces an oracle, which is either implemented with MackM
or with a random function f(·, ·). At the start of the game the PRF adversary
C picks a random key kE for the encryption algorithm Enc. When B makes his
encryption query on input (ni, ai,mi), C calls his oracle on input (ni, ai) (for
mode A12 ni) to obtain ivi, then he calls his oracle on input (ai,mi) (for mode
A11 mi) to obtain τ i, after that he computes ci = EnckE (ivi,mi‖τ i). At the end
he sends ci to the nAE− E adversary B. When B output his output bit b then C
output his output bit b′ = b.
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Transition from Game 0 to Game 1 We observe that if the oracle C faces is
implemented with MackM , C correctly simulates Game 0 for B, otherwise he
correctly simulates Game 1 for B. Thus

Pr[BAEnc(·,·,·) ⇒ 1] = Pr[CMackM
(·,·) ⇒ 1]

and

Pr[BAEnc′(·,·,·) ⇒ 1] = Pr[Cf(·,·) ⇒ 1]

Thus∣∣∣Pr[BAEnc(·,·,·) ⇒ 1]− Pr[BAEnc′(·,·,·) ⇒ 1]
∣∣∣ =

∣∣∣Pr[CMackM
(·,·) ⇒ 1]− Pr[Cf(·,·) ⇒ 1]

∣∣∣ ≤ εprf
since Mac is (2q, t, εprf )-prf secure and C makes at most 2q calls to his oracle (2
for each encryption query made by B) and he runs in time t.

Game 2 Is game 1 where the adversary B is playing against scheme Π ′′, where
Π ′′ = (K,AEnc′′,ADec′′) is the scheme Π where we have replaced in the ivE-
secure encryption algorithm Enc′(·, ·) with a random function $(·, ·).

The ivE adversary D We build an ivE adversary D based on the nAE− E ad-
versary A. This adversary faces an oracle, which is either implemented with
EnckE (·, ·) or with a random function $(·, ·). At the start of the game the ivE
adversary D picks a function f(·, ·). When B makes his encryption query on
input (ni, ai,mi), C computes ivi = f(ni, ai) (for mode A12 ivi = f(ni)) and
τ i = f(ai,mi) (for mode A11 τ i = f(mi)), then he calls his oracle on input
(ivi,mi‖τ i) obtaining ci which he forwards to B. When B outputs his output bit
b then D outputs his output bit b′ = b.

Transition from Game 1 to Game 2 We observe that if the oracle D faces is
implemented with EnckE , D correctly simulates Game 1 for B, otherwise he
correctly simulates Game 2 for D. Thus

Pr[BAEnc′(·,·,·) ⇒ 1] = Pr[DEnckE
(·,·) ⇒ 1]

and

Pr[BAEnc′′(·,·,·) ⇒ 1] = Pr[D$(·,·) ⇒ 1]

Thus∣∣∣Pr[BAEnc′(·,·,·) ⇒ 1]− Pr[BAEnc′′(·,·,·) ⇒ 1]
∣∣∣ =

∣∣∣Pr[DEnckE
(·,·) ⇒ 1]− Pr[D$(·,·) ⇒ 1]

∣∣∣ ≤ εivE
since Π is (q, t, εivE)− ivE secure and D makes at most q encryption queries and
he runs in time t and the iv are randomly picked since they are output by the
random function f.

Game 3 In this Game B interacts with $(·, ·, ·) instead of AEnc′′.

44



Transition from Game 2 to Game 3 We observe that Game 3 and Game 2 are
indistinguishable since every answer to an encryption query is random: in fact,
the iv is random, due to Game 1 and the output of $(·, ·) is random. Thus:

Pr[BAEnc′′(·,·,·) ⇒ 1] = Pr[D$(·,·) ⇒ 1]

Bounding the nAE− E advantage This concludes the proof since∣∣∣Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]
∣∣∣ =∣∣∣Pr[BAEnc(·,·,·) ⇒ 1]− Pr[B$(·,·,·) ⇒ 1]

∣∣∣ ≤ εprf + εivE

and consequently we can bound

AdvnAEΠ (A) =
∣∣∣Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]

∣∣∣ ≤
εINT-CTXT + εprf + εivE.

Theorem 4. Let Π be a (q, t, εnE)-nE-secure nE scheme, let MAC be a (q, t, εprf )-
PRF-secure MAC. Let Π be the nAE scheme obtained composing these compo-
nents according to mode N4. Then, if Π is (q, t, εINT-CTXT)-secure, then it is
(q, t, εINT-CTXT + εnE)− nAE secure.

The proof is completely similar to the previous theorem, simply we do not
have to replace the iv.

Proof. In the proof of Thm. 2 we have proved that
εnAE ≤ εINT-CTXT + εnAE−E.
In particular we have that

AdvnAEΠ (A) =
∣∣∣Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]

∣∣∣ ≤∣∣∣Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]
∣∣∣+∣∣∣Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]− Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1]
∣∣∣ ≤∣∣∣Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]

∣∣∣+ εINT-CTXT

So, we have to only prove that Π is nAE− E-secure. From now on A is an
nAE− E adversary. We do it with a series of Games:

Game 0 Is the nAE− E game played by adversary A against scheme Π.

The nAE− E adversary B The adversary B is based on A making the same
encryption queries as A and answering all decryption query with ⊥. That is,
when the nAE adversary A asks an encryption query on input (ni, ai,mi), the
nAE− E adversary B asks the same query to his oracle, obtaining ci which he
forwards to A; when A makes a decryption query on input (ni, ai, ci), B first
checks if ci is not an answer to an encryption query (nj , aj ,mj), if it is the case
he answers mj to A, otherwise ⊥. At the end of the game A outputs a bit b which
is chosen by B as its output bit b′.
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Equivalence between A and B Since, by hypothesis, A does not make any valid
decryption hypothesis, if B answers ⊥ to every decryption queries, he correctly
simulates the decryption oracle for A. Then:

Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1] = Pr[BAEnc(·,·,·) ⇒ 1]

With the same argument we can prove that

Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1] = Pr[B$(·,·,·) ⇒ 1].

Game 1 Is game 1 where the adversary B is playing against scheme Π ′, where
Π ′ = (K,AEnc′,ADec′) is the schemeΠ where we have replaced in the nE-secure
encryption scheme Enc′(·, ·) with a random function $(·, ·).

The nE adversary C We build an nE adversary C based on the nAE− E adversary
A. This adversary faces an oracle, which is either implemented with EnckE (·, ·)
or with a random function $(·, ·). At the start of the game the nE adversary
C picks a random key kM for the Mac function. When B makes his encryption
query on input (ni, ai,mi), C computes τ i = MackM (ai,mi), then he calls his
oracle on input (ni,mi‖τ i) obtaining ci which he forwards to B. When B outputs
his output bit b then C outputs his output bit b′ = b.

Transition from Game 0 to Game 1 We observe that if the oracle C faces is
implemented with EnckE , C correctly simulates Game 1 for B, otherwise he
correctly simulates Game 2 for D. Thus

Pr[BAEnc(·,·,·) ⇒ 1] = Pr[CEnckE
(·,·) ⇒ 1]

and

Pr[BAEnc′(·,·,·) ⇒ 1] = Pr[C$(·,·) ⇒ 1]

Thus∣∣∣Pr[BAEnc(·,·,·) ⇒ 1]− Pr[BAEnc′(·,·,·) ⇒ 1]
∣∣∣ =

∣∣∣Pr[CEnckE
(·,·) ⇒ 1]− Pr[C$(·,·) ⇒ 1]

∣∣∣ ≤ εnE
since Π is (q, t, εnE)− nE secure and C makes at most q encryption queries and
he runs in time t (and the n are all different).

Game 2 In this Game B interacts with $(·, ·, ·) instead of AEnc′′.

Transition from Game 1 to Game 2 We observe that Game 1 and Game 2 are
indistinguishable since every answer to an encryption query is random: in fact,
the output of $(·, ·) is random. Thus:

Pr[BAEnc′(·,·,·) ⇒ 1] = Pr[C$(·,·) ⇒ 1]
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Bounding the nAE− E advantage This concludes the proof since∣∣∣Pr[AAEnc(·,·,·),⊥(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]
∣∣∣ =

∣∣∣Pr[BAEnc(·,·,·) ⇒ 1]− Pr[B$(·,·,·) ⇒ 1]
∣∣∣ ≤ εnE

and consequently we can bound

AdvnAEΠ (A) =
∣∣∣Pr[AAEnc(·,·,·),ADec(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]

∣∣∣ ≤
εINT-CTXT + εnE.

F.2 Proof of nE security and tidiness of the nE scheme of Sec. 4

We are left with the problem to prove the nE security and the tidiness of the
scheme Π used in Sec. 4 and described in Fig. 5.

Proposition 10. Let E : K×T W×{0, 1}N 7−→ {0, 1}N , with T W = {0, 1, ..., L}×
{0, 1}, be a ((L+1)q, t, εTPRF)−TPRF secure. Then Π is (q, t, εTPRF+2−N )−nE
secure if every message has at most L blocks.

Proof. Let A be a (q, t) − nE adversary who asks messages which have at most
L message blocks.
By definition of nE-security (Def. 16), we have to bound

AdvnEΠ (A) :=
∣∣∣Pr
[
AEnck(·,·) ⇒ 1

]
− Pr

[
A$(·,·) ⇒ 1

]∣∣∣
for every (q, t)− nE-adversary.
We will do it using a sequence of games.
First we observe that the length |Enck(n,m)| is equal to |m| + N ∀(k, n,m) ∈
K×N ×M, so the length of the ciphertext does not give any information about
its inputs apart from the length |m|.

Game 0. The first game, Game 0, is the game where the nE adversary A is facing
Π. At the end of the game, the nE adversary outputs a bit b.
Let E0 be the event that the bit output at the end of Game 0 by the nE adversary
A is 1.

Game 1. First we replace the TPRF E(·)(·) with a random function f(·)(·) with
the same signature of the TPRF E. We call the scheme with this replacement
Π. Let E1 be the event that the adversary A outputs 1 when he is facing Π.
We now bound |Pr[E0]− Pr[E1]| with εTPRF.
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The TPRF-adversary B. To do this we build a ((L+ 1)q, t)− TPRF-adversary
B against the ((L+ 1)q, t, εTPRF)− TPRF E.
This TPRF adversary B faces an oracle which is either implemented with the
TPRF E or a random function f.
At the start the adversary B picks a random value v∗. When A makes an encryp-
tion query (ni,mi) for any i = 1, ..., q, B, first, parses the message in li blocks
with |mi

1| = ... = |mi
li−2| = |m

i
li
| = N and |mi

l−1| ≤ N ; if the parsing is not pos-

sible he answers ⊥ to A. Then, if ni = 1, the adversary B sets ci0 = v∗, otherwise
he calls his oracle on input ((0, 0), ni) obtaining a value which adversary B sets
ci0 to.
After that for j = 1, ..., li−2, the adversary B calls his oracle on input ((j, 0), ni),
obtaining the value xij which is XORed to the message block mi

j obtaining cij .

For the block li − 1, the adversary B calls his oracle on input ((li − 1, 0), ni),
obtaining xili−1. Then, he takes the first |ml−1|-bits of xili−1 and he XORes them
to mli−1 obtaining cli−1.
For the last message block li, if the nonce ni is either 1 or 2 and mi

l−1 = v∗

the TPRF adversary B calls his oracle on input ((l, 1), 0) obtaining xil which
he XORes to mi

l obtaining cil. Otherwise, the adversary B calls his oracle on
input ((l, 0), ni) obtaining xil which he XORes again to mi

l obtaining cil. Next
adversary B computes ci = (ci0, ..., c

i
l) and he forwards the ciphertext ci to the

nE adversary A.
When the adversary A outputs his output bit b, B outputs the same bit b′ = b.

Transition between Game 0 and Game 1. We observe that if the oracle facing
the TPRF adversary B, is implemented with the TPRF E(·)(·), the nE adversary
A is playing Game 0, otherwise he is playing Game 1.
Thus Pr[E0] = Pr[BE ⇒ 1] and Pr[E1] = Pr[BE ⇒ 1]. The adversary B makes at
most L+ 1 queries to his oracle per encryption query. Since the nE adversary A
asks at most q encryption queries, the TPRF adversary B makes at most (L+1)q
queries to his oracle. Since E is a
((L+ 1)q, t, εTPRF)-secure TPRF and B is a ((L+ 1)q, t)−TPRF adversary, we
can bound
|Pr[BE ⇒ 1]− Pr[Bf ⇒ 1] ≤ εTPRF. Thus |Pr[E0]− Pr[E1]| ≤ εTPRF.
So, Pr[E0] ≤ Pr[E1] + εTPRF.

Event C. We define the event C as the event that during Game 1 the nE adver-
sary is able to force the encryption algorithm Enck to enter twice in the if clause
boxed in Figure 5.
We assert that Pr[C] ≤ 2−N .
To prove this, we start by observing that, in order to enter twice in that if, the
nE adversary must have asked a query on input (ni,mi) with ni = 1 and another
query on input (nj ,mj) with nj = 2. There are no other possibilities since the
nonce must not be repeated in encryption queries (see Def. 16).
There are two possibilities:

– i < j, that is, the nE adversary first asks to encrypt a message with nonce
ni equal to 1 and then another with nonce nj equal to 2,
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– i > j

Clearly Pr[C] ≤ max(Pr[C|i < j],Pr[C|i > j]). We start by computing
Pr[C|i < j].
When the nE adversary A queries his oracle on input (1,mi) he has no idea of
what is the value v∗ since this value is picked uniformly at random and it has
never been used. So the probability that the second to last block mli−1 of the
message mi is equal to v∗ is ≤ 2−N (it is not equal since the block mli−1 may
not be full, that is |mli−1| < N). Thus Pr[C|i < j] ≤ 2−N .
On the other hand, Pr[C|i > j] is bounded by 2−N for the same reason, since
when the nE adversary A calls his oracle on input (2,mj) he has no idea of the
value v∗.
Thus Pr[C] ≤ 2−N .

Game 2. We define Game 2 as Game 1 apart from the fact that if event C
happens the nE adversary A outputs immediately 1. Let E2 be the event that
the nE adversary A outputs 1.
Clearly |Pr[E2]− Pr[E1]| ≤ Pr[C] ≤ 2−N .

Game 3. Game 3 is defined as Game 2 apart from the fact that we replace all
ci’s with random strings of the same length. Let E3 be the event that the nE
adversary outputs 1 at the end of Game 3.

Transition from Game 2 and Game 3. We assert that Pr[E2] = Pr[E3].
If event C happens the nE adversary behaves in the same way in both games.
Otherwise we can observe that the random function f(·)(·) is never called during
the game on the same inputs. Since f(·)(·) is by hypothesis a random function
the XOR of its output with a message block is a random string. Moreover for the
first ciphertext block ci0 for every i we can observe that if ni = 1 it is v∗ which is
a random value by hypothesis; otherwise it is f(0,0)(ni) which is a random value
since f has never been computed on this input and f(·)(·) is a random function.
Thus all the ciphertext obtained in Game 2 are random strings, except if event
C happens. Consequently Pr[E3] = Pr[E2].

Thus for every (q, t)− nE adversary A we can bound

AdvnEΠ (A) = |Pr[E0]− Pr[E3]| ≤ εTPRF + |Pr[E1]− Pr[E2]| ≤ εTPRF + 2−N

concluding our proof.

We have now to prove the tidiness of the scheme,

Proposition 11. The nonce based encryption scheme Π = (KE ,Enc,Dec) is
tidy.

Proof. A close inspection of the algorithm presented in Fig 5 proves the claims.
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F.3 Security relations among A10, A11 and A12

Before to give the proofs of the Prop. 1, 2, 3, 4, we have to prove two technical
lemmata. With the first, which was not formally stated in Sec. 5, but whose
contents were already mentioned, we replace the PRF FIV

kM
and FTag

kM
with two

random functions, respectively f IV and fTag. We do it once for all, since otherwise
it would be the first step of many of the following propositions.

Replacing the Mac function with random functions

Lemma 3. Let the vecMACIV = (KM ,MacIV,VrfyIV), with MacIV : KM × N ×
A 7−→ IV (for A12, MacIV : KM ×N 7−→ IV), and the
vecMACTag = (KM ,MacTag,VrfyTag), with MacTag : KM×A×M 7−→ T (for A11,
MacTag : KM×M 7−→ T ) share the same key and be derived from the same PRF
Mac : KM×{0, 1}∗ 7−→ IV∪T (see Def. 30) which is (2q, t, εPRF)−PRF secure.
Given a tidy iv-based encryption ivE scheme Π = (KE ,Enc,Dec), let Π be the
generic composition of these primitives according to mode A10 (respectively A11,
A12). Let Π be the scheme obtained by Π replacing vecMACIV and vecMACTag

(based on the PRFs MacIV and MacTag respectively) respectively with vecMACIV

and vecMACTag (based on the random functions f IV and fTag respectively). Let Π
be (q, t, εINT-CTXT1)−INT-CTXT1 secure then Π is (q, t, εINT-CTXT1)−INT-CTXT1
with |εINT-CTXT1 − εINT-CTXT1| ≤ εPRF)

The proof is completely standard.

Proof. The proof is done using a sequence of two games.

Game 0 In Game 0, the (q, t)− INT-CTXT1-adversary A is playing the standard
INT-CTXT1 game against scheme Π. Let E = E0 be the event that A is able to
produce a valid forgery in Game 0.

Game 1 In Game 1, the adversary A is playing the INT-CTXT1-game against
scheme Π, which is the scheme Π where we have replaced the pseudorandom
functions MacIVkM and MacTagkM

with the random functions f IV and fTag respectively.
Let E1 be the event that the adversary A is able to produce a valid forgery in
Game 1.

Transition between Game 0 and Game 1 We prove that

|Pr[E0]− Pr[E1]| ≤ +εPRF

using the (2q, t)− PRF adversary B against the PRF MackM from which

MacIVkM (·, ·) [for A12, MacIVkM (·)] and MacTagkM
(·, ·) [for A11, MacTagkM

(·)] are derived.
At the start of the Game the (2q, t)− PRF-adversary B picks uniformly at ran-
dom a key kE ← KE for the iv -based encryption scheme Π = (KE ,Enc,Dec).
Then when A makes an encryption query (ni, ai,mi), the adversary B simply
calls his oracle, which is either implemented with the PRF MackM (·) or with a
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random function f(·), on input (ni, ai) [for A12, on input (ni)] to get the IV,
ivi and then B calls it again on input (ai,mi) [(for A11, on input (mi)] to
get the tag τ i. Then B computes ci ← EnckE (ivi,mi‖τ i) and returns ci to the
INT-CTXT1-adversary A.
When A makes his decryption query (nq, aq, cq), the adversary B calls his oracle
on input (nq, aq) [for A12, nq] to get ivq and then he computes
(mq‖τ q) ← DeckE (ivq, cq). After that, he calls his oracle on input (aq,mq) [for
A11, mq] obtaining τ q,c. If τ q = τ q,c

(and (nq, aq, cq) 6= (ni, ai, ci), ∀i = 1, ..., q − 1) he outputs 1, otherwise 0.
We observe that in both case the PRF-adversary B outputs 1, iff the adver-
sary A is able to produce a valid forgery. Thus Pr[BMackM

(·) ⇒ 1] = Pr[E0] and
Pr[Bf(·) ⇒ 1] = Pr[E1].
If the oracle is implemented with MackM (·), the INT-CTXT1-adversary A is play-
ing Game 0, otherwise the adversary A is playing Game 1. Since B asks 2q queries
to his oracle and Mac(·) is a (2q, t, εPRF)− PRF then

|Pr[E0] + Pr[E1]| =
∣∣∣Pr[BMackM

(·) ⇒ 1]− Pr[Bf(·) ⇒ 1]
∣∣∣ ≤ εPRF

which concludes the proof since Pr[E0] = εINT-CTXT1 and Pr[E1] = εINT-CTXT1.

Proof of Lemma 1 This lemma was needed to rule out the simple cases
“A wins ∩ C” and “A wins ∩B ∩ C”.

Lemma 1. Let f IV : N × A 7−→ IV [for mode A12, f IV : N 7−→ IV ] and
fTag : A×M 7−→ T [for mode A11, fTag :M 7−→ T ] be two random functions
and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption scheme. Let Π
be the nAE scheme obtained composing f IV, fTag and Π according to mode A10
or A11 or A12. Then we can bound

Pr[A wins ∩ C] + Pr[A wins ∩B ∩ C] ≤ q|T |−1 + (q − 1)εivE

The proof is completely standard.

Proof. We start computing

Pr[A wins ∩ C] = Pr[A wins ∩ (aq,mq) 6= (aj ,mj) ∀j = 1, ..., q − 1][
for mode A11 = Pr[A wins ∩mq 6= mj ∀j = 1, ..., q − 1]

]
This is bounded by |T |−1 because the probability that the tag τ q is correct is
|T |−1 since τ q,c = fTag(aq,mq) (for mode A11, τ q,c = fTag(mq) ) is picked uni-
formly at random after the adversary A outputs the decryption query since the
tag τ q has never been computed before.

Then we compute Pr[A wins ∩B ∩ C] =

Pr[A wins∩(nq, aq) 6= (ni, ai) ∀i = 1, ..., q−1 ∩ ∃j ∈ {1, ..., q−1} s.t. (aq,mq) = (aj ,mj)]
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[
for mode A12

= Pr[A wins ∩ nq 6= ni ∀i = 1, ..., q − 1 ∩ ∃j ∈ {1, ..., q − 1} s.t. (aq,mq) = (aj ,mj)]
][

for mode A11

= Pr[A wins ∩ (nq, aq) 6= (ni, ai) ∀i = 1, ..., q − 1 ∩ ∃j ∈ {1, ..., q − 1} s.t. mq = mj ]
]

This is bounded by (q − 1)(εivE + |T |−1).
In fact let A be a (q, t)−INT-CTXT1 adversary against schemeΠ and we suppose
that event B happens and event C does not happen. Now we build, based on A,
a (q, t)− ivE adversary B against scheme Π. The ivE-adversary B faces an oracle
which is either implemented with EnckE (·, ·) or with $(·, ·). The ivE-adversary B
is constructed in this way:
First, the adversary B chooses two random functions f IV : N × A 7−→ IV (for
mode A12, f IV : N 7−→ IV) and fTag : A ×M 7−→ T (for mode A11, fTag :
M 7−→ T ). Then, when the INT-CTXT1-adversary A asks an encryption query
on input (ni, ai,mi), the adversary B computes ivi = f IV(ni, ai) [for mode
A12, ivi = f IV(ni)] and τ i = fTag(ai,mi) [for mode A11, τ i = fTag(mi)]. Then
the ivE-adversary B queries his oracle on input (ivi,mi‖τ i) receiving ci, which
he forwards to the adversary A. In this way B asks at most q− 1 oracle queries.
When A makes his decryption query (nq, aq, cq), B computes ivq = f IV(nq, aq)
[for mode A12, ivq = f IV(nq)]. Let J be the set of index j = 1, ..., q − 1 s.t.
aq = aj (Clearly |J | ≤ q − 1) [for mode A11 since the AD are not used to
compute the tag, every message can be picked, thus J = {1, ..., q − 1}]. Now
adversary B, picks a random jg ∈ J recomputes τ jg = fTag(ajg ,mjg ) [for mode
A11, τ jg = fTag(mjg )] and he queries his oracle [which is either implemented
with Enc(·, ·) or with a random oracle $(·, ·)] on input (ivq,mjg‖τ jg ) obtaining
the ciphertext cq,c. Doing this, the adversary B asks his last query of the q oracle
queries he has granted to. If cq,c = cq he outputs 1, otherwise 0. [We observe that
the ivs are picked uniformly at random form the IV space and the adversary B
does not change any oracle query after having seen the relative iv. So, we are
not obliged to pass through the Enc$kE (·) oracle].
Since event C has happened and EnckE (ivq, ·) is an injective function, we obtain

Pr[BEnckE
(·,·) ⇒ 1] = Pr[A wins ∩B ∩ C] Pr[jg = j]

Clearly Pr[jg = j] = |J |−1 ≥ 1
q−1 . Thus:

Pr[A wins ∩B ∩ C] Pr[jg = j] ≥ 1

q − 1
Pr[A wins ∩B ∩ C]

Consequently

Pr[BEnckE
(·,·) ⇒ 1] ≥ 1

q − 1
Pr[A wins ∩B ∩ C]

On the other hand

Pr[B$(·,·) ⇒ 1] = Pr[$(ivq,mjg‖τ jg ) = cq] =≤ |T |−1 · |mj |−1 ≤ |T |−1
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But, since the ivE-scheme Π is (q, t, εivE)-secure, by definition (Def. 18), we have
that ∣∣∣Pr[BEnckE

(·,·) ⇒ 1]− Pr[B$(·,·) ⇒ 1]
∣∣∣ ≤ εivE

Thus
Pr[BEnckE

(·,·) ⇒ 1] ≤ εivE + |T |−1

then

1

q − 1
Pr[A wins ∩B ∩ C] ≤ Pr[BEnckE

(·,·) ⇒ 1] ≤ εivE + |T |−1

Consequently Pr[A wins ∩ B ∩ C] ≤ (q − 1)(εivE + |T |−1) which concludes the
proof since

Pr[A wins ∩C]+Pr[A wins ∩B∩C] ≤ |T |−1+(q−1)(εivE+|T |−1) = q|T |−1+(q−1)εivE.

Proof of Proposition 1

We want to prove that if mode A12 is INT-CTXT1-secure, then mode A10 is
also INT-CTXT1-secure.

Proposition 1. Let f IV10 : N × A 7−→ IV and fTag : A ×M 7−→ T be two
random functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure en-
cryption scheme. Then, if mode A12 implemented with the random function
f IV12 : N 7−→ IV is (q − 1, t, εINT-CTXT1)-INT-CTXT1-secure then mode A10
is (q − 1, t, q|T |−1 + (q − 1)εivE + εINT-CTXT1)-INT-CTXT1-secure

Proof. Let A be a (q − 1, t)− INT-CTXT1 adversary.
Using Lemma 1 we have that

Pr[A wins ∩ C] + Pr[A wins ∩B ∩ C] ≤ q|T |−1 + (q − 1)εivE

So, we only have to compute Pr[A wins ∩B ∩ C].
Here we reduce the INT-CTXT1 security of the scheme Π, composed accord-
ingly to mode A10, to the INT-CTXT1 security of the scheme Π ′, composed
accordingly to mode A12. We do it using a sequence of two games:

Game 0 In Game 0 the (q, t)− INT-CTXT1-adversary A is playing the standard
INT-CTXT1 game against scheme Π, with Π be an A10 scheme, with the con-
dition that the adversary A’s decryption query (nq, aq, cq) = AEnckE (nq, aq,mq)
respects the condition B ∩ C, that is the couple (nq, aq) is not fresh and the
couple (aq,mq) is not fresh. Let E0 be the event that the adversary A wins this
game.

Game 1 In Game 1 the (q, t)− INT-CTXT1-adversary A is playing the standard
INT-CTXT1 game against scheme Π ′, where Π ′ is a scheme composed accord-
ingly to mode A12, with the condition that the adversary A’s decryption query
(nq, aq, cq) = AEnckE (nq, aq,mq) respects the condition B∩C, that is the couple
(nq, aq) is not fresh and the couple (aq,mq) is not fresh. Let E1 be the event
that the adversary A wins this game.
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Transition from Game 0 to Game 1 We use a (q − 1, t) − PRF adversary B
against the oracle O to prove that Pr[E0] = Pr[E1].
The oracle O(·, ·) is either implemented with a random function f IV10 : N×A 7−→
IV or with the function f ′IV12 : N ×A 7−→ IV obtained by the random function
f IV12 : N 7−→ IV simply by defining f ′IV12(n, a) := f IV12(n) ∀n ∈ N , a ∈ A.
Moreover the PRF-adversary B is not allowed to repeat the first input (n) in
different oracle queries. The PRF-adversary B is built as follow:
First adversary B chooses a random function fTag : A ×M 7−→ T and a key
kE ∈ KE for the ivE scheme Π. Then when the adversary A asks an encryption
query on input (ni, ai,mi), the adversary B queries his oracle on input (ni, ai)
obtaining ivi. Then he computes τ i = fTag(ai,mi) and ci = EnckE (ivi,mi) with
mi = mi‖τ i, and he forwards ci to adversary A. In this way B asks at most q−1
oracle queries. Moreover he keeps in memory the quadruple (ni, ai, ivi,mi).
When A makes his decryption query (nq, aq, cq), (by hypothesis we have supposed
that (nq, aq) = (nj , aj) for a certain j ∈ {1, ..., q− 1}) B looks up in his memory
for (nq, aq, ·, ·), he finds the corresponding j and retrieves ivj . Then he decrypts
cq computing cq = (mq‖τ q,c) = DeckE (ivj , cq) and he verifies if τ q = τ q,c (=
fTag(aq,mq)). If the equality holds (that is, the decryption query (nq, aq, cq) is
valid), the PRF-adversary B outputs 1, otherwise he outputs 0.
We observe that if the oracle O is implemented with f IV10(·, ·) the adversary A
is playing Game 0, otherwise he is playing Game 1.

The security of the oracle O We observe that∣∣∣Pr[Bf IV10 (·,·) ⇒ 1]− Pr[Bf′IV12 (·,·) ⇒ 1]
∣∣∣ = 0

In fact since the adversary B has not the right to repeat the first input (the
nonce n) in different oracle queries he is not able to see any difference. In fact
we can see f ′IV12(·, ·) as obtained from a random function f ′IV10 : N ×A 7−→ IV
in this way:
When f ′IV12 is called on input (n, a) the oracle first looks up into his list if he
find a couple (n, iv) for the same n. If this is the case it outputs iv, otherwise
he call the function f ′IV10 on input (n, a) obtaining iv. Then he adds to his list
the couple (n, iv) and outputs iv.
Clearly this oracle implements honestly f ′IV12(·, ·).
We observe that, since B is not allowed to repeat the nonce n in different oracle
queries, during the previous game the oracle which implements f ′IV12(·, ·) never
looks up into his list during AEnc queries. For the ADec query, he does not have
to look up in the list for the answer since he is queried on an input (nq, aq) which
he has already answered to. So B can be seen facing either f IV10 or f‘IV10 , which
are both random functions from N × A 7−→ IV, (clearly his behaviour is the
same when he faces anyone of this two random functions, because, by definition,
they are indistinguishable from each other). So

Pr[Bf IV10 (·,·) ⇒ 1] = Pr[Bf′IV12 (·,·) ⇒ 1] = 0 = (�)
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|Pr[E0]−Pr[E1]|: Now we are left only with the bound of |Pr[E0]−Pr[E1]|. We
observe that

Pr[Bf IV10 (·,·) ⇒ 1] = Pr[A wins against A10] = Pr[E0]

Pr[Bf′IV12 (·,·) ⇒ 1] = Pr[A wins against A12] = Pr[E1]

Using equation (�) we obtain that Pr[E0] = Pr[E1]. Thus

Pr[E0] = Pr[A wins against mode A10∩B∩C] ≤ Pr[A wins against mode A12] ≤ εINT-CTXT1

since the mode A12 is by hypothesis (q− 1, t, εINT-CTXT1)-secure. This concludes
the proof, since we have proved that:

Pr[A wins against mode A10] ≤ q|T |−1 + (q − 1)εivE + εINT-CTXT1

Proof of Proposition 2

We want to prove that if mode A11 is INT-CTXT1-secure, then mode A10 is
also INT-CTXT1 secure.

Before to give the proof we need a lemma, which proves the ivE-security of
the ivE encryption scheme Π ′ described in Fig. 6 based on the ivE encryption
scheme Π:

Lemma 4. Let Π = (Gen,Enc,Dec) be a (q, t, εivE)− ivE secure iv-based ivE En-
cryption scheme. Let fEnc(·) be randomly picked from the set FUNC(IV, {0, 1}N )
then the ivE-based Encryption scheme Π ′ = (Gen′,Enc′,Dec′) described in Fig. 6
is (q, t, ε)− ivE-secure, where

ε ≤ εivE +
q2

2|IV|

The proof is completely standard, since we have to consider the probability
that there is a collision in the IVs during the different encryption queries.

Proof. Let A be a (q, t)− ivE adversary against the ivE scheme Π ′.

We want to bound |Pr[AEnc′$ ⇒ 1]−Pr[A$ ⇒ 1]|. Let B be the event that there
is a collision in the ivs, which are randomly picked. This probability is bounded

by the well-known birthday bound (see ad example [15]), thus Pr[B] ≤ q2

2|IV| .

Clearly using the Law of Total probability

Pr[AEnc′$(·) ⇒ 1] = Pr[AEnc′$(·) ⇒ 1|B] Pr[B] + Pr[AEnc′$(·) ⇒ 1|B] Pr[B].

Now we want to bound Pr[AEnc′$(·) ⇒ 1|B]. We build a (q, t) − ivE adversary
B against Π based on the ivE adversary A who is going against the ivE scheme
Π ′.The adversary B is built in this way:
At the start of the game the ivE adversary B picks at random a function fEnc(·)
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from the set FUNC({0, 1}N , IV).
When the ivE adversary A makes an encryption query on input mi, B simply
sees if mi have to be parsed in (mi

0,m
i
1). If it is not the case, he simply forwards

mi to his oracle, receiving ci which he forwards to adversary A. Otherwise B
parses the message mi in (mi

0,m
i
1) and queries his oracle on input mi

1 receiving
(ivi, ci1), he computes ci0 = fEnc(ivi)⊕mi

0 and he forwards ci := (ci0, c
i
1).

At the end of the Game A outputs a bit b and B output the same bits.
We observe that, if event B does not happen, that is, if all the IVs are different,
then B simulates correctly the game for the ivE adversary A since the ci0, when
they are computed, are random values (if it is not the case, that is, there is
a collision in the IVs, B is not able to correctly simulate the oracle if it is
implemented with $ for the adversary A). Thus we have proved that:

Pr[AEnc′$(·) ⇒ 1|B] = Pr[BEnc$(·) ⇒ 1|B]

and

Pr[A$(·) ⇒ 1|B] = Pr[B$(·) ⇒ 1|B]

Thus ∣∣∣Pr[AEnc′$(·) ⇒ 1]− Pr[A$(·) ⇒ 1]
∣∣∣ =∣∣∣Pr[AEnc′$(·) ⇒ 1|B] Pr[B] + Pr[AEnc′$(·) ⇒ 1|B] Pr[B]−

Pr[A$(·) ⇒ 1|B] Pr[B]− Pr[A$(·) ⇒ 1|B] Pr[B]
∣∣∣ ≤∣∣∣Pr[AEnc′$(·) ⇒ 1|B] Pr[B]− Pr[A$(·) ⇒ 1|B] Pr[B]

∣∣∣+
q2

2|IV|
=

∣∣∣Pr[BEnc$(·) ⇒ 1|B] Pr[B]− Pr[B$(·) ⇒ 1|B] Pr[B]
∣∣∣+

q2

2|IV|
≤ εivE +

q2

2|IV|

which concludes the proof.

The ivE scheme Π ′ is not efficiently implementable since it uses a random
function, which cannot be efficiently computed. However, this is not a problem
since it is used only for a proof.

Now we can prove the following proposition:

Proposition 2. Let f IV : N ×A 7−→ IV and fTag10 : A×M 7−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let H : A 7−→ {0, 1}N be a (0, t, εcr) collision resistant hash function.
Then, if mode A11, implemented with the random function fTag11 :M 7−→ T and

with any (q, t, εivE+ q2

2|IV| )−ivE-secure Encryption scheme, is (q−1, t, εINT-CTXT1)-

INT-CTXT1-secure then mode A10 is (q − 1, t, ε)-INT-CTXT1-secure, where

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.
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Proof. Let A be a (q − 1, t)− INT-CTXT1 adversary.
Using Lemma 1 we have that

Pr[A wins ∩ C] + Pr[A wins ∩B ∩ C] ≤ q|T |−1 + (q − 1)εivE

So, we only have to compute Pr[A wins ∩B ∩ C].
Here, we reduce the INT-CTXT1 security of the scheme Π, composed accord-
ingly to mode A10, to the INT-CTXT1 security of the scheme Π ′, composed
accordingly to mode A11. But, before to do it, we have to make a little change
on the scheme Π, obtaining scheme Π1 which is still composed according to
the mode A10 paradigm. We explain the change and why it does not affect the
INT-CTXT1-security, using a sequence of two games:

Game 0 It is the standard INT-CTXT1 game where the adversary A faces scheme
Π, implemented according to mode A10. Let E0 be the event that the adversary
A wins this Game.

Game 1 It is the standard INT-CTXT1 game where the adversary A faces scheme
Π1, implemented according to mode A10. The only difference is that now we
have replaced fTag10(·, ·) with f ′Tag11(·, ·) := fTag11(f(·)‖·).
Let E1 be the event that the adversary A wins this Game.

Transition between Game 0 and Game 1 We want to bound |Pr[E0]− Pr[E1]|.
To do this we build an adversary B who is facing an oracle O who is either
implemented with fTag10(·, ·) or with f ′Tag11(·, ·). The PRF-adversary B is built
as follows:
First adversary B chooses a random function f IV : N × A 7−→ IV and a key
kE ∈ KE for the ivE scheme Π. Then, when the adversary A asks an encryption
query on input (ni, ai,mi), the adversary B queries his oracle on input (ai,mi)
obtaining τ i. Then he computes ivi = f IV(ni, ai) and ci = EnckE (ivi,mi), with
mi = mi‖τ i, and he forwards ci to adversary A. In this way B asks at most q−1
oracle queries.
When A makes his decryption query (nq, aq, cq), B computes ivq = f IV(nq, aq).
Then he decrypts cq computing cq = (mq‖τ q,c) = DeckE (ivq, cq), he queries
his oracle O on input (aq,mq) obtaining τ q,c and he verifies if τ q,c = τ q. If
the equality holds (that is, the decryption query (nq, aq, cq) is valid), the PRF-
adversary B outputs 1, otherwise he outputs 0.
We observe that if the oracle O is implemented with fTag10(·, ·) the INT-CTXT1
adversary A is playing Game 0, otherwise he is playing Game 1.

The security of the oracle O(·, ·) We observe that∣∣∣Pr[BfTag10 (·,·) ⇒ 1]− Pr[Bf′Tag11 (·,·) ⇒ 1]
∣∣∣ ≤ q2

2N+1

In fact, let event D be the event that there is a collision in the output of the

random function f(·). The probability of event D is bounded by q2

2N+1 , due to
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the well known birthday bound (see for example [15]). Using the law of total
probability, we obtain that

Pr[Bf′Tag11 (·,·) ⇒ 1] = Pr[Bf′Tag11 (·,·) ⇒ 1|D] Pr[D]+Pr[Bf′Tag11 (·,·) ⇒ 1|D] Pr[D] = (◦)

We observe that if event D does not happen, the function f ′Tag11(·, ·) is indistin-
guishable from the random function fTag10 : A×M 7−→ T , because for any new
input (a,m) ∈ A×M the output τ is picked uniformly at random in T . Thus

(◦) = Pr[BfTag10 (·,·) ⇒ 1|D] Pr[D] + Pr[Bf′Tag11 (·,·) ⇒ 1|D] Pr[D]

Thus we can bound∣∣∣Pr[BfTag10 (·,·) ⇒ 1]− Pr[Bf′Tag11 (·,·) ⇒ 1]
∣∣∣ =∣∣∣Pr[BfTag10 (·,·) ⇒ 1]−

(
Pr[BfTag10 (·,·) ⇒ 1|D] Pr[D] + Pr[Bf′Tag11 (·,·) ⇒ 1|D] Pr[D]

)∣∣∣
≤ Pr[D] ≤ q2

2N+1
= (�)

|Pr[E0]−Pr[E1]| We are now left to bound |Pr[E0]−Pr[E1]|. We observe that

Pr[E0] = Pr[BfTag10 (·,·) ⇒ 1]

Pr[E1] = Pr[Bf′Tag11 (·),·) ⇒ 1]

thus ,using (�) we obtain:

|Pr[E0]− Pr[E1]| ≤ q2

2N

which immediately gives:

∣∣Pr[A wins against scheme Π]− Pr[A wins against scheme Π1]
∣∣ ≤ q2

2N+1

and

Pr[A wins against scheme Π] ≤ Pr[A wins against scheme Π1] +
q2

2N+1

Now we build the scheme Π
′

which is obtained according to the mode A11 com-

posing the vecMAC MACIV (based on the random function f IV : N ×A 7−→ IV)

and vecMAC MACTag11 (based on the random function fTag11 : M 7−→ T ) and
the iv -based encryption ivE scheme Π ′, where Π ′ is based on Π. Scheme Π ′

treats differently the first block, which is encrypted in fEnc(iv) ⊕mi
1. This can

only be problems iff the IVs of different encryption queries are repeated. This
probability is bounded by the birthday bound [see [15]]). The complete descrip-
tion of this scheme can be found in Fig. 6. (We use in the following ci0 to encrypt
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f(ai) and makes the message depending on the AD). We have proved that Π ′ is

(q, t, εivE + q2

2|IV| ) secure (Lemma 4).

Now we uses a INT-CTXT1-adversary A against scheme Π1 (type A10) to build
a INT-CTXT1-adversary C against scheme Π ′ (type A11).
The INT-CTXT1-adversary C has access to the oracle AEnc′(·, ·, ·) which is im-
plemented according to scheme Π ′.
First the adversary C picks uniformly at random a function f : A 7−→ {0, 1}N ,
from
FUNC(A, {0, 1}N ). Then when the adversary A asks an encryption query on
input (ni, ai,mi), C computes f(ai) and asks an encryption query on input
(ni, ai,m′i) with m′i := f(ai)‖mi obtaining ci = (ci0, c

i
1). Then he forwards ci1 to

adversary A. When the adversary A asks his decryption query (nq, aq, cq) with
(nq, aq) = (nj , aj) for a certain j ∈ {1, ..., q − 1} (this j is unique since n is a
nonce), the adversary C simply asks to his decryption query (nq, aq, (cj0, c

q)).

We observe that cj0 = fEnc(ivj) ⊕ f(aj) = fEnc(ivq) ⊕ f(aq) since ivj = ivq

and aj = aq. Now if the decryption query made by A is valid, this decryp-
tion query is valid since the tag in the first case is computed as f ′Tag11(aq,mq),
where mq is the decryption of cq, while in the second case it is computed as
fTag11(f(aq)‖mq). Since Π ′ is an A11 authenticated encryption scheme which is

(q, t, εINT-CTXT1)− INT-CTXT1 secure, since Π ′ is (q, t, εivE + q2

2|IV| )− ivE secure

due to Lemma 4, then, the probability that the INT-CTXT1 adversary C forges
is bounded by εINT-CTXT1. Thus, the probability that the INT-CTXT1 adversary
A forges scheme Π1 is bounded by εINT-CTXT1.
Thus

Pr[A forges against Π|B ∩ C] ≤ q2

2N+1
+ εINT-CTXT1

Consequently we obtain that Π is (q, t, ε)− INT-CTXT1 secure with

ε = q|T |−1 + (q − 1)εivE +
q2

2N+1
+ εINT-CTXT1

Proof of Proposition 3

We want to prove that if mode A10 is INT-CTXT1 secure than mode A12 is
also INT-CTXT1 secure.

Proposition 3. Let f IV12 : N 7−→ IV and fTag : A ×M 7−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let Π be the nAE-scheme obtained composing these components accord-
ing to mode A12. Let H : A 7−→ {0, 1}N be (0, t, εcr).
Then, if mode A10, implemented with the random function f IV10 : N ×A 7−→ IV
and with any (q, t, εivE+ q2

2|IV| )−ivE-secure Encryption scheme, is (q, t, εINT-CTXT1)-

INT-CTXT1-secure then mode A12 is (q − 1, t, ε)-INT-CTXT1-secure with

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.
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Proof. Let A be a (q − 1, t)− INT-CTXT1 adversary.
Using Lemma 1 we have that

Pr[A wins ∩ C] + Pr[A wins ∩B ∩ C] ≤ q|T |−1 + (q − 1)εivE

So, we only have to compute Pr[A wins ∩B ∩ C].
Here, we reduce the INT-CTXT1 security of the scheme Π, composed accord-
ingly to mode A12, to the INT-CTXT1 security of the scheme Π10, composed
accordingly to mode A10. But, before to do it, we have to do a little change
on scheme Π, obtaining scheme Π ′, which is still composed according to mode
A12. We explain the change and why it does not affect the INT-CTXT1 security
using a sequence of two games:

Game 0 It is the standard INT-CTXT1 game where the adversary A faces scheme
Π, implemented according to mode A12. Let E0 be the event that the adversary
A wins this Game.

Game 1 It is the standard INT-CTXT1 game where the adversary A faces scheme
Π ′, implemented according to mode A12. The only difference is that now we
have replaced fTag(·, ·) with f ′Tag(a,m) := fTag(af , f(a)‖m) where af ∈ A is a
fixed AD.
Let E1 be the event that the adversary A wins this Game.

Transition between Game 0 and Game 1 We want to bound |Pr[E0]− Pr[E1]|.
To do this we build a (q, t) − PRF adversary B who is facing an oracle O who
is either implemented with fTag(·, ·) or with f ′Tag(·, ·). The PRF-adversary B is
built as follows:
First adversary B chooses a random function f IV : N 7−→ IV and a key kE ∈
KE for Π. Then, when the adversary A asks an encryption query on input
(ni, ai,mi), the adversary B queries his oracle on input (ai,mi) obtaining τ i.
Then, he computes ivi = f IV(ni) and ci = EnckE (ivi,mi) with mi := mi‖τ i and
he forwards ci to adversary A. In this way B asks at most q − 1 oracle queries.
When A makes his decryption query (nq, aq, cq), B computes ivq = f IV(nq). Then,
he decrypts cq computing cq = (mq‖τ q,c) = DeckE (ivq, cq), he queries his oracle
O on input (aq,mq) obtaining τ q,c and he verifies if τ q,c = τ q. If the equality
holds (that is, the decryption query (nq, aq, cq) is valid), the PRF-adversary B
outputs 1, otherwise he outputs 0.
We observe that if the oracle O is implemented with fTag(·, ·) the INT-CTXT1
adversary A is playing Game 0, otherwise he is playing Game 1.

The security of the oracle O(·, ·) We observe that∣∣∣Pr[BfTag(·,·) ⇒ 1]− Pr[Bf′Tag(·,·) ⇒ 1]
∣∣∣ ≤ q2

2N+1

In fact, let event D be the event that there is a collision in the output of the

random function f(·). The probability of event D is bounded by q2

2N+1 , due to
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the well known birthday bound (see for example [15]). Using the law of total
probability, we obtain that

Pr[Bf′Tag(·,·) ⇒ 1] =

Pr[Bf′Tag(·,·) ⇒ 1|D] Pr[D] + Pr[Bf′Tag(·,·) ⇒ 1|D] Pr[D] = (◦)

We observe that if event D does not happen, the function f ′Tag(·, ·) is indistin-
guishable from the random function fTag : A ×M 7−→ T , because for any new
input (a,m) ∈ A×M the output τ is picked uniformly at random in T . Thus

(◦) = Pr[BfTag(·,·) ⇒ 1|D] Pr[D] + Pr[Bf′Tag(·,·) ⇒ 1|D] Pr[D]

Thus we can bound ∣∣∣Pr[BfTag(·,·) ⇒ 1]− Pr[Bf′Tag(·,·) ⇒ 1]
∣∣∣ =∣∣∣Pr[BfTag(·,·) ⇒ 1]−

(
Pr[BfTag(·,·) ⇒ 1|D] Pr[D] + Pr[Bf′Tag(·,·) ⇒ 1|D] Pr[D]

)∣∣∣
≤ Pr[D] ≤ q2

2N+1
= (�)

|Pr[E0]−Pr[E1]| We are now left to bound |Pr[E0]−Pr[E1]|. We observe that

Pr[E0] = Pr[BfTag(·,·) ⇒ 1]

Pr[E1] = Pr[Bf′Tag(·,·) ⇒ 1]

thus ,using (�) we obtain:

|Pr[E0]− Pr[E1]| ≤ q2

2N+1

which immediately gives:

∣∣Pr[A wins against scheme Π]− Pr[A wins against scheme Π ′]
∣∣ ≤ q2

2N+1

and

Pr[A wins against scheme Π] ≤ Pr[A wins against scheme Π ′] +
q2

2N+1

Now we build the scheme Π10 which is obtained according to the scheme A10

composing the vecMAC MACIV (based on the random function f IV10 : N ×A 7−→
IV) and vecMAC MACTag (based on the random function fTag : A×M 7−→ T )
and the IV-based ivE encryption scheme Π ′ based on the ivE Encryption scheme
Π, used already in the proof of Prop. 2 and described in Fig. 6.
Now we uses a INT-CTXT1-adversary A against scheme Π ′ (mode A12) to build

61



a INT-CTXT1-adversary C against scheme Π10 (mode A10).

The INT-CTXT1-adversary C has access to the oracle AEnc10(·, ·, ·) which is
implemented according to scheme Π10. First the adversary C picks a random
function f : A 7−→ {0, 1}N , from the family FUNC(A, {0, 1}N ). Then he picks
an associated data af ∈ A.
When the adversary A asks an encryption query on input (ni, ai,mi), C computes
f(ai) and asks an encryption query on input (ni, af ,m

′i) where m′i := f(ai)‖mi

obtaining ci = (ci0, c
i
1). Then he forwards ci1 to adversary A. When the adversary

A asks his decryption query (nq, aq, cq) with (nq, aq) = (nj , aj) for a certain
j ∈ {1, ..., q−1} (this j is unique since n is a nonce), the adversary C simply asks
to his decryption query (nq, af , (c

j
0, c

q)). We observe that cj0 = fEnc(ivj)⊕f(aj) =
fEnc(ivq)⊕ f(aq) since ivj = ivq and aj = aq. Now if the decryption query made
by A is valid, the decryption query made by B is valid since the tag in the first
case is computed as fTag(af , f(a

q)‖mq), where mq is the decryption of cq, while
in the second case it is computed as fTag(af ,m

′q) with m′q = f(aq)‖mq. Since
Π10 is an A10 authenticated encryption scheme which is (q, t, εINT-CTXT1)-secure,

since Π ′ is (q, t, εivE + q2

2|IV| )− ivE secure due to Lemma 4, then the probability

that the INT-CTXT1 adversary C forges is bounded by εINT-CTXT1. Thus the
probability that the INT-CTXT1 adversary A forges scheme Π ′ is bounded by
εINT-CTXT1.
Thus

Pr[A forges against Π|B ∩ C] ≤ q2

2N+1
+ εINT-CTXT1

Consequently we obtain that Π is (q, t, ε)− INT-CTXT1 secure with

ε = q|T |−1 + (q − 1)εivE +
q2

2N+1
+ εINT-CTXT1

Proof of Proposition 4

We want to prove that if mode A10 is INT-CTXT1 secure than mode A11 is
also INT-CTXT1 secure.

Proposition 4. Let f IV : N × A 7−→ IV and fTag11 : M 7−→ T be two ran-
dom functions and let Π = (KE ,Enc,Dec) be a (q, t, εivE)-ivE-secure encryption
scheme. Let Π be the nAE scheme obtained composing these components accord-
ing to mode A11. Let H : A 7−→ {0, 1}N be a (0, t, εcr)-collision resistant hash
function.
Then, if mode A10, implemented with the random function fTag10 : A×M 7−→ T ,
is (q, t, εINT-CTXT1)-INT-CTXT1-secure then mode A11 is (q−1, t, ε′)-INT-CTXT1-
secure with

ε = q|T |−1 + (q − 1)εivE + εcr + εINT-CTXT1.

Proof. Let A be a (q − 1, t)− INT-CTXT1 adversary.
Using Lemma 1 we have that

Pr[A wins ∩ C] + Pr[A wins ∩B ∩ C] ≤ q|T |−1 + (q − 1)εivE
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So, we only have to compute Pr[A wins ∩B ∩ C].
Here, we reduce the INT-CTXT1 security of the scheme Π, composed accord-
ingly to mode A11, to the INT-CTXT1 security of the scheme Π10, composed
accordingly to mode A10. But, before to do it, we have to do a little change
on scheme Π, obtaining scheme Π ′, which is still composed according to mode
A11. We explain the change and why it does not affect the INT-CTXT1 security
using a sequence of two games:

Game 0 It is the standard INT-CTXT1 game where the adversary A faces scheme
Π, implemented according to mode A11. Let E0 be the event that the adversary
A wins this Game.

Game 1 It is the standard INT-CTXT1 game where the adversary A faces scheme
Π ′, implemented according to mode A11. The only difference is that now we
have replaced f IV(·, ·) with f ′IV(·, ·) := f IV(·‖f(·)).
Let E1 be the event that the adversary A wins this Game.

Transition between Game 0 and Game 1 We want to bound |Pr[E0]− Pr[E1]|.
To do this we build a (q, t)−PRF) adversary B who is facing an oracle O who is
either implemented with f IV(·, ·) or with f ′IV(·, ·). The PRF-adversary B is built
as follows:
First adversary B chooses a random function fTag11 : M 7−→ T and a key
kE ∈ KE for Π. Then, when the adversary A asks an encryption query on input
(ni, ai,mi), the adversary B queries his oracle on input (ni, ai) obtaining ivi.
Then he computes τ i = fTag11(mi) and ci = EnckE (ivi,mi) with mi := mi‖τ i
and he forwards ci to adversary A. In this way B asks at most q − 1 oracle
queries.
When A makes his decryption query (nq, aq, cq), B calls his oracle O on in-
put (nq, aq) obtaining ivq. Then he decrypts cq computing cq = (mq‖τ q,c) =
DeckE (ivq, cq), he computes τ q,c = fTag11(mq) and he verifies if τ q,c = τ q. If
the equality holds (that is, the decryption query (nq, aq, cq) is valid), the PRF-
adversary B outputs 1, otherwise he outputs 0.
We observe that if the oracle O is implemented with f IV(·, ·) the INT-CTXT1
adversary A is playing Game 0, otherwise he is playing Game 1.

The security of the oracle O(·, ·) We observe that∣∣∣Pr[Bf IV(·,·) ⇒ 1]− Pr[Bf′IV(·,· ⇒ 1]
∣∣∣ ≤ q2

2N+1

In fact, let event D be the event that there is a collision in the output of the

random function f(·). The probability of event D is bounded by q2

2N+1 , due to
the well known birthday bound (see for example [15]). Using the law of total
probability, we obtain that

Pr[Bf′IV(·,·) ⇒ 1] =
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Pr[Bf′IV(·,·) ⇒ 1|D] Pr[D] + Pr[Bf′IV(·,·) ⇒ 1|D] Pr[D] = (◦)

We observe that if event D does not happen, the function f ′IV(·, ·) is indistin-
guishable from the random function f IV : N × A 7−→ IV, because for any new
input (n, a) ∈ N ×A the output iv is picked uniformly at random in IV. Thus

(◦) = Pr[Bf IV(·,·) ⇒ 1|D] Pr[D] + Pr[Bf′IV(·,·) ⇒ 1|D] Pr[D]

Thus we can bound ∣∣∣Pr[Bf IV(·,·) ⇒ 1]− Pr[Bf′IV(·,·) ⇒ 1]
∣∣∣ =∣∣∣Pr[Bf IV(·,·) ⇒ 1]−

(
Pr[Bf IV(·,·) ⇒ 1|D] Pr[D] + Pr[Bf′IV(·,·) ⇒ 1|D] Pr[D]

)∣∣∣
≤ Pr[B] ≤ q2

2N+1
= (�)

|Pr[E0]−Pr[E1]| ≤ q2

2N+1 We are now left to bound |Pr[E0]−Pr[E1]|. We observe
that

Pr[E0] = Pr[Bf IV(·,·) ⇒ 1]

Pr[E1] = Pr[Bf′IV(·,·) ⇒ 1]

thus, using (�) we obtain:

|Pr[E0]− Pr[E1]| ≤ q2

2N+1

which immediately gives:

∣∣Pr[A wins against scheme Π]− Pr[A wins against scheme Π ′]
∣∣ ≤ q2

2N+1

and

Pr[A wins against scheme Π] ≤ Pr[A wins against scheme Π ′] +
q2

2N+1

Now we build the scheme Π10 which is obtained according to the scheme A10

composing the vecMAC MACIV (based on the random function f ′IV : N ′ ×A 7−→
IV) with N ′ := N × {0, 1}N , and vecMAC MACTag (based on the random func-
tion fTag : A×M 7−→ T ) and the iv -based encryption scheme Π.

Now we uses a INT-CTXT1-adversary A against scheme Π ′ (mode A12) to
build a
INT-CTXT1-adversary C against scheme Π10 (mode A10).

The INT-CTXT1-adversary C has access to the oracle AEnc10(·, ·, ·) which is
implemented according to scheme Π10. First the adversary C picks a random
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function f : A 7−→ {0, 1}N , from the family FUNC(A, {0, 1}N ). Then he picks
an associated data af ∈ A.
When the adversary A asks an encryption query on input (ni, ai,mi), C computes
f(ai) and asks an encryption query on input (n′i, af ,m

i) with and n′i := ni‖f(ai)
obtaining ci which he forwards to adversary A. When the adversary A asks his
decryption query (nq, aq, cq) with (nq, aq) = (nj , aj) for a certain j ∈ {1, ..., q−1}
(this j is unique since n is a nonce), the adversary C simply asks to his decryption
query (nq‖f(aq), af , cq)). Now if the decryption query made by A is valid, this
decryption query is valid since for A the iv should be computed as f ′IV(nq‖f(aq)),
while in the second case it is computed as f IV(n′q, af ) with n′q = nq‖f(aq). Since
af is constant in all the queries made by C we can ignore it. Moreover for A
the tag should be computed as fTag11(mq) while for C it should be computed
as fTag10(af ,m

q), but again, since af is constant in all the queries made by C,
we can ignore it and the tag is correct in both cases. The nAE scheme Π10 is
by hypothesis (q − 1, t, εINT-CTXT1), thus the probability that the INT-CTXT1
adversary A forges scheme Π ′ is bounded by εINT-CTXT1.
Thus

Pr[A forges against Π|B ∩ C] ≤ q2

2N+1
+ εINT-CTXT1

Consequently we obtain that Π is (q, t, ε)− INT-CTXT1 secure with

ε = q|T |−1 + (q − 1)εivE +
q2

2N+1
+ εINT-CTXT1

F.4 Proofs for secure variants of modes A10, A11 and A12

Proof of Proposition 5

We want to prove that mode A10 is INT-CTXT1-secure if the ivE Encryption
scheme Π is misuse resistant.

Proposition 5. Let the ivE scheme Π be a (q, t, εmrE)-misuse resistant mrE and
(q, t, εivE) − ivE secure, let f IV : N × A 7−→ IV and fTag : A ×M 7−→ T be two
random functions. Then, the scheme Π obtained composing these components
according to mode A10, is (q − 1, t, (q − 1)|T |−1 + (q − 1)εivE + (q − 1)εmrE) −
INT-CTXT1-secure.

Proof. Let A be a (q − 1, t)− INT-CTXT1 adversary.
Using Lemma 1 we have that

Pr[A wins ∩ C] + Pr[A wins ∩B ∩ C] ≤ q|T |−1 + (q − 1)εivE

So, we only have to compute Pr[A wins ∩B ∩ C].
In this case, we can reduce the (q, t)− INT-CTXT1 adversary A against Π to a
(q, t)−mrE adversary B against Π, which is (q, t, εmrE)−mrE-secure, by hypoth-
esis. The (q, t)−mrE adversary B is built in this way:
First adversary B chooses two random functions f IV : N × A 7−→ IV and
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fTag : A×M 7−→ T . Then when the adversary A asks an encryption query on in-
put (ni, ai,mi), the adversary B computes ivi = f IV(ni, ai) and τ i = fTag(ai,mi).
Then the adversary B queries his oracle (which is either implemented with
Enc(·, ·) or with a random function $(·, ·) on input (ivi,mi), with mi = mi‖τ i) re-
ceiving ci, which he forwards to adversary A. When A makes his decryption query
(nq, aq, cq), B computes ivq = f IV(nq, aq). Let J be the set of index i = 1, ..., q−1
s.t. aq = aj . Clearly |J | ≤ q − 2. Then the adversary B picks an index j ← J
uniformly at random and queries his oracle on input (ivq,mq) with mq := mj‖τ j
obtaining cj . If cj = cq he outputs 1, otherwise 0.

Pr[BEnc(·,·) ⇒ 1] =

Pr[j correct ] Pr[A wins ∩B ∩ C] =
1

|J |
Pr[A wins ∩B ∩ C]

Pr[B$(·,·) ⇒ 1] = Pr[$(ivq,mj) = cq] = |Enc(ivq,mj)|−1

≤ |T |−1 · |mj |−1 ≤ |T |−1

Since Enc is (q, t, εmrE)−mrE-secure ivE Encryption scheme and B is a (q, t)−mrE
adversary

Pr[BEnc(·,·) ⇒ 1] ≤ Pr[B$(·,·) ⇒ 1] + εmrE

Thus
1

|J |
Pr[A wins ∩B ∩ C] ≤ |Enc(ivq,mj)|−1 + εmrE

Consequently

Pr[A wins ∩B ∩ C] ≤
(
|Enc(ivq,mj)|−1 + εmrE

)
|J | ≤ (q − 1)

(
|T |−1 + εmrE

)
Consequently we obtain that the nAE scheme Π is (q− 1, t, ε)− INT-CTXT1

secure, with

ε = q|T |−1+(q−1)εivE+(q−1)
(
|T |−1 + εmrE

)
= (2q−1)|T |−1+(q−1)εivE+(q−1)εmrE.

Better bound for the INT-CTXT1-security of mode A10 using a misuse
resistant ivE scheme

We can have a better bound if we decide to give the mrE adversary B more
encryption queries.

Proposition 12. Let the ivE scheme π be a (2q − 2, t, εmrE)-misuse resistant
mrE scheme, let f IV : N × A 7−→ IV and fTag : A ×M 7−→ T be two random
functions. Then the scheme Π, obtained composing these components according
to mode A10 is (q − 1, t, 2q−1|T | + 2εmrE)− INT-CTXT1-secure.
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Proof. To have a better bound we cannot use Lemma 1, but we have to redo its
proof.
Let A be a (q − 1, t)− INT-CTXT1 adversary.
We start computing

Pr[A wins ∩ C] = Pr[A wins ∩ (aq,mq) 6= (aj ,mj) ∀j = 1, ..., q − 1]

This is bounded by |T |−1 because the probability that the tag τ q is correct is
|T |−1 since τ q,c = fTag(aq,mq) is picked uniformly at random after the adver-
sary A outputs the decryption query since the tag τ q has never been computed
before, as in Lemma 1.

Then we compute Pr[A wins ∩B ∩ C] =

Pr[A wins∩(nq, aq) 6= (ni, ai) ∀i = 1, ..., q−1 ∩ ∃j ∈ {1, ..., q−1} s.t. (aq,mq) = (aj ,mj)]

In fact let A be a (q, t)−INT-CTXT1 adversary against schemeΠ and we suppose
that event B happens and event C does not happen. Now we build, based on A,
a (2q − 2, t) − mrE adversary B against scheme Π. The mrE-adversary B faces
an oracle which is either implemented with EnckE (·, ·) or with $(·, ·). The ivE-
adversary B is constructed in this way:
First the adversary B chooses two random functions f IV : N × A 7−→ IV and
fTag : A×M 7−→ T . Then, when the INT-CTXT1-adversary A asks an encryption
query on input (ni, ai,mi), the adversary B computes ivi = f IV(ni, ai) and τ i =
fTag(ai,mi). Then the ivE-adversary B queries his oracle on input (ivi,mi‖τ i)
receiving ci, which he forwards to the adversary A. In this way B asks at most
q − 1 oracle queries.
When A makes his decryption query (nq, aq, cq), B computes ivq = f IV(nq, aq).
Let J be the set of index j = 1, ..., q − 1 s.t. aq = aj (Clearly |J | ≤ q − 1).
Now adversary B, asks for every j ∈ J B recomputes τ j = fTag(aj ,mj) and he
queries his oracle [which is either implemented with Enc(·, ·) or with a random
oracle $(·, ·)] on input (ivq,mj‖τ j) obtaining the ciphertext cq,j,c. Doing this,
the adversary B asks his last q − 1 queries of the 2q − 2 oracle queries he has
granted to. If ∃j ∈ J s.t. cq,j,c = cq he outputs 1, otherwise 0.
Since event C has happened and EnckE (ivq, ·) is an injective function, we obtain

Pr[BEnckE
(·,·) ⇒ 1] = Pr[A wins ∩B ∩ C]

On the other hand

Pr[B$(·,·) ⇒ 1] = Pr[∃j ∈ J s.t. (ivq,mj‖τ j) = cq] ≤

1−
(
1− |T |−1 · |mj |−1

)q−1 ≤ 1−
(
1− |T |−1

)q−1 ≤ q − 1

|T |
But, since the ivE-scheme Π is (q, t, εmrE)-secure, by definition (Def. 20), we have
that ∣∣∣Pr[BEnckE

(·,·) ⇒ 1]− Pr[B$(·,·) ⇒ 1]
∣∣∣ ≤ εmrE
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Thus

Pr[BEnckE
(·,·) ⇒ 1] ≤ εmrE +

q − 1

|T |
then

Pr[A wins ∩B ∩ C] ≤ Pr[BEnckE
(·,·) ⇒ 1] ≤ εmrE +

q − 1

|T |
Now we only have to compute Pr[A wins ∩B ∩ C].

In this case, we can reduce the (q−1, t)− INT-CTXT1 adversary A against Π to
a (2q− 2, t)−mrE adversary C against Π, which is (2q− 2, t, εmrE)−mrE-secure,
by hypothesis. The (2q − 2, t)−mrE adversary C is built in this way:
First adversary C chooses two random functions f IV : N × A 7−→ IV and
fTag : A×M 7−→ T . Then when the adversary A asks an encryption query on in-
put (ni, ai,mi), the adversary C computes ivi = f IV(ni, ai) and τ i = fTag(ai,mi).
Then the adversary C queries his oracle (which is either implemented with
Enc(·, ·) or with a random function $(·, ·) on input (ivi,mi), with mi = mi‖τ i)
receiving ci, which he forwards to adversary A. When A makes his decryption
query (nq, aq, cq), C computes ivq = f IV(nq, aq). Then the adversary C for every
j ∈ J queries his oracle on input (ivq,mq) with mq := mj‖τ j obtaining cq,j . If
cq,j = cq he outputs 1, otherwise 0. In this way C asks at most q− 1 queries not
surpassing his total of 2q − 2 oracle queries he is allowed to.

Pr[CEnc(·,·) ⇒ 1] = Pr[A wins ∩B ∩ C]

Pr[C$(·,·) ⇒ 1] = Pr[∃j ∈ J s.t. $(ivq,mj) = cq] =
(
|Enc(ivq,mj)|−1

)q−1 ≤ q − 1

|T |

Since Enc is (q, t, εmrE)−mrE-secure ivE Encryption scheme and B is a (q, t)−mrE
adversary

Pr[BEnc(·,·) ⇒ 1] ≤ Pr[B$(·,·) ⇒ 1] + εmrE

Thus

Pr[A wins ∩B ∩ C] ≤ q − 1

|T |
+ εmrE

Consequently we obtain that the nAE scheme Π is (q − 1, t, ε) − INT-CTXT1
secure, with

ε =
1

|T |
+ εmrE +

q − 1

|T |
+
q − 1

|T |
+ εmrE =

2q − 1

|T |
+ 2εmrE.

Proof of Prop. 6

We want to prove the INT-CTXT1 security of mode A10 if the ivE-scheme is
“message-malleable”.

Proposition 6. Let the ivE scheme Π be (q, t, εivE)-ivE-secure, (q− 1, t, εmCPA)-
mCPA-secure and “message-malleable”, let f IV : N × A 7−→ IV and fTag : A ×
M 7−→ T be two random functions. Then, the scheme Π obtained composing
these components according to mode A10, is (q, t, (q−1)εivE +q|T |−1 +8εmCPA)−
INT-CTXT1-secure.
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Proof. Let A be a (q − 1, t)− INT-CTXT1 adversary.
Let event B (that is, (nq, aq) is fresh) and C (that is, (aq,mq) as in Lemma 1.
Using the proof of Lemma 1 we can prove that Pr[A wins |B] ≤ (q − 1)(εivE +
|T |−1).
Now, we can reduce the (q, t) − INT-CTXT1 adversary A against Π to two
(q − 1, t) −mCPA adversary B and C against Π, which is (q, t, εmCPA) −mCPA-
secure, by hypothesis. To do this, we need two Games:

Game 0 It is the standard INT-CTXT1 game where the adversary A faces scheme
Π implemented according to mode A10. Let E0 be the event that the adversary
A wins this game. Let B0 the event B in Game 0.

Game 1 It is the standard INT-CTXT1 game where the adversary A faces scheme

Π
′

which is a variant of scheme Π: instead of computing ci ← Enc(ivi,mi‖τ i),
AEnc picks uniformly at random in the set T a value ri and then it computes
c← Enc(ivi,mi‖ri); on the other hand Dec is not changed (this implies that Dec
is not able to decrypt correctly, with overwhelming probability the encryptions
AEnc makes). Let E1 be the event that the adversary A wins this game. Let B1

the event B in Game 1.

Now want to bound |Pr[B0]− Pr[B1]|, then we can use this result to bound
|Pr[A wins |B0]− Pr[A wins |B1]|.

We bound the equality |Pr[B0]−Pr[B1]| (r. |Pr[E0∩B0]−Pr[E1∩B1]|) using
an mCPA adversaries B (r. C), reducing the (q− 1, t)− INT-CTXT1 adversary A
against Π to a (q − 1, t) − mCPA adversary B (r. C) using the fact Π which is
(q − 1, t, εmCPA)−mCPA-secure.
In Table 2 we give the choice of the output bit b′ of adversaries B and C, and
the security results we obtain thanks to them:

Adversary Choice of b′ Results

B
0 if event B happens
1 otherwise

Pr[B0] ≤ Pr[B1] + 2εmCPA

C
0 if event B does happen
1 if event B and E do not happen
0 if event B does not happen and E do happen

Pr[E0 ∩B0] ≤ Pr[E1 ∩B1] + 8εmCPA

Table 2. Choice of the output bit b′ by the mCPA adversaries in Prop. 6

The mCPA-adversary B: To prove that Pr[B0] ≤ Pr[B1] + 2εmCPA we reduce the
(q− 1, t)− INT-CTXT1 adversary A against Π to a (q− 1, t)−mCPA adversary
B against Π.
To start the reduction, first adversary B chooses two random functions f IV :
N ×A 7−→ IV and fTag : A×M 7−→ T . When adversary A makes an encryption
query (ni, ai,mi) for any i = 1, .., q − 1, adversary B computes ivi = f IV(ni, ai),
τ i = fTag(ai,mi) and picks a random value ri ← T (if ri = τ i there is no
problem). Then B queries his oracle Encbk(·, ·, ·) on input (ivi,mi

0,m
i
1) with mi

0 :=
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mi‖τ i and mi
1 := mi‖ri) and receives ci which he forwards to adversary A. When

A makes his decryption query (nq, aq, cq), the adversary B first outputs b = 0
if event B happens, that is (nq, aq) is fresh [i.e. ∃j ∈ {1, ..., q − 1}s.t.(nq, aq) =
(nj , aj)]; otherwise, he outputs 1. Clearly

Pr[b′ = b] = Pr[B|b = 0] Pr[b = 0] + Pr[B|b = 1] Pr[b = 1]

observe that Pr[b = 0] = Pr[b = 1] =
1

2
because b is randomly picked

=
1

2

(
Pr[B0] + Pr[B1]

)
=

1

2

(
1− Pr[B0] + Pr[B1]

)

Since Π is a (q, t, εmCPA)−mCPA secure Pr[b = b′] ≤ 1
2 +εmCPA. Thus Pr[B0] ≤

Pr[B1] + 2εmCPA.

The mCPA-adversary C: Now to prove that Pr[E0∩B0] ≤ Pr[E1∩B1] ≤ 6εmCPA

we reduce the (q−1, t)−INT-CTXT1 adversary A againstΠ to a (q−1, t)−mCPA
adversary C against Π.
To start the reduction, first adversary C chooses two random functions f IV :
N ×A 7−→ IV and fTag : A×M 7−→ T . When adversary A makes an encryption
query (ni, ai,mi) for any i = 1, .., q − 1, adversary C computes ivi = f IV(ni, ai),
fi = ρTag(ai,mi) and picks a random value ri ← T (if ri = τ i there is no
problem). Then C queries his oracle Encbk(·, ·, ·) on input (ivi,mi

0,m
i
1) with

mi
0 := mi‖τ i and mi

1 := mi‖ri and receives ci which he forwards to adver-
sary A. When A makes his decryption query (nq, aq, cq), the adversary C first
computes ivq = f IV(nq, aq). If event B has not happened C outputs 0. Other-
wise, since event B has happened, ivq = ivj for a certain i = 1, ..., q − 1 (due
to event B (nq, aq) = (nj , aj) for a certain j = 1, ..., q − 1). Using the fact
that Π is nonce-message-malleable, adversary C is able to answer correctly to
the decryption query of A. In fact he computes mq and τ q by simply parsing
mq = (mq‖τ q) ← Dec(ivq, cq) [if the decryption gives ⊥ C simply outputs 1].
Then he can compute τ q,c = fTag(aq,mq) and then verify if τ q,c = τ q.
The mCPA adversary C outputs b′ = 0 if τ q,c = τ q (that is, the ciphertext pro-
vided by the INT-CTXT1 adversary A is valid), 1 otherwise. Thus, using also the
results
Pr[B0] ≤ Pr[B1]+2εmCPA due to adversary B. First, let us suppose that Pr[B0], Pr[B1] 6=
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1:

Pr[b′ = b] = Pr[B0] Pr[b = 0] + Pr[E|B0] Pr[B0] Pr[b = 0] + Pr[E|B1] Pr[B1] Pr[b = 1]

observe that Pr[b = 0] = Pr[b = 1] =
1

2
because b is randomly picked

=
1

2

(
Pr[B0] + Pr[E|B0] Pr[B0] + Pr[E|B1] Pr[B1]

)
=

1

2

(
1− Pr[B0] + Pr[E|B0] Pr[B0] + Pr[E|B1] Pr[B1]

)
=

1

2

(
1− Pr[B0] + Pr[E|B0] Pr[B0] +

(
1− Pr[E|B1]

)
Pr[B1]

)
=

1

2

(
1− Pr[B0] + Pr[E|B0] Pr[B0] + Pr[B1]− Pr[E|B1] Pr[B1]

)
=

1

2

(
1− Pr[B0] + Pr[B1] + Pr[E|B0] Pr[B0]− Pr[E|B1] Pr[B1]

)
=

1

2

(
1− Pr[B0] + Pr[B1]+(

Pr[E|B0]− Pr[E|B1]
)

Pr[B0]− Pr[E|B1]
(
Pr[B1]− Pr[B0]

))
= (◦)

Using the fact that |Pr[B0]− Pr[B1]| ≤ 2εmCPA, due to B, we have:

1

2

(
1− 2εmCPA +

(
Pr[E|B0]− Pr[E|B1]

)
Pr[B0]− Pr[E|B1]2εmCPA

)
≤ (◦)

≤ 1

2

(
1 + 2εmCPA +

(
Pr[E|B0]− Pr[E|B1]

)
Pr[B0] + Pr[E|B1]2εmCPA

)

1

2

(
1− 2εmCPA +

(
Pr[E|B0]− Pr[E|B1]

)
Pr[B0]− 2εmCPA

)
≤ (◦)

≤ 1

2

(
1 + 2εmCPA +

(
Pr[E|B0]− Pr[E|B1]

)
Pr[B0] + 2εmCPA

)
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Since C is a (q, t)−mCPA against the scheme Π which is (q, t, εmCPA)−mCPA-
secure we obtain:

1

2

(
1− 4εmCPA +

(
Pr[E|B0]− Pr[E|B1]

)
Pr[B0]

)
≤ 1

2
+ εmCPA

and

1

2

(
1 + 4εmCPA +

(
Pr[E|B0]− Pr[E|B1]

)
Pr[B0]

)
≤ 1

2
+ εmCPA

thus

Pr[B0]
(
Pr[E|B0]− Pr[E|B1]

)
2

≤ 3εmCPA

and

Pr[B0]
(
Pr[E|B0]− Pr[E|B1]

)
2

≤ −εmCPA

thus

Pr[B0]
(
Pr[E|B0]− Pr[E|B1]

)
≤ 6εmCPA

and

Pr[B0]
(
Pr[E|B0]− Pr[E|B1]

)
≤ −2εmCPA

Thus:

Pr[E ∩B0] = Pr[E|B0] Pr[B0] ≤ Pr[E|B1] Pr[B0] + 6εmCPA

= Pr[E|B1] Pr[B1]− Pr[E|B1] Pr[B1] + Pr[E|B1] Pr[B0] + 6εmCPA

= Pr[E|B1] Pr[B1] + Pr[E|B1]
(
Pr[B0]− Pr[B1]

)
+ 6εmCPA

≤ Pr[E|B1] Pr[B1] + 2εmCPA + 6εmCPA = Pr[E ∩B1] + 8εmCPA

From the other inequality we obtain

Pr[E ∩B0] = Pr[E|B0] Pr[B0] ≤ Pr[E|B1] Pr[B0]− 2εmCPA

= Pr[E|B1] Pr[B1]− Pr[E|B1] Pr[B1] + Pr[E|B1] Pr[B0]− 2εmCPA

= Pr[E|B1] Pr[B1] + Pr[E|B1]
(
Pr[B0]− Pr[B1]

)
− 2εmCPA

≤ Pr[E|B1] Pr[B1] + 2εmCPA − 2εmCPA = Pr[E ∩B1]

Instead if Pr[B0] = 1, then Pr[B0] = 0, thus, Pr[E0|B0] cannot be defined. But,
clearly Pr[E0 ∩B0] = 0. On the other end, if Pr[B1] = 1, then Pr[B1] = 0, thus,
Pr[E1|B1] cannot be defined. But, if Pr[B0] 6= 1 (thus Pr[B0] 6= 0), we obtain

Pr[b′ = b] = Pr[B0] Pr[b = 0] + Pr[E|B0] Pr[B0] Pr[b = 0] + Pr[E ∩B1] Pr[b = 1]

thus, since by hypothesis Pr[B1] = 0

= Pr[B0] Pr[b = 0] + Pr[E|B0] Pr[b = 0]
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since b is randomly picked Pr[b = 0] = Pr[b = 1] = 1
2 , thus

=
1

2

(
Pr[B0] + Pr[E|B0] Pr[B0]

)
= (?)

Since, by hypothesis, Pr[B1] = 1, and since, due to the mCPA adversary B we
have proved that |Pr[B0]− Pr[B1]| ≤ 2εmCPA, we obtain:

1

2

(
1− 2εmCPA + Pr[E|B0] Pr[B0]

)
≤ (?) ≤ 1

2

(
1 + Pr[E|B0] Pr[B0]

)
Since C is a (q, t)−mCPA against the scheme Π which is (q, t, εmCPA)−mCPA-
secure we obtain:

1

2

(
1− 2εmCPA + Pr[E|B0] Pr[B0]

)
≤ 1

2
+ εmCPA

and
1

2

(
1 + Pr[E|B0] Pr[B0]

)
≤ 1

2
+ εmCPA

Thus
Pr[E|B0] Pr[B0]

2
≤ εmCPA + εmCPA

and
Pr[E|B0] Pr[B0]

2
≤ εmCPA

Consequently:

Pr[E ∩B0] = Pr[E|B0] Pr[B0] ≤ 8εmCPA = Pr[E ∩B1] + 8εmCPA

and

Pr[E ∩B0] = Pr[E|B0] Pr[B0] ≤ 2εmCPA = Pr[E ∩B1] + 4εmCPA

Thus we have proved the bound:

Pr[E ∩B0] ≤ Pr[E ∩B1] + 8εmCPA

Pr[E1|B1] = 1
2 : Eventually, we compute Pr[E1|B1]. Since τ q,c = fTag(aq,mq) is

completely random and it has never been computed before, because in Game 1
the function fTag is never used for encryption queries, the probability it is equal
to τ q is equal to |T |−1. Thus Pr[E1∩B1] ≤ |T |−1 (the inequality is due to the the
fact that Dec(ivq, cq) 6=⊥ it is not granted). So we have proved the proposition,
since Pr[E0 ∩B0] ≤ Pr[E1 ∩B1] thanks to adversary C. Thus:

Pr[E0] = Pr[E0 ∩B0] + Pr[E0 ∩B0] ≤ (q − 1)(εivE + |T |−1) + |T |−1 + 8εmCPA =

(q − 1)εivE + q|T |−1 + 8εmCPA
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Message-malleability for N4

Proposition 13. Let the nE scheme Π be (q, t, εnE)-nE-secure, (q− 1, t, εmCPA)-
mCPA-secure and “message-malleable”, let fTag : A ×M 7−→ T be a random
function. Then, the scheme Π obtained composing these components according
to mode N4, is (q, t, (q − 1)εnE + q|T |−1 + 8εmCPA)− INT-CTXT1-secure.

Proof. The proof is similar to the proof of Prop. 14 with some easy adjustments.

F.5 Proof of insecure variants of mode A10, A11, and A12

Stateful

Proof of ivE-security Now we have to prove that Π is ivE secure.

Proposition 14. Let E : K×T W×{0, 1}N 7−→ {0, 1}N , where T W = {0, 1, ..., L}×
{0, 1}, be a TPRP ((L+ 2)q, t, εTPRF)−TPRF secure. Then Π is (q, t, εTPRP +
2−N ) if every message has at most L blocks.

The proof is similar to the proof of Prop. 10.

Proof. Let A be a (q, t)− ivE adversary who asks messages which have at most
L message blocks.
We remind that, due to our hypothesis, the ivE adversary A is able to set the
state of Enc at the start of the Game. He sets the state to ctr∗ as he wishes.
By definition of ivE-security (Def. 18), we have to bound

AdvivEΠ (A) :=
∣∣∣Pr
[
AEnc$k(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]∣∣∣
for every (q, t)− ivE-adversary.
We will do it using a sequence of games.
First we observe that the length |Enck(n,m)| is equal to |m|+ 2N ∀(k, iv,m) ∈
K×IV×M, so the length of the ciphertext does not give any information about
its inputs apart from the length |m|.

Game 0. The first game, Game 0, is the game where the ivE adversary A is
facing Π. At the end of the game, the ivE adversary outputs a bit b.
Let E0 be the event that the bit output at the end of Game 0 by the ivE adversary
A is 1.

Game 1. First we replace the TPRP E with a tweakable random function f with
the same signature of the TPRP E. We call the scheme with this replacement
Π. Let E1 be the event that the adversary A outputs 1 when he is facing Π.
We now bound |Pr[E0]− Pr[E1]| with εTPRF.
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The TPRF-adversary B. To do this we build a ((L+ 1)q, t)− TPRF-adversary
B against the ((L+ 1)q, t, εTPRF)− TPRF E.
This TPRF adversary B faces an oracle which is either implemented with the
TPRF E or a random function f. At the start the adversary B picks a random
value v∗ and set the state ctr = ctr∗ to the value the nE adversary A wants.
When A makes an encryption query (mi) for any i = 1, ..., q, B first parses the
message in li blocks with |mi

1| = ... = |mi
li−2| = |mi

li
| = N , then he picks

a random ivi ← IV and the actual state ctr. Then to compute ci−1 he calls
his oracle on input ((0, 1), ctr) and he set ci−1 to this value. Next, if ctr = 1,
the adversary B sets ci0 = v∗, otherwise he calls his oracle on input ((0, 0), ivi)
obtaining a value which adversary B sets ci0 to.
Next for j = 1, ..., li − 2, the adversary B calls his oracle on input ((j, 0), ivi),
obtaining the values xij which is XORed to the message block mi

j obtaining cij .

For the block li − 1, the adversary B calls his oracle on input ((li − 1, 0), ivi),
obtaining xili−1. Then he takes the first |ml−1|-bits of xili−1 and he XORes them
to mli−1 obtaining cli−1.
For the last message block li, if the state ctr is either 1 or 2 and mi

l = v∗

the TPRF adversary B calls his oracle on input ((l, 1), 0) obtaining xil which
he XORes to mi

l obtaining cil. Otherwise, the adversary B calls his oracle on
input ((l, 0), ivi)) obtaining xil which he XORes again to mi

l obtaining cil. After
that the adversary B increases the state ctr of 1. Then, adversary B computes
ci = (ci−1, c

i
0, ..., c

i
l), updates the state (doing ctr + +), and he forwards the iv

ivi and the ciphertext ci to the ivE adversary A.
When the adversary A outputs his output bit b, B outputs the same bit b′ = b.

Transition between Game 0 and Game 1. We observe that if the oracle facing
the TPRF adversary B, is implemented with the pseudorandom function E(·),
the ivE adversary A is playing Game 0 because the oracle Enck(·, ·) is simulated
correctly. Otherwise, he is playing Game 1.
Thus Pr[E0] = Pr[BE ⇒ 1] and Pr[E1] = Pr[Bf ⇒ 1]. The adversary B makes at
most L+ 2 queries to his oracle per encryption query. Since the ivE adversary A
asks at most q encryption query, the TPRF adversary B makes at most (L+ 2)q
queries to his oracle. Since E is
((L+12)q, t, εTPRF)-secure-TPRF and B is a ((L+2)q, t)−TPRF adversary, we
can bound |Pr[BE ⇒ 1]−Pr[Bf ⇒ 1] ≤ εTPRF. Thus |Pr[E0]−Pr[E1]| ≤ εTPRF|.
So, Pr[E0] ≤ Pr[E1] + εTPRF.

Event C. We define the event C as the event that during Game 1 the ivE ad-
versary is able to force the encryption algorithm Enck to enter twice in the if
clause boxed in Figure 5.
We assert that Pr[C] ≤ 2−N .
To prove this we start by observing that, in order to enter twice in that if,
the ivE adversary must have asked the first two queries on input (m1,m2) with
m1
l1−1 = v∗ and m2

l2−1 = v∗. There are no other possibilities since when the
state ctr > 2 it is not possible to enter in the if clause box. Moreover it should
be noted that there cannot be two encryptions with the same state ctr (as long
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the ciphertext is not ⊥. This latter case clearly does not create any security
problem).
When the ivE adversary A queries his oracle on input (m1) he has no idea of
what is the value v∗ since this value is picked uniformly at random and it has
never been used. So the probability that the second to last block ml1−1 of the
message m asked to be encrypted when the state is ctr = 1, is equal to v∗ is
2−N . Thus Pr[C] ≤ 2−N .

Game 2. We define Game 2 as Game 1 apart from the fact that if event C
happens the ivE adversary A outputs immediately 1. Let E2 be the event that
the ivE adversary A outputs 1.
Clearly |Pr[E2]− Pr[E1]| ≤ Pr[C] ≤ 2−N .

Game 3. Game 3 is defined as Game 2 apart from the fact that we replace all
ci’s with random strings of the same length. Let E3 be the event that the ivE
adversary outputs 1 at the end of Game 3.

Transition from Game 2 and Game 3. We assert that Pr[E2] = Pr[E3].
If event C happens the ivE adversary behaves in the same way in both games.
Otherwise we can observe that f(·, ·) is never called during the game on the same
inputs. Since f(·, ·) is by hypothesis a random function the XOR of its output
with a message block is a random string. Moreover for the first ciphertext block
ci−1 for every i we can observe that it is E0,1

k (ctr), whose inputs are always differ-
ent. For the second block for the message encrypted when the state ctr is equal
to 1, it is v∗ which is a random value by hypothesis, otherwise it is f((0, 0), ivi)
which is a random value since f has never been computed on this input and f(·, ·)
is a random function. Thus all the ciphertext obtained in Game 2 are random
strings, except if event C happens. Consequently Pr[E3] = Pr[E2].

Thus for every (q, t)− ivE adversary A we can bound

AdvivEΠ (A) = |Pr[E0]− Pr[E3]| ≤ εTPRF + |Pr[E1]− Pr[E2]| ≤ εTPRF + 2−N ,

thus concluding our proof.

The tidiness of the stateful ivE scheme Π follows from a close inspection of
the algorithm.

G Message-malleable schemes

In this section we want to show three examples of message malleable schemes,
two fixed length and one with various length. For simplicity, we give only the
encryption algorithms, since the decryption algorithm is straightforward.
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G.1 Fixed length scheme

We give the examples of two common schemes: CTR and OFB. Although they
are ivE-secure for any message length they are message-malleable only if they are
employed to encrypt fixed length messages. Moreover, as we show, they provide
examples of schemes which are ivE-secure but not nE secure (for any message
length). They are all based on a PRF E : K × IV 7−→ {0, 1}N . The key of the
schemes is the key k of the PRF.

CTR (counter) The description of the ivE encryption scheme CTR can be found
in Fig. 2.

The ivE-security of the scheme is well-known (see for example [15]).

The CTR scheme is not nE-secure. In fact let (iv, c1, c2, c3) be the encryption
of the message (m1,m2,m3) for a random iv, then if we want to encrypt the
message m′ = (m2,m3) with iv′ := iv + 1 we obtain c′ = (c2, c3).

The CTR scheme is clearly “message-malleable”. In fact, given two messages
m and m′ where |m| = |m′|, let c ← Enck(iv,m) then c′ ← Enck(iv,m′) with
c⊕m⊕m′ where
c⊕m⊕m′ := (c1 ⊕m1 ⊕m′1, ..., cl ⊕ml ⊕m′l)

The ivE-scheme CTR

Enck(iv,m) :
– Parse m = (m1, ...,ml) with |m1| = ... = |ml−1| = N and |ml| ≤ N .
– ctr = iv
– For i = 1, ..., l − 1
• zi = Ek(ctr)
• ci = zi ⊕mi

• ctr + +
– len = |ml|
– zl = Ek(ctr)
– cl = πlen(zl)⊕ml

– Return c = (c1, ..., cl)

Fig. 2. The ivE-scheme CTR (counter), which is iv-secure, not nE secure and “message
malleable” for fixed length message.

OFB (Output Feedback) The description of the ivE encryption scheme OFB
can be found in Fig. 3.

The ivE-security of the scheme is well-known (see for example [15]).
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The OFB scheme is not nE-secure. In fact let (iv, c1, c2, c3) be the encryption
of the message (m1,m2,m3) for a random iv, then if we want to encrypt a mes-
sage m′ = (m2,m3) with iv′ := z1 := c1 ⊕m1 we obtain c′ = (c2, c3).

The OFB scheme is clearly “message-malleable”. In fact, given two messages
m and m′ where |m| = |m′|, let c ← Enck(iv,m) then c′ ← Enck(iv,m′) with
c⊕m⊕m′ where
c⊕m⊕m′ := (c1 ⊕m1 ⊕m′1, ..., cl ⊕ml ⊕m′l)

The ivE-scheme OFB

Enck(iv,m) :
– Parse m = (m1, ...,ml) with |m1| = ... = |ml−1| = N and |ml| ≤ N .
– z0 = iv
– For i = 1, ..., l − 1
• zi = Ek(zi−1)
• ci = zi ⊕mi

– len = |ml|
– zl = Ek(zl−1)
– cl = πlen(zl)⊕ml

– Return c = (c1, ..., cl)

Fig. 3. The ivE-scheme OFB (Output feedback), which is iv-secure, not nE secure and
“message malleable” for fixed length message.

G.2 Various length scheme

It is more difficult to find an example of “message-malleable” encryption scheme
in the literature. We give it using a variant of the ivE scheme which Pereira et
al. [29] presented at CCS 2015 in the context of leakage-resilient cryptography.
Here it is not the place to discuss about leakage, we only want to discuss one
feature of this scheme: the use of the rekeying, that is, there is a master key used
once in the leakfree [that is, a heavy protected against side-channel attacks prim-
itive, which is very slow](PRF) component E∗ per encryption which generates
many ephemeral keys which are used only twice in the PRF E (less protected,
but much faster), in order to achieve leakage resistance (and it used to obtain
AE by Berti et al. [10], [9].
The key k is the key of the leak free PRF E∗. Two public constants pA and
pB are used. The difference with regard to [29] is the fact that we give the last
ephemeral key kl+1 and the bits of zl that we do not use to encrypt ml. The
details are in Fig. 4.

The ivE (in reality the nE) security is proved by their authors. The change
we did do not affect the security.

The “message-malleability” comes from the fact that given an ephemeral key
we are able to compute all the following ephemeral keys.
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But by now we are only able to have forward malleability for messages m′ that
are longer or as long as the given message m (in reality also for all messages

m′ s.t. b |m
′|+1
N c ≥ b |m|+1

N c), since we are not able to recompute to the previous
ephemeral keys. We can solve it allowing the messages to be padded, that is
message may be encrypted after having padded a 1 and as many 0 as we wants.
In the decryption the padding is removed. In this way we can make a message
m′ to be longer using many 0s in the padding.

The ivE-scheme PVS-modified

Enck(iv,m) :
– Parse m = (m1, ...,ml) with |m1| = ... = |ml−1| = N and |ml| ≤ N .
– k1 = E∗k(iv)
– for i = 1, ..., l − 1
• zi = Eki(pA)
• ci = zi ⊕mi

• ki+1 = Eki(pB)
– len = |ml|
– zl = Ekl(pA)
– cl = πlen(zl)⊕ml

– c′l = zl ⊕ πlen‖0∗
– kl+1 = Ekl(pB)
– return c = (c1, ..., cl, c

′
l, kl+1)

Fig. 4. The ivE-scheme PVS-modified, which is iv-secure, nE secure and “message mal-
leable” for various length message.

H Example of an mrE scheme not mrAE

Let PERPK×N×A(M) := {f : K ×N ×A×M 7−→M s.t. ∀k ∈ K, n ∈ N , a ∈
A f

(
kn, a)(·) is a permutation}. Let f ← PERPK×N×A(M).

We define the nAE encryption scheme Π = (K,AEnc,ADec) as follow:
– K = K
– AEnck(n, a,m) := Fk(n, a,m)
– ADeck(n, a, c) := F−1k (n, a, c)

This scheme is clearly nAE− E-secure, since for every fresh triple (n, a,m)
the encryption c = fk(n, a,m) is fresh. On the other hand, since fn,ak (·) is a
permutation, then ∀(n, a, c) ∈ N ×A×M, there exists m = ADeck(n, a, c) with
m 6=⊥.

I Algorithms
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The nE-scheme Π = (Gen,Enc,Dec)

Gen
– k ← K
– v∗ ← {0, 1}N

Enck,v∗(n,m)
– Parse m = (m1, ...,ml) with |m1| = ... = |ml−2| = |ml| = N and |ml−1| ≤ N
– if l > L
• return ⊥

– if n = 1
• c0 = v∗

– else
• c0 = E0,0

k (n)

Block0

– for i = 1, ..., l − 2
• ci = Ei,0k (n)⊕mi

– len = |ml−1|
– cl−1 = πlen[El−1,0

k (n)]⊕ml−1

Block1,..., Blockl−1

– if (n = 1 ∨ n = 2) ∧ml−1 = v∗

• cl = El,1k (0)⊕ml

– else
• cl = El,0k (n)⊕ml

Blockl

– return c [= (c0, ..., cl)]

Deck,v∗(n, c)
– Parse c = (c0, ..., cl) with |c0| = ... = |cl−2| = |cl| = N and |cl−1| ≤ N
– if l > L
• Return ⊥

– if n = 1
• if c0 6= v∗

∗ return ⊥
– else
• if c0 6= E0,0

k (n)
∗ return ⊥

– for i = 1, ..., l − 2
• mi = Ei,0k (n)⊕ ci

– len = |cl−1|
– ml−1 = πlen[El−1,0

k (n)]⊕ cl−1

– if (n = 1 ∨ n = 2) ∧ml−1 = v∗

• ml = El,1k (0)⊕ cl
– else
• ml = El,0k (n)⊕ cl

– return m [= (m1, ...,ml)]

Fig. 5. The nE-scheme Π = (Gen,Enc,Dec) used in Sec. 4 - Full description. Its nE
security is proved in Prop. 10
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The ivE-scheme Π ′ = (Gen′,Enc′,Dec′)

Gen
– k ← KE
– fEnc ← FUNC

(
IV, {0, 1}N

)
Enc′(k,fEnc)(iv,m)

– if |m| ≤ N
• m1 = m

– else
• Parse m = (m0,m1) with |m0| = N

– if ∃m0

• c0 = fEnc(iv)⊕m0

– c1 = Enck(iv,m1)
– if ∃c0
• return c = (c0, c1)

– else
• return c = c1

Dec′(k,fEnc(iv, c)

– if |c| ≤ N
• c1 = c

– else
• Parse c = (c0, c1) with |c0| = N

– if ∃c0
• m0 = fEnc(iv)⊕ c0

– (m1) = Deck(iv, c1)
– return m = (m0,m1)

Fig. 6. The ivE-scheme Π ′ = (Gen′,Enc′,Dec′), based on the ivE scheme Π. used in
the proof of Prop. 2 and 3 - Full description. Its ivE-security is proved in Lemma 4.
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The stateful ivE-scheme Π = (Gen,Enc,Dec)

Gen
– k ← K
– v∗ ← {0, 1}IV
– ctr = 1

Enck,v∗(iv,m)
– Parse m = (m1, ...,ml) with |m1| = ... = |ml−2| = |ml| = N and |ml−1| ≤ N
– if l > L
• return ⊥

– c−1 = E0,1(ctr) Block−1

– if ctr = 1
• c0 = v∗

– else
• c0 = E0,0

k (iv)

Block0

– for i = 1, ..., l − 2
• ci = Ei,0k (iv)⊕mi

– len = |ml−1|
– cl−1 = πlen[El−1,0

k (iv)]⊕ml−1

Block1,..., Blockl−1

– if (ctr = 1 ∨ ctr = 2) ∧ml−1 = v∗

• cl = El,1k (0)⊕ml

– else
• cl = El,0k (iv)⊕ml

Blockl

– ctr + +
– return c [= (c0, ..., cl)]

Deck,v∗(iv, c)
– Parse c = (c−1, ..., cl) with |c−1| = ... = |cl−2| = |cl| = N and |cl−1| ≤ N
– if l > L
• Return ⊥

– ctr =
(
E0,1
k

)−1
(c−1)

– if ctr = 1
• if c0 6= v∗

∗ return ⊥
– else
• if c0 6= E0,0

k (iv)
∗ return ⊥

– for i = 1, ..., l − 2
• mi = Ei,0k (iv)⊕ ci

– len = |cl−1|
– ml−1 = πlen[El−1,0

k (iv)]⊕ cl−1

– if (ctr = 1 ∨ ctr = 2) ∧ml−1 = v∗

• ml = El,1k (0)⊕ cl
– else
• ml = El,0k (iv)⊕ cl

– return m [= (m1, ...,ml)]

Fig. 7. The stateful ivE-scheme Π = (Gen,Enc,Dec) used in Sec. 7.2 - Full description.
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