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Abstract. Recovering keys efficiently from far beyond exhaustible can-
didate spaces is a meaningful but very challenging topic in Side-Channel
Attacks (SCA). Recent methods often utilize collision optimizations to
reduce the key candidate space so that exhaustive search methods can be
feasibly applied for key recovery. However, the current collision optimiza-
tion methods can only utilize information of a small number of collisions,
which limits the number of wrong key candidates that can be removed.
In addition, their application is restricted to situations where only small
thresholds can be applied. As such, the existing methods are not feasible
for recovering the full key if sub-keys and collision values are located in
much deeper spaces as we will discuss in this paper. To overcome these
problems, we propose Full Collision Attack (FCA). Compared to the ex-
isting methods, FCA makes use of all possible collisions between any two
sub-keys and removes a larger number of wrong key candidates, thus en-
abling key recovery in much deeper spaces. Moreover, we find that the
collision values that fall beyond the threshold usually occurs only for a
few sub-keys. Based on this finding, we propose the Rotational Error
Tolerant FCA (RET-FCA) to significantly reduce the candidate space
of collisions. Our results show that RET-FCA performs favourably when
the collision values fall in the intractable space of FCA.

Keywords: FCA, full collision, group collision attack, divide and con-
quer, brute-force, side-channel attack.

1 Introduction

Implementations of cryptographic algorithms on devices produce unintentional
leakages from various channels such as time [13, 32], power consumption [14, 31,
2], electromagnetic [10, 9], cache patterns [18, 7], acoustic [11], etc. These side-
channel information can be statistically analyzed for key recovery, which pose
a serious threat to the security of cryptographic devices. Power consumption
is one of the most widely used channels in Side-Channel Attack (SCA), and a
large number of distinguishers have been constructed based on it. Divide and
conquer attacks, such as Differential Power Analysis (DPA) [14], Correlation
Power Analysis (CPA) [4], Template Attack (TA) [5] and Mutual Information
Analysis (MIA) [12, 29], divide the full key into several sub-keys and recover



them one at a time. Based on the premise that the attacker captures enough
leaky information, the correct sub-keys can be distinguished from the wrong
ones by distinguishers. However, if the attacker does not obtain sufficient power
traces, it’s possible that one or several sub-keys are not ranked on but somewhere
close to the most possible one of their corresponding guessing sequences. In such
scenarios, the attacker needs to optimize the exhaustive search schemes in order
to recover keys.

Key enumeration [24, 6, 16, 28] is a very hot topic in recent years. It com-
putes the probabilities of full key candidates from the combination of sub-keys,
then enumerates them from the most possible one to the least possible one. By
exploiting leaky information, each correct sub-key is ranked as one of the most
likely candidates of a distinguisher. Therefore, key enumeration is essentially
an optimized method for exhaustive search. Another optimization method is to
use collision attacks [26, 15] for constructing efficient distinguishers and deleting
wrong key candidates that fall within a threshold. Since only a few candidates
that satisfy the given collision conditions are retained, the key can be recovered
more quickly from the smaller candidate space. Ou et al. in [22] proved that
collision optimizations could recover the key quickly from huge search spaces
(e.g. 280) if the collision satisfied given conditions. This paper enhances collision
optimization to recover the key from a much larger key space (e.g. larger than
296), which is infeasible for the existing works. Related works will be given in
the next subsection before introducing our contributions.

1.1 Related Works

The idea of using collisions to optimize exhaustive key search originated from
the Test of Chain (TC) introduced in in [3]. Let ki denote the i-th sub-key
and k denote the threshold of each sub-key, which means only the k most likely
key guesses are considered. TC sets a reasonable threshold for the outputs of
a distinguisher, and then uses collision attack to find long chains from the first
sub-key to the last sub-key, thus eliminating key candidates outside these chains.
The key recovery fails if at least one collision of the correct sub-keys exceeds
the threshold. This requires the attacker to either capture more leakages or
set a larger threshold. However, no practical implementation scheme was given
in [3]. Wang et al. constructed the first feasible scheme called Fault Tolerant
Chain (FTC) in [30]. Instead of finding a long chain containing all the sub-keys,
FTC finds the collisions between the first sub-key and the remaining sub-keys.
Specifically, FTC uses Correlation enhanced Collision Attack (CCA) [20] to rank
and guess the collision values between sub-keys. These values are then introduced
into CPA to construct possible sub-key combinations (i.e. collisions). If a sub-key
does not collide with the first sub-key, the attacker enumerates it from the most
possible one to the least possible one. It is worth mentioning that these sub-keys
are enumerated independently, rather than using key enumeration to enumerate
them simultaneously. If multiple sub-keys are error and deleted, it is difficult
for FTC to recover the full key since there are too many possible candidates
remaining (see Section 2.3).



It is noteworthy that TC and FTC only consider the case where the thresh-
old d of collision attack equals 1, which means only the most possible collision
value is considered. In this case, CCA should be more powerful than CPA, thus
most of collision values among sub-keys are the most possible ones. This enlarges
the probability that collisions occur and makes the collision optimized exhaus-
tion meaningful. However, if the performance of two distinguishers is notably
different, the full key can be recovered more efficiently with the one of high-
er performance. In fact, CCA’s performance is worse than CPA’s. This is not
surprising since the original intention of CCA is to attack flawed masks (e.g.
DPA contest v4.1 [1]). Group Verification Chain (GVC) [23] considers k > 1 and
d > 1, and uses the collisions between the current sub-key and other sub-keys
to verify and rank its possible values within the threshold. In this case, a sub-
key is verified by other sub-keys. The more collisions, the higher probability the
guessing value to be the correct sub-key. Therefore, Ou et al. in [22] classified
GVC as key re-ranking, which could not be used to reduce the key space.

Combining the characteristics of collision and verification, GCA in [22] con-
siders two distinguishers with similar performance for the first time, which makes
GCA more realistic and meaningful. Specifically, GCA divides the full key space
into several groups containing the same number of sub-keys and makes full use
of collision information to remove wrong candidates within each group. These
sub-keys do not overlap, i.e., the same sub-key appears only once in all groups. It
then uses collisions to construct verification chains, which establish the relation-
ship between groups and avoid exponential growth in the number of recombined
possible full keys. GCA uses the thresholds of two distinguishers (e.g. k of CPA
and d of CCA) to evaluate its search ability. It can utilize collision information
several times more than TC and FTC, and has much higher search ability than
TC and FTC. However, there are still a lot of unused collisions among group-
s under GCA (see Section 3 for details). Moreover, GCA builds larger groups
through constant verifications, which requires a lot of computation that signifi-
cantly increases its runtime.

Collision optimized exhaustions use collision information to establish the re-
lationship between different sub-keys. Each pair of collision results in the removal
of a large number of wrong candidates. Taking AES-128 as an example, if a pair
of sub-key values of the first and second S-boxes are deleted since no collision
occurs, then all k14 possible full keys of this guessing pair and the subsequent
14 sub-keys within threshold k are deleted. An attacker can quickly recover the
key from the remaining space which is much smaller than the original one after
collision optimization. Unlike key enumeration, collision optimized exhaustions
search all remaining keys with the same probability. In this case, collision val-
ues under CCA provide equal amount of collision information for sub-keys. As
long as the correct full key and the corresponding collision values are within
reasonable thresholds, the collision optimized exhaustions ensure successful key
recovery. It is noteworthy that both key enumeration and collision optimized
exhaustions are algorithm implementations. As such, their search performance
depends on the efficiency of the algorithms. A more efficient algorithm will en-



able the key to be recovered from a deeper space (larger thresholds k and d) in
a shorter time than its slower counterparts.

1.2 Our Contributions

Due to the insufficient use of collision information, FTC and GCA leave the
attacker a large number of possible full keys when performing search in large
intractable spaces. Moreover, although GCA uses collisions several times more
than FTC and has much stronger search ability than FTC, the efficiency of its
implementation is very low, leading to very time-consuming searches in large
candidate spaces. In this paper, we propose Full Collision Attack (FCA), which
efficiently eliminates the wrong candidates by using collision information between
any two sub-keys, thus having much stronger search capability than FTC and
GCA. In addition, by observing the distribution of collisions in the intractable
space of FCA, we obtain an interesting finding that optimization can be achieved
by performing error tolerance only on several sub-keys. Based on this finding, we
propose Rotational Error Tolerant FCA (RET-FCA), which further improves the
performance of FCA. Experiments on the public power trace set DPA contest
v4.1[1] demonstrate the superiority of our scheme.

1.3 Organization

This paper is organized as follows: Measurement setups, Collision Attack (CA),
Test of Chain (TC), Fault Tolerant Chain (FTC) and Group Collision Attack
(GCA) are introduced in Section 2. Our Full Collision Attack (FCA) and the cor-
responding algorithms are detailed in Section 3 with the help of an example. Our
finding that collision values beyond the search ability of FCA can be obtained
by applying error tolerance on only a few sub-keys and the proposed rotational
error tolerance strategy RET-FCA are described in Section 4. Rotational error
tolerance for different sub-keys needs to repeatedly compute a large number of
collisions. We use the prefix chains to optimize this in Section 5. Experiments on
measurements from DPA contest v4.1 [1] are presented in Section 6 to compare
our FCA and RET-FCA, with GCA and FTC. Finally, we conclude this paper
in Section 7.

2 Preliminaries

2.1 Measurement Setups

Our experiments are performed on the public power trace set provided by DPA
contest v4.1 [1] implementing Rotated S-boxes Masking (RSM) [21] protect-
ed AES-256 algorithm on the Side-Channel Attack Standard Evaluation Board
(SASEBO). We then implement our experiments on MATLAB R2016b on a H-
P desktop computer with 6 Intel(R) Xeon(R) E5-1650 v2 CPUs, 16 GB RAM
and a Windows 10 operating system. Based on the suggestion in [25] that there



should be at least a clock cycle between two Points-of-Interest (POIs) [8], Ou et
al. in [22] used CCA to find the 4 POIs with maximum correlation coefficients
from the 100000-th and 110000-th time samples and performed GCA on them.
The other 15 S-boxes were aligned to the first one. Since the performance of
CPA is higher than that of CCA, CPA outputs the correct sub-keys before CCA
can produce correct collision values. We use the optimal leakage model provided
in [19] to perform first-order CPA to find and intercept 700 time samples of
the first S-box (from the 100301-th to the 101000-th). As there are five regions
with high correlation coefficients in these samples, we extract 5 best POIs with
highest correlation coefficients from them. CPA and CCA in FTC, GCA, FCA,
and RET-FCA are performed on these samples. This reduces the gap between
the performance of CCA and CPA, and makes the key recovery process more
challenging.

2.2 Collision Attacks

AES-256 performs the SubBytes operation (16 parallel S-box applications) in
its first round. Let ki and kj denote the i-th and j-th sub-keys, and pi and pj
denote the corresponding encrypted plaintext bytes. A generalized internal AES-
256 linear collision occurs if there are two S-boxes in the same AES encryption or
several encryptions with the same byte value as their input (as shown in Fig. 1).
The attacker finds a collision:

Sbox(pi ⊕ ki) = Sbox(pj ⊕ kj), (1)

which is equivalent to
pi ⊕ ki = pj ⊕ kj . (2)

Since the 16 S-boxes of AES-256 are exactly the same in each round, the following
collision value is obtained:

∆i↔j = ki ⊕ kj = pi ⊕ pj . (3)

For simplicity, this paper uses ki ↔ kj to represent this collision. Although the
specific values of these two sub-keys are unknown, they have a fixed XOR value
that can be distinguished from other possible guessed collision values by a dis-
tinguisher. In this case, collision attacks establish relationships among multiple
sub-keys.

Correlation enhanced Collision Attack (CCA) [20] is a typical collision attack.
It divides the power traces of each S-box into 256 categories according to the
input plaintext byte values of AES-256, then computes the correlation between
them under different guessed collision values. The detailed algorithm implemen-
tation is explained in [30]. It is noteworthy that the efficiency of CCA is much
lower than that of CPA. However, this is not surprising since CCA is mainly used
for attacking flawed masking implementations such as DPA contest v4.1 in [19].
Some contributions like [33] also aim to secure masked implementations under
CCA. If CPA and CCA are directly performed on the 700 samples and 5 POIs
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Fig. 1. A linear collision between the i-th and the j-th S-boxes happens if βi = βj .

described in Section 2.1 respectively, their performance will still exhibit a big
gap. In this paper, similar to [22], we also introduce Amplified Template Attack
(ATA) [34] into CCA to reduce its performance gap with CPA. Specifically, we
use the five POIs to construct 256 templates for plaintext byte values. Measure-
ments of each plaintext byte value pi is matched with the template of plaintext
pj satisfying Eq. 3 and an Euclidean distance is calculated in the attack phase.
The matching performance under a guessed collision value is expressed by the
cumulative value of Euclidean distances, and the correct collision value corre-
sponds to the minimum cumulative value. It is worth mentioning that although
both FTC and GCA use CCA and CPA to find collisions, Ou et al. defined them
as post-processing tools of distinguishers’ outputs, which are independent of the
specific distinguishers (see [22]).

2.3 Fault Tolerant Chain

The attacker obtains ki ↔ kj if the i-th and the j-th S-boxes collide. Bogdanov
et al. proposed Test of Chain (TC) in [3], which attempts to find a long chain
including 15 pairs of collisions k1 ↔ k2, k2 ↔ k3, . . ., k15 ↔ k16 from the first
sub-key to the 16-th sub-key, but no specific schemes were given. Wang et al.
provided the first practical scheme named Fault Tolerant Chain (FTC) in [30].
FTC tries to find collisions between the first sub-key and other 15 sub-keys:
k1 ↔ k2, k1 ↔ k3, . . ., k1 ↔ k16. Its performance is notably influenced by k1.
TC requires all sub-keys and collision values to be within the thresholds k and
d. Evidently, this either requires many power traces or the thresholds need to be
set at very large values. Unlike TC, FTC allows several sub-keys and collision
values to exceed the thresholds, and searches them independently according to
the ranks of CPA outputs. In other words, FTC enumerates them from the most
possible one to the least possible one independently.

If there is no collision between k1 and ki, which means that all possible guess-
ing values of k1, ki and k1 ↔ ki are not within the thresholds simultaneously,
FTC assumes that an error has occurred. However, if the threshold k is large,
even if the correct sub-key exceeds the threshold, some false collision values can
result in false sub-key values colliding with k1. FTC will regard these false sub-
key values as correct ones. Another shortcoming of FTC is that it enumerates



the sub-keys identified as errors. If too many errors occur, FTC has to enumerate
a very large number of possible keys, which is infeasible. This usually happens
when the threshold k is increasing and a large number of wrong key values are
not successfully deleted. The search complexity of FTC is

28 ·
(

28
)n

(

15
n

)

(4)

if there are n wrong sub-keys (see Section 3.2 in [30]). If errors happen on two
sub-keys, a maximum of about 231 searches are required. From the perspective
of collision information utilization, FTC and TC only use 15 pairs of collisions.
Since there is a pair of collision between any two correct sub-keys and 120 pairs
of collisions in total, most of collision information is unused. Although FTC is
not perfect, it triggers new opportunities for collision attacks.

2.4 Group Collision Attack

Group Collision Attack (GCA) proposed in [22] is ingeniously designed. Taking
AES-256 as an example, GCA divides the 16 sub-keys into 4 non-overlapping
groups of equal size, and performs a round of wrong candidates deletion with-
in them. Then, the verification chains are used to further delete the wrongly
guessed keys to prevent explosive growth in the search space. The construction
of verification chains is the same as that of groups. It is difficult to make full
use of collision information within or among groups. GCA achieves this goal
through continuous reconstructions and verifications (as shown in Fig. 2). For
chain based GCA (see Fig. 2(a)), the attacker finds a collision between the first
and the second sub-keys, and another collision between the second and third
sub-keys. If there is a guessed value of k2 that leads to k1 ↔ k2 and k2 ↔ k3
being established simultaneously, then the attacker obtains a longer chain that
includes three sub-keys k1 ↔ k2 ↔ k3. If k1 ↔ k3 is also established, then these
three sub-key values form a ring. To avoid complex computation, the verifica-
tion between two rings consisting of k1, k2, k3 and k1, k2, k4 is similar to the
construction of long chains (see Fig. 2(b)), wherein the guessed values of k1 and
k2 should be the same. Since chains (rings) are stored in separate rows in imple-
mentation, it is very convenient to construct long chains (rings) from short ones.
This collision optimized exhaustion is very simple and has been demonstrated
to be very efficient.

GCA considers the collision situation where the threshold d > 1, which is
more complicated than only considering d = 1 in TC and FTC. GCA uses much
more collision information than FTC to eliminate the wrong sub-key candidates,
which makes its search ability stronger than FTC. Taking the most efficient ring
based GCA as an example, it uses 40 pairs of collisions to remove wrong key
candidates within 8 groups (4 for verification, see [22]). Verification chains are
further used to delete wrong sub-key candidates among groups, but this second
round deletion does not take advantage of collision information from additional
sub-keys except the 8 constructed verification chains or rings. In summary, GCA
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Fig. 2. Chain based GCA (a) and ring based GCA (b).

has its limitations: (1) The algorithm runtime is too slow since GCA needs
constant combinations and verifications, and (2) there are too many remaining
keys after two rounds of deletions, since the remaining combinations in 4 groups
can only be recombined by multiplication. In other words, GCA can not prevent
the explosive growth in the number of recombined key candidates under very
large thresholds k and d (see Section 6 ).

3 Full Collision

We first highlight the limitation of GCA before describing the core idea of the
proposed FCA in the subsequent sub-section. Taking the 16-byte key in the first
round of AES-256 as an example, ring based GCA given in Fig. 2 uses infor-
mation from 40 pairs of collisions for its first round of wrong key candidates
deletion, and employs verification chains for an additional round of deletion as
explained in Section 2.4. This enables GCA to outperform TC and FTC. How-
ever, the efficiency of GCA’s implementation has a lot of room for improvement,
and there are still 80 pairs of collisions that have not been utilized. The latter
accounts for two-thirds of the collision information. When the sub-keys and col-
lision values are located in much deeper spaces, GCA quickly fails. In view of
the above limitations of GCA, we design a more efficient collision optimization
called Full Collision Attack (FCA), which can utilize information from all 120
pairs of collisions to quickly delete the wrong key candidates.



3.1 Core Idea of FCA

The proposed FCA is capable of exploiting all the collision information between
any two sub-keys. We will explain how this is achieved with the help of the
example in Fig. 3. The white circles represent a set of guessed sub-keys consti-
tuting a Full Collision Chain (FCC), while the gray circles represent the sub-keys
currently waiting to be added. FCA sequentially searches for full collision infor-
mation of each sub-key. It first finds all possible collisions of the first sub-key
k1 and the second sub-key k2 (the corresponding guessing ranks are denoted as
Φ1 and Φ2, and guessing ranks of all sub-keys are represented by Φ), and stores
each of them as a row in table Θ. To consider the new sub-key k3, FCA traverses
each row in table Θ to determine whether the guessed k1 and k2 collide with
k3 simultaneously. If so, FCA obtains a FCC of these 3 sub-keys from the FCC
of the guessed k1 and k2, which is equivalent to R3 in GCA (see Section III-B
in [22]). FCA stores the new FCC in table Θ1 and replaces it with Θ after
traversing all possible collisions in Θ consisting of Φ1, Φ2 and Φ3. It then con-
siders k4 and proceeds to the subsequent iterations (see Fig. 3(b) and Fig. 3(c)).
The iteration terminates after Φ16 of the last subkey k16. Since every iteration
in FCA ensures that the current Θ preserves all possible FCCs of the current
sub-key, it guarantees the full utilization of collision information. In summary,
the advantage of FCA lies in its traversal algorithm and efficient storage that
enable it to rapidly perform the collision detection and verifications among 16
sub-keys.
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Fig. 3. The procedure of FCA.

The number of possible FCCs increases rapidly in FCA because of the lim-
ited information of collisions within the first several sub-keys. It is necessary to



search for i − 1 pairs of collisions for each FCC in Θ to construct a new FCC
when the new sub-key ki is added. The more collision information that needs to
be searched, the more time-consuming the algorithm is. Fortunately, as larger
number of wrong key candidates are also deleted, the runtime of FCA also de-
cline rapidly after a rapid initial surge. Thus, the main computation is focused
on the collision construction of the first several sub-keys. This phenomenon will
be described in detail in the example given in Section 3.4. FCA represents the
upper bound of the wrong key candidates that an attacker or evaluator can
remove under given thresholds k and d.

3.2 Collision Detection Optimization

The collision detection may be repeated when constructing the FCCs, which se-
riously lowers down the efficiency of the algorithm. For FTC and GCA, in order
to find collisions between two sub-keys ki and kj , it is necessary to traverse all
possible sub-key values in Φi and Φj , and collision values ∆i↔j (the correspond-
ing guessing ranks are denoted as Ψi↔j) within thresholds k and d, with the
complexity of d ·k2. FCA successively computes collisions k1 ↔ k2, k1 ↔ k3, . . .,
k14 ↔ k15 and k15 ↔ k16, and converts all collision values within the threshold
d into flags. The collisions between ki and kj are saved in the loc-th column of
the flag matrix F where loc satisfies

loc = 15 · i− (i− 1) (i− 2) /2 + (j − i) . (5)

If a collision value ∆i↔j is within threshold d, FCA sets F (loc,∆i↔j) to 1. Thus,
FCA obtains the flag matrix F with 120 ·256 flags. In this way, to check whether
a combination of ki and kj collides within the thresholds, FCA only needs to
check whether the flag F (loc,∆i↔j) is 1, and the complexity can be reduced to
k2, which significantly improves the collision detection efficiency.

3.3 Algorithm Description

Unlike GCA, FCA is simple, efficient and easy to implement. It consists of two
simple sub-algorithms (see Algorithms 1 and 2). Algorithm 1 is the main func-
tion, which implements the whole FCA where each sub-key is added. Its inputs
include all guessing collision ranks Ψ output by CCA and all ranks Φ of the 16
sub-keys output by CPA, as well as thresholds k and d. All possible FCCs and
corresponding number n are the outputs. Θ1 represents the remaining FCCs
after each sub-key being added, and also the initialization of the next iteration.
FCA assigns the guessing values Φ1 of the first sub-key to Θ and computes the
flag matrix F to initialize the algorithm (Steps 1 ∼ 2). It finds all FCCs between
the current i-th sub-key and each FCC constituted by k1 ∼ ki−1 in Θ and re-
turns all new FCCs to Θ1 (Step 4). If Θ1 is null, there is no collision between
the current guessing sub-key and k1 ∼ ki−1 and FCA exits the current iteration
(Steps 5 ∼ 7).



Algorithm 1: Full Collision Attack.

Input: guessing sub-keys ranks Φ, guessing collision ranks Ψ , thresholds k
and d.

Output: n and the remaining FCCs in Θ.
1 Θ← Φ1 ;
2 F ← BuildFlag (d, k, Φ, Ψ) ;
3 for i from 2 to 16 do

4

(

Θ1, n
)

← Collisions (F, k,Θ, Φi) ;
5 if Θ1 = Ø then

6 return i;
7 break;

8 end

9 Θ = Θ1;

10 end

The function Collisions used in FCA in Algorithm 1, which constructs all
possible FCCs considering the new ranks Φi of sub-key ki, is shown in Algorithm
2. The inputs of the algorithm are the flag matrix F , threshold k, Θ including
all FCCs of the previous i − 1 sub-keys and Φi. The algorithm consists of three
loops. For each possible value in Φi, FCA traverses each row in Θ to see if it fully
collides with FCCs of the previous i−1 sub-keys. Specifically, the position loc of
the corresponding collision values in F is calculated according to iteration r and
i, and the possible sub-key value in Θr

q is XORed with Φp
i (Steps 5 ∼ 6). Here

Φp
i represents the p-th element of Φi and Θr

q denote the r-th guessed sub-key
of the q-th FCC in Θ. If the XOR value is in Ψloc, then Φp

i and Θr
q collide, the

collision counter cn of Φp
i increases by 1 (Steps 7 ∼ 9). FCA detects the collision

counter to see if Φp
i collides with all the previous i− 1 guessed sub-key values in

Θq after traversing a FCC. If so, Θq and Φp
i will be added to Θ1 as a new FCC,

and the current number of FCCs n1 increases by 1 (Steps 11 ∼ 14). n and Θ
are updated with n1 and Θ1 when considering the (i+1)-th sub-key in the next
iteration (Steps 17 ∼ 18).

3.4 An Example

We describe the case where the correct sub-keys and collision values are ranked
in very deep spaces in Fig. 4, 60 power traces are randomly selected to perform
CPA and CCA. The rank of the deepest sub-key k12 is 81, and the ranks of the
second and eighth sub-keys is about 80. The rank of the deepest collision value
is the one between k3 and k6, which ranks at 84. Therefore, in order to ensure
that FCA can recover the key, the thresholds k and d should be set at least to 81
and 84 respectively. In this case, the key candidate space and collision detection
space reach 2101.4376 and 2102.2771, which are about 221.4376 and 222.2771 times
larger than the maximum thresholds k = 32 and d = 32 discussed in [22]. Fig.
4(b) shows that 7 of the 15 pairs of collisions between k1 and k2 ∼ k16 exceed



Algorithm 2: The function Collisions used in FCA.

Input: flag matrix F , threshold k, Θ and Φi.
Output: n and the remaining FCCs in Θ.

1 for p from 1 to k do

2 for q from 1 to n do

3 cn=0;
4 for r from 1 to i− 1 do

5 loc← GetLocation (r, i);
6 temp = Xor

(

Φ
p

i , Θ
r
q

)

;
7 if F (loc, temp) = 1 then

8 cn++;
9 end

10 end

11 if cn = i− 1 then

12 n1 ++;
13 Θ1 ← Θ1 ∪ [Θq, Φ

p

i ];

14 end

15 end

16 end

17 n← n1;
18 Θ← Θ1;

threshold d = 1, which pose a problem for FTC as there are too many possible
keys to be exhaustively searched (see Eq. 4).

This paper considers the FTC under threshold d > 1 for the first time. It can
also be seen from the experimental results given in Fig. 13(a) that FTC leaves
intractable spaces (about 265.6 ∼ 266.5) for the attacker under k = 64 and d = 64
when 60 power traces are randomly selected in each repetition. These spaces will
be much larger when k = 81 and d = 84. Moreover, the key itself is located in
a space that can not be enumerated, and the current key enumeration methods
will fail. However, using the collision optimization discussed in Section 3.2, FCA
can rapidly reduce a total of 2103.8696 possible key combinations from the huge
thresholds k = 90 and d = 84 to only 58 in 326.5 seconds (as shown in Fig. 5).
Verifying the key from these 58 candidates becomes a trivial task. Therefore,
FCA exhibits a powerful search capability under large thresholds.

The attacker does not know the optimal thresholds k and d in real attack
scenarios. In other words, he does not know the exact ranks of sub-keys and the
collision values, and can only constantly test them. The number of remaining
FCCs when 15 sub-keys are successively added under the thresholds near k = 84
and d = 84 is shown in Fig. 5. Although only one pair of collision between k3
and k6 falls outside thresholds k = 84 and d = 80, only a FCC remains when
the 11-th sub-key is added, and no FCC when considering the 12-th sub-key.
Similar phenomenon occurs at k12 when k = 84 and d = 82. We also consider
the case of k = 76 and d = 84, and there is no FCC in the first 12 sub-keys.
Some curves are not given since they are too dense in Fig. 5. However, there are
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Fig. 4. The ranks of sub-keys (a) and correct ∆-s (b).

36 (47) FCCs left in Θ when k = 80 (82) and d = 84. If we continue to enlarge k
and d, these erroneous FCCs will always be in Θ and more erroneous ones will
satisfy full collision. This phenomenon is more obvious in FTC and GCA since
they only use a small part of collisions. It is worth noting that d can not be
enlarged indefinitely. It is equivalent to exhausting all possible keys in threshold
k when d = 256. Fortunately, the number of FCCs under FCA does not increase
significantly. For example, when k = 84 and d = 80, there are 0 combinations
left, and becomes 65 combinations when d reaches 90. There are 6 combinations
remaining when k = 78 and d = 84, and 58 combinations when k reaches 90.
This also indicates that the number of FCCs under several close thresholds is
almost the same.
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Fig. 5. The number of FCCs under each sub-key.

The number of remaining FCCs in FCA is related to the distributions of
sub-keys and collision values, as well as the size of k and d. The complexity of
constructing the FCCs of sub-key ki in Algorithm 2 is (i−1)·k·n. n varies greatly
in different thresholds, and is similar to R3 in GCA under three sub-keys (see



Section III-B in [22]). This is due to the fact that few pairs of collisions are used
to verify the initial several sub-keys, resulting in a very limited number of error
combinations being deleted. This is demonstrated in Fig. 5, where the number
of FCCs increases rapidly when the second to sixth sub-keys are added. It even
reaches from 60,000 to 130,000 at the fifth sub-key. This results in a large amount
of collision computation when the sub-keys from third to eighth are added. If
larger thresholds are considered, the FCA performed on the first several sub-
keys becomes slower. The number of remaining FCCs under different thresholds
in Fig. 5 is less than 29 after the 10th sub-key. Obviously, the construction of
subsequent FCCs becomes very fast, and just accounts for only a small part of
the algorithm overhead.

4 Error Tolerance

4.1 Distribution of Collision Values Beyond Threshold

FCA can efficiently delete wrong key candidates by maximizing the use of colli-
sion information and quickly reduce candidate space. Therefore, the thresholds
k and d can be set very large under FCA, and the number of remaining FCCs n
will not be so inexhaustible as FTC and GCA. If the key is within the threshold,
it can be recovered easily. However, FCA requires all 120 correct collision values
to fall within threshold d. There may be a few collision values in much deeper
space than we have discussed in Section 3.4 previously, which either makes the
execution time of FCA unbearable or difficult to reduce the candidates space
to exhaustible one. Obviously, this requires error tolerance for FCA that allows
a small number of collisions to be outside the threshold d. In other words, we
consider the chains that are not so ”full”. A feasible error tolerance scheme is
to record the number of collisions and set a reasonable threshold when building
each FCC. The attacker checks the collision state between the new sub-key and
the previous sub-keys. If the number of collisions in a chain is smaller than the
threshold (e.g. two-thirds of collisions are required, but only one-third are actu-
ally established), then delete it. However, the implementation of this algorithm
is complicated.

An interesting phenomenon is the collision values outside the threshold d do
not occur randomly, but are related to one or several sub-keys. In fact, this can
be analyzed from the selected power traces. If the Signal-to-Noise Ratio (SNR)
[17] of power traces of a S-box is relatively low, the collision values in CCA
between it and other sub-keys are also ranked relatively backward. Moreover, it
is difficult to align the power traces of all S-boxes strictly. The correct collisions
values outside d = 40 are k3 ↔ k6, k3 ↔ k13, k3 ↔ k16 and k5 ↔ k13 in Fig. 4.
A close observation reveals that these collisions are related to k6, k13 and k16 (
or k3 and k5). If considering error-tolerance on these three (or two) sub-keys, d
can be reduced from 84 to 40 (or 44). If only one sub-key is considered, we only
need to take k3 or k6 into account, and the threshold can be set to 58 in Fig. 4.

Another experimental result from CPA and CCA performed on new randomly
selected 60 power traces is shown in Fig. 6. The deepest sub-key k16 is ranked
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Fig. 6. Error tolerance is required if sub-keys (a) and correct ∆-s (b) are ranked at a
depth that FCA can’t conquer.

at 72. Unlike Fig. 4, the collision values in Fig. 6 are much deeper. The deepest
collision value that happens between k7 and k13 even reaches 212. However, only
collisions k1 ↔ k13, k1 ↔ k16, k3 ↔ k13, k6 ↔ k13, k7 ↔ k13, k9 ↔ k16 and
k10 ↔ k16 are out of threshold d = 50. These collisions are related to k1, k3,
k6, k7, k9 and k10, or only k13 and k16. If the error-tolerant two sub-keys k13
and k16 are required to satisfy 7 pairs of collisions, the collision threshold d can
be easily reduced from 212 to 50, so that the unrecoverable key under FCA can
be quickly conquered under error tolerance. If considering only one sub-key in
error-tolerance, then k13 is considered and d can also be reduced to 64.

4.2 RET-FCA

The instances of collision values falling outside the threshold d given in Sections
3.4 and 4.1 are prevalent. This conclusion can also be drawn from the experi-
mental results given in Section 6. In this case, Rotational Error Tolerant FCA
(RET-FCA) will reduce the threshold d. Error tolerance here also means that
the chains we obtain are Partial Full Collision Chains (PFCCs). Specifically,
most of the sub-keys can be randomly selected to construct FCCs, and consider
error-tolerance on other sub-keys. For simplicity, here we only take 7 sub-keys
shown in Fig. 7 for example, wherein the sub-keys are divided into full collision
part (the first 5 sub-keys) and error-tolerant part (k6 and k7). The construction
of full collision part is exactly the same as that of FCA, and only a few pairs
of collisions are required between these two parts. Thus, if the collision values
outside the threshold d are all related to k6 or k7, the collision threshold can be
lowered to d under RET-FCA. The smaller the number of collisions between the
two parts is required, the more significantly the threshold d decreases, and the
more PFCCs remain. For AES-256 or AES-128 with 16 sub-keys, we can allow
up to 5 pairs of collision values for each sub-key in the error-tolerant part to be
outside the threshold d.

The specific distribution of collision values under a certain attack is unknown.
Moreover, we find that the collision values which need error tolerance does not
always happen on the sub-key leading to Θ an empty set in many experiments.
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For example, only k3 ↔ k6 is out of thresholds k = 84 and d = 80 in Fig. 4,
but empty set Θ happens on k11. Therefore, it is difficult to achieve pertinent
error-tolerance. We can only take a rotational error-tolerance, assuming that
collisions on m different sub-keys are outside threshold d in each round. If the
correct full key is not found in the current error tolerant round, m other sub-keys
are randomly selected for a new round of error tolerance. This guarantees that
all possible PFCCs are in Θ. For n sub-keys, if considering error-tolerance on m
sub-keys, a total of

(

n

m

)

rounds are required. For example, if considering error-
tolerance on two sub-keys in AES-128 or AES-256, the upper bound of error-
tolerance is 120 rounds. Obviously, an advantage of rotational error tolerance
for m sub-keys is that as long as all collision values outside the threshold d are
related to any one of these m sub-keys, the attacker can conquer the key if he
sets a collision threshold to be greater than or equal to d.

It can be seen from Section 3.4 that the main computational load of FCA
comes from the first several sub-keys, and the subsequently considered sub-keys
result in the significant decrease in the number of possible keys. For example,
only 115 possible FCCs of the first 14 sub-keys remain when the thresholds are
k = 90 and d = 84 in Fig. 5. The addition of the last two sub-keys only results in
a very small amount of computation, which is almost negligible compared with
the previous calculation. For RET-FCA, this is equivalent to performing FCA
for 120 repetitions under k = 90 and d = 44, which may incur a longer runtime
for error tolerance compared to FCA. However, since FCA itself can efficiently
recover the key from very large thresholds, RET-FCA serves only to recover the
key from much larger spaces where FCA encounters difficulty, such as the typical
example given in Fig. 6.

4.3 Exhaustion Avoidance

All combinations of k6 and k7 shown in Fig. 7 are exhaustively searched if no
collisions between them are required as a precondition of RET-FCA. This is
very time-consuming when the thresholds k and d are very large. Although error
tolerance is considered on the two sub-keys k13 and k16 in Fig. 6, there is a



collision between them. Furthermore, FCA selects two new sub-keys for error
tolerance in each repetition, and it will find other combinations satisfying the
error tolerant conditions. This pair of sub-keys are used to construct FCCs in the
next round of error tolerance. Therefore, the collision between these two sub-keys
can be required as a precondition of RET-FCA to avoid exhaustively searching
all possible combinations. This error-tolerant scheme can also be extended to the
case of 3 or 4 sub-keys and requires a small number of collisions among them,
thereby reducing error-tolerant rounds. If the correct key is not found under the
current thresholds k and d, then they are increased in the next round of error
tolerance. FCA and RET-FCA can quickly recover keys from deeper candidate
spaces than FTC and GCA, but if the sub-keys and their collision values are
located in the space that they can’t exhaustively search, more advanced FCA
schemes should be taken into consideration.

5 Collision Optimization

The purpose of RET-FCA is to reduce d, so that sub-key values can still be
recovered even if collision values fall in the space where FCA cannot cope with.
However, error tolerance for multiple sub-keys introduced in Section 4.2 requires
repeated computations for the same collision, which is time-consuming. For ex-
ample, 16, 120, 560 rounds of computation are required if considering error
tolerance on 1, 2 and 3 sub-keys. Therefore, this needs to be optimized. In this
paper, prefix chain, a new concept is proposed to optimize 120 rounds of error
tolerance of two sub-keys to reduce the repeated computation of collisions.

5.1 Prefix Chains

In order to avoid repeated computation of collisions, one method is to calculate
a part of FCCs first, other collisions are then calculated from them. For example,
if both k1 ∼ k9 and k2 ∼ k9 are FCCs, then the prefix chain k1 ∼ k9 is used to
construct the FCCs of k1 ∼ k10. In this case, the computational complexity of
constructing the FCCs of newly added sub-keys is the smallest. It is noteworthy
that the repeated calculation of collision is unavoidable and can only be mini-
mized. A typical example is shown in Fig. 7, which considers error-tolerance on
k6 and k7. If considering error tolerance on k5 and k7 in the previous round,
the FCCs of k1, . . . , k4 and k6 are computed and saved to Θ. When performing
error-tolerance on k6 and k7, the FCCs of k1 ∼ k4 can not be directly extracted
from Θ to construct the FCCs of k1 ∼ k5. Since the addition of k6 deletes many
FCCs of k1 ∼ k4, the FCCs extracted from Θ are only a sub-set of the whole. It
also illustrates that although any sub-key combination in the FCCs is also FCCs,
the short chains can not be extracted from the long chains for the other rounds
of error tolerance. In this case, we can only construct FCCs of k1 ∼ k4 and save
them in Θ. If we perform error-tolerance on k5 and k7, we can construct FCCs
of k1 ∼ k4 and k6 from Θ. If we perform error-tolerance on k6 and k7, we can
also construct FCCs of k1 ∼ k4 and k5 from Θ. This is clearly feasible.



The longer the prefix is, the more subsets exist, and the more repeated com-
putations are required. The error tolerant performance is at the worst case when
the length of prefix chains reaches 14, which means that 120 rounds of error
tolerance are performed independently. A reasonable division of the subsets op-
timizes the efficiency of error tolerance. Due to the insufficient utilization of
collision information, the sub-keys from k4 to k9 have a large number of FCCs,
occupying the main calculation of FCCs of all 16 sub-keys (as shown in Fig. 5).
There are only less than 29 FCCs after the 10-th subkey under the very large
thresholds k = 90 and d = 84. According to this, we set the length of the pre-
fix chain to 10, and reduce the repeated construction of FCCs of the first 10
sub-keys to optimize RET-FCA.

5.2 Collision Division

Only up to six sub-keys are allowed in a subset of PFCCs when the length of
prefix chain is set to 10. For example, k11 ↔ k12, k11 ↔ k13, k11 ↔ k14, k11 ↔ k15
and k11 ↔ k16 have the same prefix k1 ∼ k10 and the attacker only needs to
calculate it once when performing error tolerance on these 6 sub-key pairs. In
this case, 120 rounds of error tolerance in RET-FCA only needs to compute
about 20 prefixes, which significantly reduces calculation of collisions. Another
collision division is to find large subsets first and then small ones, of which a
typical example is shown in Fig. 8. Here {ki ∼ kj}

∗

denotes all possible error
tolerant combinations between any two sub-keys from ki to kj , and {ki ∼ kj} ↔
{km ∼ kn} denotes error-tolerant combinations of the sub-keys between the left
set {ki ∼ kj} and right set {km ∼ kn}. Take S1 = {k1 ∼ k6}

∗

for example, it
represents 15 rounds of error tolerance between any two sub-keys of k1 ∼ k6,
which share the longest prefix chain k7 ∼ k16. In this case, 120 rounds of error
tolerance are divided into 11 non-overlapping sets S1 ∼ S11 (the corresponding
prefixes are shown in Table 1).
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Fig. 8. Collision division in RET-FCA.



Table 1. First round of collision division in RET-FCA.

sub-sets prefix chains sub-sets prefix chains

S1 k7 ∼ k16 S7 k3 ∼ k11

S2 k1 ∼ k4, k6, k12 ∼ k16 S8 k1 ∼ k4, k7 ∼ k11

S3 k1 ∼ k10 S9 k1 ∼ k6, k9 ∼ k11

S4 k3 ∼ k6, k12 ∼ k16 S10 k1 ∼ k8, k11

S5 k1 ∼ k2, k5 ∼ k11 S11 k1 ∼ k5, k12 ∼ k16

S6 k1 ∼ k2, k5 ∼ k6, k12 ∼ k16 − −

Table 2. Second round of collision division in RET-FCA.

sub-sets prefix chains length

S1 k7 ∼ k16 10

S2, S11 k1 ∼ k4, k12 ∼ k16 9

S3, S10 k1 ∼ k8 8

S4, S6 k5 ∼ k6, k12 ∼ k16 7

S5, S7 k5 ∼ k11 7

S8, S9 k1 ∼ k4, k9 ∼ k11 7

The prefix chains rotate with the error-tolerant and full-collision parts in
RET-FCA. We introduce two rounds of prefix chains computation to optimize
them. 120 rounds of error tolerance are divided into 11 subsets with prefix
chains including 10 sub-keys. These 11 subsets S1 ∼ S11 in Fig. 8 are fur-
ther divided. Each round of division entails several sub-sets having the same
prefixes, thus avoiding repeated calculation as much as possible. For exam-
ple, S2 = {k5, k7 ∼ k11}

∗

and S11 = k6 ↔ {k7 ∼ k11} share the same prefix
{k1 ∼ k4} ∪ {k12 ∼ k16}, while S3 = {k11 ∼ k16}

∗

and S10 = {k9 ∼ k10} ↔
{k12 ∼ k16} share the same prefix k1 ∼ k8. These 11 small subsets shown in
Fig. 8 are further divided into 6 subsets shown in Table 2. The FCCs with 10
sub-keys in Table 1 are calculated according to the prefixes in Table 2. Then,
all 120 rounds of error tolerance calculation is completed. The above strategy is
only a very simple optimization, other strategies to optimize RET-FCA can also
be used.

6 Experimental Results

Based on Algorithms 1 and 2, we will continue to use n to denote the num-
ber of remaining key candidates after collision optimization. We consider the
performances of FTC, GCA, FCA and RET-FCA under different thresholds k

and d, and different numbers of measurements N , respectively. Since full keys
that fall in Θ in many experiments are difficult to be searched exhaustively, it
is unreasonable to use Success Rate [27] to compare the performance of them.
Here we use Pr, the probability that the correct full key falls in Θ, as an eval-



uation criterion. Since the evaluations under large thresholds k and d are very
time-consuming, we only repeat each experiment 100 times.

6.1 Experiments on Different Thresholds k

Firstly, we set the number of power traces N to 100 and threshold d to 64, and
evaluate the performance of the four algorithms FTC, GCA, FCA and RET-FCA
under different thresholds k. The choice of N and d is set empirically, and the
settings we chose proved to be good thresholds in the remaining experiments.
The remaining key candidate space of these four algorithms increases with k

(as shown in Fig. 9). For GCA, the attacker can still recover the key from the
remaining space Θ by exhaustive search when k is small. However, with the
increase of k, GCA leaves a very large candidate space for the attacker, and
the exhaustive search quickly becomes intractable. The situation for FTC is
even worse than GCA. The remaining candidate space of it grows faster than
GCA and reaches about 250 when k = 32, and is close to 270 when k reaches
72 (compared with about 260 of GCA). Therefore, GCA is more efficient than
FTC.

Fig. 9. The remaining key candidates under different thresholds k.

FCA utilizes collisions several times more than those of FTC and GCA, and
thus has stronger ability to delete wrong candidates. It can reduce the large
candidate space to smaller than 26 when k is varied from 32 to 72 (a total of
280 ∼ 298.7188 key candidates). However, the probability Pr that the full key
falling into the remaining candidate space Θ shown in Fig. 10 indicates that
the number of wrong candidates deleted by FCA is the largest. Since only 100
measurements are used in each repetition, the correct sub-keys and collision
values are ranked deeply, it is impossible for the ones within the thresholds k



and d to form a FCC. RET-FCA solves this problem well, it achieves almost
the highest Pr under different thresholds (as shown in Fig. 10(a)). Since RET-
FCA utilizes collisions several times more than FTC and GCA, it can obtain
Pr similar to them and significantly reduce the number of remaining candidates.
When threshold k of RET-FCA is from 32 to 72, there are only less than 215

candidates remaining in Θ, which can be easily exploited by an attacker (also
can be seen from Fig. 9 (d)).
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Fig. 10. The probability of correct full key falling within Θ (a) and average time
consumption (b) under different thresholds k.

The Pr of RET-FCA increases from 0.61 to 0.76 when k is from 32 to 72,
while Pr of FCA increases from 0.26 to 0.31. This also reinforces the phenomenon
described in Section 4.1 where the collision values outside threshold d can be
restricted to one or several sub-keys for error tolerance, and this situation is
common. The ”gap” between these two schemes under the same threshold k

reflects the probability of this phenomenon. We only tolerate two sub-keys, and
at most five collisions per sub-key are allowed to fall outside the threshold.
In order to avoid exhausting the error-tolerant sub-keys, we require a pair of
collisions between them (as introduced in Section 4.3). The attacker can obtain
a higher Pr by allowing more collisions to be outside threshold d, or increasing
the number of sub-keys considered in error tolerance. However, this means that
more wrong candidates satisfy the current given collision conditions and remain
in Θ, which makes it more difficult for attackers to verify their keys.

From the execution time comparison of the algorithms (see Fig. 10(b)), FTC
performs the fastest, which uses the smallest amount of collision information and
results in the least number of wrong key candidates being deleted. RET-FCA
has the longest execution time, followed by GCA. FTC and FCA can recover
the key in less than 15 seconds under thresholds k = 72 and d = 64, but GCA
and RET-FCA need about 130 seconds and 160 seconds respectively. This also
indicates that the time spent on evaluations is acceptable under the thresholds
we choose. In terms of time growth, RET-FCA is much faster than FCA. The
former requires twice as much runtime the latter when k = 32 and this reaches to
about 10 times when k = 72. The increase of k causes more sub-keys candidates



to fall within the threshold (as shown in Fig. 10), which increases the probability
of collisions and thus becomes more time-consuming.

6.2 Experiments on Different Thresholds d

The distribution of n under different thresholds d when k = 64 and N = 100 is
shown in Fig. 11. Wang et al. discussed only the case of d = 1 in [30], and left the
complex case of d > 1 as an open problem. Ou et al. compared GCA considering
d > 1 with FTC in [22]. However, d was always set to 1. If none of the k

guesses of sub-key ki within the threshold collide with the k guesses of k1, then
there is no collision between k1 and ki. In this case, the attacker has to perform
brute-force search on ki. However, this probability becomes very small when d is
large. Compared with k pairs, a total of k ·d pairs of detections make it easier to
satisfy collisions. In this case, it is almost impossible for FTC to collide with any
guessed values of ki within the threshold in our experiments. This conclusion can
also be drawn from Fig. 9 and Fig. 11. It can be seen from the figures that the
range of n of FTC narrows with the growth of k and d, and similar phenomenon
occurs in GCA. However, since the two thresholds considered in [22] are much
smaller than those considered in this paper, only a very small range of n can be
observed, this phenomenon is not obvious, just like FCA in Fig. 11(c).

Fig. 11. The remaining key candidates under different thresholds d.

The remaining candidate space of FTC and GCA increases rapidly with d (as
shown in Fig. 11). FTC behaves similarly in different k and d, while n of GCA
grows faster with d than with k, and the range is more concentrated, although it
is much lower at the start. It can also be seen from Fig. 9(b) and Fig. 11(b) that
n approaches 238 when d = 64 and k = 32 for the former, and only 232 for the
latter. Similar conclusions can be drawn from FCA and RET-FCA. Compared



Fig. 9 with Fig. 11, increasing kmakes the growth of the remaining key candidate
space of these four schemes faster.
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Fig. 12. The probability of correct full key falling within Θ (a) and average time
consumption (b) under different thresholds d.

Increasing k also makes the growth of Pr of FTC, GCA, FCA and RET-FCA
faster than increasing d (see Fig. 10 (a) and Fig. 12 (a)). This is especially true
for FCA, wherein Pr increases from about 0.07 to about 0.40. To some extent,
this also reflects that CPA’s attack efficiency is higher than CCA’s, which makes
the correct values of sub-keys rank better than the collision values with higher
probability. In this case, it is obvious that increasing k can not make more correct
sub-key values fall within it. However, the increase of d can make more collision
values fall within it, and the collision conditions are easier to be satisfied and
allows for more possible full keys to remain in Θ. k = 64 and d = 72 take more
time than k = 72 and d = 64, which indicates that more collisions are established
(as shown in Fig. 12). This also proves that CPA has higher efficiency than CCA.
It can also be seen that the runtime of FTC and FCA are the shortest, while
GCA and RET-FCA are the longest. The time-consumption of GCA is embodied
in the design of collision verification, while the time-consumption of RET-FCA
is embodied in the rotation of error-tolerance. However, the four schemes can
be completed in a very short time even under such a large threshold, and the
remaining candidate spaces of FTC and GCA are infeasible for exhaustive search.

It can be seen from Fig. 10 and Fig. 12 that the Pr of FTC, GCA and RET-
FCA are almost the same. Pr of FCA under k = 72 is not even comparable to
that of RET-FCA under k = 32 in Fig. 10, and Pr of FCA under d = 72 is
also smaller than that of RET-FCA under d = 32 in Fig. 12. This indicates that
RET-FCA significantly improves the performance of FCA. In addition to the
influence of the distributions of sub-key values and collision values, the number
of collisions allowed to be out of threshold d and the number of error-tolerant
sub-keys also affect the experimental results. In order to further improve the
Pr of RET-FCA, they can be further increased. The former reflects the tradeoff
between error-tolerant time and exhaustive time. If it is large, it is more likely
that the correct collision values will fall within d. This also makes more erroneous



keys fall within d, which increases the difficulty of the error-tolerant computation
and the subsequent key verification.

6.3 Experiments on Different Numbers of Measurements

We also compare the performance of FTC, GCA, FCA and RET-FCA under
different numbers of measurements N . Here both k and d are set to 64. The
number of remaining key candidates of FTC and GCA under different thresholds
is densely distributed (as shown in Fig. 9 and Fig. 11). The ”diluted” dense
distributions can also be seen in Fig. 13. They increase slightly with the growth
of N , but the density does not increase so obviously as the ones under different
thresholds k and d. However, the distribution of n corresponding to FCA is
relatively scattered, just like the one of GCA under small thresholds discussed
in [22]. With the increase of N , the remaining key candidate space of RET-FCA
gradually becomes dense in 210 ∼ 215, and this phenomenon is obvious when
N > 100. Moreover, the increase of N also makes more correct sub-key values
and collision values fall within the thresholds, and the number of symbol ”+”
grows in Fig. 13. However, due to the limited collision information used by FTC
and GCA, a large number of candidate keys satisfy the given collision conditions,
and the density of them does not change significantly.

Fig. 13. The remaining key candidates under different numbers of measurements.

Compared with the growth of thresholds k and d, increasing the number
of measurements used in each repetition can make the sub-keys and the corre-
sponding collision values fall within the thresholds quickly. When the number of
measurements ranges from 40 to 150, the Pr of FTC, GCA and RET-FCA ranges
from 0 to about 1, compared to from 0 to about 0.6 of FCA. It can also be seen
from Fig. 14 (a) that the ”gap” of Pr between RET-FCA and FCA increases



significantly. This indicates that more collisions fall within the thresholds k and
d, while empty Θ still occurs under FCA, which illustrates the effectiveness of
error tolerance in RET-FCA. There are many long PFCCs in RET-FCA that
can still be computed, but under FCA, a null set may appear under the previ-
ous several sub-keys. This is also one reason why the runtime of FCA is much
smaller than that of RET-FCA in Fig. 10, Fig. 12 and Fig. 14. In principle,
more collisions mean that the time consumed by RET-FCA increases, which is a
normal phenomenon. The runtime of FTC and FCA is almost unchanged when
the thresholds k and d are fixed, while slight changes in GCA, and RET-FCA
increase significantly in Fig. 14(b). RET-FCA takes about 40 seconds to 160 sec-
onds under 40 to 150 measurements. With the increase number of measurements,
the runtime gap between FCA and RET-FCA increases significantly under the
same threshold. A small increase in the number of remaining sub-key combina-
tions in each of 120 rounds of error tolerance in RET-FCA will lead to a rapid
growth of n in Θ. The satisfaction of collisions under error tolerant conditions
significantly increases the runtime.
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Fig. 14. The probability of correct full key falling within Θ (a) and average time
consumption (b) under different numbers of measurements.

FCA deletes a large number of key candidates due to its strict collision con-
ditions under the same k, d and N . Its Pr is much lower than RET-FCA’s.
However, FCA is much faster than RET-FCA (as shown in Fig. 10, Fig. 12 and
Fig. 14). We can also take the outputs of CPA and CCA given in Section 3.4 as
an example to illustrate the efficiency of FCA. The thresholds k and d considered
can be much larger than 72 as discussed in this section. In fact, when we set both
k and d to 96, we are faced with very large key candidate space and collision
space of up to 2105.3594. However, FCA only needs 4207.4 seconds to complete
its execution. Only 737.2 seconds and 999.1 seconds are needed when k and d

are set to 80 and 96, and 96 and 80. In this case, the remaining key spaces are
87 and 201, respectively. As such, FCA has a very strong search ability and can
reduce the same search space to the smallest one compared with FTC, GCA and
RET-FCA, which demonstrates the benefits of FCA. This conclusion can also
be drawn from Fig. 9 to Fig. 11. Therefore, we can first use FCA to perform a



deep search. If the key is not recovered, we can then deploy RET-FCA. Since
FCA is time-consuming, we can use RET-FCA for fault tolerance under lower
thresholds than FCA, which is also the original intention of RET-FCA.

7 Conclusion

Several existing methods named TC, FTC and GCA have attempted to recover
the key from large search spaces far beyond exhaustive capabilities, and practical
schemes are given in FTC and GCA. However, the collision information used by
the existing methods are very limited. In particular, when large thresholds are
used, these methods result in very large key spaces that makes exhaustive search
infeasible. In order to make full use of all collision information, we propose Full
Collision Attack (FCA) in this paper, which is very simple and efficient. FCA can
search much larger candidate spaces than FTC and GCA. However, FCA requires
that collision values fall within the thresholds. We further propose an error-
tolerant scheme RET-FCA based on the phenomenon that collisions outside
the thresholds are only related to several sub-keys. This significantly reduce
the thresholds used in FCA and improve the performance. The intractable key
space for FTC and GCA can be easily conquered by FCA and RET-FCA. The
experimental results demonstrate the superiority of our scheme. Hence, FCA
and RET-FCA provide new directions by pushing the limits of exhaustible key
search space. This paper only considers error tolerance for collision values, and
leaves the optimization of RET-FCA and error tolerance for sub-keys as open
problems.
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