
Tight Security Bounds for Generic Stream
Cipher Constructions

Matthias Hamann and Matthias Krause

University of Mannheim, Germany, {hamann,krause}@uni-mannheim.de

Abstract.
The design of modern stream ciphers is strongly influenced by the fact that Time-
Memory-Data tradeoff attacks (TMD-TO attacks) reduce their effective key length
to SL/2, where SL denotes the inner state length. The classical solution, employed,
e.g., by eSTREAM portfolio members Trivium [CP05] and Grain v1 [HJM06], is to
design the cipher in accordance with the Large-State-Small-Key construction,
which implies that SL is at least twice as large as the session key length KL.
In the last years, a new line of research looking for alternative stream cipher construc-
tions guaranteeing a higher TMD-TO resistance with smaller inner state lengths has
emerged. So far, this has led to three generic constructions: the Lizard construction
[HK18], having a provable TMD-TO resistance of 2 · SL/3; the Continuous-Key-
Use construction, underlying the stream cipher proposals Sprout [AM15], Plantlet
[MAM17], and Fruit [AH18]; and the Continuous-IV-Use construction, very recently
proposed in [HKM17a]. Meanwhile, it could be shown that the Continuous-Key-Use
construction is vulnerable against certain nontrivial distinguishing attacks [HKMZ17].
In this paper, we present a formal framework for proving security lower bounds on
the resistance of generic stream cipher constructions against TMD-TO attacks and
analyze two of the constructions mentioned above. First, we derive a tight security
lower bound of approximately min{KL, SL/2} on the resistance of the Large-State-
Small-Key construction. This shows that the feature KL ≤ SL/2 does not open the
door for new nontrivial TMD-TO attacks against Trivium and Grain v1 which are
more dangerous than the known ones. Second, we prove a maximal security bound on
the TMD-TO resistance of the Continuous-IV-Use construction, which shows that
designing concrete instantiations of ultra-lightweight Continuous-IV-Use stream
ciphers is a hopeful direction of future research.

Keywords: Stream Ciphers · Generic Time-Memory-Data Tradeoff Attacks · Security
Lower Bound Proofs · Random Oracle Models

1 Introduction
Security proofs in so-called random oracle models (for short ROMs, sometimes also called
ideal primitive models (IPMs), as in [GT15]) play an important role for the security analysis
of symmetric cryptographic constructions (see, e.g., [GT15] for a systematic overview). A
ROM is based on identifying the main components of the cryptographic construction and
assuming them to behave as randomly chosen. The security proofs have an information-
theoretic nature and refer to computationally unbounded attackers who have black-box
oracle access to the components and to the construction. The security of the construction
is measured by the minimal number of oracle queries needed for reaching certain attack
goals like recovering the secret symmetric key or distinguishing the construction from an
appropriate random counterpart.

mailto:hamann@uni-mannheim.de,krause@uni-mannheim.de

2 Tight Security Bounds for Generic Stream Cipher Constructions

In practice, this type of security expresses the resistance of concrete instantiations
of the construction against generic attacks, which do not take the inner structure of the
relevant components into account, but instead target the way these components interact.

While, in the last decade, a large number of ROM-based formal security bounds have
been shown for constructions like, e.g., block ciphers, operation modes of block ciphers,
block cipher-based hash functions, or message authentication codes,1 comparatively little
is known so far about ROM-based approaches to provable stream cipher security.

In this paper, we present a ROM-approach for analyzing the security of keystream
generator-based (KSG-based) stream ciphers against generic Time-Memory-Data tradeoff
(TMD-TO) attacks, a classical and powerful type of attack, which goes back to Babbage
[Bab95] and Golić [Gol96]. We derive security lower bounds for several generic constructions,
which underlie various stream cipher proposals made in the last years, including the
eSTREAM portfolio members Trivium [CP05] and Grain v1 [HJM06].

TMD-TO attacks reduce the security level of classical types of stream ciphers to SL/2,
where SL denotes the inner state length of the underlying keystream generator. One
established way to handle this fact, employed, e.g., by Trivium and Grain v1, is to design
the cipher according to the Large-State-Small-Key construction, which implies to
choose SL at least twice as large as the session key length KL. Here, the intended security
level corresponds to the session key length KL and it usually holds that KL ≥ 80. However,
the resulting comparatively large inner state length is a relevant issue in many practical
situations, as stream ciphers are often designed for application scenarios with a desire for
ultra-lightweight devices (see [HKMZ17] for a more detailed discussion).

This motivated a new line of research looking for stream ciphers constructions which
provide a resistance higher than SL/2 against TMD-TO attacks and would hence allow
to build secure stream ciphers with inner state lengths smaller than 160. So far, this
research has led to three generic constructions: the Lizard construction [HK18], having
a provable TMD-TO resistance of 2 · SL/3 and underlying the stream cipher proposal
Lizard (SL = 121) [HKM17b]; the Continuous-Key-Use construction, underlying the
stream cipher proposals Sprout [AM15], Plantlet [MAM17], and Fruit [AH18]; and the
Continuous-IV-Use construction, very recently proposed in [HKM17a].

The last two constructions are based on dividing the set of the SL inner state cells
into a set of VSL volatile ones (e.g., as flip-flops), and a set of SL−VSL non-volatile ones
(e.g., in EEPROM), which do not change their content during the keystream generation.
Continuous-Key-Use stream ciphers employ the secret session key in the non-volatile
part of the inner state during keystream generation, Continuous-IV-Use ciphers do the
same with the initial value (IV). The aim here is to construct ciphers with a (preferably
provable) TMD-TO resistance of 80 bits (i.e., 80-bit security) with VSL being significantly
smaller than 160 bits. The justification of this approach is given by the fact that the
hardware realization of a stream cipher usually has to provide separate memory cells for
storing IVs and the secret session key anyway, so why not use them for the state transition.
Note that while the situation of secret keys being kept persistently in, e.g., EEPROM
may be apparent, also IVs require some separate memory location in most real-world
applications, i.e., they cannot be simply overwritten by the stream cipher’s state transition
function during keystream generation. For example, in A5/1 of GSM [BGW99] the IV
employed in the encryption of a data packet is the respective (sequentially incremented)
22-bit frame number. We refer to [HKMZ17] for further examples and a more detailed
discussion on this.

Very recently, it came to light that the Continuous-Key-Use construction does not
fulfill the expectations. By giving a corresponding attack, it was shown in [HKMZ17]
that the resistance of the Continuous-Key-Use construction against generic TMD-TO

1See, e.g., the large body of recent work on the analysis of iterated Even-Mansour ciphers, or on
IPM-analyzing block cipher-based constructions of cryptographic hash functions.

Matthias Hamann and Matthias Krause 3

distinguishing attacks is only VSL/2. This once more emphasizes the importance of
equipping serious proposals for new stream ciphers with lower bound proofs on their
security against TMD-TO attacks, and we hope that our paper represents a valuable
contribution in this context.

After introducing our random oracle model for KSG-based stream cipher constructions,
we first derive a corresponding tight security lower bound of approximately min{KL,SL/2}
on the TMD-TO resistance of the Large-State-Small-Key construction underlying,
e.g., Trivium and Grain v1. This shows that the design feature KL ≤ SL/2 of such ciphers
does not open the door for TMD-TO attacks which are more efficient than the classical
ones of Babbage [Bab95] and Golić [Gol96], and of Biryukov and Shamir [BS00].

Subsequently, as our main result, for keystreams of at most PL bits generated un-
der the same key-IV pair, we prove a tight maximal security bound of approximately
min{KL,VSL − log2(PL)} on the resistance of the Continuous-IV-Use construction
against TMD-TO attacks. This emphasizes that designing concrete instantiations of
ultra-lightweight Continuous-IV-Use stream ciphers is a hopeful direction of future
research.

Note that the first formal security lower bound on the resistance of generic stream
cipher constructions against TMD-TO attacks, a tight 2 ·SL/3 lower bound for the Lizard
construction, was presented in [HK18]. This bound refers to TMD-TO attacks with the
goals key recovery and packet prediction. In this paper, for the first time, security lower
bounds on the resistance of stream ciphers against TMD-TO distinguishing attacks are
derived.

Before describing our results in more detail in Subsection 1.3, in the next two subsections
of this introduction we provide further basics around stream ciphers and TMD-TO attacks.

1.1 Stream Cipher Basics
Stream ciphers are symmetric encryption algorithms intended for the online encryption of
plaintext bitstreamsX which have to pass an insecure channel. The encryption is performed
via bitwise addition of a keystream S = S(k, IV), which is generated in dependence of a
secret symmetric session key k and, possibly, a public initial value IV . The legal recipient,
who also knows k, decrypts the encrypted bitstream Y = X ⊕ S by generating S and
computing X = Y ⊕ S. In this paper, we consider KSG-based stream ciphers, i.e., stream
ciphers which generate the keystream by a so-called keystream generator (KSG).

KSGs are stepwise working devices which can be formally specified by finite automata,
defined by an inner state length SL and the corresponding set of inner states {0, 1}SL, a state
update function π : {0, 1}SL −→ {0, 1}SL, and an output function out : {0, 1}SL −→ {0, 1}.
Starting from an initial state q0, in each clock cycle i ≥ 0, the KSG produces a keystream
bit zi = out(qi) and changes the inner state according to qi+1 = π(qi). The output
bitstream S(q0) is defined by concatenating all the outputs z1z2z3 · · · .

In the context of TMD-TO security, it is convenient to express the output behavior of
a stream cipher by the function OUTBLOCK : {0, 1}SL −→ {0, 1}SL, which is defined by
π and out and which assigns to each inner state q ∈ {0, 1}SL the block

OUTBLOCK (q) = (OUTBLOCK (q)0, · · · ,OUTBLOCK (q)SL−1)

of the first SL keystream bits generated on q, where for all j, 0 ≤ j ≤ SL − 1,

OUTBLOCK (q)j = out(πj(q)).

The keystream generation process of a KSG-based stream cipher usually depends on a
further parameter PL ≥ SL, the packet length, and can be divided into the following four
phases:

4 Tight Security Bounds for Generic Stream Cipher Constructions

(1) The session key generation phase: Here, the secret session key k ∈ {0, 1}KL

is generated by running a key-exchange protocol between the legal communication
partners. This phase will not be considered in this paper.

(2) The loading phase: In this phase, the session key k together with an initial value
IV ∈ {0, 1}IVL, and, possibly, some constants are loaded into the inner state register
cells of the KSG. This phase results in a state qload = qload(IV , k) ∈ {0, 1}SL.

(3) The mixing phase: Here, the KSG transforms the loading state qload into the
initial state

qinit(IV , k) = MIX(qload(IV , k))

by the help of a so-called mixing algorithm MIX : {0, 1}SL −→ {0, 1}SL. This is
done without outputting keystream bits.
The goal of MIX is to provide a sufficiently large amount of diffusion, confusion, and
high algebraic degree in the dependencies of the initial state bits from the session
key and initial value bits.

(4) The output phase, in which the keystream packet corresponding to k and IV ,
consisting of the first PL bits of the keystream S(qinit(IV , k)), is generated in the
way described above.

One distinguishes stream ciphers which work in one stream mode (like Trivium [CP05]
or Grain v1 [HJM06]) and in packet mode (like the GSM standard A5/1 [BGW99] or
Lizard [HKM17b]).

In the one-stream mode, the packet length is defined to be larger than the session
length, i.e., the number of keystream bits needed to encrypt one session. So, the keystream
for encrypting the communication of one session is the prefix of only one keystream packet
and only one initial value per session is needed.

In the packet mode, the packet length is defined to be much shorter than the session
length and the keystream is a concatenation of packets, where for each packet the initial-
ization algorithm (phases (2) and (3)) has to be restarted with a new initial value. The
motivation underlying this approach is that in many real-world communication scenar-
ios (Ethernet, WLAN, Bluetooth, cellular networks etc.), data streams are transmitted
packet-wise. It thus seems natural to consider stream ciphers running packet mode and, in
particular, to look for corresponding design optimizations.

For illustrating the Large-State-Small-Key construction, we give a rough description
of the stream ciphers Trivium and Grain v1, which belong to the final portfolio of the
eSTREAM contest [BBV12].

Trivium: The stream cipher Trivium has an inner state length of L = 288 bits, distributed
over three nonlinear feedback shift registers (NFSRs) of lengths 93, 84, 111 bits. The
state update function consists of the corresponding three feedback functions, which,
in each case, are quadratic and take their inputs from two of the three NFSRs. The
linear output function produces one keystream bit per clock cycle. It XORs six inner
state bits, two from each NFSR. The loading state qload(IV ,CONST , k) is defined
to be the concatenation of the 80-bit session key k, the 80-bit initial value IV , and a
predefined 128-bit constant CONST . The MIX operation consists in clocking the
KSG 4 · 288 times without producing output (see [CP05] for more details).

Grain v1: The stream cipher Grain v1 has an inner state length of L = 160 bits, distributed
over one NFSR and one linear feedback shift register (LFSR), both of length 80
bits. The state update function consists of the corresponding two feedback functions,
where the NFSR feedback function depends also on one of the LFSR bits. Again, the
output function produces one keystream bit per clock cycle and depends nonlinearly

Matthias Hamann and Matthias Krause 5

on five LFSR bits and one NFSR bit and linearly on further seven NFSR bits. The
loading state qload(IV ,CONST , k) is defined to be the concatenation of the 80-bit
session key k, the 64-bit initial value IV , and a predefined 16-bit constant CONST .
In the mixing phase, the Grain-KSG is clocked 160 times, where, in each clock cycle,
the corresponding output keystream bit is XORed to the result of each of the two
feedback functions (see [HJM06] for more details).

We obtain that in both cases, the SL-block of bits r to r + SL − 1 of the keystream
packet corresponding to k and IV can be expressed as

OUTBLOCK (πr(MIX(IV ,CONST , k))). (1)

For the Continuous-IV-Use construction, which is also treated in this paper, a
concrete instantiation has yet do be designed. However, as part of introducing the general
idea of continuously using the IV during keystream generation, the authors of [HKM17a]
conjecture that “cyclically XORing one IV bit per step to the volatile inner state” would
already be sufficient. This actually corresponds to the way how the secret key is employed
in the Continuous-Key-Use stream cipher Plantlet, where, in each step, cyclically one of
the 80 key bits is XORed to the register feedback of one of its two feedback shift registers.

1.2 Time-Memory-Data Tradeoff Attacks and Small State Ciphers
During the last decades, many different techniques for cryptanalyzing KSG-based stream
ciphers have been developed (correlation attacks, fast correlation attacks, guess-and-verify
attacks, BDD attacks, cube attacks etc.). Attacks on stream ciphers typically refer to a
known-IV scenario, in which the attacker knows a set S of keystream blocks having their
origin in one session with secret session key k, and which were generated with respect to a
set of known initial values. Typical goals of attacks on stream ciphers are to distinguish
S from a set of blocks coming from a truly random source, to recover the inner state
responsible for at least one keystream block contained in S, or to predict a keystream
packet corresponding to k and a new initial value IV .

In this paper, we concentrate on the proof of security lower bounds for TMD-TO
attacks. TMD-TO attacks are generic in the sense that they have only black-box access
to the component functions MIX and OUTBLOCK . TMD-TO attacks are often divided
into a precomputation phase, in which some helping data structure is computed, and
an online phase, in which on the basis of the keystream available for the attack and the
helping data structure the goal of the attack is reached. The relevant costs of a TMD-TO
attack are typically measured in the four cost dimensions D (the amount keystream (data)
available in the online phase), T (the time consumption of the online phase), P (the time
consumption of the precomputation phase), and M (the memory consumption including
the size of the helping data structure). The costs are expressed in a so-called tradeoff
curve, which is built by all 4-tuples (T,M,D, P) of cost values, which allow to reach the
goal of the attack with high probability. For attacks without precomputation phase, the
cost dimension P is not considered.

The first TMD-TO attacks against KSG-based stream ciphers go back to Babbage
[Bab95] and Golić [Gol96] and yield the tradeoff curve T ·D = 2SL, which contains the point
T = D = 2SL/2. We describe the idea of these attacks below. Biryukov and Shamir [BS00]
combined the idea of the attacks of Babbage and Golić with the idea of Hellman’s attack
on block ciphers [Hel80], yielding an attack with tradeoff curve T ·M2 ·D2 = 22·SL with
P = 2SL/D. In [HK18], a TMD-TO key recovery attack without precomputation phase
against the Lizard construction is presented, which is successful with high probability for
T = D = M = 22/3·SL and matches the security lower bound shown in the same paper.

In our security proofs for the resistance of generic stream cipher constructions, we
derive lower bounds on the overall time consumption T + P holding for all TMD-TO

6 Tight Security Bounds for Generic Stream Cipher Constructions

attacks against the respective construction. Note that always M,D ≤ T + P holds, as
occupied memory blocks are the result of operations covered by P or T and, similarly,
data blocks not treated by corresponding operations would be of no use. Furthermore, we
refer to chosen-IV attackers who have access to blocks of keystream packets generated
with respect to initial values of the attacker’s choice.

For illustration, we describe the classical TMD-TO attack of Babbage [Bab95] and
Golić [Gol96]: Suppose that the attacker knows a set S of D keystream blocks of length
SL, having their origin in one session with secret session key k, and let Q = {q1, · · · , qD}
denote the set of corresponding inner states. The attacker generates a set of T pairs
(y,OUTBLOCK (y)) for randomly chosen inner states y ∈ {0, 1}SL. If D · T ≈ 2SL, then,
with high probability, there will occur a collision, i.e., some y falls into Q, which implies
that OUTBLOCK(y) falls into S. As a result, the attacker knows the inner state qj
responsible for one keystream block of a packet generated with respect to a known initial
value IV . This allows to compute the whole keystream packet corresponding to k and IV ,
and to recover the initial state qinit(IV , k) for this packet. Moreover, for Trivium, Grain v1,
and many other ciphers, it is even possible to efficiently compute k from qinit(IV , k).

By setting D = T = 2SL/2, we obtain an attack which lowers the security level of
the respective cipher to SL/2, as it consumes data, time, and memory of at most 2SL/2.
Consequently, for reaching the intended security level KL, the length of the secret session
key, classical stream ciphers have to use an inner state length SL of at least 2 ·KL.

In Section 3, we analyze a generic Large-State-Small-Key construction with
SL = VSL = IVL + KL, qload(IV , k) = (IV |k), and qinit(IV , k) = MIX(IV |k). For this
construction, exhaustive key search and the Babbage-Golić attack yield a security upper
bound of min{KL,SL/2}. The first main result of this paper is to show a nearly tight (up
to a factor of 2 · SL w.r.t. attack complexity 2SL/2) lower bound for this upper bound w.r.t.
TMD-TO attacks (see Relation (2)).

As already mentioned, the search for constructions yielding a TMD-TO resistance
beyond SL/2 has led so far to three generic constructions: the Lizard-construction, the
Continuous-Key-Use construction, and the Continuous-IV-Use construction.

LIZARD construction implies to run a stream cipher with SL = KL = IVL in packet
mode with packet length PL, where the packet initial states are computed according
to qinit(IV , k) = MIX(k⊕ IV)⊕ k. This does not prevent recovering the initial state
of one of at least 2SL/2/PL known keystream packets (i.e., 2SL/2 bits of known data
in total) by applying the Babbage-Golić attack with TMD-cost 2SL/2. However, one
can prove beyond-the-birthday-bound resistance against key recovery and packet
prediction attacks. More precisely, by considering a random oracle model approach
similar to the one employed here, a corresponding 2/3 ·SL lower bound was shown in
[HK18]. This justified the proposal of the stream cipher Lizard [HKM17b], which
uses an inner state length of SL = 121.

CONTINUOUS-KEY-USE construction means that the secret session key is continuously
employed during keystream generation and thus becomes a non-volatile part of the
cipher’s inner state. This principle underlies the stream cipher proposals Sprout
[AM15] (SL = 167 and VSL = 87), Plantlet [MAM17] (SL = 188 and VSL = 108),
and Fruit [AH18] (SL = 167 and VSL = 87). Remember here that for Continuous-
Key-Use (and Continuous-IV-Use) constructions, we have to distinguish between
SL, the size of the full inner state, and VSL, the size of its volatile part. In particular,
depending on the concrete instantiation, also (possibly secret) counters used, e.g., for
key/IV bit selection, can become part of the volatile inner state if they influence the
state update during keystream generation (see, e.g., [HKMZ17] for further details).
Very recently, it could be shown in [HKMZ17] that the resistance of Continuous-
Key-Use ciphers against generic TMD-TO distinguishing attacks does not exceed

Matthias Hamann and Matthias Krause 7

VSL/2. In the following, we give a rough description of the corresponding approach.
Note that at the beginning of the corresponding oracle game, in the pseudorandom
case, the oracle randomly and independently chooses a secret session key on the basis
of which it henceforth provides its replies.
First, the attacker obtains 2VSL/2 consecutive keystream blocks (each of length ñ
slightly larger than VSL) from about 2VSL/2 bits of keystream provided by the
oracle (possibly generated under a single IV) and stores these blocks in an efficiently
searchable data structure.2 Then, for 2VSL/2 randomly and independently chosen
IVs, he obtains the corresponding ñ-bit keystream prefix from the oracle. Due to the
birthday paradox, in the pseudorandom scenario, he is likely to find a collision of one
of the keystream prefixes generated in the second step with one of the keystream
blocks stored in the first step. This holds as the session key is fixed and thus all inner
states differ only in the volatile part. Hence, with high probability, some initial state
underlying one of the keystream prefixes of the second step will be identical to some
inner state underlying one of the keystream blocks from the first step. As ñ > VSL,
this allows to distinguish the cipher from a truly random source in a generic way.
For a detailed description of this attack, we refer the reader to [HKMZ17].

CONTINUOUS-IV-USE construction (as suggested in [HKM17a]) refers to a cipher work-
ing in packet mode with packet length PL where the IV is continuously employed
during keystream generation and thus becomes a non-volatile, publicly known part
of the cipher’s inner state. It can be easily checked that the above attack against
Continuous-Key-Use ciphers can not be applied to Continuous-IV-Use.
In Section 3, we will analyze a variant of the Continuous-IV-Use construction
in which a part of length VIVL of the IV (having total length IVL) is actually not
continuously employed during keystream generation but only enters the volatile part
of the loading state qload in the classical way known, e.g., from Trivium and Grain v1.
The rest of the IV, which we will call its non-volatile part, forms the constant part of
the inner state (during loading, mixing, and keystream generation). Correspondingly,
we set SL = IVL + KL and VSL = VIVL + KL, and require VIVL ≤ log2(PL). For
all keys k ∈ {0, 1}KL and initial values IV ∈ {0, 1}IVL, it holds qload(IV , k) = (IV |k)
and qinit(IV , k) = MIX(IV |k). As pointed out above, we assume that MIX leaves
the non-volatile part of the state constant. The reason for considering this particular
variant of the Continuous-IV-Use construction will be explained now.
Note that there are two ways of applying the Babbage-Golić TMD-TO attack to
this cipher. The first approach is to mount the attack in its original form, which
does not take the special structure of inner states into account. This attack has the
tradeoff curve T ·D = 2SL, yielding the point T = D = 2SL/2 = 2(IVL+KL)/2. Note
that the respective amount D = 2SL/2 of data is only available if IVL is at least
SL/2− log2(PL).
The second approach is to make use of the fact that the IVs for the keystream packets
are publicly known. Let us hence assume that the keystream data consists of U
keystream packets of length PL corresponding to the initial values IV (1), · · · , IV (U).
Note that U is variable, PL is constant, and the resulting data complexity is
D = U ·PL. The attacker now generates at most S times a random state z ∈ {0, 1}VSL

and computes OUTBLOCK(IV (u), z) for all u, 1 ≤ u ≤ U , until a collision with
the data occurs. This attack has the time complexity T = U · S and, based on
the birthday paradox, needs to satisfy U · PL · S ≥ 2VSL, i.e., T ≥ 2VSL/PL. The
best choice for an attacker is thus S = 2VSL/PL and U = 1 (i.e., attacking only
a single packet of length PL) as it leads to the optimal values T = 2VSL/PL and

2That is, he slides an ñ-bit window over the given keystream.

8 Tight Security Bounds for Generic Stream Cipher Constructions

D = PL for time and data complexity, respectively. This now also immediately
shows that considering fewer than PL keystream bits per packet in the attack would
lead to worse results. Together with the trivial exhaustive key search attack, we
hence obtain a security upper bound of min{KL,VSL − log2(PL)} on the resistance
of this construction.

The second main result of this paper is to show a nearly matching (up to a factor of
2 · SL w.r.t. attack complexity 2VSL−log2(PL)) security lower bound for this upper
bound (see Relation (3)). The reason why, as described above, we additionally
require VIVL ≤ log2(PL) in the analyzed variant of the Continuous-IV-Use
construction will become clear in the course of the proof. However, note already
that, in consequence, choosing VIVL = log2(PL) is optimal, as VSL = VIVL + KL
then implies VSL − log2(PL) = KL.

1.3 Our Results
In this paper, we introduce a random oracle model (ROM) for KSG-based stream ciphers
and prove tight security bounds on the resistance against TMD-TO attacks for two of
the four generic stream cipher constructions discussed in the last subsection: the Large-
State-Small-Key construction and the Continuous-IV-Use construction.

Our ROM refers to a packet length parameter PL and a predefined bijective state
transition function π, which is assumed to have everywhere a large period. The ROM
is based on identifying the functions MIX and out (respectively, OUTBLOCK , which is
determined by out and π) as the main components of the cipher.

We derive our security bounds by analyzing the maximal success probability of an
attacker Eve in a distinguishing game with players Eve and Alice, where Alice holds the
secret session key k and randomly chosen instantiations of the components MIX and out.
Attacker Eve is allowed to pose oracle queries to the components MIX and OUTBLOCK ,
and construction oracle queries with inputs (IV , r), 0 ≤ r ≤ PL − 1 − SL. The answer
to a construction query with input (IV , r) is the block of bits r, · · · , r + SL − 1 of the
keystream packet corresponding to initial value IV .

The goal of the attacker Eve is to distinguish the pseudorandom scenario, in which the
answers to the construction queries refer to keystream packets generated on k and IV in
accordance to the stream cipher construction under consideration, from a random scenario,
in which randomly and independently for each initial value IV a keystream packet of
length PL is generated.

As usual, our security proofs have an information-theoretic nature, i.e., we consider Eve
to be a randomized algorithm of unbounded computational power. Eve is allowed to pose
a predefined number M of oracle queries to Alice and has to output b = 0 (pseudorandom
case) or b = 1 (random case) after posing these M queries. The success of Eve is expressed
by the advantage Adv(M), which is defined as

Adv(M) = |Pr[b = 0|pseudorandom scenario]− Pr[b = 0|random scenario]| ,

where the probabilities are taken w.r.t. Alice’s random choice of the components and the
internal randomization of Eve.

Our main results are that in the game corresponding to the Large-State-Small-Key
construction it holds

Adv(M) ≤ M

2KL −M
+ (2 · SL + 1) ·M2

2SL − (2 · SL + 1) ·M2 (2)

and that in the game corresponding to the Continuous-IV-Use construction it holds

Matthias Hamann and Matthias Krause 9

that Adv(M) is bounded by

Adv(M) ≤ M

2KL −M
+ PL2 · (2 · SL + 1) ·M

2VSL −M · (2 · SL + 1) · PL . (3)

The first result says that no generic TMD-TO attack against Large-State-Small-Key
stream ciphers can be significantly better than the Babbage-Golić attack (if SL < 2 ·KL)
or exhaustive key search (if SL ≥ 2 ·KL).

The second result says that under the conditions that the packet length PL is moderately
bounded, no generic TMD-TO attack against Continuous-IV-Use stream ciphers is
significantly better than exhaustive key search (if VIVL = log2(PL), implying VSL =
KL + log2(PL)) or the TMD-TO attacks described in the previous subsection (if VIVL ≤
log2(PL), implying VSL ≤ KL + log2(PL)).

Structure of the paper: The remaining part of this paper is organized as follows. In
Section 2, we formally define our generic constructions and the corresponding distinguishing
games. Section 3 contains the formulation of our main result Theorem 1, consisting in the
relations (2) and (3), and the corresponding proof. Our proof does not explicitly use the
H-coefficient technique of Patarin [Pat09], but it follows the typical structure of such proofs
as it was described, e.g., in [CS14]. In particular, we operate with an appropriate definition
of a bad computation transcript, show that the probability of a bad transcript is sufficiently
small, and that Eve has no chance to distinguish the random case from the pseudorandom
case during a computation associated with a good transcript. In Section 4, we discuss
some resulting aspects for the design of practical instantiations of Continuous-IV-Use
stream ciphers.

2 A Random Oracle Model for Stream Ciphers
In this section, we introduce the random oracle models for the Large-State-Small-
Key construction (underlying, e.g., Grain v1 [HJM06] and Trivium [CP05]) and the
Continuous-IV-Use construction introduced in [HKM17a], and start with the formal
definitions for them.

Definition 1. A stream cipher designed according to the Large-State-Small-Key
construction, resp. the Continuous-IV-Use construction, is defined in the following way:

• Both constructions depend on the parameters KL (the session key length), IVL (the
initial value length), PL (the packet length), and SL (the inner state length).
Inner states consist of a volatile part of length VSL and a non-volatile part of length
SL−VSL. Initial values also consist of a volatile part (more exactly, a part which is
not continuously employed during keystream generation but only enters the volatile
part of the loading state qload) of length VIVL and a non-volatile part (forming the
constant part of the inner state) of length IVL −VIVL.

For all inner states y ∈ {0, 1}SL, we denote by v(y) ∈ {0, 1}VSL and nv(y) ∈
{0, 1}SL−VSL the volatile, resp. the non-volatile part of y. Clearly, y = nv(y)||v(y).

In the same way, for all initial values x ∈ {0, 1}IVL, we denote by v(x) ∈ {0, 1}VIVL

and nv(x) ∈ {0, 1}IVL−VIVL the volatile, resp. the non-volatile part of x.

• In both constructions, it holds SL = IVL + KL. For the Large-State-Small-
Key construction, it holds SL = VSL (i.e., the whole inner state is volatile) and,
correspondingly, IVL = VIVL. For the Continuous-IV-Use construction, it holds

10 Tight Security Bounds for Generic Stream Cipher Constructions

VSL = VIVL + KL and, correspondingly, SL = VSL + IVL − VIVL, i.e., the non-
volatile part of the inner state equals the non-volatile part of the initial value.
For the Continuous-IV-Use construction we bound the length of the volatile part
of the initial value, in particular we assume that VIVL ≤ log2(PL).

• State transition: Both constructions refer to a bijective state transition function
π : {0, 1}SL −→ {0, 1}SL for which the period of the sequence (πi(z))i≥0 is greater
PL for all inner states z ∈ {0, 1}SL. For the Continuous-IV-Use construction, the
additional restriction holds that π leaves the non-volatile part of the state constant,
i.e., for each z ∈ {0, 1}VSL and x ∈ {0, 1}SL−VSL, there is some z′ ∈ {0, 1}VSL such
that

π(x, z) = (x, z′).

• Loading: In both constructions, the concatenation of the initial value IV and the
session key k forms the loading state qload = (IV |k). In the case of the Continuous-
IV-Use construction, the non-volatile part of the initial value, which has length
IV −VIVL, represents the non-volatile part of this state.

• Mixing and state initialization: Both constructions use a bijective state mixing
function MIX : {0, 1}SL −→ {0, 1}SL, which is allowed to be efficiently invertible.
This implies that qinit(IV , k) = MIX(IV |k). For the Continuous-IV-Use construc-
tion (where VSL = VIVL + KL), we assume that MIX leaves the non-volatile part of
the state constant, i.e., for each z ∈ {0, 1}VSL and x ∈ {0, 1}SL−VSL, there is some
z′ ∈ {0, 1}VSL such that

MIX(x, z) = (x, z′).

• Keystream generation: Both constructions employ an output bit function out :
{0, 1}SL −→ {0, 1}, which defines, together with π, the corresponding output block
function OUTBLOCK : {0, 1}SL −→ {0, 1}SL, where for each inner state y ∈
{0, 1}SL, OUTBLOCK (y) = (z0, · · · , zSL−1) and zi = out(πi(y)), i = 0, . . . ,SL − 1.
The keystream packet (z0, · · · , zPL−1) corresponding to a key-IV pair (k, IV) is
defined by

zi = out(πi(qinit(IV , k))),

which implies that the output block starting at a position r, 0 ≤ r ≤ PL − SL, is
defined by

(zr, · · · , zr+SL−1) = OUTBLOCK (πr(qinit(IV , k))).

Each of the two constructions defines a distinguishing game between the two players
Alice, the secret holder and legal user, and Eve, the attacker. Eve is assumed to have
unbounded computational power and to have black-box access to the components of the
cipher and to the output keystream, i.e., she is allowed to pose component oracle queries
to the components MIX and OUTBLOCK and construction oracle queries for blocks of
size SL of keystream packets corresponding to initial values x of Eve’s choice. After a
predefined number of oracle queries, Eve has to decide whether this keystream stems
from a random source, i.e., a source which generates for each initial value a truly random
bitstream of length PL, or whether it stems from a pseudorandom source, i.e., a stream
cipher designed according to the construction under consideration.

Definition 2 (The Distinguishing Game). The parameters KL, IVL, VIVL, PL, SL, and
VSL and the function π : {0, 1}SL −→ {0, 1}SL have the same meaning as in Definition 1
and fulfill, for each of the two constructions, the respective conditions. We now describe
the game:

Matthias Hamann and Matthias Krause 11

(i) First, Alice chooses randomly and w.r.t. the uniform distribution a secret 5-tuple
ω = (bω, kω, Pω, fω, eω), where

– bω ∈ {0, 1} indicates pseudorandom case or random case,

– kω ∈ {0, 1}KL is the secret key,

– Pω : {0, 1}SL −→ {0, 1}SL is a valid permutation (definition see below) and
corresponds to the mixing function,

– fω : {0, 1}SL −→ {0, 1} corresponds to the output bit function,

– eω : {0, 1}IVL × {0, · · · ,PL − 1} −→ {0, 1} defines the random bitstream
generator.

Here, the definition of a valid permutation depends on the construction. In the
Large-State-Small-Key case, each bijective mapping Pω : {0, 1}SL −→ {0, 1}SL

is a valid permutation. For the Continuous-IV-Use construction, Pω is required
to leave the non-volatile part of the state constant, i.e., for each z ∈ {0, 1}VSL and
x ∈ {0, 1}SL−VSL, there is some z′ ∈ {0, 1}VSL such that

Pω(x, z) = (x, z′).

This is equivalent to choosing a family (Pω(x, ·))x∈{0,1}SL−VSL of mutually independent
random bijective mappings Pω(x, ·) : {0, 1}VSL −→ {0, 1}VSL.
We denote by Ω the probability space consisting of all these 5-tuples together with
the uniform distribution. Each elementary event ω = (bω, kω, Pω, fω, eω) defines one
further component Fω, corresponding to the output block function, and one further
component Eω, corresponding to the construction.

(ii) The function Fω is for all inner states y ∈ {0, 1}SL defined by

Fω(y) = (fω(y), fω(π(y)), · · · , fω(πSL−1(y))). (4)

(iii) The construction function Eω : {0, 1}IVL ×{0, · · · ,PL− SL} −→ {0, 1}SL assigns to
each initial value x and position value r, 0 ≤ r ≤ PL − SL, the block

Eω(x, r) = (er, · · · , er+SL−1) (5)

of the keystream packet corresponding to x, starting at position r.
If bω = 1, we are in the random case and it holds for all i = 0, · · · ,SL − 1 that

er+i = eω(x)r+i. (6)

If bω = 0, we are in the pseudorandom case and it holds that

er+i = fω(πr+i(qinit(x, kω))) = fω(πr+i(Pω(x, kω))), (7)

which is equivalent to

Eω(x, r) = Fω(πr(qinit(x, kω))) = Fω(πr(Pω(x, kω))). (8)

(iv) The distinguisher Eve is supposed to be a randomized oracle algorithm of potentially
unbounded computational power. She aims to find out if bω = 0 or bω = 1 on the
basis of oracle queries of the following types, which she submits to Alice and which
will be answered honestly by Alice:

12 Tight Security Bounds for Generic Stream Cipher Constructions

– Eve accesses the mixing component via P/P−1-queries P (u) =? or P−1(v) =?
for inputs u, v ∈ {0, 1}SL, which are answered by Alice with Pω(u), resp.
(Pω)−1(v).

– Eve accesses the output component via F -queries F (y) =? for inner states
y ∈ {0, 1}SL, which are answered by Alice with the keystream block Fω(y) as
defined in Relation (4).

– Eve accesses the construction via E-queries for input pairs (x, r), where x ∈
{0, 1}IVL and 0 ≤ r ≤ PL−SL, which are answered by Alice with the keystream
packet block Eω(x, r) as defined by the relations (5),(6),(7),(8).

(v) We suppose that in each computation, Eve poses the same number M of oracle
queries and finishes the computation with some output b ∈ {0, 1}. The advantage
Adv(M) reached by Eve with M oracle queries is defined to be

Adv(M) =
∣∣∣∣ Pr
ω∈U Ω

[Eve outputs 1|bω = 1]− Pr
ω∈U Ω

[Eve outputs 1|bω = 0]
∣∣∣∣

=
∣∣∣∣ Pr
ω∈U Ω

[Eve outputs 0|bω = 1]− Pr
ω∈U Ω

[Eve outputs 0|bω = 0]
∣∣∣∣ .

Obviously, TMD-TO attacks against a generic stream cipher construction can be
formulated in a straightforward way as strategies for Eve in the corresponding distinguishing
game, where the overall number of oracle queries lower bounds the overall time consumption
P + T of the attack, and the number of construction queries corresponds to the data
consumption D. Note that not only component but also construction queries contribute
to either P or T , as the corresponding data blocks would be useless without processing
them in some way.

In our security lower bound proofs, we make use of the fact that the state transition
function π defines an undirected graph structure Gπ = (Vπ, Eπ) on Vπ = {0, 1}SL with
Eπ = {(v, π(v)), v ∈ {0, 1}SL}. As π is bijective, the connected components of Gπ, which
we call π-components, are simple circuits of size at least PL. This graph structure implies
the following distance metric on {0, 1}SL.

Definition 3.

• The π-distance distπ(v, v′) of inner states v, v′ ∈ Vπ = {0, 1}SL is defined to be ∞ if
v and v′ belong to different π-components. Otherwise, it is defined to be the number
of edges of a shortest path connecting v and v′ in Gπ.

• For each v ∈ Vπ = {0, 1}SL and s ≥ 0, we define the (π, s)-environment Envsπ(v) ⊆
{0, 1}SL of v as

Envsπ(v) = {v′ ∈ {0, 1}SL ; distπ(v, v′) ≤ s}.

Note that Envsπ(v) = {π−s(v), · · · , π−1(v), v, π(v), · · · , πs(v)}, which implies that
|Envsπ(v)| = 2s+ 1 if s ≤ PL/2.

• For each set Z ⊆ Vπ = {0, 1}SL and s ≥ 0, we define the (π, s)-environment
Envsπ(Z) ⊆ {0, 1}SL of Z as

Envsπ(Z) =
⋃
z∈Z

Envsπ(z).

Note that inputs v, v′ belong to the same π-component if and only if there is some
integer r such that v′ = πr(v). Note that in this case

distπ(v, v′) = min{|r|, v′ = πr(v)}.

Matthias Hamann and Matthias Krause 13

3 Security Lower Bounds
Theorem 1. The advantage Adv(M) reachable by Eve in the distinguishing game described
in Definition 2 with M ≥ 0 oracle queries is bounded

(i) by
M

2KL −M
+ (2 · SL + 1) ·M2

2SL − (2 · SL + 1) ·M2

in the case of the Large-State-Small-Key construction, and

(ii) by

M

2KL −M
+ PL2 · (2 · SL + 1) ·M

2VSL − (2 · SL + 1) · PL ·M

in the case of the Continuous-IV-Use construction.

In the remaining part of the section, we give the proof of Theorem 1. The proof is
divided into subsections, where in the first two subsections, we introduce a number of
notions and notations which are relevant in our context. This enables us to describe the
idea of the proof in Subsection 3.3.

3.1 Near Collision and the Friendly Alice
For arbitrary subsets A,B of Ω, we denote by Pr[A] and by PrB[A] = Pr[A|B] the
probability for the event ω ∈ A, resp. the probability for the event ω ∈ A conditioned to
the event ω ∈ B, where ω is chosen w.r.t. the uniform distribution over Ω.

Definition 4 (Near Collisions). Let ω = (bω, kω, Pω, fω, eω) ∈ Ω be an elementary event
and Fω and Eω be the output block function and the construction function defined by ω.

• A pair ((x, r), y), where (x, r) ∈ {0, 1}IVL × {0, · · · ,PL − 1} and y ∈ {0, 1}SL, is
called a near EF-collision w.r.t. ω if

distπ(πr(qinit(x, kω)), y) ≤ SL − 1.

• A pair ((x, r), (x′, r′)), where (x, r), (x′, r′) ∈ {0, 1}IVL × {0, · · · ,PL− 1}, is called a
near EE-collision w.r.t. ω if

distπ(πr(qinit(x, kω)), πr
′
(qinit(x′, kω))) ≤ SL − 1.

In the following, we suppose that Alice behaves friendly in the sense that in certain
situations she provides some additional information about her secret ω to Eve.

Definition 5 (The Friendly Alice). Let ω = (bω, kω, Pω, fω, eω) denote the secret held by
Alice.

• Whenever Eve poses a P -query with input (x, kω) or a P−1-query with output (x, kω)
for some x ∈ {0, 1}IVL, then, besides giving the correct answer to this query, the
friendly Alice makes a key-recovery announcement.

• Whenever Eve poses a query with some input which causes a near collision w.r.t. ω
with some other input asked before, then, besides giving the correct answer to this
query, the friendly Alice makes a near-collision announcement.

From now on, we suppose that Alice behaves friendly. As the additional information
provided by the friendly Alice does not lower Eve’s chances to win the game, each security
lower bound proved for the friendly Alice does also hold for the general Alice.

14 Tight Security Bounds for Generic Stream Cipher Constructions

3.2 Formalizing Computations by Transcripts
As described in [CS14], we can assume that Eve is deterministic, i.e., Eve chooses new
queries and the final decision deterministically in dependence of the answers of the queries
asked before.

Let Ω0 and Ω1 denote the subsets of Ω formed by all ω = (bω, kω, Pω, fω, eω) ∈ Ω
fulfilling bω = 0, resp. bω = 1.

We identify computations by transcripts τ , which are defined to be the sequence of
the M oracle queries posed during the computation, together with the corresponding
answers, and followed by a single output bit b(τ) corresponding to Eve’s final decision.
Note that possible announcements about key recovery and near collisions are part of the
corresponding oracle answers and, thus, part of the transcript.

As Eve is deterministic, it holds that for each ω ∈ Ω there is a unique transcript τ(ω)
corresponding to the computation of Eve under the condition that Alice has chosen ω. We
denote by T M the set of all transcripts τ of length M for which there is some ω ∈ Ω with
τ(ω) = τ .

Let τ ∈ T M be a transcript and fix some index j, 1 ≤ j ≤ M . Then τ≤j denotes
the sub-transcript defined by the first j queries of τ . We denote by T j the set of all
sub-transcripts of length j of transcripts from T M . Moreover, we define T =

⋃M
j=1 T j .

Each transcript τ ∈ T will be associated with the following sets τE ⊆ {0, 1}IVL×{r; 0 ≤
r ≤ PL− 1}, τF ⊆ {0, 1}SL, τP ⊆ {0, 1}SL, and τP−1 ⊆ {0, 1}SL of the inputs of the oracle
queries occuring during τ , and a set of keys K(τ) ⊆ {0, 1}KL:

• τE = {(x, r) ∈ {0, 1}IVL×{r; 0 ≤ r ≤ PL−1}; τ contains E-query with input (x, r)},

• τF = {y ∈ {0, 1}SL ; τ contains F -query with input y},

• τP = {u ∈ {0, 1}SL ; τ contains P -query with input u or P−1-query with output u},

• τP−1 = {v ∈ {0, 1}SL ; τ contains P−1-query with input v or P -query with output v}.

• K(τ) ⊆ {0, 1}KL denotes the set of all keys k which occur during τ in the sense that
τP contains an element of the form (x, k) for some x ∈ {0, 1}IVL.3

• In the case of the Continuous-IV-Use construction, we denote for all non-volatile
IV parts x̃ ∈ {0, 1}SL−VSL

τF (x̃) = {y ∈ τF ;nv(y) = x̃},

and
τE(x̃) = {(x, r) ∈ τE ;nv(x) = x̃}.

Let us denote by T M0 and T M1 the set of all transcripts of length M with output bit 0,
resp. 1.

For all computations τ ∈ T M , we denote by Ω0(τ) and Ω1(τ) the sets of all elementary
events ω ∈ Ω0, resp. ω ∈ Ω1, for which τ(ω) = τ , and by Ω(τ) the set Ω0(τ) ∪ Ω1(τ).

Moreover, for b ∈ {0, 1} let Ω0
b and Ω1

b denote the set of elementary events from Ωb for
which τ(ω) outputs 0, resp. 1, and let Ω1 = Ω1

0 ∪ Ω1
1 and Ω0 = Ω0

0 ∪ Ω0
1.

For all b ∈ {0, 1} and transcripts τ ∈ T M , we denote by

Pr
b

[τ] = Pr
Ωb

[Ωb(τ)]

3Remember from Definition 1 that in both constructions, the loading state qload ∈ {0, 1}SL is formed
by concatenating IV and key.

Matthias Hamann and Matthias Krause 15

the probabilities of the transcript τ in the pseudorandom case (b = 0) and the random
case (b = 1).

Note that the advantage Adv(M) can be written as

Adv(M) =
∣∣∣∣Pr
Ω0

[
Ω0

0
]
− Pr

Ω1

[
Ω0

1
]∣∣∣∣ =

∣∣∣∣Pr
Ω0

[
Ω1

0
]
− Pr

Ω1

[
Ω1

1
]∣∣∣∣

=

∣∣∣∣∣∣
∑
τ∈TM

1

Pr
0

[τ]− Pr
1

[τ]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
τ∈TM

0

Pr
0

[τ]− Pr
1

[τ]

∣∣∣∣∣∣ .
(9)

3.3 Bad Elementary Events and Bad Transcripts and the Idea of the
Proof of Theorem 1

Definition 6 (Badness). An elementary event ω is called bad if during the computation
τ(ω) the correct key kω or a near collision (i.e., a near EF-collision or a near EE-collision)
is discovered. Here, the correct key kω is considered to be discovered during τ(ω) if
τ(ω) contains a P -query with input (x, kω) or a P−1-query with output (x, kω) for some
x ∈ {0, 1}IVL. An elementary event ω is called good if it is not bad.

For all b ∈ {0, 1}, we denote by Ωbad
b and Ωgood

b the set of all elementary events in Ωb
which are bad, resp. good. Moreover, let Ωbad = Ωbad

0 ∪ Ωbad
1 and Ωgood = Ωgood

0 ∪ Ωgood
1 .

A transcript is called bad if it contains some key-recovery announcement or some
near-collision announcement.

For all b ∈ {0, 1}, we denote by T M,bad
b and T M,good

b the set of all transcripts in T Mb
which are bad, resp. good. Moreover, let T M,bad = T M,bad

0 ∪ T M,bad
1 and T M,good =

T M,good
0 ∪ T M,good

1 .

Note here that in the Continuous-IV-Use mode, near EE-collisions (x, r), (x′, r′)
have the property that the non-volatile parts of the initial values x and x′ coincide.

The next lemma shows that with good transcripts, the random and the pseudorandom
case cannot be distinguished.

Lemma 1. For all transcripts τ ∈ T M,good, it holds Pr0[τ]− Pr1[τ] = 0.

Proof: Let us fix an arbitrary good transcript τ ∈ T M,good. As τ does not contain
near collisions, it holds that in both cases, from Eve’s point of view, the answers to the
E-queries with inputs (x, r) and (x′, r′), x 6= x′, and the answers to the E-queries and
to the F -queries are mutually independent random variables which are all distributed
according to the uniform distribution over {0, 1}SL.

This allows to construct the following bijective mapping from Ω0(τ) to Ω1(τ), assigning
to each elementary event ω = (0, kω, Pω, fω, eω) an elementary event ω̄ = (1, kω̄, Pω̄, fω̄, eω̄)
which is defined as follows:

• kω = kω̄ and Pω = Pω̄.

• For all (x, r) ∈ τE , exchange the function values of Eω(x, r) with the function values
of Fω(πr(qinit(x, kω))), i.e.,

– Fω̄(πr(qinit(x, kω))) := Eω(x, r).
– Eω̄(x, r) := Fω(πr(qinit(x, kω))).

From the fact that kω 6∈ K(τ) for all ω ∈ Ω0(τ) ∪ Ω1(τ) and as τ does not contain
near-collision announcements, it follows that the mapping described above is correctly
defined and bijective. The existence of a bijective mapping from Ω0(τ) to Ω1(τ) proves
Lemma 1.

Lemma 1 implies

16 Tight Security Bounds for Generic Stream Cipher Constructions

Lemma 2. Adv(M) ≤ PrΩ[Ωbad].

Proof: By Lemma 1 and Relation 9, it holds

2 ·Adv(M) =

∣∣∣∣∣∣
∑
τ∈TM

1

Pr
0

[τ]− Pr
1

[τ]

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
τ∈TM

0

Pr
0

[τ]− Pr
1

[τ]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

τ∈TM,bad
1

Pr
0

[τ]− Pr
1

[τ]

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

τ∈TM,bad
0

Pr
0

[τ]− Pr
1

[τ]

∣∣∣∣∣∣
≤

∑
τ∈TM,bad

∣∣∣Pr
0

[τ]− Pr
1

[τ]
∣∣∣

≤
∑

τ∈TM,bad

Pr
0

[τ] + Pr
1

[τ]

≤
∑

τ∈TM,bad

2 · Pr
Ω

[τ] = 2 · Pr
Ω

[Ωbad].

In the last line we used the fact that PrΩ[Ω0] = PrΩ[Ω1] = 1
2 .

For estimating the probability PrΩ[Ωbad] of bad elementary events, we slightly change
the perspective of the computational behaviour of Eve. So far, each computation of Eve
has M + 1 rounds, i.e., M rounds in each of which Eve poses an oracle query, followed by
round M + 1 in which Eve propagates her final decision.

We assume now that the computation stops immediately if Eve manages to pose a
query in such a way that the corresponding answer makes the computation bad. This
implies that PrΩ[Ωbad] equals the probability that Eve stops in some round j, 1 ≤ j ≤M .

We fix some arbitrary round number j, 1 ≤ j ≤ M . If Eve has completed the first
j − 1 rounds without stopping with some good transcript τ ∈ T M,good, then Eve chooses
deterministically the j-th query q(τ) in dependence of τ . The computation stops with
the answer to q(τ) with probability PrΩ(τ)[Bad(τ)], where Bad(τ) denotes the set of all
elementary events ω ∈ Ω(τ) for which the next query along τ(ω) makes τ(ω) bad (i.e.,
τ(ω)≤j−1 = τ is still good and τ(ω)≤j is bad). Consequently, the computation does not
stop before round M + 1, i.e., produces a transcript τ ∈ T M,good, if for all j, 1 ≤ j ≤M ,
the event Bad(τ≤j−1) does not happen. This implies

Lemma 3. PrΩ[Ωbad] ≤ max
{∑M

j=1 PrΩ(τ≤j−1)
[
Bad(τ≤j−1)

]
; τ ∈ T M,good

}
.

We prove Theorem 1 by carefully bounding the probabilities PrΩ(τ)[Bad(τ)] for tran-
scripts τ ∈ T j−1,good, 1 ≤ j ≤M . In particular, we show

Lemma 4. For all j, 1 ≤ j ≤M , and all τ ∈ T j−1,good, the following holds:

• If query q(τ) is a P -query, then

PrΩ(τ)[Bad(τ)] ≤ 1
2KL − (j − 1) . (10)

• If query q(τ) is a P−1-query, then

PrΩ(τ)[Bad(τ)] ≤ 1
2KL − (j − 1) + 1

2SL − (2 · SL+ 1)(j − 1)2 (11)

if the construction is Large-State-Small-Key and

PrΩ(τ)[Bad(τ)] ≤ 1
2KL − (j − 1) + 1

2VSL − (2 · SL + 1) · PL · (j − 1) (12)

if the construction is Continuous-IV-Use.

Matthias Hamann and Matthias Krause 17

• If query q(τ) is an E-query with input (x, r), then

PrΩ(τ)[Bad(τ)] ≤ (2 · SL + 1)(j − 1)
2SL − (2 · SL + 1)(j − 1)2 (13)

if the construction is Large-State-Small-Key and

PrΩ(τ)[Bad(τ)] ≤ (2 · SL + 1) · |τF (nv(x))|+ τE(nv(x))|
2VSL − (2 · SL + 1) · PL · (j − 1) . (14)

if the construction is Continuous-IV-Use.

• If query q(τ) is an F -query, then

PrΩ(τ)[Bad(τ)] ≤ (2 · SL − 1)(j − 1)
2SL − (2 · SL + 1)(j − 1)2 (15)

if the construction is Large-State-Small-Key and

PrΩ(τ)[Bad(τ)] ≤ (2 · SL − 1) · PL2

2VSL − (2 · SL + 1) · PL · (j − 1) (16)

if the construction is Continuous-IV-Use.

Due to space restrictions, the proof of Lemma 4 has been shifted into appendices A
and B.

Together with Lemma 3, we obtain

PrΩ[Ωbad] ≤ M

2KL −M
+ M2 · (2 · SL + 1)

2SL − (2 · SL + 1) ·M2 (17)

if the construction is Large-State-Small-Key and

PrΩ[Ωbad] ≤ M

2KL −M
+ M · PL2 · (2 · SL + 1)

2VSL − (2 · SL + 1) · PL ·M (18)

if the construction is Continuous-IV-Use.
Relation (18) holds as for each value x̃ ∈ {0, 1}VIVL during each computation of Eve

there are at most 2VIVL · PL ≤ PL2 E-queries with input (x, r) fulfilling nv(x) = x̃.
Together with Lemma 2, relations (17) and (18) prove Theorem 1.

4 Discussion
We derived a tight security bound of min{KL,SL/2} on the resistance of the Large-State-
Small-Key construction (underlying Trivium and Grain v1) against TMD-TO attacks and
a tight bound of min{KL,VSL− log2(PL)} on the resistance of the Continuous-IV-Use
construction against TMD-TO attacks.

In particular, the latter bound provides design guidance for future instances of
Continuous-IV-Use stream ciphers which realize the common security level of 80 bits
w.r.t. TMD-TO attacks. A corresponding choice of parameters would be a volatile state
length of VSL = 100 bits, a key length of KL = 80 bits, an IV length of IVL = 80 bits,
and a packet length of PL = 220 bits. The loading state to a key-IV pair (IV , k) would
here be (IV |k), where VIVL = 20 bits of the IV would not be continuously employed
during keystream generation but only enter the volatile part of the loading state in the
classical way known, e.g., from Trivium and Grain v1.

We consider the design of a corresponding practical instantiation a promising next step
in the search for ultra-lightweight stream ciphers. In fact, it would be the first such cipher
with a volatile state length below 160 bits that still offers (even provable) 80-bit security
against generic TMD-TO-based inner state recovery and distinguishing.

18 Tight Security Bounds for Generic Stream Cipher Constructions

References
[AH18] Vahid Amin Ghafari and Honggang Hu. Fruit-80: A Secure Ultra-Lightweight

Stream Cipher for Constrained Environments. Entropy, 20(3):180, 2018.

[AM15] Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers with
Shorter Internal States. In Gregor Leander, editor, Fast Software Encryption:
22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015,
Revised Selected Papers, pages 451–470. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[Bab95] Steve H. Babbage. Improved "exhaustive search" attacks on stream ciphers. In
Security and Detection, 1995., European Convention on, pages 161–166, May
1995.

[BBV12] Steve Babbage, Julia Borghoff, and Vesselin Velichkov. D.SYM.10 - The
eSTREAM Portfolio in 2012. eSTREAM: the ECRYPT Stream Cipher Project,
2012. http://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf.

[BGW99] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation
of A5/1, 1999. Available at http://www.scard.org/gsm/a51.html.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs
for Stream Ciphers. In Tatsuaki Okamoto, editor, Advances in Cryptology —
ASIACRYPT 2000: 6th International Conference on the Theory and Appli-
cation of Cryptology and Information Security Kyoto, Japan, December 3–7,
2000 Proceedings, pages 1–13. Springer Berlin Heidelberg, Berlin, Heidelberg,
2000.

[CP05] Christophe De Cannière and Bart Preneel. Trivium – Specifications. eSTREAM:
the ECRYPT Stream Cipher Project, 2005. http://www.ecrypt.eu.org/
stream/p3ciphers/trivium/trivium_p3.pdf.

[CS14] Shan Chen and John Steinberger. Tight Security Bounds for Key-Alternating
Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 327–350. Springer Berlin Heidelberg, 2014.

[Gol96] Jovan Dj. Golić. On the security of nonlinear filter generators. In Dieter
Gollmann, editor, Fast Software Encryption: Third International Workshop
Cambridge, UK, February 21–23 1996 Proceedings, pages 173–188. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1996.

[GT15] Peter Gazi and Stefano Tessaro. Secret-key cryptography from ideal primitives:
A systematic overview. In Information Theory Workshop (ITW), 2015 IEEE,
pages 1–5, April 2015.

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401–406, Jul 1980.

[HJM06] Martin Hell, Thomas Johansson, and Willi Meier. Grain - A Stream Ci-
pher for Constrained Environments. eSTREAM: the ECRYPT Stream Ci-
pher Project, 2006. http://www.ecrypt.eu.org/stream/p3ciphers/grain/
Grain_p3.pdf.

[HK18] Matthias Hamann and Matthias Krause. On stream ciphers with provable
beyond-the-birthday-bound security against time-memory-data tradeoff attacks.
Cryptography and Communications, 10(5):959–1012, Sep 2018.

http://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
http://www.scard.org/gsm/a51.html
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf

Matthias Hamann and Matthias Krause 19

[HKM17a] Matthias Hamann, Matthias Krause, and Willi Meier. A Note on Stream
Ciphers that Continuously Use the IV. Cryptology ePrint Archive, Report
2017/1172, 2017. https://eprint.iacr.org/2017/1172.

[HKM17b] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD – A Lightweight
Stream Cipher for Power-constrained Devices. IACR Transactions on Sym-
metric Cryptology, 2017(1):45–79, 2017.

[HKMZ17] Matthias Hamann, Matthias Krause, Willi Meier, and Bin Zhang. Design and
analysis of small-state grain-like stream ciphers. Cryptography and Communi-
cations, Nov 2017.

[MAM17] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers that
Continuously Access the Non-Volatile Key. IACR Transactions on Symmetric
Cryptology, 2016(2):52–79, 2017.

[Pat09] Jacques Patarin. The "coefficients H" technique. In RobertoMaria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography,
volume 5381 of Lecture Notes in Computer Science, pages 328–345. Springer
Berlin Heidelberg, 2009.

A The Structure of the Probability Space Ω(τ)
We fix some index j, 1 ≤ j ≤ M , and a transcript τ ∈ T j−1,good. We have to derive
an upper bound for the probability PrΩ(τ)[Bad(τ)] that an elementary event ω ∈ Ωb(τ)
becomes bad with the j-th query along τ(ω).

In this section, we first analyze the structure of the probability space Ω(τ).
Note that an elementary event ω = (bω, kω, Pω, fω, eω) belongs to Ω(τ) if and only if

all of the following conditions are satisfied:

(a) Pω|τP
is consistent with the answers to all P, P−1-queries contained in τ .

(b) Fω|τF
is consistent with the answers to all F -queries contained in τ .

(c) If b = 1 (random case), then Eω|τE
is consistent with the answers to all E-queries

contained in τ .

(d) If b = 0 (pseudorandom case), then for all inputs (x, r) ∈ τE the answer is

Fω(πr(qinit(x, kω))),

where the definition of the packet initial state qinit(x, kω) depends on in which mode
the game is played (see Definition 2).

Moreover, as τ is good it holds

(e) kω 6∈ K(τ).

(f) For all (x, r) ∈ τE and y ∈ τF , it holds

distπ (πr(qinit(x, kω)), y) ≥ SL.

(g) For all (x, r), (x′, r′) ∈ τE with x 6= x′ it holds

distπ

(
πr(qinit(x, kω)), πr

′
(qinit(x′, kω))

)
≥ SL.

https://eprint.iacr.org/2017/1172

20 Tight Security Bounds for Generic Stream Cipher Constructions

For bounding the probability PrΩ(τ)[Bad(τ)] we will first show that the probability
space Ω(τ) has a very regular structure.

Note that the uniform distribution on Ω(τ) induces a probability distribution on the
set of keys {0, 1}KL, given through

Pr
Ω(τ)

[k] := Pr
Ω(τ)

[{ω ∈ Ω(τ); kω = k}],

and a probability distribution on the set of all pairs (k, P) of keys k ∈ {0, 1}KL and
permutations P over {0, 1}IVL+KL, given through

Pr
Ω(τ)

[k, P] := Pr
Ω(τ)

[{ω ∈ Ω(τ); kω = k, Pω = P}].

The proof of Lemma 4 is based on the nontrivial observation that these two probability
distributions have the following property:

Lemma 5. For all keys k, k′ ∈ {0, 1}KL and permutations P, P ′ : {0, 1}SL −→ {0, 1}SL it
holds the following:

(I) From PrΩ(τ)[k] > 0 and PrΩ(τ)[k′] > 0 it follows PrΩ(τ)[k] = PrΩ(τ)[k′].

(II) From PrΩ(τ)[k, P] > 0 and PrΩ(τ)[k′, P ′] > 0 it follows

Pr
Ω(τ)

[k, P] = Pr
Ω(τ)

[k′, P ′].

Moreover, for all keys k ∈ {0, 1}KL it holds

(III) PrΩ(τ)[k] > 0 if and only if k 6∈ K(τ).

The Proof of Lemma 5:
We start the proof with some technical definitions.

Definition 7 (τ -consistency). A valid permutation P : {0, 1}SL −→ {0, 1}SL is called
τ -consistent if for all inputs u ∈ τP it holds that P (u) equals the answer of the P -query
with input u, resp. the input of the P−1-query with output u.

Definition 8 (Environment). For all inner states y ∈ {0, 1}SL we denote by Env(y) ∈
{0, 1}SL the set of all inner states y′ ∈ {0, 1}SL with distπ(y, y′) ≤ SL − 1, i.e.,

Env(y) = {π−(SL−1)(x), π−(SL−2)(x), · · · , π−1(x), x, π(x), · · · , π(SL−1)(x)}.

For all subsets Y ⊆ {0, 1}SL we denote by Env(Y) ⊆ {0, 1}SL the set Env(Y) =⋃
y∈Y Env(y).

Note that |Env(y)| = 2 ·SL−1 and that |Env(Y)| ≤ (2 ·SL−1)|Y | for all Y ⊆ {0, 1}SL.
Let us denote by X ⊆ {0, 1}IVL the set of all x ∈ {0, 1}IVL for which there is some r,

0 ≤ r ≤ PL − 1, such that (x, r) ∈ τE . For all x ∈ X we denote

ρ(x) = {r, (x, r) ∈ τE}.

The proof of Lemma 5 is based on a more detailed characterization of elementary
events ω which fulfill conditions (e),(f),(g) formulated at the beginning of Subsection A.

Remember that all ω ∈ Ω(τ) have the property that kω 6∈ K(τ), otherwise τ would
contain a key-recovery announcement.

This implies that (x, kω) 6∈ τP for all x ∈ X.

Matthias Hamann and Matthias Krause 21

We will assign to each pair (k, P), where k ∈ {0, 1}KL \ K(τ) and P : {0, 1}SL −→
{0, 1}SL a valid permutation, an injective mapping VP,k : X −→ {0, 1}SL, defined for all
x ∈ X by

VP,k(x) := P (x, k).

The proof of Lemma 5 is based on

Lemma 6. For all τ -consistent valid permutations P : {0, 1}SL −→ {0, 1}SL and keys
k ∈ {0, 1}KL, it holds that PrΩ(τ)[k, P] > 0 if and only if k 6∈ K(τ) and VP,k is (τ, k)-
collision free.

Here, an injective mapping V : X −→ {0, 1}SL is called (τ, k)-collision free if V (x) 6∈
Forbiddenτ,k(x, V) for all x ∈ X.

The underlying definition of the sets Forbiddenτ,k(x, V) for injective mappings V :
X −→ {0, 1}SL are driven by the definition of near collisions in the sense that V (x) ∈
Forbiddenτ,k(x, V) would imply a near collision.

In particular, we define

Forbiddenτ (x, V) = τP−1 ∪ CollEE(x) ∪ CollEF (x),

where the definitions of CollEE(x) and CollEF (x) depend on the construction.

Definition 9 (Forbidden Sets).

(i) In the case of the Large-State-Small-Key construction we have

CollEF (x) =
⋃

r∈ρ(x)

π−r (Env(τF)) ,

and

CollEE(x) =
⋃

r∈ρ(x)

π−r
(
Env({πr

′
(V (x′));x′ ∈ X \ {x}, r′ ∈ ρ(x′)}

)
.

(ii) In the case of the Continuous-IV-Use construction let

CollEF (x) =
⋃

r∈ρ(x)

π−r (Env(τF (x))) ,

and

CollEE(x) =
⋃

r∈ρ(x)

π−r

 ⋃
(x′,r′)∈τE(x),x′ 6=x

Env(πr
′
(V (x′))

 ,

where τF (x) ⊆ τF contains the set of all inner state F -query inputs y ∈ τF for which
nv(y) = nv(x), and τE(x) contains all initial state E-query inputs (x′, r′) ∈ τE with
nv(x′) = nv(x).

Note that in the case of the Large-State-Small-Key construction it holds

|Forbiddenτ,k(x, V)| ≤ (j − 1) + (j − 2) + |ρ(x)| · (2 · SL − 1) · (|τE |+ |τF |)

≤ |ρ(x)|(2 · SL + 1) · (j − 1) ≤ (2 · SL + 1) · (j − 1)2. (19)

In the case of the Continuous-IV-Use construction it holds

|Forbiddenτ,k(x, V)| ≤ (j − 1) + (j − 2) + |ρ(x)| · (2 · SL − 1) · (|τF (nv(x))|+ |τE(nv(x))|)

22 Tight Security Bounds for Generic Stream Cipher Constructions

≤ (2 · SL + 1) · PL · (|τF (x)|+ |τE(x)|) ≤ (2 · SL + 1) · PL · (j − 1). (20)
The second inequality is due to the fact that |ρ(x)| ≤ PL.

The Proof of Lemma 6: We start with the if-direction and fix some ω ∈ Ω(τ). It
holds kω 6∈ K(τ), otherwise τ would contain a key-recovery announcement which would
contradict the assumption that τ is good.

Further we know that there do not occur near collisions during τ which implies that for
all x ∈ X it holds Pω(x, kω) 6∈ Forbiddenτ,kω (x, VPω,kω), i.e., that VPω,kω is (τ, k)-collision
free.

For proving the only-if part let us fix some b ∈ {0, 1}, some key k ∈ {0, 1}KL \K(τ)
and some valid permutation P : {0, 1}SL −→ {0, 1}SL, so that P is τ -consistent, and VP,k
is τ -collision free.

Note first that, as k 6∈ K(τ), it holds that (x, k) does not belong to τP for all x ∈ X.
The fact that VP,k is τ -collision free implies that the E-queries and the F queries during

τ do not produce any near collision.
The only thing which remains to do is to construct functions f : {0, 1}SL −→ {0, 1}

and e : {0, 1}IVL × {0, · · · ,PL − 1} −→ {0, 1} in such a way the (b, k, P, e, f) belongs to
Ω(τ).

We do this by constructing the corresponding block output functions F : {0, 1}SL −→
{0, 1}SL and E : {0, 1}IVL × {0, · · · ,PL − 1} −→ {0, 1}SL.

(1) First we define F (y) for all y ∈ τF to be equal to the answer of the corresponding
F -query during τ .

(2) If b = 0 (the pseudorandom case) then we have to define for all (x, r) ∈ τE the
value F (πr(P (x, k))) as to be equal to the answer of the E-query with input (x, r)
during τ . This can be done without contradiction to F -queries during τ or to other
E-queries during τ . This is because for all y ∈ τF the π-distance between y and
πr(P (x, k)) is at least SL, and for all (x′, r′) ∈ τE , x′ 6= x, the π-distance between
πr
′(P (x′, k)) and πr(P (x, k)) is at least SL.

(3) If b = 1 (random case) we define E(x, r) to be equal to the answer of the E-query
with input (x, r) during τ for all (x, r) ∈ τE .

At all positions which were not affected by (1),(2),(3) the functions e and f can be
defined in an arbitrary way. This proves Lemma 6.

For completing the proof of Lemma 5 it is sufficient to show the following two claims:

• Claim 1: For all b ∈ {0, 1}, keys k ∈ {0, 1}KL \ K(τ) and valid permutations
P : {0, 1}SL −→ {0, 1}SL which are τ -consistent and for which VP,k is τ -collision
free, the number of output bits of the functions e and f , which have to be fixed for
ensuring (b, k, P, f, e) ∈ Ω(τ) is the same.

• Claim 2: For all keys k ∈ {0, 1}KL \ K(τ) the number of valid permutations
P : {0, 1}SL −→ {0, 1}SL which are τ -consistent, and for which VP,k is (τ, k)-collision
free, is the same.

Note that Claim 1 follows straightforwardly from the construction rule described in
items (2) and (3) above.

Claim 2 is equivalent to

• Claim 3 saying that for all keys k ∈ {0, 1}KL \K(τ) the number of (τ, k)-collision
free injective mappings V : X −→ {0, 1}SL is the same.

The proof of Claim 3 is obvious as the definition of (τ, k)-collision freeness does not
depend on k.

Matthias Hamann and Matthias Krause 23

B The Proof of Lemma 4
In the following we prove Lemma 4 with Lemma 5.

Let us denote by q the query posed by Eve after τ . Note that the type of this query and
the input of this query is determined by τ , while the answer depends on which ω ∈ Ω(τ) is
held by Alice. This answer determines if the j-th query along τω makes τ(ω) and ω bad
(i.e., ω ∈ Bad(τ)) or not. Corresponding to the possible types queries we distinguish four
cases:

Case 1: The query q is a P -query with input u = (x, k) ∈ {0, 1}SL \ τP . It holds
by definition that a P -query cannot cause a new near collision. Thus, the only
possibility to generate badness with q is to choose u = (x, k) in such a way that
k = kω.
As τ is good, Eve knows that kω 6∈ K(τ) and that all keys outside K(τ) are equally
likely to be kω (see Lemma 5). As |K(τ)| ≤ j − 1 we obtain

Pr
Ω(τ)

[Bad(τ)|q is P -query] ≤ 1
2KL − (j − 1) (21)

Case 2: The query q is a P−1-query with input v ∈ {0, 1}SL \ τP−1 . Then the only
possibility to generate badness with q is to choose v in such a way that the answer
to q belongs to {(x, kω);x ∈ {0, 1}IVL}. This event is the union of the following two
events BadEv1 and BadEv2.
BadEv1 corresponds to the case that q is a P−1-query and that Eve manages to
choose v in such a way that v = Pω(x, kω) for some x ∈ X. As in the proof of Lemma
5, we denote by X the set of all inputs x′ ∈ {0, 1}IVL for which there is some r′,
0 ≤ r′ ≤ PL − 1, such that (x′, r′) ∈ τE .
We again denote by Vkω,Pω

: X −→ {0, 1}SL the mapping assigning to each
x′ ∈ X the value Pω(x′, kω). Lemma 5 implies that Eve knows that Pω(x, kω) 6∈
Forbiddenτ,kω (x, Vkω,Pω).
In the case of the Large-State-Small-Key construction this set has at most
(2 · SL + 1)(j − 1)2 elements (see Relations (A)), while in case of the Continuous-
IV-Use construction it has at most (2 · SL + 1) · PL · (j − 1) elements.
All values outside Forbiddenτ,kω

(x, Vkω,Pω
) are equally likely to be equal to Pω(x, kω).

This implies that

Pr
Ω(τ)

[BadEv1] ≤ 1
2SL − (2 · SL + 1)(j − 1)2 (22)

if the construction is Large-State-Small-Key, and

Pr
Ω(τ)

[BadEv1] ≤ 1
2VSL − (2 · SL + 1) · PL · (j − 1) (23)

if the construction is Continuous-IV-Use.

BadEv2 corresponds to the case that q is a P−1-query and that v 6= Pω(x, kω) for all
x ∈ τE but P−1

ω (v) falls into {(x, kω);x ∈ {0, 1}IVL \X}.
Lemma 5 ensures that from Eve’s point of view all values in {0, 1}IVL+KL \ τP are
equally likely to be Pω(v). Consequently,

Pr
Ω(τ)

[BadEv2] ≤ 2IVL

2SL − (j − 1) = 2IVL

2IVL+KL − (j − 1) = 1
2KL − (j − 1) . (24)

24 Tight Security Bounds for Generic Stream Cipher Constructions

Case 3: The query q is an E-query for some input (x, r), where 0 ≤ r ≤ PL − 1 and
x ∈ {0, 1}IVL. We have to distinguish two subcases:

Subcase 3a: x 6∈ X. For all keys k ∈ {0, 1}KL, mappings Ṽ : X −→ {0, 1}SL, and
permutation P : {0, 1}IVL+KL −→ {0, 1}SL, we denote by P (X, k) = Ṽ the
event that P (x, k) = Ṽ (x) for all x ∈ X.
We fix some k ∈ {0, 1}KL \ K(τ) (which implies that (x, k) 6∈ τP) and some
(τ, k)-collision free mapping Ṽ : X −→ {0, 1}SL and estimate the probability
that q makes ω ∈ Ω(τ) bad under the condition that kω = k and Pω(X, k) = Ṽ .
For all elementary events ω fulfilling this condition we denote by Ṽω : X∪{x} −→
{0, 1}SL the mapping Ṽ ∪ (x→ Pω(x, k)) .
Query q makes ω bad if Pω(x, k) ∈ Forbiddenτ(ω)≤j ,k(x, Ṽω) (see Lemma 6 and
Definition 9).
As ρ(x) contains only one element w.r.t. τ(ω)≤j , Relations (A) and (A) imply
that constructions

|Forbiddenτ(ω)≤j (x, Ṽω)| ≤ (2 · SL + 1) · j

for the Large-State-Small-Key construction, and

|Forbiddenτ(ω)≤j (x, Ṽω)| ≤ (2 · SL + 1) · |τF (nv(x))|

for the Continuous-IV-Use construction
As all values outside τP−1 are equally likely to be equal to Pω(x, k) it holds

Pr
Ω(τ)

[Pω(x, k) ∈ Forbiddenτ (x, Ṽω)|kω = k, Pω(X, kω) = Ṽ] ≤

(2 · SL + 1) · j
2SL − (j − 1) . (25)

if the construction is Large-Key-Small-State, and

Pr
Ω(τ)

[Pω(x, k) ∈ Forbiddenτ (x, Ṽω)|kω = k, Pω(X, kω) = Ṽ] ≤

(2 · SL + 1) · |τF (nv(x))|
2VSL − (j − 1) . (26)

if the construction is Continuous-IV-Use.
Subcase 3b x ∈ X. Note that r 6∈ ρ(x), otherwise the same query q would have

been posed already during τ . We denote X ′ = X \ {x}.
Now we fix some k ∈ {0, 1}KL \K(τ) (which implies that (x, k) 6∈ τP) and some
(τ, k)-collision free mapping Ṽ ′ : X ′ −→ {0, 1}SL and denote by Ω(τ, k, Ṽ ′) the
set of all elementary events ω ∈ Ω(τ) for which kω = k and Pω(X ′, k) = Ṽ ′.
For all ω ∈ Ω(τ, k, Ṽ ′) we denote by Ṽ ′ω : X −→ {0, 1}SL the mapping Ṽ ′ ∪
{(x, Pω(x, k))}.
We estimate the probability over Ω(τ, k, Ṽ ′) of the event that q makes ω ∈
Ω(τ)(k, Ṽ ′) bad.
As Ṽ ′ω is (τ, kω)-collision we know that Pω(x, k) 6∈ B := Forbiddenτ,kω

(x, Ṽ ′ω)
and that, from Eve’s point of view, all values outside of B are equally likely to
be equal to Pω(x, k).
Moreover, we know that q makes ω ∈ Ω(τ, k, Ṽ ′) bad if Ṽ ′ω is not (τ(ω)≤j , kω)-
collision free, where τ(ω)≤j denotes the transcript of length j obtained from τ

Matthias Hamann and Matthias Krause 25

by adding the E-query with input (x, r) as j-th query to τ , which corresponds
to adding r to ρ(x). This is equivalent to Pω(x, k) ∈ A \ B, where A :=
Forbiddenτ(ω)≤j ,kω

(x, Ṽ ′ω).
Note that by Relation (A)

|A \B| ≤ (2 · S + 1)(j − 1), and

|B| ≤ (2 · SL + 1)(j − 1)2,

in the case of the Large-State-Small-Key construction, and that by Relation
(A)

|A \B| ≤ (2 · SL + 1) · (|τF (nv(x))|+ |τE(nv(x))|), and
|B| ≤ (2 · SL + 1) · PL · (j − 1).

in the case of the Continuous-IV-Use construction.
Consequently, in the case of the Large-State-Small-Key construction,

Pr
Ω(τ)(k,Ṽ ′)

[Bad(τ)|x ∈ X] ≤ |A \B|
2SL − |B|

≤ (2 · SL + 1)(j − 1)
2SL − (2 · SL + 1)(j − 1)2 . (27)

In the case of the Continuous-IV-Use construction it holds

Pr
Ω(τ)

[Bad(τ)] ≤ (2 · SL + 1) · (|τF (nv(x))|+ |τE(nv(x))|)
2VSL − (2 · SL + 1) · PL · (j − 1) . (28)

Case 4 q is an F -query for some input y 6∈ τF .
We consider first the case of the Large-State-Small-Key construction. We
fix an arbitrary key k ∈ {0, 1}KL \ K(τ) and a (τ, k)-collision free mapping V :
X −→ {0, 1}SL and denote by Ω(τ, k, V) the set of all ω ∈ Ω(τ) with kω = k and
Pω(X, k) = V .
For all ω ∈ Ω(τ, k, V) it holds that q makes ω bad if and only if there is some
(x, r) ∈ τE such that Pω(x, k) belongs to Env(π−r(y)), a set of size at most (2·SL−1).
Moreover, from Eve’s point of view, each point outside Forbiddenτ,k(x, V), a set
of size at most (2 · SL + 1)(j − 1)2, is equally likely to be equal to be Pω(x, k).
Consequently, the probability that q makes ω ∈ Ω(τ, k, V) bad is at most

(2 · SL − 1)(j − 1)
2SL − (2 · SL + 1)(j − 1)2 .

Let us now consider the case of the Continuous-IV-Use construction.
We write y as y = (x̃, z) for z ∈ {0, 1}VSL and x̃ ∈ {0, 1}IVL−VIVL. If x̃ 6= nv(x) for

all x ∈ X than PrΩ(τ)[Bad(τ)] = 0.
Otherwise, for all x ∈ X with x̃ 6= nv(x) it holds that q makes an elementary event

ω ∈ Ω(τ) bad if and only if

distπ (πr (x, Pω(x, kω)) , (x, z)) ≤ SL − 1 (29)

for some r ∈ ρ(x).
As τE(x) contains at most 2VIVL · PL ≤ PL2 queries (x, r) with x̃ = nv(x) we obtain

by the same arguments used in Subcase 3b that

Pr
Ω(τ)

[Bad(τ)] ≤ PL2 · (2 · SL − 1)
2VSL − (2 · SL + 1) · PL · (j − 1) . (30)

	Introduction
	Stream Cipher Basics
	Time-Memory-Data Tradeoff Attacks and Small State Ciphers
	Our Results

	A Random Oracle Model for Stream Ciphers
	Security Lower Bounds
	Near Collision and the Friendly Alice
	Formalizing Computations by Transcripts
	Bad Elementary Events and Bad Transcripts and the Idea of the Proof of Theorem 1

	Discussion
	The Structure of the Probability Space Omega(tau)
	The Proof of Lemma 4

