
The Science of Guessing in Collision Optimized

Divide-and-Conquer Attacks

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang

Hardware & Embedded Systems Lab, School of Computer Science and Engineering,
Nanyang Technological University, Singapore.

CHOu@ntu.edu.sg,ASSKLam@ntu.edu.sg,gyjiang@ntu.edu.sg

Abstract. Recovering keys ranked in very deep candidate space efficiently is a very
important but challenging issue in Side-Channel Attacks (SCAs). State-of-the-art
Collision Optimized Divide-and-Conquer Attacks (CODCAs) extract collision infor-
mation from a collision attack to optimize the key recovery of a divide-and-conquer
attack, and transform the very huge guessing space to a much smaller collision space.
However, the inefficient collision detection makes them time-consuming. The very
limited collisions exploited and large performance difference between the collision at-
tack and the divide-and-conquer attack in CODCAs also prevent their application in
much larger spaces. In this paper, we propose a Minkowski Distance enhanced Col-
lision Attack (MDCA) with performance closer to Template Attack (TA) compared
to traditional Correlation-Enhanced Collision Attack (CECA), thus making the op-
timization more practical and meaningful. Next, we build a more advanced CODCA
named Full-Collision Chain (FCC) from TA and MDCA to exploit all collisions.
Moreover, to minimize the thresholds while guaranteeing a high success probability
of key recovery, we propose a fault-tolerant scheme to optimize FCC. The full-key is
divided into several big “blocks”, on which a Fault-Tolerant Vector (FTV) is exploit-
ed to flexibly adjust its chain space. Finally, guessing theory is exploited to optimize
thresholds determination and search orders of sub-keys. Experimental results show
that FCC notably outperforms the existing CODCAs.

Keywords: FCC · fault tolerance · collision attack · divide and conquer · key enumer-
ation · side-channel attack

1 Introduction

Implementations of cryptographic algorithms on devices produce unintentional leakages
from various channels such as time [YGH16], power consumption [KJJ99, WYS+18], elec-
tromagnetic [GPPT16], and acoustic [GST14]. They can be statistically analyzed for
key recovery, which poses serious threats to the security of cryptographic devices. Power
consumption is one of the most widely used channels in SCA, which can be classified
as divide-and-conquer and analytical. Divide-and-conquer attacks, such as Correlation
Power Analysis (CPA) [BCO04] and Template Attack (TA) [CRR02], divide the huge key
candidate space into small sub-keys and conquer them independently. Then, the attacker
recombines the candidates of sub-keys via key enumeration [LWWW17, PSG16, VGS13].
However, key enumeration is limited by the enumeration power of the attacker, and can
only be performed on implementations that are “practically insecure” (for which the leak-
age allows for key enumeration). Key rank estimation tools such as histogram [GGP+15],
can bound the security level of AES-128 with an error of less than 1 bit within 1 second.
However, they require the knowledge of the key, and hence can only be used for evaluation.
Analytical attacks such as collision attacks [LMV04, MME10, SLFP04], aim at recovering

mailto:CHOu@ntu.edu.sg, ASSKLam@ntu.edu.sg, gyjiang@ntu.edu.sg

2 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

the full key together by solving a system of equations. Divide-and-conquer approaches
have the benefits of fast implementation and low knowledge requirements, while analytical
strategies exploit more leaky information.

The idea exploiting collision information to optimize divide-and-conquer attacks was
first presented in [BK12]. Two practical attacks named Fault-Tolerant Chain (FTC) and
Group Collision Attack (GCA) were reported in [OWSZ19, WWZ14]. These Collision Op-
timized Divide-and-Conquer Attacks (CODCAs) only guess a part of the best candidates
of both two attacks and try to recover the key from them. Their advantage is, the candi-
dates of collision attacks (e.g. Correlation-Enhanced Collision Attack (CECA) [MME10])
are exploited in divide-and-conquer attacks (e.g. TA) to find specific collision-pairs, thus
transforming the original huge candidate space to a much smaller collision space and
significantly lowering the complexity of the latter key recovery. CODCAs are indepen-
dent of specific distinguishers used, and their key recovery ability was fully demonstrated
in [OWSZ19, WWZ14]. However, the above-mentioned CODCAs have difficulties in deal-
ing with much larger candidate spaces. They will be introduced in the next subsection
before introducing our contributions.

1.1 Related Works

In this paper, we aim to exploit collision information from CECA to optimize the key
recovery of TA. Let kj denote the jth sub-key and τk denote the threshold of each sub-key,
which means only the τk best candidates of each sub-key will be considered. Like τk in
TA, we also set a reasonable threshold τd for the outputs of CECA, and only consider the
τd best candidates of each collision value (i.e. XOR value kj1

⊕ kj2
between two sub-keys

kj1
and kj2

). A collision happens if a pair of candidates of sub-keys kj1
and kj2

and their
collision value are within τk and τd simultaneously, and a chain includes at least a pair of
collision.

Bogdanov et al. proposed Test of Chain (TC) in [BK12]. They introduced the best
candidates within τd in CECA to the best candidates within τk in TA to construct specific
collisions, and tries to find a long chain from the first sub-key to the last sub-key. The key
recovery fails if at least one collision value exceeds the threshold τd. Wang et al. proposed
another CODCA named Fault Tolerant Chain (FTC) in [WWZ14], which found collisions
between the first sub-key and the remaining sub-keys. Key enumeration still works in
FTC, since the remaining candidates of k2 ∼ k16 under a guessing k1 are independent.
TC and FTC are very simple and fast (see pros and cons in Table 1). Key verification
assumes that the attacker knows plaintexts and the corresponding ciphertexts. It directly
encrypts the known plaintexts using the chains in the collision space one by one after
CODCAs. A chain is the key if the encryption generates the same ciphertexts. In this
case, key verification in CODCAs is much faster than the traditional key enumeration.

There have a total number of 120 pairs of collisions among 16 sub-keys in AES-128, but
TC and FTC only exploit 15 pairs resulting in poor utilization. They become too time-
consuming when we consider very large τd and τk, since too many chains are established
and there are too many collisions between them and candidates of the next sub-keys to
detect. Unfortunately, this happens in CODCAs exploiting CECA to optimize TA, since
the traditional CECA achieves performance much lower than TA. This is not surprising
since the original intention of CECA is to attack flawed masks (e.g. DPA contest v4.1
[dpa]). Collision information is difficult to exploit in such a case. Therefore, we need to
set a τd that is much larger than τk.

Group Collision Attack (GCA) in [OWSZ19] divided the full-key space of AES-128 in
TA into 8 big “groups" containing 4 sub-keys and made full use of collisions from CECA
to remove candidates that do not satisfy the number of collision required within each
group. It continuously splices long chains from short chains. Specifically, it makes the
two adjacent groups share two sub-keys. If their candidates are the same, a longer chain

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 3

can be stitched. GCA can exploit up to 32 pairs of collisions compared to 15 pairs in
TC and FTC, thus having much stronger ability against large thresholds τk and τd when
optimizing divide-and-conquer attacks. However, GCA still wastes the collisions between
different groups (see Section 3.4 for details). Moreover, GCA does not introduce any
fault tolerance strategy. Any one of the exploited 32 collision values falling outside the
threshold τd will lead to failure of key recovery. Therefore, its success rate [SMY09] is
relatively low. Finally, the repetitive detection of collisions between two groups also brings
a lot of computation and significantly increases its runtime.

Table 1: Pros and cons of the existing CODCAs.

CODCAs Advantages Disadvantages

TC
a. very quick key verification,
b. simple.

a. exploit only 15 collisions,
b. no fault tolerant strategy,
c. high complexity.

FTC

a. low complexity,
b. facilitate key enumeration,
c. fault tolerance strategy,
d. simple.

a. exploit only 15 collisions.

GCA
a. exploit about 32 collisions,
b. quick key verification.

a. no fault tolerant strategy,
b. repetitive collision detection,
c. high complexity.

It is worth mentioning that the purpose of this paper is not to improve the key enumer-
ation or rank estimation techniques, which excludes CODCAs. In fact, any improvement
of side-channel attacks will be reflected in the more advanced rank of the key. As we have
mentioned above, CODCAs introduce collisions from CECA to optimize the key recov-
ery of TA. Take AES-128 for an example, if a pair of candidates of the first and second
sub-keys are deleted due to the absence of their candidate of collision value, then all τ14

k

possible full-key candidates consisting of this guessing pair and the subsequent 14 sub-keys
within threshold τk will not be considered. In this case, CODCAs can quickly reduce the
candidates of TA within τk to a much smaller remaining chain space. The challenge of
CODCAs lies in the ability to construct the chains efficiently, leaving the attacker with
a chain space that is as small as possible to reduce the difficulty of key recovery, while
not significantly lowering the probability of key recovery. Therefore, it is obviously a big
challenge to construct such a combined attack.

1.2 Our Contributions

CODCAs are independent of the specific attacks to be optimized. In this paper, we
exploit CECA to optimize the key recovery of TA, and aim to build a simple, high efficient
CODCA, which exploits almost all collisions and leaves us the smallest candidates to verify.
The main contributions of this paper are as follows:

(i) CECA’s performance is significantly worse than TA. τd need to be set very large
in this case. Otherwise, the collision information is difficult to be exploited. We
introduce a Minkowski Distance enhanced Collision Attack (MDCA). It achieves
different performance on different orders. Therefore, it can easily be applied to op-
timize different divide-and-conquer attacks in various attack scenarios, thus making
the CODCAs more practical and meaningful.

(ii) FTC and GCA exploit only a small part of collisions and waste most of them. They
leave a large number of full-key candidates and are time-consuming when tackling
larger spaces. We propose a simple and efficient CODCA named Full-Collision Chain
(FCC) to efficiently exploit collision information between any two sub-keys, thus
having much stronger search capability than FTC and GCA. We further introduce
the guessing theory to determine the number of candidates to be guessed for each

4 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

sub-key under a fixed probability and optimize their search order, thus significantly
alleviating collision detection load.

(iii) FCC requires all collision values output by collision attack to be within the threshold,
so that τd usually needs to be set very large. We find a very important phenomenon
that collision values beyond τd can be optimized by performing fault tolerance on
only a few sub-keys. Based on this, we bundle several adjacent sub-keys together
and exploit the Fault-Tolerant Vector (FTV) to significantly reduce its threshold.
This significantly improves FCC’s flexibility and performance.

1.3 Organization

The rest of this paper is organized as follows: Measurement setups, TA and Collision
Attack (CA) including CECA are introduced in Section 2. Our MDCA, and the existing
CODCAs like TC, FTC and GCA, are presented in Section 3. Our FCC and its opti-
mization based on guessing theory are detailed in Section 4. The collision distribution
and fault tolerance strategies are discussed in Section 5. Experiments on an AT89S52
micro-controller are presented in Section 6. Finally, we conclude this paper in Section 7.

2 Preliminaries

2.1 Measurement Setup

Our experiments are performed on the power traces leaked from an AT89S52 micro-
controller, which facilitates linear collision attacks1. Its operating frequency is 12 MHz,
and the shortest instructions take 12 clock cycles. We exploit assembly language to imple-
ment the AES-128 algorithm, and use the instruction “MOVC A, @A+DPTR” to perform
the S-box operation, which requires 24 clock cycles. The register “DPTR” saves the start-
ing address of the S-box, register “A” saves the offset, and the output of the lookup table
is stored back to register “A”. Sampling rate of the Picoscope 3000 is set to 125 MS/s.
We acquired 50000 power traces and performed CPA to extract a Point-Of-Interest (POI)
with high correlation coefficient for each S-box. We then undertook our experiments using
MATLAB R2016b on a HP desktop computer with 6 Intel(R) Xeon(R) E5-1650 v2 CPUs,
16 GB RAM and a Windows 10 operating system.

2.2 Template Attack

The classical Template Attack (TA) includes two stages. Take AES-128 on our AT89S52
micro-controller for an example, we encrypt nj plaintexts Xj =

(

x1, x2, . . . , xnj

)

hav-
ing the same Hamming weight of their S-box outputs, acquire nj power traces Tj =
(

t1, t2, . . . , tnj

)

. We then exploit their POIs T
′

j =
(

t1, t2, . . . , tnj

)

to profile the mean:

mj =
1

nj

nj
∑

κ=1

tκ (1)

and covariance matrix:

Cj =
1

nj

nj
∑

κ=1

(tκ − mj) (tκ − mj)
T

, (2)

for templates (mj, Cj) (1 ≤ j ≤ 9). 9 templates with Hamming weights from 0 to 8 are
constructed in the profiling stage. Here the symbol “T" denotes matrix transposition.

1Linear collision attack is infeasible in parallel implementation as explained in [GS13].

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 5

In the attack stage, the probability of a new measurement with POIs t generated by
encrypting x having the same Hamming weight with template (mj, Cj) satisfies:

p
(

t
∣

∣mj, Cj

)

=
e−

(mj −t)·(Cj)−1
·(mj −t)T

2

√

(2 · π)|mj |
det (Cj)

. (3)

Here |mj | represents the number of POIs on template mj . We then normalize and rank
the probabilities of each sub-key output by TA in descending order, and obtain pj =
{

p1
j , p2

j , . . . , p256
j

}

satisfying:
256
∑

i=1

pi
j = 1 (4)

as introduced in [CP17], where pi
j denotes the ith largest probability.

2.3 Collision Attacks

AES-128 performs the “SubBytes” operation (16 parallel S-box applications) in its first
round. Let kj denote the j-th sub-key, and xj denote the corresponding encrypted plain-
text byte. A generalized internal AES-128 linear collision [BK12] occurs if there are two
S-boxes in the same AES encryption or several encryptions with the same byte value as
their input (as shown in Fig. 1). The attacker finds a collision:

Sbox(xj1
⊕ kj1

) = Sbox(xj2
⊕ kj2

), (5)

and obtains a linear equation:

xj1
⊕ kj1

= xj2
⊕ kj2

. (6)

Since the 16 S-boxes of AES-128 are exactly the same in each round, the following collision
value is obtained:

δj1,j2
= kj1

⊕ kj2
= xj1

⊕ xj2
, (7)

which means that although these two sub-keys are unknown, they have a fixed XOR value.
In this case, the classical collision detection function can be defined as:

φ (xj1
⊕ kj1

, xj2
⊕ kj2

) =

{

1, if D (tj1
, tj2

) ≤ τpo

0, else
. (8)

Here D (tj1
, tj2

) is the matching function of two traces (e.g. Euclidean distance) and τpo

is the corresponding threshold.

jk jk

jj

jx jx

Figure 1: A linear collision between the j1-th and the j2-th S-boxes happens if they have
the same outputs (βj1

= βj2
).

6 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

Correlation-Enhanced Collision Attack (CECA) [MME10] can be used to detect δ-s.
Take the collision between the first and second S-boxes in the first round of AES-128 as
an example, CECA divides their traces into 256 classes according to their plaintext bytes,
calculates the mean power consumption vector tj(j = 1, 2) of each class, and computes
the correlation coefficient between them:

ρ
{(

t
α
1 , t

α⊕δ1,2

2

)

∣

∣α = 0, 1, 2, . . . , 255
}

under a guessing δ1,2 (see Eq. 7). Here α from 0 to 255 is the index of 256 means in each
class. Suppose that we have detected a total number of ν collision values, then a collision
system is obtained:

δj1,j2
= kj1

⊕ kj2
,

δj3,j4
= kj3

⊕ kj4
,

. . .

δj2ν−1,j2ν
= kj2ν−1

⊕ kj2ν
,

(9)

of which each pair of collision is a step of chains. We may not find all collision values in
an attack, several chains rather than a long chain including all sub-keys are obtained in
this case. Each chain includes one free variable to exhaust. In this case, collision attacks
establish relationships among multiple sub-keys. The complexity of key recovery depends
on the number of chains (i.e., the number of free variables).

3 Collision-Optimized Divide-and-Conquer Attacks

Traditional CECA’s efficiency is much lower than TA’s. If TA and CECA are directly
performed on the POIs described in Section 2.1, their performance will still exhibit a very
big gap. Moreover, the traditional CODCAs are not applicable against large τk and τd

as explained in Section 1.1. Therefore, we will first introduce a profiled CECA named
Minkowski Distance enhanced Collision Attack (MDCA) with performance close to TA in
Section 3.1. Then, we give the examples of the existing CODCAs including Test of Chain
(TC), Fault-Tolerant Chain (FTC) and Group Collision Attack (GCA) in the following
Sections 3.2, 3.3 and 3.4, separately.

3.1 Minkowski Distance enhanced Collision Attack

Let n denote the number of power traces exploited in attacks, γ denote the order of
Minkowski distance applied, and ti

1

(

ti
2

)

denote the POIs of the first (second) S-box of the
ith power trace. We build a new scheme named Minkowski Distance enhanced Collision
Attack (MDCA) as:

γ

√

√

√

√

n
∑

i=1

2
∑

j=1

(

ti
j − m

Sbox(xi
j
⊕kj)

j

)γ

. (10)

Obviously, the power consumption of POIs ti
1 and ti

2 are matched with profiled mean power
consumption vectors m1 and m2 of S-boxes 1 and 2 under a pair of guessing sub-keys k1

and k2, and MDCA is also a profiled attack like TA.
We randomly extract 12800 traces to profile Hamming weight templates for TA, and

50 traces to profile template of each intermediate value in MDCA. The corresponding
ranks of an experiment that TA and MDCA are performed on randomly selected 200
power traces are shown in Tables 2 and 3. The probabilities in Table 2 are normalized
as explained in Section 2.2. Thresholds τd and τk here are set to 12 and 10. The correct
sub-keys are 212, 153 and 17 as bolded, and their probabilities are also given in Table 2.
The candidates of them are randomly combined, and the probability product of these

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 7

3 sub-keys is ranked at 312. There are 7, 11 and 12 candidates for collisions k1 ↔ k2,
k2 ↔ k3 and k1 ↔ k3, respectively (as shown in Table 4).

Table 2: The ranked candidates of 3 sub-keys within τk in TA.

k1 k2 k3

rank value p value p value p

1 224 0.4273 153 0.6867 108 0.1724
2 178 0.2841 204 0.0717 17 0.1564
3 217 0.1565 80 0.0639 75 0.1100
4 212 0.0384 236 0.0309 160 0.1073
5 97 0.0150 244 0.0214 74 0.0554
6 222 0.0074 188 0.0210 117 0.0342
7 51 0.0068 180 0.0150 35 0.0182
8 249 0.0054 196 0.0139 213 0.0156
9 211 0.0050 12 0.0090 60 0.0146
10 221 0.0043 146 0.0066 12 0.0143
11 134 0.0040 24 0.0064 155 0.0141
12 244 0.0038 222 0.0047 229 0.0140

Table 3: The ranked candidates of δ-s within τd in MDCA.

δ1,2 δ1,3 δ2,3

77 197 136
73 236 161
12 193 201
28 132 0
29 148 224
69 149 2

221 77 192
15 173 165
65 232 225
93 79 128

Table 4: The collisions in combined attack TA and MDCA.

k1 ↔ k2 k2 ↔ k3 k1 ↔ k3

224 236 153 17 224 117
217 196 153 60 224 12
212 153 153 155 212 17

97 188 204 12 212 60
249 188 236 108 212 155
249 180 236 12 97 160
211 146 188 117 97 229

188 60 222 75
180 17 222 74
180 60 249 108
12 12 249 17

249 60

3.2 Test of Chain

Bogdanov et al. proposed Test of Chain (TC) in [BK12], which attempted to find a long
chain including 15 pairs of collisions k1 ↔ k2, k2 ↔ k3, . . ., k15 ↔ k16 from the first sub-
key to the 16th sub-key. If we perform TC on the candidates of the 3 sub-keys with their
δ-s given in Table 4, the remaining chains are shown in Table 5. It’s noteworthy that TC
fails to provide a practical scheme under very large thresholds τd and τk, since too many
chains satisfy the collision conditions and the chain construction is too time-consuming in
this case as explained in Section 1.1. Therefore, we do not consider it in the rest of this
paper.

2Multiplication can be converted into addition using logarithm of probabilities (e.g., log2 (p1 · p2) =
log2 (p1) + log2 (p2)) in key enumeration. For simplify, the sums instead of products are exploited
like [GGP+15, Gro18]. This strategy is also exploited in the rest of this paper.

8 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

Table 5: TC Chains include k1 ↔ k2 and k2 ↔ k3.

k1 ↔ k2 ↔ k3 probability
224 236 108 0.4273
224 236 12 0.4273
212 153 155 0.0421
212 153 17 0.0388
212 153 60 0.0384
97 88 117 0.0156
97 88 60 0.0150

249 88 117 0.0061
249 180 17 0.0058
249 180 60 0.0054
249 88 60 0.0054

Table 6: FTC Chains include k1 ↔ k2 and k2 ↔ k3.

k1 ↔ k2 ↔ k3 probability
224 236 117 0.4279
224 236 12 0.4273
212 153 155 0.0421
212 153 17 0.0388
212 153 60 0.0384
97 188 160 0.0150
97 188 229 0.0150

249 180 17 0.0058
249 188 17 0.0058
249 180 108 0.0054
249 188 108 0.0054
249 180 60 0.0054
249 188 60 0.0054

3.3 Fault Tolerant Chain

Wang et al. provided the first practical CODCA against large τk and τd named Fault
Tolerant Chain (FTC) in [WWZ14]. FTC tries to find collisions between the first sub-key
and the other 15 sub-keys: k1 ↔ k2, k1 ↔ k3, . . ., k1 ↔ k16. If there is no collision
between k1 and kj (2 ≤ j ≤ 16), which means that all possible guessing values of k1, kj

and k1 ↔ kj are not within the thresholds τk and τd simultaneously, then FTC assumes
that a fault has occurred and enumerates this sub-key. The remaining chains that FTC
performs on Tables 2 and 3 are shown in Table 6.

3.4 Group Collision Attack

Group Collision Attack(GCA) [OWSZ19] divides the 16 sub-keys of AES-128 into 8 big
groups of equal size. Each group shares its first two sub-keys with its former group, and
the last two sub-keys with its latter group. It is difficult to make full use of collision
information within or among groups. GCA alleviates this by continuously splicing short
chains to obtain long chains. For example, it exploits collisions k1 ↔ k2, k2 ↔ k3 and
k1 ↔ k3 to build k1 ↔ k2 ↔ k3 (as shown in Table 7). k2 ↔ k3 ↔ k4 is constructed in
the same way, and GCA obtains the first group k1 ↔ k2 ↔ k3 ↔ k4. It then builds the
second group k3 ↔ k4 ↔ k5 ↔ k6. If k3 ↔ k4 of these first two groups are the same, then
GCA obtains a longer chain k1 ↔ · · · ↔ k6. CODCAs transform the original guessing
space of divide-and-conquer attacks to much smaller collision chain space and make the
key recovery easier. This is intuitively embodied in the more advanced key ranking (i.e.
the rank of the correct chain 212 ↔ 153 ↔ 17 drops from 31 in TA to 3).

4 Full-Collision Chains

GCA exploits information from up to 32 δ-s for its chain construction. It leaves us a
much smaller chain space than TC and FTC. However, GCA also has its limitations as

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 9

Table 7: GCA Chains include k1 ↔ k2, k1 ↔ k3 and k2 ↔ k3.

k1 ↔ k2 ↔ k3 probability
224 236 12 0.4273
212 153 155 0.0421
212 153 17 0.0388
212 153 60 0.0384
249 180 17 0.0058
249 180 60 0.0054
249 88 60 0.0054

mentioned in Section 1.1: (1) GCA still wastes the most of collisions between different
groups, (2) it does not contain any fault tolerant strategy and success rate is very low, and
(3) repetitive detection of collisions makes it very time-consuming. These disadvantages
greatly limit its ability against huge candidate space. In this section, we propose a more
efficient CODCA named Full-Collision Chain (FCC), which can quickly exploit the largest
amount of collision information when constructing chains, and is suitable for very large
τk and τd. Its collision detection mechanism will be introduced in Section 4.1. Moreover,
an example is given in Section 4.2 to illustrate its performance compared to the existing
CODCAs. Finally, we introduce guessing theory into FCC to make its threshold τk in TA
flexible.

4.1 Collision Detection Mechanism in FCC

Unlike the classical collision detection function for single collision attacks defined in Eq. 8,
it can be defined as:

φ
(

ξi1

j1
, ξi2

j2

)

=

{

1, if ξi1

j1
⊕ ξi2

j2
∈

{

φ1
j1,j2

, . . . , φτd

j1,j2

}

0, else
. (11)

in CODCAs (i1 ≤ τk, i2 ≤ τk). Here ξi
j denotes the ith best candidate of kj in TA, and

φ1
j1,j2

, . . . , φτd

j1,j2
are the τd best candidates of δj1,j2

-s in MDCA. Single CECA including
MDCA only determines δ-s, while CODCAs determine specific collisions between sub-keys.
For simplicity, we use ξi1

j1
↔ ξi2

j2
to represent this pair of collision, which is a candidate of

kj1
↔ kj2

. It includes candidates information of sub-keys kj1
and kj2

, and collision value
δj1,j2

= kj1
⊕ kj2

.
Actually, the collision detection mechanism exploiting all collisions can be very simple.

Considering the given thresholds τk and τd, if the length of the current qth chain Cq (i.e.
the number of sub-keys included) is nl, then the number of collisions between it and the
ith best candidate ξi

j (1 ≤ i ≤ τk) of kj in TA is:

Φ
(

Cq, ξi
j

)

=

nl
∑

r=1

φ
(

Cr
q, ξi

j

)

. (12)

Here Cr
q denotes the candidate of the rth sub-key on the chain, and the collision detection

function φ
(

Cr
q, ξi

j

)

satisfies Eq. 11. Let
[

Cq, ξi
j

]

denote the possible chain constituting of

ξi
j and Cq, then the total number of collisions of the new chain can be updated by:

Γ
([

Cq, ξi
j

])

= Γ (Cq) + Φ
(

Cnl

q , ξi
j

)

. (13)

Here Γ (Cq) denotes the number of collisions on the current chain Cq, and it satisfies:

Γ (Cq) =

nl−1
∑

r1=1

nl
∑

r2=r1+1

φ
(

Cr1

q , Cr2

q

)

. (14)

10 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

Following the CODCAs like TC and FTC, we name this CODCA exploiting all collision
information as Full-Collision Chain (FCC). FCC exploits the largest number of collisions,
thus leaving us the smallest chain space in theory. Therefore, it has strong key recovery
ability when both τd and τk are large enough to make all sub-keys and δ-s fall within
them.

4.2 Typical Application Scenarios

2 4 6 8 10 12 14 16

Sub-keys

0

10

20

30

40

R
an

ks

(a) Ranks of sub-keys

0 20 40 60 80 100 120

-s

0

10

20

30

R
an

ks

(b) Ranks of collision values

Figure 2: The ranks of sub-keys (a) and correct δ-s (b).

0 100 200 300 400 500

Number of bins

10

20

30

40

50

60

70

R
an

k
es

tim
at

io
n

(b
its

)

(a) TA

0 100 200 300 400 500

Number of bins

22

23

24

25

26

27

28

29

R
an

k
es

tim
at

io
n

(b
its

)

(b) FTC

0 100 200 300 400 500

Number of bins

10

12

14

16

18

20

22

24

R
an

k
es

tim
at

io
n

(b
its

)

(c) GCA

Figure 3: Key rank estimation on the original space of TA, and the remaining chain space
of FTC and GCA.

We aim to conquer the key ranked at very deep space in this paper. In other words, we
need to set both τd and τk very large. We perform TA and the 5th-order MDCA (γ = 5)
on the power traces extracted in Section 3. We rank the candidates from the best one
to the worst one for each sub-key and each δ, and the experimental results are shown
in Fig. 2. For example, the worst ranked sub-key is k16 and its rank is 39 in Fig. 2(a),
and the worst ranked δ is the one between k3 and k16, and its rank is 28 in Fig. 2(b).
Therefore, to ensure that FCC can recover the key, the thresholds τk and τd should be set
to at least 39 and 28 respectively. In other words, we need to find the correct chain from
such two huge spaces in CODCAs.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 11

We use the histogram based key rank estimation in Algorithm 1 in [GGP+15] to
estimate the security levels, the corresponding lower and upper bounds given in Section
3.2 in [GGP+15] are also exploited. It’s worth noting that “key rank estimation” on
CODCAs is different from that on TA. Specifically, for FTC, the 15 sub-keys k2 ∼ k16

are only related to k1 and are independent of each other. Therefore, classical key rank
estimation can still be performed on them under each candidate of k1, and the rank of
the key can be estimated by the sum of these estimations. The 16 sub-keys are divided
into 8 big “groups" in GCA as introduced in Section 3.4. To facilitate the key recovery,
we exploit the remaining candidates of 4 non-overlapping groups and ignore their inter-
group collisions, thus making them independent. Probability products of each group are
computed, and classical histogram based key rank estimation is performed on them.

We set τk to 40 and τd to 40, thus all sub-keys and δ-s are within such huge thresholds.
The results of the above described “key rank estimation” after TA, FTC and GCA are
shown in Fig. 3. As there are only about 300 full-collision chains in FCC, their probability
products can be ranked directly. Traditional key enumeration, FTC and GCA optimize
the computing power from unconquerable huge space τ16

k = 4016 = 216·log2 40 = 285.1508

within threshold τk = 40 to 255.7387, 227.9627 and 213.0338. The time consumption of GCA,
FTC and FCC is about 4.040, 0.4070 and 3.3360 seconds, which vividly indicates the
superiority of CODCAs. It’s noteworthy that the time consumption of key recovery in
CODCAs includes the runtime of CODCAs themselves and the latter key verification.
Key verification verifies each full-key candidate by encrypting the known plaintexts, and
checking whether the ciphertexts are the same as the ones encrypted by the correct key.
FTC and GCA reduce the difficulty of key recovery, but the following “key enumeration”
(including key verification), which enumerates the probabilities of full-key candidates from
the largest to the smallest, is still time-consuming. FCC exhibits its capability in this case,
and leaves us the smallest space when both τk and τd are reasonably set.

The number of remaining chains under the thresholds near τk = 40 and τd = 40 is
shown in Fig. 4. The number of remaining chains is almost the same under several close
thresholds τd and τk. This fully illustrates the superiority of FCC where we do not need
to adjust the thresholds deliberately, as small changes in them will not significantly affect
the computation overhead.

3 4 5 6 7 8 9 10 11 12 13 14 15 16

The i th sub-key

0

2

4

6

8

10

N
um

be
r

of
 c

ha
in

s
(b

its
)

k
=40,

d
=30

k
=40,

d
=35

k
=40,

d
=40

k
=40,

d
=45

k
=40,

d
=45

Figure 4: The number of FCC chains under each sub-key.

4.3 Guessing Theory Optimization

The existing CODCAs set a fixed τk for all sub-keys. On one hand, the locations of some
sub-keys are relatively advanced, we only need to guess a small number of candidates
before reaching them. In this case, guessing deeper locations wastes computing power.

12 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

On the other hand, a part of sub-keys are ranked very deeply, we need to set a large τk

to contain them. Therefore, it is more reasonable to define a τk flexibly for each sub-key
according to the results of TA, rather than a fixed one for all sub-keys.

A metric considers only the candidates that satisfy the given probability value α ∈
(0, 1):

µα (Kj) = min

{

τk

∣

∣

∣

τk
∑

i=1

pi
j ≥ α

}

, (15)

which is named as α-work-factor in [Pli00]. Here τk is the guessed number of candidates
of kj , pi

j is the probability of the i-th best candidate of kj as introduced in Section 2.2, and
Kj = {0, 1, . . . , 255} is its possible candidates. Compared to set a unified threshold τk for
all sub-keys, guessing theory enables us to define a more flexible and reasonable threshold
for each sub-key separately based on our computing power. The success probability and
the candidate space:

Ω =

16
∏

j=1

µα (Kj) (16)

under the given thresholds can be estimated quickly. For example, when we set α = 0.996
in our paper, the corresponding theoretical success probability is α16 = 0.99616 = 0.9379.
We rank sub-keys in ascending order according to their number of guesses µα (Kj) (1 ≤ j ≤ 16)
to lower computational complexity. The average number of candidates of the re-ranked
sub-keys under different number of power traces (denoted as n) with 200 repetitions is
shown in Fig. 5.

2 4 6 8 10 12 14 16

The re-ranked sub-keys

0

10

20

30

40

50

60

70

80

N
um

be
r

of
 c

an
di

da
te

s

200 traces
240 traces
280 traces
320 traces
360 traces
400 traces
440 traces

Figure 5: The number of candidates of the re-ranked sub-keys under α = 0.996.

The sub-keys of TA are re-ranked before recovery according to their number of can-
didates provided by guessing theory, which makes FCC more efficient. On one hand,
although all collisions of the sub-keys re-ranked in the front is fully utilized by our FCC,
the candidates that can be excluded are limited, but their number of candidates is also
small (see Fig. 5). In this case, although the candidates will be left with a high probability,
the number of remaining chains is still very small. This can lower the heights of the first
several sub-keys in Fig. 4 and make FCC work faster. On the other hand, there are a
lot of candidates for sub-keys re-ranked backward. FCC also requires more collisions on
them, so that the number of remaining chains is not too large. This significantly reduces
the runtime of FCC, and leaves us a small chain space, which facilitates the future key
recovery.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 13

5 Fault Tolerance

FCC can efficiently reduce the candidates within threshold τk by maximizing collision
exploitation. Therefore, the thresholds τk and τd can be set quite large under FCC, and
the number of remaining chains will be much smaller compared to FTC and GCA. If the
key is within the threshold, it can be recovered easily. However, FCC requires all δ-s to
fall within τd. There may be a few δ-s ranked much deeper than we have discussed in
Section 4.2, which may make it too time-consuming or impossible for FCC to conquer the
key. In this case, it requires fault tolerance on FCC that allows a small number of δ-s to
be beyond threshold τd. In other words, we need to consider the chains that are not so
“full", but “partially full”.

We will first discuss the distribution of δ-s beyond τd in Section 5.1. In principle, to
allow a fixed number of δ-s beyond τd, rotative fault tolerance is required. We will give a
second-best strategy to bundle several adjacent sub-keys together as big “blocks” for fault
tolerance to avoid this in Section 5.2. Finally, as it’s difficult to set the number of δ-s
beyond τd for each block, we exploit additional constraints and provide a good reference
in Section 5.3.

5.1 Distribution of Collision Values Beyond τd

We delimit the collision kj1
↔ kj2

on kj2
for fault tolerance. An interesting phenomenon

is that the δ-s outside the threshold τd do not occur randomly, but are related to only one
or several sub-keys. Take experimental results shown in Fig. 2 for example, δ-s within
different τd ranges are shown in Table 8. There are only 1, 1 and 4 δ-s for k14, k15, and k16

beyond τd = 10, respectively. Only 2 δ-s should be faultily tolerated if τd reaches 15. In
fact, this can be analyzed from Signal-to-Noise Ratio(SNR) of the selected power traces
and MDCA used. These effects come from many aspects, such as the difficulty to align
the power traces of all S-boxes strictly, the noise from chip and sampling equipments, and
different performance of distinguishers.

Table 8: δ-s within different τd ranges.

Ranges Collisions

10 ≤ τd < 15
k3 ↔ k14, k3 ↔ k15, k13 ↔ k16,

k14 ↔ k16

15 ≤ τd < 20 k15 ↔ k16

20 ≤ τd < 25

25 ≤ τd < 30 k3 ↔ k16

We randomly select 320 out of the 50,000 power traces to perform MDCA (1000 repe-
titions), count the number of δ-s beyond τd from 10 to 60, and analyze success probability
if these δ-s can be well concentrated on the given number of sub-keys for their fault-
tolerance. The experimental results are shown in Figs. 6 and 7. To achieve a success rate
0.80, we need to perform fault tolerance on δ-s of more than average 7 sub-keys so that
all remaining δ-s are within τd (as shown in Fig. 6). It can also be seen from Fig. 7 that
the number of δ-s beyond τd is almost smaller than 30, 20, 15, 15, 15, 14 when τd is 10,
20, 30, 40, 50 and 60, which also fully illustrates that δ-s beyond the given τd are not
distributed randomly, but can be concentrated on a few sub-keys for their fault tolerance.
It’s noteworthy that we give the above phenomena only to better illustrate the basis of
our fault tolerance strategy. In fact, our fault tolerance strategy is very flexible, it can be
dynamically adjusted according to the specific attack situations, the knowledge of collision
distribution is not required (see Sections 5.2 and 5.3 for details).

14 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

1 2 4 6 8 10 12 14 15

Number of fault-tolerant sub-keys

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

d
=10

d
=20

d
=30

d
=40

d
=50

d
=60

Figure 6: Success probabilities if δ-s beyond τd can be fully concentrated on the given
number of sub-keys for their fault tolerance.

0 10 20 30

Number of -s beyond d

0

100

200

300

400

500

R
ep

et
iti

on
s

(a) d=10

0 10 20 30

Number of -s beyond d

0

100

200

300

400

500

R
ep

et
iti

on
s

(b) d=20

0 10 20 30

Number of -s beyond d

0

200

400

600

R
ep

et
iti

on
s

(c) d=30

0 10 20 30

Number of -s beyond d

0

200

400

600

R
ep

et
iti

on
s

(d) d=40

0 10 20 30

Number of -s beyond d

0

200

400

600

R
ep

et
iti

on
s

(e) d=50

0 5 10 15 20 25

Number of -s beyond d

0

200

400

600

R
ep

et
iti

on
s

(f) d=60

Figure 7: Distributions of δ-s beyond threshold τd when n = 320.

5.2 Fault Tolerance Strategy

δ-s beyond τd can be concentrated on several sub-keys for fault tolerance. For example, if
we perform rotated fault-tolerance on δ-s beyond τd on 3 (4) sub-keys in Fig. 6, the success
rate can reach up to 0.60 (0.75) when τd = 50 (60). Rotated fault-tolerance here divides
sub-keys into full-collision and fault-tolerant parts. Here δ-s between any two sub-keys in
the full-collision part are within τd, and others in fault-tolerant part or between two parts
are not strictly required. Therefore, the rotated fault-tolerance on δ-s on 2 (3) sub-keys

requires

(

16
2

)

= 120

((

16
3

)

= 560

)

rounds of computation respectively. Although it

can significantly make τd smaller, it is still very time-consuming and a large number of
collisions are detected repeatedly. In fact, δ-s beyond τd are limited and scattered on
different sub-keys. In this case, only a small number of them happen on several adjacent
sub-keys and are convenient for fault-tolerance. Here we give a fault tolerance strategy
for our FCC, in which several sub-keys are “bundled" together for fault tolerance, so that
each large “block" allows a small number of δ-s beyond τd without strictly limiting the
specific sub-key of faults, so as to achieve good fault-tolerant performance.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 15

We only consider the case that each block includes two sub-keys in this paper. Let k
′

j

denote the sub-key with the jth smallest number of candidates within τk after guessing
theory optimization. Here we exploit ξi

j to denote the i-th best candidate of k
′

j as explained
in Section 4.1. For a chain 212 ↔ 24 ↔ · · · ↔ 153 including candidates of a total of j

sub-keys shown in Fig. 8, the total number of collisions between it and the candidates
{

ξ
ij+1

j+1 , ξ
ij+2

j+2

}

of the two sub-keys within the block
{

k
′

j+1, k
′

j+2

}

is:

nt =

j+2
∑

κ=j+1

nl
∑

r=1

φ
(

Cr
q, ξiκ

κ

)

+ φ
(

ξ
ij+1

j+1 , ξ
ij+2

j+2

)

. (17)

Here nl = j, 1 ≤ ij ≤ µα

(

K
′

j

)

and φ
(

ξ
ij+1

j+1 , ξ
ij+2

j+2

)

is the collision detection between ξ
ij+1

j+1

and ξ
ij+2

j+2 . It is noteworthy that blocks can be either larger or smaller, or different from
fault tolerance on δ-s of independent sub-key. If we allow a total number of 6 δ-s to be
beyond τd on this block, this covers all cases where at most 6 δ-s for all sub-keys in the
block are out of τd. As mentioned before, δ-s beyond τd only occur on some sub-keys
and the distribution of them is relatively scattered if τd is set reasonably. Therefore, the
number of δ-s allowed to be beyond τd in FCC with fault tolerance does not need to be very
large. Moreover, the optimized FCC avoids rotative fault tolerance and effectively reduces
the complexity of chain construction, which can be verified through the experiments in
Section 6.

Block

...

A chain

'

1k
'

2k
'

j-1k
'

jk 1jx + 2jx +

kt

229 24 153

126

212

192

Figure 8: FCC performs fault tolerance on a block with 3 δ-s beyond τd.

5.3 Constraints

It is not complex to set a good fault-tolerant threshold for each big “block” accord-
ing to computing power. The jth re-ranked sub-key k

′

j has a total of j − 1 δ-s in
our FCC (see Section 4.1). Therefore, we can allow different number of δ-s to be be-
yond τd for each block, and the fault-tolerant δ-s of these blocks together constitute the
Fault-Tolerant Vector (FTV), which is very “thin" in front and “fat" in backward. For

example, if we allow 0, 1, 2, 3, 4, 5, 6 and 7 δ-s to be beyond τd for the 1st, 2nd, 3rd, 4th,
5th, 6th, 7th and 8th blocks independently, then we get a FTV as (0, 1, 2, 3, 4, 5, 6, 7). To
avoid exhaustion, it would be better if the number of fault-tolerant δ-s is smaller than the
number of δ-s of the first sub-key in each block.

An important advantage of FCC with fault tolerance is that it enables us to decide
whether a block should be “fat” or “thin” according to our computing power. To make

16 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

2 3 4 5 6 7 8

The i th block

4

6

8

10

12

14

16

18

N
um

be
r

of
 c

an
di

da
te

s
(lo

g
2)

FTV=(0,1,2,3,4,6,8,10), Con
FTV=(0,1,2,3,4,6,8,10)
FTV=(0,0,1,1,2,2,4,5), Con
FTV=(0,0,1,1,2,2,4,5)
FTV=(0,1,2,3,4,5,6,7), Con
FTV=(0,1,2,3,4,5,6,7)
FTV=(0,1,1,2,2,3,3,4), Con
FTV=(0,1,1,2,2,3,3,4)

constraint

Figure 9: The number of chains under different FTV-s with and without constraints.

a block “thin” (i.e. fewer chains when considering the block), we just need to set the
corresponding fault-tolerant threshold smaller in FTV. This makes our FCC flexible and
easy to be extended to different attack scenarios. Four FTVs in Fig. 9 are selected to
illustrate the adjustment and their runtime is given in Table 9. The total number of
chains under vector (0, 1, 1, 2, 2, 3, 3, 4) increases slowly and FCC consumes very little
time for each block. The number of chains under (0, 0, 1, 2, 4, 6, 8, 10) is larger than that
of (0, 1, 2, 3, 4, 5, 6, 7), since the former uses larger thresholds. However, it also consumes
more time.

Table 9: Mean time consumption of 4 FTV-s with or without constraints under τd = 10
(seconds).

FTV with constraints without constraints

(0, 0, 1, 1, 2, 2, 4, 5) 4.72 5.16

(0, 1, 1, 2, 2, 3, 3, 4) 10.05 12.19

(0, 1, 2, 3, 4, 5, 6, 7) 20.63 139.81

(0, 1, 2, 3, 4, 6, 8, 10) 20.72 536.56

The correct δ-s can fall into τd with a high probability under a large τd, thus the full-key
contains almost the largest number of collisions. Moreover, the FTV we set considers the
case that many δ-s are beyond the threshold τd randomly. In fact, only a few δ-s are beyond
τd and the distribution is not so dispersed. This goes back to our original conclusion that
δ-s beyond τd can be concentrated on a few sub-keys for their fault tolerance. Therefore,
we further add a constraint: a chain has almost τc δ-s fewer than the chain with the largest
number of collisions is allowed. Otherwise, it will be discarded. Since it is hard to find
such chains directly, each chain satisfying such collision condition in current block is saved
and deletion performs when considering the next block. In this case, the two candidates

in current block
[

k
′

j+1, k
′

j+2

]

with the largest number of collisions satisfy:

ntmax
= max

Γ (Cq) +

j+2
∑

κ=j+1

Φ
(

Cq, ξiκ
κ

)

. (18)

Here iκ = 1, 2, . . . , µα

(

K
′

κ

)

. The maintained chains should satisfy:

nt ≥ ntmax
− τc. (19)

The corresponding experimental results under τc = 6 have been shown in Fig. 9 (labeled by
“Con”) and Table 9. The number of chains can be reduced from thousands to hundreds,

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 17

thus significantly improving efficiency. Actually, our experimental results show that the
success rate under the constraint τc = 6 is close to that without constraints. This also
indicates that the sub-keys and their δ-s are mostly within τd and τk when both thresholds
are relatively large, and the key may become one of the chains with almost the largest
number of collisions as we stated before.

6 Experimental Results

The key recovery in CODCAs includes two stages as we have explained in Section 4.2.
The CODCAs post-process the candidates of optimized divide-and-conquer attack and
the collision attack, thus achieving the remaining chain space in the first stage. The
chains are ordered according to certain rules in the second stage, and verified to achieve
the final key recovery. Therefore, their performance is not only reflected in the success
rate [SMY09], but also in the number of chains to be verified in the second stage. The
candidate space can be significantly reduced after second attacks, but the key may still
rank very deeply, since τd and τk are set largely, and very large space is considered in
this paper. GCA and FTC often remain a large number of candidates, which may be
not exhaustible. Therefore, we exploit histogram based key rank estimation after them
as introduced in Section 4.2.

We will first compare the performance of TA and classic CCA with our MDCA to
illustrate its superiority in Section 6.1. Then, we compare the performance of FTC, GCA,
FCC (with and without fault tolerance) under different thresholds τd and different number
of traces n in Sections 6.2 and 6.3, respectively. As we have explained in Section 5.3, our
FCC with fault tolerance performs very well under very large FTV. Therefore, we set
a very large FTV (0, 1, 2, 3, 4, 6, 8, 10) and only consider the chains with at most τc = 6
collisions fewer than the chain with the largest number of collisions. Here we only consider
key recovery from theoretical success probability α16 = 0.99616 = 0.9379. The evaluations
under large thresholds τd and different number of traces are very time-consuming, we only
repeat each experiment 200 times.

6.1 Performance of MDCA

MDCA is not a kind of CECA, and its performance is much closer to TA compared to
CECA. Its performance under different orders evaluated by guessing entropy [SMY09] is
shown in Fig. 10. This makes the CODCAs built from TA and MDCA more meaningful
and practical. MDCA achieves better performance when γ ≤ 4 (see Fig. 10). However, the
performance is very close when the order of MDCA γ is 2, 3 and 4. Finally, it decreases
in the 5th and 6th orders. It’s noteworthy that we do not need to balance the two attacks
in CODCAs strictly. Therefore, we exploit 5th-order MDCA in this paper.

We use 1st-, 10th- and 20th-order Success Rate [SMY09] to evaluate the performance
of TA, CECA and our MDCA (5th-order) under different number of traces, and the
experimental results under 500 repetitions are shown in Fig. 11. TA’s first-order success
rate is even significantly higher than CECA’s 20th-order success rate. The success rates
of 5th-order MDCA and TA are about 1.00 under 600 traces. The success rate of CECA
reaches about 1.00 under 2000 traces. The performance of our 5th-order MDCA is very
close to that of TA, and their combination will be more challenging, meaningful and
practical in more attack scenarios. We try to exploit the CODCAs to achieve significantly
higher success rate than performing them separately under the given computing power.

18 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

120 160 200 240 280 320 360 400

Number of traces

0

5

10

15

20

25

30

G
ue

ss
in

g
en

tr
op

y

1st order

2nd order

3rd order

4th order

5th order

6th order

Figure 10: The guessing entropy of different orders of MDCA under different number of
traces.

200 400 600 800 1000 1200 1400 1600 1800

Number of traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

CCA, 1st order

CCA, 10th order

CCA, 20th order

MDCA, 1st order

MDCA, 10th order

MDCA, 20th order

TA, 1st order

TA, 10th order

TA, 20th order

Figure 11: The success rates of TA, CECA and our 5th-order MDCA.

0 5 10 15 20 25 30 35

Computing power (log 2)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(a) FTC

0 3 6 9 12 15 18

Computing power (log 2)

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(b) GCA

0 3 6 9 12 15 17

Computing power (log 2)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

(c) FCC with fault tolerance

d
=6

d
=9

d
=12

d
=15

d
=18

Figure 12: Number of chains to be verified in key recovery under different thresholds τd

from 6 to 18.

6.2 Experiments on Different Thresholds τd

The success rate under different thresholds τd when n = 320 is shown in Table 10, and the
corresponding number of remaining chains to be verified is shown in Fig. 12. The growth
of τd makes more δ-s fall within it. This makes the collision conditions easier to be satisfied
and more chains are constructed. However, the success rate of FCC without optimization
under τd = 18 is only 0.350, not even comparable to that of FCC with fault tolerance
under τd = 6 in Table 10. This indicates that the fault tolerance strategy significantly
improves the performance of FCC. Table 11 also shows that the runtime of FTC and FCC
is shorter than GCA and FCC with fault tolerance. GCA spends most of its runtime on

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 19

splicing, while FCC spends most of its runtime on fault-tolerance. Since τd from 6 to 18 is
too small and there is no chain satisfying the collision conditions after first several blocks,
FCC terminates quickly (see Table 11). FTC achieves success rate very close to the FCC
with fault tolerance. However, Its remaining chains to be verified are many more than
FCC’s in Fig. 12. This situation will get worse when we further reduce the power traces
to fewer than 280. FTC and GCA without enumeration may be infeasible in this case,
since too many chains to splice before key verification.

Table 10: Success rates under different thresholds τd.

τd 6 9 12

FTC 0.420 0.455 0.475
GCA 0.335 0.360 0.365

FCC(original) 0.270 0.305 0.320
FCC(fault tolerance) 0.400 0.450 0.490

τd 15 18

FTC 0.510 0.515
GCA 0.400 0.410

FCC(original) 0.315 0.350
FCC(fault tolerance) 0.520 0.535

Table 11: Time consumption (seconds) under different thresholds τd.

τd 6 9 12

FTC 0.0087 0.0086 0.0088
GCA 0.0322 0.0405 0.0582

FCC(original) 0.0542 0.0716 0.0925
FCC(fault tolerance) 0.12426 3.8847 11.8038

τd 15 18

FTC 0.0086 0.0089
GCA 0.0854 0.1233

FCC(original) 0.1261 0.1614
FCC(fault tolerance) 50.4653 251.7807

The selected FTV and τd affect the experimental results, increasing them can improve
the success rate of FCC. However, this increases the number of remaining chains and
brings a lot of extra computation (see Table 11). Since larger τd makes more δ-s satisfy
the given conditions while the corresponding FTV (0, 1, 2, 3, 4, 6, 8, 10) is not adjusted
accordingly, too many chains with fewer collisions are formed as shown in Fig. 13. Here
we add the constraint that a chain has almost 6 δ-s fewer than the chain with the largest
number of collisions is allowed after the third block as explained in Section 5.3. The choice
of τd and FTV reflects the tradeoff between fault-tolerant time and “enumeration” time.
If they are larger, FCC (with fault tolerance) takes more time to build chains but the key
can be recovered from a smaller chain space. For GCA, when the number of power traces
is small, such as n = 320 in Fig. 12, the number of remaining chains is still large. This is
especially for FTC, the space is close to 232. It will take about one day to enumerate 240

of TA on our desktop computer. However, our FT-FCC can recover the key quickly from
the remaining space that is smaller than 215. We can draw a conclusion from Fig. 12(c)
that further increasing it will not significantly improve the success rate when τd increases
to a certain height.

20 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

2 3 4 5 6 7 8

The ith block

0

2

4

6

8

10

N
um

be
r

of
 c

an
di

da
te

s
(lo

g
2)

d
=6

d
=9

d
=12

d
=15

d
=18

constraints

Figure 13: The number of FCC (with fault tolerance) chains under different τd-s.

0 20 40 60 80 100

Computing power (log 2)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

(a) 280 traces

0 20 40 60 80

Computing power (log 2)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

(b) 300 traces

0 20 40 60 80

Computing power (log 2)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

(c) 320 traces

0 20 40 60 80

Computing power (log 2)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

(d) 340 traces

0 20 40 60 80

Computing power (log 2)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

(e) 360 traces

guessed space
TA
FTC
GCA
FCC(original)
FCC(fault tolerance)

0 10 20 30 40

Computing power (log 2)

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

(f) 380 traces

Figure 14: Number of chains to be verified in key recovery under different number of
traces.

6.3 Experiments on Different Number of Traces

We also compare the performance of FTC, GCA and our FCC (with and without fault tol-
erance) under different number of traces n. We set τd to 15 and FTV to (0, 1, 2, 3, 4, 6, 8, 10).
Compared to the growth of threshold τd, using more traces makes the sub-keys and the
corresponding δ-s fall within the thresholds more quickly. The success rates of different
schemes under 280 ∼ 380 traces are shown in Table 12. With more power traces being
exploited, the rank of key is more advanced, and the threshold τk of each sub-key becomes
shorter under the same probability α = 0.996, thus resulting in a rapid reduction in can-
didate space and runtime (see Fig. 14 and Table 13). The success rate of GCA grows
slowly and is lower than FTC and our FCC with fault tolerance. It is worth noting that
although it’s a very strict requirement for all δ-s to be within τd, this condition becomes
easier to satisfy by increasing n, resulting in a significantly higher success rate of FCC.

The success rate of our FCC increases slowly when the threshold τd reaches a certain
height, and the increase in the number of power traces will also have similar effect. It can
also be seen from Fig. 14 that the success rate of our FCC with fault tolerance increases
slowly from 0.465 to 0.640 when n ≥ 280, which is close to the success rate of FTC, and
significantly higher than that of GCA. Moreover, it achieves a remaining chain space that
is much smaller than FTC as shown in Fig. 14, which fully illustrates the superiority
of its fault-tolerant technique. Due to the fact that the distribution of δ-s beyond τd

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 21

does not always satisfy the fault-tolerant vector, its success rate is still lower than the
theoretical success probability. Fortunately, the number of chains in our FCC does not
grow explosively under reasonably restrictive conditions as shown in Fig. 15. Therefore,
we can further adjust FTV, such as from (0, 1, 2, 3, 4, 6, 8, 10) to (1, 2, 4, 6, 8, 10, 12), or
enlarge the parameter τd given in Section 5.3, which further improves the success rate
without incurring too much computation. Similarly, if it is set too large and the runtime
is too long, we can reduce it appropriately.

Table 12: Success rates under different number of traces.

Number of traces 280 300 320

FTC 0.505 0.490 0.510
GCA 0.370 0.385 0.400

FCC(original) 0.295 0.285 0.320
FCC(fault tolerance) 0.465 0.485 0.520

Number of traces 340 360 380

FTC 0.585 0.605 0.670
GCA 0.450 0.480 0.565

FCC(original) 0.385 0.440 0.500
FCC(fault tolerance) 0.570 0.590 0.640

Table 13: Time consumption (seconds) under different number of traces.

Number of traces 280 300 320

FTC 0.0365 0.0125 0.0086
GCA 0.1911 0.1233 0.0854

FCC(original) 0.2520 0.1575 0.1261
FCC(fault tolerance) 318.7231 97.6415 60.4653

Number of traces 340 360 380

FTC 0.0057 0.0103 0.0041
GCA 0.0506 0.0306 0.0258

FCC(original) 0.0821 0.0281 0.0474
FCC(fault tolerance) 13.9931 2.8876 1.864

2 3 4 5 6 7 8

The ith block

0

2

4

6

8

10

12

N
um

be
r

of
 c

an
di

da
te

s
(lo

g
2)

280 traces
300 traces
320 traces
340 traces
360 traces
380 traces

constraints

Figure 15: The number of FCC chains (with fault tolerance) under different number of
traces.

22 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

7 Conclusions

The existing CODCAs exploit collision information to optimize the key recovery of divide-
and-conquer attacks. They transform the huge candidate space into a much smaller colli-
sion space, wherein only the chains satisfying the collision conditions are considered. They
are simple, efficient, and significantly shorten key recovery time. However, the collision in-
formation exploited by FTC and GCA is very limited, and they quickly become infeasible
when the key and the collision values are ranked at much deeper spaces.

In this paper, we propose a simple yet efficient CODCA named FCC, which is able
to exploit all collision information and further extends the reachable space. We further
introduce guessing theory to optimize the search order of sub-keys according to their
number of candidates within threshold. Benefiting from the high efficiency of its collision
detection and stronger exclusion capability of candidates within threshold that do not
satisfy collision conditions, FCC can search much larger candidate spaces than FTC and
GCA. The collision values beyond the threshold in collision attack can be concentrated on
several sub-keys for their fault-tolerance. We introduce fault tolerance strategy to reduce
the threshold, thus making FCC more practical. Hence, our FCC provides new ways to
further push the limits of reachable key space. The experimental results also demonstrate
their superiority. Due to the flexibility of MDCA and fault tolerance mechanisms exploited,
FCC is also feasible to be applied to other attack scenarios. This paper only considers fault-
tolerance on collision values, and leaves the optimization of FCC and fault-tolerance on
sub-keys as open problems. Every scheme has its advantages and disadvantages. MDCA
achieves performance close to TA’s. However, the candidates within threshold in TA will
often have collision values within threshold in MDCA. This will lower the fault tolerance
performance of FCC. A better MDCA is also our future work.

References

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analy-
sis with a leakage model. In Cryptographic Hardware and Embedded Systems

- CHES 2004: 6th International Workshop Cambridge, MA, USA, August

11-13, 2004. Proceedings, pages 16–29, 2004.

[BK12] Andrey Bogdanov and Ilya Kizhvatov. Beyond the limits of DPA: combined
side-channel collision attacks. IEEE Trans. Computers, 61(8):1153–1164,
2012.

[CP17] Marios O. Choudary and P. G. Popescu. Back to massey: Impressively fast,
scalable and tight security evaluation tools. In Cryptographic Hardware and

Embedded Systems - CHES 2017 - 19th International Conference, Taipei,

Taiwan, September 25-28, 2017, Proceedings, pages 367–386, 2017.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Interna-

tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised

Papers, pages 13–28, 2002.

[dpa] Dpa contest. http://www.dpacontest.org/home/.

[GGP+15] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for
side-channel security assessment. In Fast Software Encryption - 22nd Inter-

national Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised

Selected Papers, pages 117–129, 2015.

http://www.dpacontest.org/home/

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 23

[GPPT16] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. ECDH
key-extraction via low-bandwidth electromagnetic attacks on pcs. In Top-

ics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA

Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016,

Proceedings, pages 219–235, 2016.

[Gro18] Vincent Grosso. Scalable key rank estimation (and key enumeration) algo-
rithm for large keys. In Smart Card Research and Advanced Applications,

17th International Conference, CARDIS 2018, Montpellier, France, Novem-

ber 12-14, 2018, Revised Selected Papers., pages 80–94, 2018.

[GS13] Benoît Gérard and François-Xavier Standaert. Unified and optimized
linear collision attacks and their application in a non-profiled set-
ting: extended version. J. Cryptographic Engineering, 3(1):45–58, 2013.
https://doi.org/10.1007/s13389-013-0051-9.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Advances in Cryptology - CRYPTO

2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August

17-21, 2014, Proceedings, Part I, pages 444–461, 2014.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analy-
sis. In Advances in Cryptology - CRYPTO ’99, 19th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,

Proceedings, pages 388–397, 1999.

[LMV04] Hervé Ledig, Frédéric Muller, and Frédéric Valette. Enhancing collision at-
tacks. In Cryptographic Hardware and Embedded Systems - CHES 2004: 6th

International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceed-

ings, pages 176–190, 2004.

[LWWW17] Yang Li, Shuang Wang, Zhibin Wang, and Jian Wang. A strict key enumer-
ation algorithm for dependent score lists of side-channel attacks. In Smart

Card Research and Advanced Applications - 16th International Conference,

CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected

Papers, pages 51–69, 2017.

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-
enhanced power analysis collision attack. In Cryptographic Hardware and

Embedded Systems, CHES 2010, 12th International Workshop, Santa Bar-

bara, CA, USA, August 17-20, 2010. Proceedings, pages 125–139, 2010.

[OWSZ19] Changhai Ou, Zhu Wang, Degang Sun, and Xinping Zhou. Group collision at-
tack. IEEE Trans. Information Forensics and Security, 14(4):939–953, 2019.

[Pli00] John O. Pliam. On the incomparability of entropy and marginal guesswork
in brute-force attacks. In Progress in Cryptology - INDOCRYPT 2000, First

International Conference in Cryptology in India, Calcutta, India, December

10-13, 2000, Proceedings, pages 67–79, 2000.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple
key enumeration (and rank estimation) using histograms: An integrated ap-
proach. In Cryptographic Hardware and Embedded Systems - CHES 2016

- 18th International Conference, Santa Barbara, CA, USA, August 17-19,

2016, Proceedings, pages 61–81, 2016.

https://doi.org/10.1007/s13389-013-0051-9

24 The Science of Guessing in Collision Optimized Divide-and-Conquer Attacks

[SLFP04] Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A collision-
attack on AES: combining side channel- and differential-attack. In Crypto-

graphic Hardware and Embedded Systems - CHES 2004: 6th International

Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, pages
163–175, 2004.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Advances in Cryp-

tology - EUROCRYPT 2009, 28th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Cologne, Germany,

April 26-30, 2009. Proceedings, pages 443–461, 2009.

[VGS13] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Security evaluations beyond computing power. In Advances in Cryptology -

EUROCRYPT 2013, 32nd Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,

2013. Proceedings, pages 126–141, 2013.

[WWZ14] Danhui Wang, An Wang, and Xuexin Zheng. Fault-tolerant linear collision
attack: A combination with correlation power analysis. In Information Secu-

rity Practice and Experience - 10th International Conference, ISPEC 2014,

Fuzhou, China, May 5-8, 2014. Proceedings, pages 232–246, 2014.

[WYS+18] Weijia Wang, Yu Yu, François-Xavier Standaert, Junrong Liu, Zheng Guo,
and Dawu Gu. Ridge-based DPA: improvement of differential power anal-
ysis for nanoscale chips. IEEE Trans. Information Forensics and Security,
13(5):1301–1316, 2018.

[YGH16] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: A timing
attack on openssl constant time RSA. In Cryptographic Hardware and Em-

bedded Systems - CHES 2016 - 18th International Conference, Santa Barbara,

CA, USA, August 17-19, 2016, Proceedings, pages 346–367, 2016.

	Introduction
	Related Works
	Our Contributions
	Organization

	Preliminaries
	Measurement Setup
	Template Attack
	Collision Attacks

	Collision-Optimized Divide-and-Conquer Attacks
	Minkowski Distance enhanced Collision Attack
	Test of Chain
	Fault Tolerant Chain
	Group Collision Attack

	Full-Collision Chains
	Collision Detection Mechanism in FCC
	Typical Application Scenarios
	Guessing Theory Optimization

	Fault Tolerance
	Distribution of Collision Values Beyond d
	Fault Tolerance Strategy
	Constraints

	Experimental Results
	Performance of MDCA
	Experiments on Different Thresholds d
	Experiments on Different Number of Traces

	Conclusions

