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Abstract. Logic locking has been proposed as a strong protection of intellectual
property (IP) against security threats in the IC supply chain especially when the
fabrication facility is untrusted. Various techniques have proposed circuit config-
urations which do not allow the untrusted fab to decipher the true functionality
and/or produce usable versions of the chip without having access to the locking key.
These techniques rely on using additional locking circuitry which injects incorrect
behavior into the digital functionality when the key is incorrect. However, much
of this conventional research focuses on locking individual modules (such as adders,
ALUs etc.). While locking these modules is useful, the true test for any locking
scheme should consider their impact on the application running on a processor with
such modules. A locked module within a processor may or may not have a substantial
impact at the application level thereby allowing the attacker (untrusted foundry
or unauthorized user) to still get useful work out of the system despite not having
access to the key details. In this work, we show that even when state of the art
locking schemes are used to lock the modules within a processor, a large class of
workloads derived from machine learning (ML) applications (which are increasingly
becoming the most relevant ones) continue to function correctly. This has huge
implications to the effectiveness of the current locking techniques. The main reason
for this behavior is the inherent error resiliency of such applications. To counter this
threat, we propose a novel secure and effective logic locking scheme, called Strong
Anti-SAT (SAS), to lock the entire processor and make sure that the ML applications
undergo significant accuracy loss when any wrong key is applied. We provide two
types of SAS, namely SAS-A and SAS-B. Experiments show that, for both types of
SAS, 1) the application-level accuracy loss is significant (for ML applications) given
any wrong key, 2) the attacker needs extremely long time to find a correct key, and
3) the hardware overhead is very small. Lastly, even though our techniques target
machine learning type application workloads, the impact on conventional workloads
will also be similar. Due to the inherent error resilience of ML, locking ML workloads
is a harder problem to tackle.
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1 Introduction
Due to the increasingly high cost of building or maintaining an IC foundry and the relatively
lower cost to access advanced fabrication technologies in off-shore foundries, many chip
designers have chosen to become fabless and outsource the fabrication to such foundries.
However, the designers usually have very little control over the foundries and thus the
untrusted foundry issues have become a major security challenge to the semiconductor
industry. Various kinds of attacks on the design can be launched in untrusted foundries,
including hardware Trojan insertion, IP and IC piracy and counterfeiting, overbuilding,
etc. [1–6].
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In order to mitigate these security risks, various design-for-trust techniques have been
studied, including logic locking [7–17], split manufacturing [18,19], and post-fabrication
editing [20]. Among these techniques, logic locking has received the most attention from
researchers. The locked circuit takes a key input in addition to the primary input and will
produce the correct output if the key is the correct key. If the input key is a wrong key,
however, the output will be wrong for some primary input values. The correct key is a
secret kept by the chip designer and is not known by the foundry or any third party. The
foundry receives the design of the locked circuit and manufactures it. After the locked
circuit is manufactured and returned to the designer, a tamper-proof memory containing
the correct key is connected to the key input of the circuit. The circuit with the correct
key is called the activated circuit.

Conventional logic locking mechanisms [7,9, 10,21,22] have been shown vulnerable to
the Boolean satisfiability based attack, referred to as SAT attack. SAT is an oracle-guided
attack: the attacker has (1) the netlist of the locked circuit and (2) an activated chip which
can be obtained from the open market. Details of the SAT attack will be introduced in
Section 2.2. In short, SAT prunes out wrong keys in an iterative manner. In each iteration,
an input (called the differentiating input, or DI) is chosen by the SAT solver and all the
wrong keys that corrupt the output of this DI are pruned out. All wrong keys are pruned
out when no more DI can be found. SARLock [15] and Anti-SAT [12,13] force the number
of SAT iterations to be exponential in the key size by pruning out only a very small number
of wrong keys in each iteration. However, this is at the cost that there is only one input
minterm (or a very small number of minterms) whose output is incorrect under the each
wrong key. Hence the overall error rate of the locked circuit with an incorrect key is very
small. This disadvantage is captured by approximate SAT attacks such as AppSAT [23] or
DoubleDIP [24]. These attack schemes are able to find an approximate key (approx-key)
which makes the locked circuit behave correctly for most (but not all) of the input values.
If a processor has modules locked using such techniques, the AppSAT attack can be used
to “mostly” unlock these modules. When an application with inherent error tolerance
(such as most machine learning (ML) applications) is executed on such an approximately
unlocked processors, the impact on the overall application functionality is minimum. We
present evidence to this end in the subsequent sections. In essence, the locked processor is
still mostly usable for all practical purposes thereby nullifying substantial attempts to lock
the designs from unauthorized use by the foundry. Note that, the error-resilience property
of ML workloads has been exploited to develop energy-efficient approximate computation
methodologies for ML [25–32]. The same property adds a substantial challenge to the logic
locking problem.

In this work, we address these challenges in locking processors for ML applications and
propose the Strong Anti-SAT (SAS) scheme to protect processors against both exact and
approximate SAT attacks. SAS is applicable to both general-purpose hardware (e.g. CPU
and GPU) and specialized hardware for ML [33–41]. The objective of SAS is to ensure
that, given any wrong (including approximate) key, the locked hardware will produce
sufficient error so that the ML models would have significant loss of accuracy while still
being provably resilient to SAT and AppSAT attacks. 1

The contribution of this work is as follows.

1. We develop a framework for locking the processor and evaluating both the circuit-
level error profile and its application-level impact. In our experiments, a MIPS
processor which includes both the controlpath and datapath is synthesized and
locked using state-of-the-art logic locking schemes [12, 15]. We propose an attack
methodology to investigate the vulnerability of the state-of-the-art locking techniques
in securing ML applications. The proposed attack firstly utilizes the AppSAT attack

1In this work, we assume that the processor is only used for the inference, not training, of ML models.
Our ML benchmarks are all for the purpose of classification. Classification accuracy means the percentage
of input samples correctly classified by the ML model running on the processor chip.
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Figure 1: The targeted attack model of logic locking

to find an approx-key which results in an approx-unlocked processor. The error profile
of the approx-unlocked processor is characterized and transferred to the simulation
of ML applications. We show that executing ML applications on such processors
results in very small reduction in ML classification accuracy.

2. To counter this attack, we propose the Strong Anti-SAT (SAS) scheme for ML
applications which is based on the co-design of locking infrastructure and processor
cores. We present two types of SAS: SAS-A and SAS-B.
In SAS-A, we first propose an improved locking infrastructure (the SAS-A block)
based on Anti-SAT [12]. We prove a lower-bound of error rate for the SAS-A block for
any incorrect key. Thus, with an appropriate configuration of SAS-A, we guarantee a
high error rate for any wrong key obtained by an approximate SAT attack (AppSAT).
This results in significant loss of classification accuracy hence making the attack
ineffective. We also show that the exact SAT attack still takes extremely long time
to find the correct key of SAS-A.

3. In order to ensure exponential SAT solving time, we also propose SAS-B. In SAS-
B, we identify a set of inputs which have higher impact on the accuracy of ML
applications as critical minterms and increase the number of wrong keys that cause
errors in their output. We introduce the locking infrastructure, the SAS-B block,
and provide 2 different configurations of SAS-B. For both configurations, we derive
the expected number of SAT iterations to find the correct key and show that this
number is exponential in the size of the key.

4. Experimental results show that 1) the proposed locking schemes result in significant
accuracy loss for the benchmark ML models, and 2) the exact SAT attack needs
extremely long time and is practically infeasible. We also compare SAS-A and SAS-B
with existing state-of-the-art logic locking approaches and show that our approaches
have much higher application-level impact and lower hardware overhead.

In summary, our paper targets the realistic scenario of studying the impact of executing
applications on locked processors. We illustrate that for ML workloads, conventional
locking of modules within a processor is rather ineffective and propose new techniques to
address the issue.

2 Background
2.1 Attack Model
The threat model considered in this work is illustrated in Fig. 1 and is consistent with the
latest research articles on logic locking [7,12,15,17,23,24,42–45]. Only the chip designer has
access to the proprietary design details. The untrusted foundry, which is usually considered
as the attacker, is able to obtain the locked netlist of the chip by reverse-engineering [46].

The following components are considered available for the attacker:
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1. The locked gate-level netlist of the chip design. As mentioned above, the designer
outsources to the untrusted foundry the layout-level details of a design in the form of
GDS-II files. Therefore, the attacker can reverse-engineer the GDS-II files to obtain
the locked gate-level netlist.

2. An activated chip. An activated chip (i.e. the one with the correct key loaded) is
considered available for the attacker since it can be purchased from the open market.
The activated chip will serve as a black-box oracle to obtain the correct I/O behavior
of the design. The attacker can query any input to this oracle and observe the correct
response.

In general, logic locking techniques do not assume that the attacker can insert probes
into the logic-locked circuit to observe the values at intermediate nodes. This is because
protection techniques, such as analog shield [47], can be in place to counter probing attacks.
If probing were feasible, however, the attack would become trivial since the attacker could
simply probe the key values.

2.2 The Boolean Satisfiability-based (SAT) Attack Methodology
The functionality of any combinational digital circuit can be represented by a Boolean
function F : ~X → ~Y where ~X is the primary input and ~Y is the primary output. Compared
to the original circuit, the locked circuit FLtakes two inputs: one is the primary input and
the other is the key input ~K. If ~K is a correct key, then ∀ ~X,F ( ~X) = FL( ~X, ~K). F ( ~X)
may or may not be equal to FL( ~X, ~K) if ~K is an incorrect key. The key is stored a the
tamper-proof memory which is connected to the key input of the locked circuit.

Boolean satisfiability-based attack, a.k.a. SAT attack has been proven effective in
finding the correct key of the locked circuit. The objective of the attacker is to find
the correct key to the locked circuit. A SAT solver is a tool to determine if a Boolean
expression is satisfiable, i.e. if there exists an assignment of the input bits such that the
expression evaluates to TRUE. For example, the Boolean expression a⊕ b is satisfiable
because the assignment of a = 0, b = 1 will make it evaluate to TRUE. In terms of
SAT attack, we express the functionality of the locked circuit, i.e. ~Y = FL( ~X, ~K) in the
Conjunctive Normal Form (CNF): C( ~X, ~K, ~Y ). C( ~X, ~K, ~Y ) evaluates to TRUE if there
exists an assignment of ~X, ~K, ~Y such that ~Y = FL( ~X, ~K) holds and evaluates to FALSE
otherwise.

SAT attack is an iterative attack that narrows down the search space for the correct
key iteration by iteration. The steps of the SAT attack is as follows.

1. In the initial iteration, the attacker looks for a primary input ~X1 and two keys ~Kα

and ~Kβ such that the locked circuit produces two different outputs ~Yα and ~Yβ :

C( ~X1, ~Kα, ~Yα) ∧ C( ~X1, ~Kβ , ~Yβ) ∧ (~Yα 6= ~Yβ) (1)
~X1 is called the Distinguishing Input (DI).

2. The DI ~X1 is applied to the activated circuit (the oracle) and the output ~Y1 is
recorded. Note that ~Kα, ~Yα, and ~Kβ , ~Yβ are not recorded. Only the DI and its
correct output are carried over to the following iterations.

3. In the ith iteration, a new DI and a pair of keys ~Kα and ~Kβ are found. The newly
found ~Kα and ~Kβ should produce correct outputs for all the DIs found in previous
iterations. To this end, we append a clause to (1):

C( ~Xi, ~Kα, ~Yα) ∧ C( ~X1, ~Kβ , ~Yβ) ∧ (~Yα 6= ~Yβ)
i−1∧
j=1

(C( ~Xj , ~Kα, ~Yj) ∧ C( ~Xj , ~Kβ , ~Yj))
(2)
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In this way, all the wrong keys that corrupt the output of previously found DIs
(i.e. the output is different from that of the activated chip) are pruned out from the
search space.

4. SAT solves (2) repeatedly until no more DI can be found, i.e. (2) is not satisfiable
any more.

5. In this case, there is no more DI. The output of the SAT attack is a key ~K that
produces the same output as the correct key to all the DIs, which can be expressed
using the following CNF:

λ∧
i=1

C( ~Xi, ~K, ~Yi) (3)

where λ is the total number of SAT iterations.

Theorem 1. SAT is guaranteed to find a correct key ~Kc to the locked circuit.

The proof is given in Appendix A. Note that there can be multiple correct keys: some
keys are different from the actual key but functionally equivalent to the actual key.

2.3 Logic Locking Schemes against SAT Attacks
Multiple logic locking schemes have been proposed to thwart the SAT attack [12–15,22].
There are two ways to mitigate the SAT attack: one is to increase the time for each
SAT iteration and the other is to increase the number of SAT iterations. The former was
implemented in [22] where one-way random functions, such as advanced encryption system
(AES) blocks, were inserted into the locked circuit and it was shown that the time for each
SAT iteration increased exponentially with the size of the key. The main drawback of this
approach is its high area overhead: the AES block is too large to be practical for small
circuits.

The other logic locking schemes that aim to thwart the SAT attack focus on forcing
the number of SAT iterations to be exponential in the size of the key. Before introducing
the details, we first define the error rate and the corruptibility for logic locking schemes.

Definition 1. We say that a key ~K corrupts a primary input minterm ~X if and only if the
locked circuit produces a different output to ~X from the original circuit, i.e. FL( ~X, ~K) 6=
F ( ~X).

Definition 2. The error rate ε ~K of a key ~K is the portion of primary input minterms
which are corrupted by the key ~K.

Note that ε ~K = 0 for any correct key. If the error rate is the same across all the wrong
keys, we simply use ε to denote this error rate.

Definition 3. The corruptibility γ ~X of a primary input minterm ~X is the portion of
wrong keys that corrupts this minterm

Let K ~X be the set of wrong keys that corrupts the primary input minterm ~X and KW
be the set of wrong keys. Then,

γ ~X =
|K ~X |
|KW |

If the corruptibility is the same across all the primary input minterms, we simply use γ to
denote this corruptibility.

Theorem 2. If the error rate of any wrong key is the same and the corruptibility for all
the primary input minterms is also the same, then the error rate equas the corruptibility,
i.e. ε = γ
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(a) (b)
Figure 2: Anti-SAT based logic locking: (a) overview; (b) Anti-SAT block

The proof is given in Appendix B. Let λ be the number of SAT iterations that any
SAT attacker needs to perform to find the correct key.

Theorem 3. If the corruptibility for all the primary input minterms equals γ, then the
number of SAT iterations λ is lower bounded by 1

γ .

Proof. In each SAT iterations, the wrong keys pruned by the DI ~X is upper bounded by
|K ~X |. This is an upper bound because some of the wrong keys may have already pruned
out by DIs of previous iterations. Therefore,

λ ≥ |K
W |
|K ~X |

= 1
γ

Hence proved.

Theorems 2 and 3 explicitly quantifies the relationship among the error rate ε, the
SAT iterations λ, and and corruptibility γ. In order to force λ to exponential, the error
rate ε (and hence γ) have to be reduced exponentially. This strategy is the main idea of
SARLock [15] and Anti-SAT [12, 13]. Due to the similarity of these two techniques, in
this work, we focus on the Anti-SAT based logic locking. Here we describe the design of
Anti-SAT and analyze its properties.

Fig. 2(a) shows the overview of Anti-SAT. The original circuit is locked with ~Ka

(referred to as conventional keys) using conventional locking techniques such as [7, 9].
Besides, an Anti-SAT block is attached to the locked circuit. The Anti-SAT block has
two inputs: ~Xas ∈ Zn2 which is an n-bit subset of the bits in the primary input ~X, and
a key input ~Kb ∈ Z2n

2 . The Anti-SAT output Yas is connected to an internal wire of the
original circuit using an XOR gate. Fig. 2(b) shows the detail of Anti-SAT block. It is
composed of two logic blocks g and g which have complementary functionalities. The
Anti-SAT keys ~Kb = ( ~Kb1, ~Kb2) are inserted at each input of g and g. The outputs of
g and g are fed into an AND gate to produce the Anti-SAT output Yas, which makes
Yas = g( ~Xas ⊕ ~Kb1) ∧ g( ~Xas ⊕ ~Kb2). Given a wrong key, Yas may output 1 and inject
faults into the circuit. The logic block g in Anti-SAT has input-size n and on-set size p,
where on-set size is the number of input patterns that can make function g output one.

Let KC and KW be the sets of correct and wrong keys, respectively. In the following
discussion for Anti-SAT, we use ~K1 and ~K2 instead of ~Kb1 and ~Kb2 to refer to the Anti-SAT
keys for simplicity. We also assume n = np for simplicity, however, this analysis still holds
when n < np.

Both ~K1 and ~K2 are n-bit long. For each ~K1, there is only one ~K2 such that ( ~K1, ~K2) ∈
KC . In other words, |KC | = 2n and |KW | = 2n(2n − 1). Let us analyze the case where
p = 1, e.g. when the functionality of g is simply AND. In this case, there is only
one assignment of ~K1 for the set of wrong keys that corrupts any input minterm ~X
K ~X = {( ~K1, ~K2)|( ~K1, ~K2) ∈ KW } due to p = 1. This effect is illustrated in Table 1 where
each row stands for an input minterm and each column stands for the wrong keys with
the same ~K1. A ‘•’ indicates that the input minterm is corrupted by the wrong keys of
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Table 1: The relationship between wrong keys and the minterms they corrupt in Anti-
SAT [12] when p = 1. Each row stands for an input minterm and each column stands for
the wrong keys with the same ~K1. A ‘•’ indicates that the input minterm is corrupted by
the wrong keys of that column.

~Kb1 of wrong keys ~k1 ~k2 ~k3 ~k4 ~k5 ~k6 · · · ~k2n

~t1 •
~t2 •
~t3 •
~t4 •
~t5 •
~t6 •

· · ·
. . .

~t2n •

that column. According to this relationship, we can derive the corruptibility of any input
minterm as

γ ~X =
|K ~X |
|KW |

= 2n − 1
2n(2n − 1) = 1

2n ∀
~X ∈ Zn2

And by Theorem 2, ε ~K = γ = 1
2n ∀ ~K ∈ KW . Therefore, the attacker can easily find an

approximate key that produces the correct output for most of the input minterms. This is
effectively captured by AppSAT [23]. Basically, the AppSAT attack enhances the SAT
attack by adding an early termination condition to avoid taking an exponential number
of iterations to find a correct key. When the early termination condition is satisfied,
the AppSAT terminates and outputs the approx-key which can match all already found
distinguishing inputs to their correct outputs. As shown in [23], after a few iterations,
the AppSAT attack can decipher the conventional keys ~Ka but not the Anti-SAT keys
~Kb, because the error induced by the former is much higher than that of the latter. Thus,
as iteration progresses, ~Ka is gradually learned, thereby leaving a circuit which is only
locked using the Anti-SAT block with keys ~Kb. As analyzed in Sec. 2.3, the error rate of
such locking scheme is ε = 1

2n . For typical n, this error rate may be very small thereby
resulting in an approx-unlocked circuit which is correct for most inputs.

3 Ineffectiveness of Existing Logic Locking for Machine
Learning Applications

In this section, we investigate the security of processors running ML applications when the
processor is locked with state-of-the-art logic locking [12]. As discussed in Sec. 2.3, such
locking utilizes a combination of conventional logic locking [7, 9] (with conventional keys
~Ka) and Anti-SAT block (with Anti-SAT keys ~Kb) which represents among the strongest
defenses to SAT attack. Such locking schemes would render the SAT attack which attempts
to learn the correct key ineffective.

However, as we show later in this section, such locking schemes is not secure for ML
applications under AppSAT-type attacks [23]. In comparison with conventional applications,
the ML applications are normally error-tolerant. By exploiting the error-tolerant nature,
an attacker only needs to obtain an approx-key which can unlock most (but not all) of
the correct functionality for the processors. This relaxed requirement makes attacks such
as AppSAT [23] applicable and practical. In this paper we focus exclusively on neural
network type applications which represent the most popular ML applications. However, our
techniques and arguments are valid of any ML application. Five neural network models (as
listed in Table 2) are used to evaluate the performance of an approx-unlocked processor.

Processor locking strategy was studied in [53] and it was shown to be vulnerable to
AppSAT attack. We consider a similar experimental set-up to obtain the circuit-level error
of a processor design. In our experiments, the circuit under attack is a MIPS processor
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Table 2: ML benchmarks

Benchmark #Label
#Test

ModelData
MNIST [48] 10 10000 LeNet
SVHN [49] 10 10000 CIFAR10_Full

CIFAR10 [50] 10 10000 CIFAR10_Quick
ILSVRC-2012 [51] 1000 500 CaffeNet
Oxford102 [52] 102 1000 CaffeNet

High-Level 
Description of 

a Processor

Gate-Level 
Netlist of a 
Processor

Locked Netlist of a 
Processor

ML Simulation ToolSynthesis Logic
Locking

AppSAT
Attack

Approx-Key

Error
Profile

Figure 3: Our Experimental Framework

that includes the controller logic circuitry (controlpath) and the arithmetic logic unit
(datapath). Both the controlpath and datapath of the synthesized processor netlist
is locked using state-of-the-art logic locking schemes as follows: (i) first, the circuit is
locked with fault-impact based keys ~Ka which has key-size | ~Ka| = 5% key-gate overhead
(ii) Next, a 64-input obfuscated Anti-SAT block (with p = 1) was attached to the above
locked netlist. Such a combined locking scheme can cost the SAT attack exponential time
to find the correct key as demonstrated in [12].

In Fig. 3, we explain how we transfer the error from the gate-level netlist to the
application level. After obtaining an approx-key ~KApp, we test it on the locked netlist
using randomly generated imputs to estimate its error rate ε. Then, we transfer this
error rate ε to the neural network simulation tool, Ristretto [54], where the computation
in hardware is emulated. We XOR the correct result of every operation bit-wise with a
random number with probability ε. In this way, the application-level error is obtained.
This framework is used throughout the experiments in this paper.

We utilize the AppSAT attack to find an approx-key to de-obfuscate most of the correct
functionality. Fig. 4 shows the error rate of the approx-key as AppSAT attack progresses.
As seen, the error rate ε starts at 100% for a random key. However, ε drops dramatically
during the first 30 iterations and it continues to decrease gradually as the attack proceeds.
These results show the efficiency of AppSAT attack on finding an approx-key which can
achieve low error rate. In this experiment, the AppSAT attack is terminated at 5000
iterations and it outputs an approx-key denoted as ~KApp. With this approximate key,
we tried 1010 randomly generated instructions and find that there is not even
a single fault in the processor output response, i.e. the circuit-level error rate is upper
bounded by 10−10. Then, we use this error rate upper bound in application-level simulation.
Table 3 shows the accuracy of 5 models running on the locked processor with a correct key
~KC and the approx-key ~KApp. We can see that the accuracy loss of an approx-unlocked
processor is 0% for all the 5 benchmarks, despite the error rate is already an upper bound.

These results demonstrate that an attacker can approx-unlock a processor to get very
low loss in classification accuracy of ML workloads using the AppSAT attack. Therefore,
in the rest of this paper, we propose locking methods that is resilient to this type of attack.

4 Secure Locking for Machine Learning Applications
The attack results in Sec. 3 illustrate that AppSAT can easily decipher an approx-key to
obtain an approx-unlocked circuit without significant application-level impact. However,
if we arbitrarily increase the error rate ε of wrong keys (and hence the corruptibility γ of
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Figure 4: Error rate of the MIPS processor v.s. AppSAT attack iterations. The error rate
is estimated using 10000 random input patterns.

Table 3: Accuracy of neural models deployed on a processor that is unlocked with a correct
key ~KC and an approx-key ~KApp

Benchmark
With ~KC With ~KApp

Accuracy Accuracy
Accuracy

Loss
MNIST 99.00% 99.00% 0.00%
SVHN 93.51% 93.51% 0.00%

CIFAR10 89.40% 89.40% 0.00%
ILSVRC-2012 51.60% 51.60% 0.00%
Oxford102 93.28% 93.28% 0.00%

any input minterm), the complexity of exact SAT attack for finding a correct key would
surely come down as stated in Theorem 3. Hence there are two competing objectives:

1. Objective 1: The approx-key deciphered by approximate SAT attacks should have a
high error rate such that the ML application when executed on the approx-unlocked
chip undergoes substantial errors.

2. Objective 2: The complexity of exact SAT attack to determine the correct key should
still be very high.

In this section, we propose the Strong Anti-SAT (SAS) logic locking scheme which
aims at achieving these two objectives simultaneously. The proposed locking technique
is based on a co-design of the locking infrastructure and the processor. We provide two
versions of SAS: SAS-A and SAS-B. In SAS-A, the corruptibility γ is uniform across all
the input minterms. In SAS-B, we select a subset of input minterms which would have
higher corruptibility than others. Both SAS-A and SAS-B have very high impact on the
application-level accuracy of ML models given any approx-key and guarantee an extremely
long solving time for exact SAT attack.

4.1 SAS-A: Higher Corruptibility for all Input Minterms
To achieve the first objective mentioned above, we propose a modified Anti-SAT block,
called the SAS-A block, which makes two modifications to existing Anti-SAT block. Firstly,
the SAS-A block decomposes the logic block g (in Fig. 2(b)) into n0-input mini-blocks g0,
as shown in Fig. 5 and each g function contains n/n0 mini-blocks. The mini-blocks have
the following properties:

1. The on-set size of each mini-block p0 satisfies 1 ≤ p0 ≤ 2n0 − 1.
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Figure 5: An n-input SAS-A block. Each mini-block g0 has n0 inputs and on-set size p0.

2. ∀ ~K1 and ~K2 where ~K1 6= ~K2, there exists ~X such that g( ~X ⊕ ~K1) 6= g( ~X ⊕ ~K2).

These are important premises of Theorem 4. In Theorem 4, we will derive an error rate
lower-bound ε0 of any wrong key of the SAS-A block. Such ε0 holds for any wrong key
and it can be tuned to a large value, so AppSAT type attacks will not be able to decipher
a “good” enough approx-key.

Theorem 4. The error rate of any wrong key of an n-input SAS-A block (in Fig. 5) is
ε ≥ ε0 = p

(n/n0−1)
0 /2n for any wrong key.

Proof. The proof contains the following steps.

1. We first show that a key for Anti-SAT ~Kb = ( ~Kb1, ~Kb2) is a wrong key if ~Kb1⊕ ~Kb2 6= ~0.
In other words, a key is a wrong key if ∃ i ∈ [1, n] such that the i-th bit of ~Kb1 is
different from the i-th bit of ~Kb2. This is a proven result from [12].

2. We want to get a lower bound of the number of corrupted input minterms for all
such wrong keys. As shown in Fig. 5, to make Yas = 1, the Anti-SAT block should
have both Yg = 1 and Yg = 1, which requires that

∀i ∈ [1, n/n0], Y ib1 = 1 and ∃j ∈ [1, n/n0], Y jb2 = 0 (4)

The corrupted input patterns must satisfy the conditions in (4).

3. Let ~Xi, ~Ki
b1 and ~Ki

b2 be the portion of the bits in ~X, ~Kb1, and ~Kb2 that goes into the
ith mini-blocks of g and ḡ, respectively. Without loss of generality, we assume that
~K1
b1 6= ~K1

b2. By the properties of g, since ~K1
b1 6= ~K1

b2, there must exist at least one
assignment to ~X1 such that g( ~X1 ⊕ ~K1

b1) 6= g( ~X1 ⊕ ~K1
b2). This has two possibilities:

g( ~X1 ⊕ ~K1
b1) = 1 and g( ~X1 ⊕ ~K1

b2) = 0, which satisfies (4), or g( ~X1 ⊕ ~K1
b1) = 0 and

g( ~X1 ⊕ ~K1
b2) = 1. Suppose the latter is the case, then we let ~X1′ = ~X1 ⊕ ~K1

b1 ⊕ ~K1
b2

and this will satisfy g( ~X1′ ⊕ ~K1
b1) = 1 and g( ~X1′ ⊕ ~K1

b2) = 0.

4. For the remaining ~Xi, i ∈ [2, n/n0],since g0 has on-set size p0, there exists p0 possible
assignments to each ~Xi such that Y ib1 = 1.

5. Based on steps 3 and 4, the total number of ways to construct a corrupted input
pattern would be pn/n0−1

0 .

6. Since the total number of input patterns is 2n, the error rate for any wrong key is

ε ≥ ε0 = p
(n/n0−1)
0 /2n (5)

Hence proved.



Yuntao Liu, Yang Xie, Abhishek Charkraborty, and Ankur Srivastava 11

 

Original Circuit

Primary
Input

Primary
Output

Tamper-Proof 
Memory

g(X’⊕K1)

g(X’⊕K2)

K1

K2

X

SAS-B Block

YAS

H(Xp,K1)
X’

 

XpP(X)

Figure 6: The Architecture of SAS-B Configuration 1 with the Details of the SAS-B Block

Theorem 4 provides a rigorous error rate lower-bound ε0 for any wrong key of SAS-A.
Based on Theorem 4, we can design an n-input SAS-A block with a guarantee of high
error rate by tuning n0 and p0. Hence AppSAT will never be able to find a key whose
error rate is smaller.

The corruptibility γ is uniform across all input minterms. This is because, given
any input minterm, the number of wrong keys that corrupt this minterm is: ∀ ~X ∈ Zn2 ,
|K ~X | = p

(n/n0)
0 (2n−p(n/n0)

0 ) which is determined by p0 and n0. By Theorem 3, the number
of SAT iterations of attacking SAS-A is lower bounded by

λ ≥ λ0 = 1
γ

= |K
W |
|K ~X |

= 22n − 2n

p
(n/n0)
0 (2n − p(n/n0)

0 )
= Θ

( 2n

p
(n/n0)
0

)
(6)

As can be seen in Eq. (5) and Eq. (6), for p0 = 1, the error rate lower bound ε0 = 1
2n and

the SAT iterations lower bound λ0 = 2n are exactly those for Anti-SAT, which means that
Anti-SAT is a special case of SAS-A when p0 = 1.

4.2 SAS-B: SAS with non-Uniform Corruptibility
In order to get desirable application-level accuracy loss using SAS-A, the circuit-level
corruptibility γ of minterms must be uniformly increased by tuning the parameters p0 and
n0. However, this will inevitably reduce the number of SAT iterations below the order
of 2n, as shown in (6), and therefore SAS-A does not guarantee exponential SAT solving
time.

SAS-B guarantees an exponential average SAT solving time while still having a large
impact on the accuracy of ML applications. In SAS-B, instead of uniformly distributing
the error across all possible inputs, we identify certain input patterns which potentially
have a higher impact on the overall application-level error. We call these inputs critical
minterms. Any incorrect key corrupts at least 1 critical minterm. For the other minterms,
the corruptibility is the same as Anti-SAT.

In this section, we start with introducing the locking infrastructure, i.e. the SAS-B
block. Then, we explain the two configurations of SAS-B. Last but not the least, the
strategy to choose critical minterms based on the ML applications is presented.

4.2.1 The SAS-B Block

Typical ML applications contain a large number of multiply-and-accumulate (MAC)
operations where an input vector is multiplied by a weight matrix and the products are
summed up [48–52]. As the weight values are fixed and independent of data, we select a
subset of weight values as critical minterms to have higher corruptibility. The strategy of
choosing critical minterms is detailed in Sec. 4.2.4. LetM be the set of critical minterms
and m = |M| be the number of critical minterms. For the ease of implementation, we
always choose m to be a power of 2.
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Table 4: Illustration of the Partition of Wrong Key Space of a SAS-B Block with m
Critical Minterms

~K1 of wrong keys ~k1 · · · ~k 2n
m

~k 2n
m

+1 · · ·
~k2 2n

m
· · · ~k2n

critical
minterms

~X1 • • •
~X2 • • •
· · · · · ·
~Xm • •

non-
critical
minterms

~Xm+1 •
~Xm+2 •

· · ·
. . .

~X2n •

The basic locking infrastructure is the SAS-B block which is illustrated in Fig. 6. In
order to describe the mechanism of the SAS-B locking scheme clearly, we use a reverse
order and start our illustration from the output side:

• YAS is the output of the SAS-B block. If YAS = 1, a fault will be injected into the
original circuit. g and ḡ is the same as those in Anti-SAT. g has an on-set of size 1.
Up to here, SAS-B is exactly the same as Anti-SAT. Therefore, the set of correct
and wrong keys are also the same as Anti-SAT.

• The SAS-B block is designed to increase corruptibility of the critical minterms.
In Configuration 1 of SAS-B, there is only one SAS-B block and hence the SAS-B
block will inject a high amount of error for every critical minterms. In Configuration
2, however, as there are multiple SAS-B blocks, the critical minterms are distributed
among the SAS-B blocks.

• A function block ~X ′ = H( ~Xp, ~K1) is inserted before the Anti-SAT and it works as
follows. If ~Xp is not a critical minterm, then ~X ′ = ~Xp. In this case, SAS-B works in
the same way as Anti-SAT and ~Xp has a low corruptibility. If ~Xp is a critical minterm,
then for a higher portion of ~K1 (where the portion equals the corruptibility of critical
minterms), ~Xp is adjusted according to ~K1 to obtain ~X ′ such that g( ~X ′, ~K1) = 1
and hence the corruptibility is increased. ~X ′ = H( ~Xp, ~K1) further ensures that the
wrong keys that corrupts each critical minterm are mutually exclusive and evenly
partition the wrong keys space. More specifically, as the partitioning is based on the
~K1 part of the key, we have the following. Let K1

~X
= { ~K1|∀ ~K2 such that ( ~K1, ~K2) ∈

KW , ( ~K1, ~K2) ∈ K ~X}. Then we have

∀ ~X1, ~X2 ∈M, |K1
~X1
| = |K1

~X2
|, K1

~X1
∧ K1

~X2
= ∅, and

⋃
~X∈M

K1
~X

= Zn2 (7)

where n is the number of bits in ~X, ~K1, and ~K2. This effect is illustrated in Table 4.

• With the H function described above, any approx-key deciphered by any approximate
SAT attack will corrupt one critical minterm. However, this also leads to a trivial
lower bound of the iterations of exact SAT attacks: λ0 = m. This is because, by
selecting the m critical minterms as the first m DIs, all the wrong keys will be pruned
out. In practice, we find that SAT can indeed find these critical minterms in a very
small number of iterations. The reason can is that there are logic expressions in the
H function block that are only satisfied by the critical minterms, which makes the
critical minterms more likely to be chosen by the SAT solver.

• In order to counter this effect, we insert a pseudorandom permutation (PRP) function
P : X → Xp. Our implementation of the PRP is a reduced-bits, fixed-key, and
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reduced-rounds AES block. The property of AES ensures that its output is a one-to-
one mapping of the input but the input-output mapping looks completely random.
This makes it very hard for the SAT solver to solve for the critical minterms which
is the input to the PRP function given the logic it observes from the H function.
Instead, the SAT solver will choose a random DI and our goal to force the SAT
iterations to be exponential can be achieved. Note that the attacker cannot formulate
a SAT attack between ~Xp and the output to bypass the PRP module since this
requires probing into the circuit which is considered in the attack model, as explained
in Sec. 2.1.

We treat the PRP as a separate part of the SAS-B block since in Configuration 2 of
SAS-B, there are multiple SAS-B blocks and the output of the PRP is shared by all
the SAS-B blocks.

The 2 configurations of SAS-B will be introduced in the rest of this section.

4.2.2 Configuration 1: SAS-B with One SAS-B Block

This configuration is illustrated in Fig. 6. In this configuration, there is one SAS-B block.
As the critical minterms evenly partition the set of wrong keys, the corruptibility of each
critical minterm is γc = 1

m .
Below we derive the expected SAT iterations of this configuration. Due to the func-

tionality of the PRP block, we assume that the SAT solver chooses a DI uniformly at
random in each iteration. The resilience of SAS-B to the SAT attack is quantified using
the expected number of SAT iterations E[λ]. To start with, we give 2 useful lemmas.

Lemma 1. Let Di be the set of DIs that the SAT solver has chosen in the first i iterations
and ~X be a primary input minterm. If K ~X ⊂

⋃
~X′∈Di K ~X′ , then ~X cannot be the DI of

any SAT iteration beyond i.

The proof is given in Appendix C.

Lemma 2. For SAS-B Configuration 1, any critical minterm must exist in the set of DIs
when SAT finishes: ~X ∈ Dλ ∀ ~X ∈M, where λ is the total number of SAT iterations and
Dλ is the set of all the DIs.

The proof is given in Appendix D.

Theorem 5. The expected number of SAT iterations of SAS-B Configuration 1 is

E[λ] = 2n +m

2 (8)

Proof. By Lemma 2, all the critical minterms must count toward the total number of SAT
iterations. Therefore, we only need to find the expected number of non-critical minterms
that are chosen as DIs.

As is a property of the SAS-B block and illustrated in Table 4, ∀ ~X ′ /∈ M, ∃ exactly
one ~X ∈M such that K ~X′ ⊂ K ~X . By Lemma 1, if this ~X is chosen as DI before ~X ′, then
~X ′ cannot be chosen in further iterations any more. In other words, ~X ′ will count towards
the total number of iterations only when it is chosen before the critical minterm ~X. By
our assumption that the DI is chosen uniformly at random in each iteration, ~X ′ has a
probability of 1

2 to be chosen as DI before ~X is chosen. As this is true for any non-critical
minterm, the expected number of SAT iterations is E[λ] = 1

2 (2n −m) +m = 2n+m
2 .
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Figure 7: Illustration of the Configurations with Multiple SAS-B Blocks

4.2.3 Configuration 2: SAS-B with Multiple SAS-B Blocks

In this configuration, we have l SAS-B blocks as illustrated in Fig. 7. Each SAS-B block
has n-bit primary input ~Xp, which is the output of the PRP function and shared among
all the SAS-B blocks, and 2n-bit key input. The output of each SAS-B block is XOR’ed
with a wire in the original circuit. Therefore, a fault is injected into the original circuit
if at least 1 SAS-B block has output 1. Let Mj be the set of critical minterms for the
jth SAS-B block , j = 1, 2, . . . , l. For the ease of implementation, we choose l also to be a
power of 2 and l ≤ m. The relationship betweenMj and the total set of critical minterms
M is thatM1,M2, . . . ,Ml are mutually exclusive and evenly partitionM, i.e.

|M1| = |M2| = · · · = |Ml|, Mi ∩Mj = ∅ ∀i 6= j, and
l⋃

k=1
Mk =M (9)

In orther words, each SAS-B block has m
l critical minterms and each critical minterm

receives high corruptibility from exactly one SAS-B block. The corruptibility of any critical
minterm is hence γc = l

m .
Lemma 3. For SAS-B Configuration 2, any critical minterm must exist in the set of DIs
when SAT finishes: ~X ∈ Dλ ∀ ~X ∈M, where λ is the total number of SAT iterations and
Dλ is the set of all the DIs.

The proof is given in Appendix E. Below, we will analyze the SAT attack resilience of
this configuration by deriving the expected number of SAT iterations.
Theorem 6. The expected number of SAT iterations of SAS-B Configuration 2 with l
SAS-B blocks and m critical minterms is

E[λ] = l · 2n +m

l + 1 (10)

Proof. By Lemma 3, every critical minterm must count toward the total number of SAT
iterations. Therefore, we only need to derive the expected number of non-critical minterms
that are chosen as DIs.

For any non-critical minterm ~X ′ /∈M, in the ith SAS-B block, there exists exactly only
one critical minterm ~Xi such that the set of wrong keys that corrupt ~X ′ in this SAS-B
block, Ki, ~X′ , is a subset of the set of wrong keys that corrupt ~Xi, Ki, ~Xi

. i.e. Ki, ~X′ ⊂ Ki, ~Xi
.

As the construction of Configuration 2 makes sure that this is true for any i = 1, 2, . . . , l
and the critical minterms for each SAS-B block is mutually exclusive, there are a total of
l such critical minterms. When these l critical minterms are all chosen as DI, they will
cover the entire set of wrong keys that corrupt ~X ′. Therefore, by Lemma 1, ~X ′ must be
chosen as DI at least before one of such critical minterms in order to count toward the
total number of SAT iterations. This holds for any non-critical minterm.

By our assumption that the DIs are chosen uniformly at random in each SAT iteration,
for each non-critical minterm, the probability that it will be chosen as DI is l

l+1 . Therefore,
the expected number of SAT iterations is E[λ] = l

l+1 (2n −m) +m = l·2n+m
l+1 .
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Figure 8: Weight Distribution (Histogram, Left Y Axis) and Application-Level Accuracy
Loss (Right Y Axis) of LeNet trained on MNIST (Left) and CaffeNet Trained with
ISLVRC-2012 Dataset (Right)

4.2.4 Choosing Critical Minterms

The critical minterms for injecting large errors should be selected judiciouly. These are
the minterms which happen more often than others for the target ML workload. A careful
analysis of the ML workload would help identify these typical minterms. Generally these
minterms would be very few as compared to the overall input space of the functional
modules.

Here we describe how to select the critical minterms. It turns out that the weight values
of most trained ML models follow a similar distribution: they are more frequent near 0
and the frequency decreases as the parameter value moves away from 0. For example,
Figure 8 shows the distribution of parameters of the LeNet model trained with MNIST
dataset and CaffeNet model trained with the ISLVRC-2012 dataset. These two are the
smallest benchmark and the largest benchmark, respectively, among the benchmarks used
in this paper.

We select a subset of weights values to be critical minterms based on considerations
on application-lavel corruptibility and hardware overhead. On one hand, the selected
critical minterms should cause significant accuracy loss at the application-level. In Fig. 8,
we also show the accuracy loss of the ML model in the following experiment: for each
input minterm, we measure the accuracy loss of the ML model when every multiplication
involving this minterm is corrupted with a probability of 1

4 (while no other minterm
is corrupted). We choose this probability because we choose m = 4 in the following
experiments, and each critical minterm will be corrupted by 1

m of the wrong keys in
Configuration 1 and higher in Configuration 2.

On the other hand, we explore to utilize hardware parallelism to reduce the overall
hardware overhead. In most cases, ML applications are run on processors with very large
number of parallel cores such as GPUs and specialized ML processors [33–41]. In our
experiments, we only lock 1% of the cores using SAS-B and use the following strategy to
schedule multiplications to the cores: 1) If the multiplication involves a critical minterm,
then it will be scheduled to a core locked with SAS-B unless all the locked cores are busy,
in which case it will be scheduled to a non-locked core. 2) If it does not involve a critical
minterm, it will be scheduled to a non-locked core. Note that a similar compilation strategy
was used in [55] where the multiplications involving certain values are assigned to specific
multipliers.

Targeting high error for these small number of critical minterms implies that we do not
need to have a SAS-A type approach where all minterms are being uniformly increased in
there corruptibility level. Hence the higher degradation in SAT complexity can be avoided.
Since critical minterms are injected with large amounts of error, the ML application also
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Table 5: Properties of the 2 Configurations of SAS-B
Configuration l γc E[λ]

1 1 1
m

2n+m
2

2 1 ≤ l ≤ m l
m

l2n+m
l+1

Table 6: Error rate ε and # SAT iterations λ of a 16-input SAS-A block with different
(n0, p0). ε0 and λ0 are the analytical lower-bounds. ε is the experimental error rate
obtained by simulating all 216 input patterns. λ is the experimental # iterations required
by SAT attack.

n=16
(n0, p0) (2,1) (2,3) (4,7) (4,8) (4,13) (4,15)
ε0 1.53E-05 3.34E-02 5.23E-03 7.81E-03 3.35E-02 5.15E-02
ε 1.53E-05 9.13E-02 3.57E-02 3.66E-02 2.16E-01 1.86E-01
λ0 65536 12 29 18 5 6
λ 65536 364 656 1334 344 187

experiences higher rates of classification failures.

4.3 Summary
In this section, we provide two mitigation techniques against SAT attack.

In SAS-A, we modify the Anti-SAT block design to achieve a higher error rate of wrong
keys and higher corruptibility for any input minterm. Although the SAT solving time
is no longer exponential, as will be shown in the next section, by properly choosing the
configuration parameters n, n0, and p0 for SAS-A, an extremely long SAT solving time
can still be achieved.

For SAS-B, in order to achieve high accuracy loss for the neural model, a strategy
is provided to choose a small set of weight values as critical minterms. These critical
minterms are those inputs which happen more frequently, and hence have higher impact on
the accuracy, for a class of ML workloads. The SAS-B blocks ensure that the corruptibility
of these critical minterms is very high. The pseudorandom permutation function forces
SAT solver to choose DIs uniformly at random and hence will force the number of SAT
iterations to be exponential in the input size n. The properties of both configurations of
SAS-B are summarized in Table 5.

5 Experiments and Results
This section shows the experimental results of our proposed secure locking techniques
for machine learning applications. Recall that our experimental setup is illustrated in
Fig. 3 in Sec. 3. We obtain the gate-level netlists of a MIPS processor by synthesizing
the high-level description using Cadence RTL Compiler. Then we lock the netlist using
SAS-A and SAS-B in respective experiments. The application-level accuracy is emulated
using Ristretto [54], a tool that emulates the neural network computation in hardware, by
injecting error into the operations according to the error profile of the locking scheme.

5.1 Experiments and Results for SAS-A
In Sec. 4.1, we discuss the configuration of a SAS-A and analyze the lower-bounds for
error rate ε0 and # SAT iterations λ0 as shown in Eq. (5) and Eq. (6). To validate the
correctness of two analytical lower-bounds, we design a 16-input SAS-A block (n = 16)
with different (n0, p0) and test their actual error rate and SAT iterations. The result is
shown in Table 6. As seen, for different (n0, p0), we always have ε ≥ ε0 and λ ≥ λ0, which
validates the correctness of our analysis for the lower-bounds ε0 and λ0.
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Figure 9: Lower-bounds of (a) error rate ε0; (b) # SAT iterations λ0 for different Strong
Anti-SAT configurations (n, n0, p0).

Figure 10: Accuracy loss v.s. error rate of approx-key for 5 benchmarks run on the
approx-unlocked processor

In Fig. 9, we plot ε0 and λ0 for an n-input SAS-A block with different (n, n0, p0). For
each n ∈ {32, 48, 64, 80}, we set n0 = 4 and increase p0 from 1 to 15. As seen in Fig. 9(a),
by increasing p0, the ε0 will increases substantially. For different n, we can always find a
configuration (n0, p0) such that the ε0 is larger than certain desired error-rate. A desired
ε0 can be estimated to a value such that ML applications of interest is guaranteed to have
a high error rate. Fig. 10 plots the relationship between accuracy loss of 5 ML models and
error rate of a processor. Using this plot we can estimate the desired error rate for the
processors which can then be used to design the SAS-A block.

Increasing ε0, however, will inevitably decreases λ0. This is validated in Fig. 9(b),
which shows that λ0 decreases as p0 increases. Although there is a decrease in the number
of SAT iterations, we show that given the very long SAT solving time per iteration, we
still guarantee an extremely long total SAT solving time. Let us denote the SAT solving
time per iteration as t. Fig. 11a shows the t for different n-bit data input processors
locked with n-bit SAS-A. (Note that the arithmetic logic in the processor is adjusted with
n.) t is computed by running the SAT attack for 10 hours and dividing this time by the
number of iterations that the attack has progressed. As seen, as n increases, t increases
exponentially. To validate the extrapolated exponential increase, we run the SAT attack
on a processor locked with a SAS-A block of n = 56 and find that it can only process 1
iteration in 2.41E+05 seconds (about 67 hours), which is consistent with the estimated
value based on the exponential curve. Hence such a predictive approach can be used to
estimate the actual per-iteration SAT solving time of the real 32-bit MIPS processor where
n = 64. Based on λ0 in Fig. 9b and t in Fig. 11a, we can compute the lower-bound of total
SAT solving time T0 = t× λ0 for each tuple (n, n0, p0). We relate the SAT solving time
to the application-level impact by observing the relationship between T0 and ε0. Based
on Fig. 9a, we first determine the (n, n0, p0) which can just achieve certain ε0. Then, we
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(a) SAT solving time per iteration
for n-input SAS-A locked processor

(b) Total SAT solving time v.s. error rate

Figure 11: Per-iteration and Total SAT Solving Time

Table 7: Classification Accuracy of ML Benchmarks Running on a Processor Locked with
SAS-B

Configuration Configuration 2 Activated
Benchmark 1 l = 2 l = 4 Chip
MNIST 0.18 0.11 0.11 0.99
CIFAR10 0.10 0.10 0.10 0.89
SVHN 0.20 0.20 0.20 0.94

ISLVRC-2012 0.002 0.002 0.002 0.52
Oxford102 0.01 0.01 0.01 0.93

compute T0 for each tuple and show the relationship between T0 and ε0 in Fig. 11b.
As seen, we can always select a configuration (n, n0, p0) so as to satisfy a desired ε0

and T0 simultaneously using Fig. 11b. For example, if the designer requires that ε0 > 10−4

and T0 > 1 year, we can choose (n, n0, p0) = (64, 4, 11) as the configuration. If the
requirements is ε0 > 10−5 and T0 > 250 years, we can choose (n, n0, p0) = (64, 4, 9). Such
configurations would result in 80% and 60% accuracy loss for most ML models running on
approx-unlocked processors, respectively, as shown in Fig. 10.

5.2 Experiments and Results for SAS-B
In this subsection, we measure the effectiveness of SAS-B as well as its SAT resilience.

From Fig. 8 we can observe that the accuracy loss of the ML model increases drastically
as we lock those minterms which occur at greater frequency. This is quite intuitive since
more multiplication results are corrupted when we lock the minterms of higher frequency.
It is also noteworthy that the number of exclusive minterms that need to be locked to
degrade the ML classification accuracy are very few.

We conduct the following experiment to obtain the application-level accuracy loss of
ML workloads. Four minterms are chosen as critical minterms (i.e. m = 4) among the
weight values that have high impact on application-level accuracy (see Fig. 8). With these
minterms, we lock the processor using SAS-B with n = 64 and l = 1, 2, 4.

The majority of ML application nowadays are executed on processors that contain
hundreds of processing cores [53] including Graphic Processing Units (GPUs) and specialized
ML processors. The processor used in the experiment of SAS-B contains 100 32-bit MIPS
cores among which only 1 core is locked using SAS-B (and the others are not locked). In
order to emulate the application-level impact,for every 100 multiplications in an ML model,
we corrupt the result of the first multiplication with the probability of l

m , the corruptibility
of critical minterms γc, by XOR’ing it with a random number, and corrupt all the other
operations with the probability of 2−n. The scheduling is done at compile time and does
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not cause run time overhead or hardware overhead.
The classification accuracy of 5 ML benchmarks is shown in Table 7. Both Configuration

1 (l = 1) and Configuration 2 (l = 2, 4) are simulated. It can be observed that no matter
which configuration of SAS-B is used, the loss of classification accuracy is very significant.
Note that the critical minterms are the same across the experiments on all the ML models.
The high accuracy loss of these models demonstrates that SAS-B can generalize to a broad
class of ML models.

The expected vs. actual SAT iterations of SAS-B of different configurations are given
in Fig. 12 where they are consistent with each other and grow at an exponential pace.
Fig. 12d compares the SAT iterations of different configurations. It can be observed that,
especially for larger n, a larger l comes with more SAT iterations as expected. As increasing
l has a very small impact on the size of the locking module but significantly increases the
SAT iterations, we would recommend choosing Configuration 2 and having a relatively
large l.

5.3 Comparison with Existing Logic Locking Schemes
Now that we have demonstrated the effectiveness and SAT-resilience of both SAS-A and
SAS-B, we evaluate their hardware overhead and compare with existing logic locking
methods. The hardware (i.e. chip area) overhead is estimated using the number of gates.
The baseline case is a processor with 100 32-bit MIPS cores without any logic locking.
The details of each compared approach are as follows.

• The existing logic locking scheme: every core is locked using a 64-bit Anti-SAT
block + 5% key-gates inserted into the processor circuitry using fault impact based
analysis. This is the state-of-the-art logic locking approach proposed in [12] and used
in Sec. 3.
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Table 8: Comparison among Various Logic Locking Techniques
Locking Scheme Application-Level Impact SAT Solving Time HW Overhead
existing logic very low

locking approach [12] after AppSAT exponential 7.2%
not exponential

SAS-A high but very long 2.9%
SAS-B high exponential 0.83%

• SAS-A: every core in the processor is locked with a SAS-A block with (n = 64, n0 =
4, p0 = 9). This configuration is shown to guarantee an extremely long solving time
for exact SAT attack in Sec. 5.1.

• SAS-B: only 1 out of 100 cores is locked using a 64-bit SAS-B block with m = 4
and l = 4. This configuration is shown to have both high application-level impact
and exponential SAT solving time in Sec. 5.2.

The comparison between proposed SAS approaches with existing logic locking schemes
are shown in Table 8. As seen, both SAS-A and SAS-B have higher application-level
accuracy impact and lower hardware overhead than the existing approach. SAS-B has
exponential SAT resilience and lower hardware overhead compared to SAS-A, although
the critical minterms for SAS-B is only applicable for ML applications. For conventional
applications, one can use SAS-A to lock the processor since these applications have much
lower error resilience than ML applications. To build a multi-core processor that is secure
for both conventional and ML applications, we suggest to lock a small portion of cores
using SAS-B and all the other cores with SAS-A. This diversified approach will ensure
both high accuracy impact on any application and exponential SAT solving complexity.

6 Conclusion
In this work, we investigate defense methodologies for ML workloads on locked processors.
We motivate our work by exploiting the AppSAT attack on processors locked with the
state-of-the-art logic locking scheme and showing that this scheme does not have any
application-level impact on ML workloads after the processor is approximately unlocked.
To counter this attack, we propose the Strong Anti-SAT (SAS) scheme to lock the
processors and provide two types of SAS: SAS-A and SAS-B. SAS-A uniformly increases
the corruptibility of every input minterm while SAS-B increases that of only a very small
number of critical minterms that have high application-level impact. Experimental results
show that both schemes effectively secure processors against the SAT and AppSAT attacks
by ensuring extremely long SAT solving time and high application-level accuracy loss given
any wrong key at the same time.

We also evaluate the hardware overhead of proposed approaches as opposed to existing
locking schemes and show that both SAS-A and SAS-B have low hardware overheads.
SAS-B has higher asymptotic SAT resilience and lower hardware overhead than SAS-A,
although SAS-B is only applicable when the targeted application is a neural network
(the majority of machine learning models). In order to build a secure processor for all
applications, We suggest to lock a small portion of cores using SAS-B and all the other
cores with SAS-A hence ensuring both high accuracy impact on any application and
exponential SAT solving complexity.
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A Proof of Theorem 1
Proof. This can be proved by contradiction: suppose the key returned by the last step of
SAT attack is a wrong key. This implies that there must exist a primary input ~X such
that

C( ~X, ~Kc, ~Yc) ∧ C( ~X, ~K, ~Y ) ∧ (~Yc 6= ~Y )

where ~K is the actual key, ~Yc is the output with returned key ~Kc and ~Y is the correct output
according to the actual key ~K. ~X cannot be a previously found DI because otherwise
~Kc will not satisfy (3). We can see that ~X qualifies for a DI: just assign ~Kα = ~Kc and
~Kβ = ~K. This means that (2) is still satisfiable and contradicts the criteria that no more
DI can be found before the SAT attack goes to the final step.

Hence proved.
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B Proof of Theorem 2
Proof. Let us call the pair of a primary input minterm and a wrong key that corrupts this
minterm a input-wrong key pair (IWP).

The total number of IWPs will be equal to the total number of wrong keys times the
number of input minterms corrupted by a wrong key, i.e. |KW | · |M ~K | ∀ ~K ∈ K

W .
This number is also equal to the number of input minterms times the number of wrong

keys that corrupts this minterm, i.e. 2np · |K ~X | ∀ ~X ∈ Z2np

2 .
Therefore, we have

|KW | · |M ~K | = 2np · |K ~X | ∀ ~X ∈ Z2np

2 and ~K ∈ KW

which means
|K ~X |
|KW |

=
|M ~K |
2np

∀ ~X ∈ Z2np

2 and ~K ∈ KW

i.e. γ = ε. Hence proved.

C Proof of Lemma 1
Proof. Recall that Equation (2) gives the SAT formula for each SAT iteration:

C( ~Xi, ~Kα, ~Yα) ∧ C( ~X1, ~Kβ , ~Yβ) ∧ (~Yα 6= ~Yβ)
i−1∧
j=1

(C( ~Xj , ~Kα, ~Yj) ∧ C( ~Xj , ~Kβ , ~Yj))

To satisfy the first line, at one of ~Kα and ~Kβ must be a wrong key that corrupts ~X.
However, since any wrong key that corrupts ~X also corrupts at least 1 previously found DI,
this wrong key cannot satisfy the second line. Hence such ~X cannot be the DI in future
iterations.

D Proof of Lemma 2
Proof. Recall that g has on-set size 1. Let ~P be the very input that makes g(~P ) = 1.
∀ ~X ∈ M, let ~K1 = ~X ⊕ ~P . Then, any ~K = ( ~K1, ~K2) ∈ KW is a wrong key that only
corrupts ~X. Therefore, ~X has to be chosen as a DI to prune out this wrong key.

E Proof of Lemma 3
Proof. This is a natural extension to Lemma 2. Let ~X be a critical minterm and ~X ∈Mj .
Recall that g has on-set size 1. Let ~P be the very input that makes g(~P ) = 1. ∀ ~X ∈Mj ,
let ~k = ~X⊕ ~P . Then, let us consider the following wrong key ~K = ( ~K1, ~K2, . . . , ~Kl) ∈ KW
which is composed as follows: ~Kj = (~k, ~Kj

2) ∈ KWj where KWj is the set of wrong keys for
the jth SAS-B block. For any i = 1, 2, . . . , l that i 6= j, ~Ki ∈ KCi where KCi is the set of
correct keys for the ith SAS-B block. Such a key ~K is a wrong key that only corrupts ~X.
Therefore, ~X has to be chosen as a DI to prune out this wrong key.
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