
One Fault is All it Needs

Breaking Higher-Order Masking with Persistent Fault
Analysis?

Jingyu Pan1,2,3, Shivam Bhasin2, Fan Zhang1,3, and Kui Ren1,3

1 Zhejiang University, China
{joeypan,fanzhang,kuiren}@zju.edu.cn

2 Temasek Laboratories, Nanyang Technological University, Singapore
sbhasin@ntu.edu.sg

3 State Key Laboratory of Cryptology, China

Abstract. Persistent fault analysis (PFA) was proposed at CHES 2018
as a novel fault analysis technique. It was shown to completely defeat
standard redundancy based countermeasure against fault analysis. In
this work, we investigate the security of masking schemes against PFA.
We show that with only one fault injection, masking countermeasures
can be broken at any masking order. The study is performed on publicly
available implementations of masking.

Keywords: fault attacks · masking · persistent.

1 Introduction

Fault attacks [3] are a type of physical attacks which considers an active attacker
capable of disturbing the operation of the target system. Fault attacks have been
powerful against standard cryptographic schemes, such as AES, RSA, etc.

Most fault attacks assume a transient fault model, where the injected distur-
bance or fault is temporary, and ideally it affects only one instance of the target
function call (eg. one encryption). Some attacks also consider a permanent fault
model which affects all calls to the target function. Such faults often arise from
physical defects in the device. Recently at CHES 2018 [15], a new fault model
was highlighted which remains between transient and permanent, called as per-
sistent fault. Unlike transient fault, it affects several calls of the target function,
however, persistent fault is not permanent, and disappears with a device reboot.

A specific fault analysis technique to exploit persistent fault on block ci-
phers was also developed and called as Persistent Fault Attack (PFA) [15]. PFA
was shown to break fault countermeasures based on module redundancy and
comparison. Masking [11] is one of the most-studied countermeasures against
side-channel attacks.

? This work was supported in part by the National Natural Science Foundation of
China under the grants 61472357,61571063, and by the the Open Fund of State Key
Laboratory of Cryptology, China.

2 J. Pan et al.

In this work, we investigate the security of some popular masking schemes
against PFA. Publicly available implementations are used for the analysis. Our
results show that masking countermeasures can be easily broken with PFA. We
highlight the main advantage of PFA over other fault attacks. PFA needs only
one fault injection as compared to typically one fault per encryption for other
fault analysis technique. With one fault injection and multiple encryptions with
same fault, PFA can break masking countermeasure at any order. This reduces
the practical effort that an attacker should bare to minimum.

The rest of the paper is organized as follows. Section 2 recalls principles of
PFA and masking. Section 3 applies PFA on general masking construction. Case
study on security of public implementation of masking schemes against PFA is
described in Section 4 and final conclusions are drawn in Section 5.

2 Background

This section recalls general background concepts about PFA and masking.

2.1 Persistent Fault Analysis (PFA)

PFA was recently introduced as a novel fault analysis technique in CHES 2018 [15].
Unlike other fault attacks which rely on transient or permanent fault model, PFA
exploits persistent fault model. As stated earlier, under persistent fault model,
the fault affects several consecutive encryptions. The fault, typically, alters a
stored constant (like one or more entry in Sbox look-up) in the target algorithm.

For better comprehension, let us take an example of PRESENT cipher where
a random nibble fault alters one Sbox element v to v′. In absence of fault, all
elements in 4× 4 Sbox including v, v′ have an expectation of (v) = (v′) = 1

16 . If
a persistent fault is injected to change v to v′, (v) = 0, (v′) = 2

16 , while all other
elements still hold the expectation 1

16 . If in a certain Sbox call in any round,
the original output is v, it will be replaced by v′, leading to faulty ciphertext.
Some encryptions will still be correct as they won’t access the element v of the
Sbox during the whole encryption. This difference can be detected statistically
over a big set of ciphertexts, just by observing the distribution of each nibble,
leaking information of the whole last round key k. Fig. 1 illustrates PFA. A fault
is injected into the Sbox and turns an element of Sbox from v = 10 into v′ = 12.
v, v′ are not required to be known to the attacker and can be brute forced. The
following statistical tools can be used for key recovery:

1. tmin: find the missing value in Sbox table. Then k = tmin ⊕ v;
2. t 6= tmin: find other values t where t 6= tmin and eliminate candidates for k;
3. tmax: find the value with with maximal probability k = tmax ⊕ v′.

The attacker needs enough number of ciphertexts to confidently distinguish
distribution of tmin or tmax from others. The minimum number of ciphertexts
N can be computed by the classical coupon collector’s problem where it needs

One Fault is All it Needs 3

Stage 1: Fault Injection

Stage 2: Encryption

Stage 3: Fault Analysis

12 5 6 11
9 0 10 13
3 14 15 8
4 7 1 2

12 5 6 11
9 0 8 13
3 14 15 8
4 7 1 2

Fault Injection
* persists until refreshed

S-box S-box *

n plaintext S-box *

key 𝑘𝑘

⊕ n ciphertext
collected

adversary

Input Probability

all 1/16

S-box* output Probability

10 0

8 2/16

else 1/16

Ciphertext Probability

10 ⊕ 𝑘𝑘 0

8 ⊕ 𝑘𝑘 2/16

else 1/16

key 𝑘𝑘 exposed!

Fig. 1. Overview of Persistent Fault Attack.

N = (2b − 1)× (

(2b−1)∑
i=1

1

i
), where b is the bit width of x. For PRESENT (b = 4)

N ≈ 50, and for AES (b=8) N ≈ 1560. More details on PFA and its application
on redundancy based fault countermeasures can be found in [15].

2.2 Masking

Masking [11] is the most studied countermeasure against side-channel attacks.
The key idea behind masking is to mask the side-channel activity of a sensi-
tive intermediate value in a cryptographic algorithm by mixing it with a ran-
dom value. Each encryption call requires fresh randomness to totally remove
dependency between sensitive value and side-channel activity. Randomness are
sometimes updated several times within an encryption to avoid sophisticated at-
tacks like higher-order attacks. Theoretically, masking does not prevent against
fault attacks, however, due to randomness involved, the fault analysis can be
complicated.

2.3 Related Works

Masking has come under the scanner of fault attacks in few previous work.
Boscher and Handschuh [4] showed that masking does not protect against clas-
sical differential fault attacks. While the analysis was a bit more restrictive in
terms of the fault model and the number of faults that are required, the key
recovery was possible with increased attack effort. A new kind of fault analy-
sis called fault sensitivity analysis (FSA) was shown to break masking by Li et

4 J. Pan et al.

al [7]. FSA used some side-channel information with fault attack to achieve the
goal, again with increased effort as compared to unprotected implementation.
FSA was further combined with collision attack to enhance its power leading
to stronger attack on several countermeasures including masking and threshold
implementation [9]. Use of randomness was recommended as a fault counter-
measure prerequisite by Lomne et al [8]. Recently in CHES 2018, a special class
of fault attack called statistical ineffective fault attack (SIFA [6]) were used to
target and break masking countermeasure at any masking order. SIFA requires
several ineffective fault injection to statistically determine the key. In this work,
we assess the security of several public implementations of masking counter-
measure under PFA. As shown later, PFA on masking requires only one fault
injection and breaks masking at any order d.

3 PFA on Masking

3.1 Fault Model

We follow the general PFA threat model that is:

1. The adversary can inject the persistent fault in some cipher constant (or look-
up tables) before the encryption process. The (serialized) implementation of
block cipher uses one look-up table for all words (bytes or nibbles) and all
rounds.

2. The adversary is able to collect multiple ciphertext outputs with random
plaintext (not known).

As required in PFA, fault injection to disturb memory content has been prac-
tically demonstrated in range of devices including micro-controllers, FPGA and
ASIC [14, 12]. Persistent fault on modern CPU using rowhammer was presented
in [15]. In the following, we analyze masking schemes under the said threat
model.

3.2 General Idea

Block ciphers are composed of repetitions of a round function. In PFA, we are
mainly concerned about the final round since it’s directly related to the cipher-
text. The last round of cipher with basic boolean masking can be written as
follows:

c = (L(S′(x⊕m)⊕m
′
)⊕ k)⊕ L(m

′
) (1)

where c denotes the ciphertext, L denotes some linear function (typically per-
mutations), x denotes the last round input, m and m′ denote penultimate and
last round masks, respectively. k denotes the round key and S

′
(x) denotes the

masked Sbox which can be calculated as S′(x) = S(x ⊕ m). Note that higher
order masking can also be included in this analysis, where m can be calculated
as m = m1 ⊕m2 ⊕ · · · ⊕md with d as the masking order.

One Fault is All it Needs 5

In our attack model against masking block ciphers, we assume the original
(unmasked) Sbox is stored for look-up and a persistent fault is injected. The
analysis scheme remains generic as illustrated in the previous section. For each
Sbox call in the encryption, ideally a fresh set of masks are drawn and a new
masked Sbox S′ is computed. This is popularly known as the re-computation
method.

If faulty value x′ is injected to the ith element of S where the original value
S(i) = x 6= x′, it leads to the faulty element in the correspondingly calculated
masked Sbox where S′(i ⊕m) = x′ ⊕m′. Consequently, the x ⊕m element is
missing in the S′ and the x′ ⊕m element is doubled. With this knowledge, the
adversary can deduce that c∗ = L(x ⊕ m′) ⊕ L(m′) ⊕ k = L(x) ⊕ k will not
appear in the output ciphertexts. Similarly, c′∗ = L(x′) ⊕ k will be doubled.
Since the computation of c∗, c

′
∗ does not depend on either m or m′, the attack is

equivalent to attacking an unmasked implementation. Even for d order masking,
m and m′ can be written as the combination of d mask, which eventually gets
cancelled out to compute the ciphertext, making the complexity constant even
when increasing order d.

4 Case Studies: Breaking Public Implementation of
Masking Schemes with Single Fault

We target a few public implementations of masking in this section. The key
advantage of PFA is that it requires only one fault injection and multiple en-
cryptions, thus limiting the practical effort of injecting the faults. The required
fault model is described before and several works have been practically vali-
dated in a range of devices. In the following, we focus on developing the analysis
technique with simulations under compatible fault models.

4.1 Bytewise Masking AES

We apply PFA to the public implementation of bytewise masking available
at [2]. It is a typical implementation that follows the general idea illustrated
in the previous section. In this case, 6 randomly-generated masks denoted by
m,m

′
,m1,m2,m3,m4 are involved in each encryption, wheremi, 1 ≤ i ≤ 4 corre-

spond to 4 rows of AES, respectively. For the MixColumns operationMC(col1, col2, col3, col4),
4 output-masks have to be calculated in advance accordingly, denoted bym

′

1,m
′

2,m
′

3,m
′

4,
such that (m

′

1,m
′

2,m
′

3,m
′

4) = MC(m1,m2,m3,m4).
When all 10 masks are generated, a masked AES Sbox denoted by S′ is

pre-calculated prior to the encryption as:

S
′

m,m′
(x) = S(x⊕m)⊕m

′
(2)

where S denotes the original AES Sbox in which a persistent fault will be in-
jected, and m and m′ are the generated masks. With a persistent fault in S,
every S′ will contain a fault, irrespective of mask values. One single fault would
be enough to reveal the key with the statistical method.

6 J. Pan et al.

Algorithm 1: Bytewise Masking AES

Input: plaintext p = (p1, p2, p3, p4), where pi, 1 ≤ i ≤ 4 represent the ith

column vector of p, key k
Output: ciphertext c

1 rk ← KeySchedule(k)

2 (m,m
′
,m1,m2,m3,m4)←$ (F28 , . . .)

3 (m
′
1,m

′
2,m

′
3,m

′
4)←MixColumn(m1,m2,m3,m4)

4 S′ ← GetMaskedSbox(S,m,m
′
) // Eq (2)

5 x← p⊕ (m, . . .)⊕ rk[0]
6 for i = 1; i < 10; i + + do

7 x← S
′
(x)

8 x← ShiftRows(x)

9 x← x⊕ (m1,m2,m3,m4)⊕ (m
′
, . . .)

10 x←MixColumn(x)

11 x← x⊕ rk[i]⊕ (m
′
1,m

′
2,m

′
3,m

′
4)⊕ (m, . . .)

12 end

13 x← S
′
(x)

14 x← ShiftRows(x)

15 c← x⊕ rk[10]⊕ (m
′
, . . .)

The algorithm of this bytewise masking AES is shown in Algorithm 1. The
operations directly affected by the persistent fault are shown in red. Here we ap-
ply the tmin strategy. We use the available code for our analysis. We injected one
persistent fault in S, by randomly changing one Sbox element. The attack was
repeated 100 times and the average of all results is computed. Fig. 2 shows the
guessing entropy or the no. of key candidates to test against no. of ciphertexts.
By coupon’s collector problem the minimum number of ciphertext required are
≈ 1560. In the experiments we found that with 1500 ciphertexts the attacker has
on average less than 2 key byte candidates to test and a unique key with little
over 2000 ciphertexts. The analysis remains exactly the same to recover all the
bytes independently from same set of ciphertext, thus revealing the last round
key and eventually the master key.

4.2 Coron’s Higher-order Masking of Look-up Tables [5]

In Eurocrypt 2014, Coron presented a method to securely compute look-up tables
in a block cipher, secure at any order d [5]. This scheme is an ideal target for PFA
as it uses look-up tables by design, which is vulnerable to persistent faults. We
target the publicly available implementation of AES protected with this scheme,
provided by the author [1].

The key feature of Coron’s countermeasure [5] is table recomputation. It uses
independent masks with additional refresh of the masks between every successive
shift of the input. One can view every line u of the randomized table as a n-

One Fault is All it Needs 7

0 500 1000 1500 2000 2500
Sample Number

0

1

2

3

4

5

6

7

8

By
te
wi
se
 E
nt
ro
py
 (l
og
 2
)

(1560, 0.678)

Fig. 2. Relation between number of samples and Bytewise Masking AES key guess
entropy.

dimensional vector of elements in {0, 1}k, and for all inputs u ∈ {0, 1}k:

T (u) = (su,1, su,2, . . . , su,n)

where initially each vector T (u) is a n-boolean sharing of the value S(u ⊕ x1).
The vectors T (u) of the randomized table are then progressively shifted for all
u ∈ {0, 1}k, first by x2 and so on until xn−1. Eventually the evaluation of T (xn)
gives a vector of n output shares that corresponds to S(x).

To refresh the masks between successive shifts one can generate a random
n-sharing of 0, that is a1, . . . , an ∈ {0, 1}k such that

⊕n
i=1 ai = 0, and XOR the

vector T (u) with (a1, . . . , an), independently for every u. More concretely, we
can use the RefreshMasks procedure in Algorithm 2 from [11], which gives a
masking of y as y = y1 ⊕ · · · ⊕ yn by XORing both y1 and yi with ri ←$ F2k , in
an iterative manner from i = 2 to n, where the original value of y1 is y. The full
description of the procedure of Coron’s higher order masking of look-up tables
is provided in Algorithm 3.4

Algorithm 3 uses two temporary tables T and T ′ in RAM. Both are generated
on the basis of the look-up table S : {0, 1}k → {0, 1}k. We show that, however,
with as few as one single faulty element in table S, the following masking provides
no protection against PFA. The operation marked in red in Algorithm 3 denotes
the one directly involving injected persistent fault. It results in a faulty table S

′
,

which is same as table S but one element.
The attack is performed on AES implementation available at [1], which fol-

lows Algorithm 3. For each attack, a single fault is injected into S, and PFA is
applied for d = 1. The masking offers no resistance against PFA as it reduces to

4 For simplicity, we assume both the input and output of S(x) are words of k bits.

8 J. Pan et al.

Algorithm 2: RefreshMasks

Input: shares (xi)i satisfying
⊕

i xi = x

Output: shares (x
′
i)i satisfying

⊕
i x
′
i = x

1 (z
′
0, z
′
1, . . . , z

′
d)← (z0, z1, . . . , zd)

2 for i = 1; i < d + 1; i + + do

3 ri ←$ F2k

4 z
′
0 ← z

′
0 ⊕ ri

5 z
′
i ← z

′
i ⊕ ri

6 end

Algorithm 3: Coron’s Masked Computation of y = S(x)

Input: shares x1, . . . , xn such that
⊕

i xi = x
Output: shares y1, . . . , yn such that

⊕
i yi = y = S(x)

1 for all u ∈ F2k do
2 T (u)← (S(u), 0, . . . , 0) ∈ (F2k)n // (T (u)) = S(u)
3 end
4 for i = 1 to n− 1 do
5 for all u ∈ F2k do
6 for j = 1 to n do

7 T
′
(u)[j]← T (u⊕ xi)[j] // T

′
(u)← T (u⊕ xi)

8 end

9 end
10 for all u ∈ F2k do

11 T (u)← RefreshMasks(T
′
(u)) //

⊕
(T (u)) = S(u⊕ x1 ⊕ · · · ⊕ xi)

12 end

13 end
// ⊕(T (u)) = S(u⊕ x1 ⊕ · · · ⊕ xn−1) for all u ∈ F2k

14 (y1, . . . , yn)← RefreshMasks(T (xn)) // ⊕(T (xn)) = S(x)

One Fault is All it Needs 9

the generic case presented in Section 3.2, where the key recovery remains inde-
pendent of the mask. This results in the attack similar to unprotected AES with
key recovery with around 2000 ciphertexts (see Fig. 2). The increase in masking
order d has no impact on the attack because the combination of d different masks
can be reduced to a single equivalent mask as m = m1 ⊕m2 ⊕ · · · ⊕md.

Next, we target other masking schemes which do not directly use the Sbox
and thus making the analysis more complicated, yet possible.

4.3 Rivain and Prouff’s Masking [11]

In CHES 2010, Rivain and Prouff [11] proposed an efficient method to mask the
AES Sbox processing at any order. Specifically, the authors use the algebraic
structure of the AES Sbox, which is the composition of an affine function over
F8
2 with the power function x 7→ x254 over F256, and they showed that it can be

expressed as a sequence of operations involving a few linear functions over F8
2,

which is easy to mask, and four multiplications over F256. If this computation
is performed completely on the fly without any look-up tables, PFA does not
apply in principle.

Now, we look at the public implementation of this scheme available at [1].
Let’s focus on the Sbox masking part, where component affine transformation is
realized through table look-up [1]. The additive part of the affine transformation
is 0x63, thus it can be checked that:

Af(x0)⊕ · · · ⊕Af(xd) =

{
Af(x) if d is even,

Af(x)⊕ 0x63 if d is odd,
(3)

where x = x0⊕x1⊕· · ·⊕xd, for a d order masking. The vulnerable table look-up
is highlighted in red in Algorithm 4, which we target by PFA.

Algorithm 4: Rivain and Prouff’s secure AES Sbox

Input: shares xi satisfying
⊕

i xi = x
Output: shares yi satisfying

⊕
i yi = y = S(x)

1 (y0, . . . , yd,)← Exp254(x0, . . . , xd)
2 for i = 0; i ≤ d; i + + do
3 yi ← Af(yi)
4 end
5 if dmod 2 = 1 then
6 y0 ← y0 ⊕ 0x63
7 end

However, we need to update the strategy of PFA to target this implementa-
tion. Recall that the main idea of PFA is to make a distinct disturbance, which
is predictable or observable for the adversary, on the distribution of the output.
The previous cases are ideally vulnerable to PFA since the output of the target

10 J. Pan et al.

function (Sbox) is linearly dependent on one single look-up of a permutation
table, thus it’s rather easy to produce distinguishable and predictable faulty
outputs with one single fault. When multiple look-up operations are involved
in the target function, as in the case of Rivain-Prouff’s Sbox, we show that the
output is still distinguishable and predictable with one random fault injection
for any masking order, to allow PFA.

Consider a random variable r(v, v∗, δ) ∈ {0, 1}b, b ∈ N+ whose probability is

Pr(r = k) =


1
2b

+ δ k = v∗,
1
2b
− δ k = v,

1
2b

else,

(4)

where v, v∗ ∈ {0, 1}b and 0 < δ ≤ 1
2b

. Therefore for independent r0(v, v∗, δ) and
r1(v, v∗, ∆), we have

Pr(r0 ⊕ r1 = k) =


1
2b

+ 2δ∆ k = 0,
1
2b
− 2δ∆ k = v ⊕ v∗,

1
2b

else.

(5)

So r0(v, v∗, δ) ⊕ r1(v, v∗, ∆) is equivalent to r(v ⊕ v∗, 0, 2δ∆). Similarly we can
show that r0(v, v∗, δ)⊕ r2(v ⊕ v∗, 0, ∆) is equivalent to r(v, v∗, 2δ∆).

With one persistent random fault injection into the Af table, when the ran-
dom input x is under uniform distribution, the output of the faulted table Af

′
(x)

is equivalent to the random variable r above as r(v, v∗, 1
28), where v denotes the

original value of the element where the fault is injected, and v∗ denotes the faulty
value.

For masking order d = 1, by Equation (5), we have

Pr(Af
′
(x0)⊕Af

′
(x1) = k) =


1
28 + 2× (1

256)2 k = 0,
1
28 − 2× (1

256)2 k = v ⊕ v∗,
1
28 else,

(6)

which is equivalent to r(v⊕v∗, 0, 2×(1
256)2). The bias is much lower as compared

to previous cases, requiring more samples for the attack.

For any odd masking order d, we can decompose
⊕d

i=0Af
′
(xi) =

⊕ d
2
i=0(Af

′
(2i)⊕

Af
′
(2i + 1)) to d+1

2 pairs of independent outputs of Af
′
. Each pair is equiva-

lent to r(v ⊕ v∗, 0, 2 × (1
256)2). By applying Equation 5 d+1

2 times, we have⊕d
i=0Af

′
(xi) is equivalent to r(v ⊕ v∗, 0, 2d × (1

256)d+1) = r(v ⊕ v∗, 0, 2−7d−8).
For any even masking order d, we consider it as a combination of the d − 1 or-
der masking and Af

′
(xd), whose probability should be the same with r(d−1)(v⊕

v∗, 0, 2d−1×(1
256)d)⊕rd(v, v∗, 1

28) which is equivalent to r(v, v∗, 2d×(1
256)d+1) =

r(v, v∗, 2−7d−8). In Fig. 3, we apply this strategy to the public implementation
of [1], where key k can be extracted with both tmax and tmin strategy, when d
is odd.

One Fault is All it Needs 11

Fig. 3. Key Extraction for Rivain and Prouff scheme [1] with d = 1.

However, since δ = 2−7d−8, it decreases exponentially as masking order d in-
creases, and thus more ciphertexts are required to perform PFA. In order to make
an estimation of the number of ciphertexts required with higher masking order d,
we study the case of AES. For each ciphertext byte, it has the probability of 1

256
of appearing, so with n ciphertexts, the total number c of its appearance obeys
binomial distribution as c ∼ B(n, p), where p = 1

256 . Therefore the variance of c
n

is p(1−p)
n , and by central limit theorem, c

n approximately follows normal distri-

bution N (p, p(1−p)n). To perform PFA successfully, we need

√
p(1−p)

n

2−7d−8 ∝ constant.

Therefore we have n ∝ 214d, which means n grows exponentially as d increases.

4.4 Software Threshold [13]

Sasdrich et al. [13] extended the widely used threshold implementation (TI [10])
for software targets. They use PRESENT cipher as a case study, showing a first-
order secure implementation. Interested readers can refer to [13] for details on
software TI implementation of PRESENT. As public source code is not available,
we implemented it in C language.

We implemented Algorithm 5. It uses a look-up table:

T (xi, xj) = A
′′
(fQ12(A(xi), A(xj))

which is composed of 256 elements of 4 bits. Targeting at T is not optimal, as each
element stands a much less chance of being accessed in the process of encryption.
Instead, we target at the smaller look-up table A′′′ : 8FDACB9E43160752 which
is an affine permutation of 4-bit elements and already marked in red in Algorithm
5.

12 J. Pan et al.

Algorithm 5: First-Order Threshold Implementation of PRESENT

Input: x̄ = (x1, x2, x3): shared plaintext
k: cipher key
Output: ȳ = (y1, y2, y3): shared ciphertext

1 rk ← KeySchedule(k)
2 for i = 1; i ≤ 31; i + + do
3 x1 ← x1 ⊕ rk[i]
4 t3 ← T (x1, x2)
5 t2 ← T (x3, x1)
6 t1 ← T (x2, x3)

7 t3 ← A
′′′

(t3)

8 t2 ← A
′′′

(t2)

9 t1 ← A
′′′

(t1)
10 x3 ← T (t1, t2)
11 x2 ← T (t3, t1)
12 x1 ← T (t2, t3)
13 x1 ← P (x1)
14 x2 ← P (x2)
15 x3 ← P (x3)

16 end
17 y1 ← x1 ⊕ rk[32]
18 y2 ← x2

19 y3 ← x3

One Fault is All it Needs 13

Fig. 4. Key Extraction with tmax strategy on Software TI [13].

Intuitively, one single fault seems insufficient for PFA since each access of
the faulted table is relevant to only one share of all three. However, we can use
the same model with the Rivain-Prouff’s AES Sbox to estimate the probability
distribution of the final output of threshold implementation.

For example, a faulty value 0 is injected into the first element of table A
′′′

,
whose original value is 8. This injects a bias in the input of T (see Algorithm
5). While an input of 8 will never arrive, input 0 is doubled. In this condition,
the probability distribution of the outputs of function T is biased as well. Let
T ′ denote the biased T . The truth table of T ′ shows probability of 6 being the
output 9

256 , and the probability of 12 is 23
256 , while all the others have probabilities

that are much closer or equal to 16
256 .

We can use the same analysis model in the Rivain-Prouff’s case and calculate
the probability distribution of T

′
(x0, x

1)⊕T ′(x2, x0)⊕T ′(x1, x2). Note that for
any fault injection with a random fault f , T (v∗, v∗) will have maximal proba-
bility to appear at output of T ′. Correspondingly, with v denoting the original
value where the fault is injected, T (v, v) will always be the one with minimal
probability. Therefore, either tmax or tmin strategy can be applied to extract the
key k. In Fig. 4, we show how tmax strategy can be applied to recover the key
with less than 400K ciphertexts.

5 Conclusions

PFA was recently introduced as a novel fault attack. In this work, we show that
one persistent fault is enough to break masking at any masking order d. This is
validated on public implementations.

14 J. Pan et al.

To conclude, the main advantage of PFA over other fault analysis is that,
PFA needs only one fault injection which could last for multiple encryptions,
bringing the practical effort of injecting a fault to bare minimum. While avoid-
ing usage of look-up tables completely can prevent PFA, it cannot be a practical
solution. A larger look-up table decreases the disturbance caused by a single
fault injection, and thus increases the number of ciphertexts required for key
extraction. Yet such alternative is not always feasible as well. Research for novel
countermeasures against PFA is motivated. Application of PFA to fault detec-
tion enhanced masking or other combined countermeasure is another interesting
direction.

References

1. Higher Order Countermeasures for AES and DES,
https://github.com/coron/htable

2. Masked-AES-Implementation, https://github.com/Secure-Embedded-
Systems/Masked-AES-Implementation

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

4. Boscher, A., Handschuh, H.: Masking does not protect against differential fault
attacks. In: Fault Diagnosis and Tolerance in Cryptography, 2008. FDTC’08. 5th
Workshop on. pp. 35–40. IEEE (2008)

5. Coron, J.S.: Higher order masking of look-up tables. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 441–458.
Springer (2014)

6. Dobraunig, C., Eichlseder, M., Gross, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked aes with fault countermeasures.
Tech. rep., Cryptology ePrint Archive, Report 2018/357, 2018. https://eprint. iacr.
org/2018/357

7. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
sensitivity analysis. In: International Workshop on Cryptographic Hardware and
Embedded Systems. pp. 320–334. Springer (2010)

8. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack
countermeasures-application to aes. In: Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), 2012 Workshop on. pp. 85–94. IEEE (2012)

9. Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., Sakiyama, K.: On the power of
fault sensitivity analysis and collision side-channel attacks in a combined setting.
In: International Workshop on Cryptographic Hardware and Embedded Systems.
pp. 292–311. Springer (2011)

10. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions. J. Cryptol. pp. 292–321 (2011). https://doi.org/10.1007/s00145-
010-9085-7

11. Rivain, M., Prouff, E.: Provably secure higher-order masking of aes. In: Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems. pp. 413–427.
Springer (2010)

12. Roscian, C., Sarafianos, A., Dutertre, J.M., Tria, A.: Fault model analysis of laser-
induced faults in sram memory cells. In: Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), 2013 Workshop on. pp. 89–98. IEEE (2013)

One Fault is All it Needs 15

13. Sasdrich, P., Bock, R., Moradi, A.: Threshold implementation in software. In: In-
ternational Workshop on Constructive Side-Channel Analysis and Secure Design.
pp. 227–244. Springer (2018)

14. Selmke, B., Brummer, S., Heyszl, J., Sigl, G.: Precise laser fault injections into 90
nm and 45 nm sram-cells. In: International Conference on Smart Card Research
and Advanced Applications. pp. 193–205. Springer (2015)

15. Zhang, F., Lou, X., Zhao, X., Shivam, B., He, W., Ding, R., Qureshi, S., Ren,
K.: Persistent Fault Analysis on Block Ciphers. In: IACR Transactions on Cryp-
tographic Hardware and Embedded Systems. vol. 2018, pp. 150–172 (2018)

