
Group Signatures with Selective Linkability

Lydia Garms1� and Anja Lehmann2

1 Royal Holloway, University of London, UK
Lydia.Garms.2015@live.rhul.ac.uk
2 IBM Research – Zurich, Switzerland

anj@zurich.ibm.com

Abstract. Group signatures allow members of a group to anonymously
produce signatures on behalf of the group. They are an important build-
ing block for privacy-enhancing applications, e.g., enabling user data to
be collected in authenticated form while preserving the user’s privacy.
The linkability between the signatures thereby plays a crucial role for
balancing utility and privacy: knowing the correlation of events signifi-
cantly increases the utility of the data but also severely harms the user’s
privacy. Therefore group signatures are unlinkable per default, but either
support linking or identity escrow through a dedicated central party or of-
fer user-controlled linkability. However, both approaches have significant
limitations. The former relies on a fully trusted entity and reveals too
much information, and the latter requires exact knowledge of the needed
linkability at the moment when the signatures are created. However, of-
ten the exact purpose of the data might not be clear at the point of data
collection. In fact, data collectors tend to gather large amounts of data at
first, but will need linkability only for selected, small subsets of the data.
We introduce a new type of group signatures that provide a more flexible
and privacy-friendly access to such selective linkability. When created,
all signatures are fully unlinkable. Only when strictly needed or desired,
should the required pieces be made linkable with the help of a central
entity. For privacy, this linkability is established in an oblivious and non-
transitive manner. We formally define the requirements for this new type
of group signatures and provide an efficient instantiation that provably
satisfies these requirements under discrete-logarithm based assumptions.

1 Introduction

Group signatures are a powerful and well-studied primitive that allow members
of a group to sign messages on behalf of the group in an anonymous way [22,
4, 9, 21, 2, 31, 27, 33, 10, 32]. That is, a verifier of a group signature is assured
that it was signed by a valid member of the group, but it does not learn any-
thing about the identity of the signer, or even whether two signatures stem from
the same user. This makes group signatures highly suited whenever data is col-
lected that needs to be authenticated while, at the same time, the privacy of
the data sources must be respected and preserved. In particular when data is

� Work done as an intern at IBM Research – Zurich.

collected from users, the protection of their privacy is of crucial importance, and
sees increased attention due to the recently introduced General Data Protection
Regulation (GDPR) [1], Europe’s new privacy regulation. In fact, the GDPR
creates strong incentives for data collectors to thoroughly protect users’ data
and implement the principle of data minimization, as data breaches are fined
with up to 4% of an enterprises annual turnover.

When aiming to implement such techniques for privacy and data protection,
one needs to find a good balance with utility though: data gets collected in order
to be analysed and to generate new insights. For these processes it is usually
necessary to know the correlation among different data events, as they carry a
crucial part of the information. For instance, when a group of users measure and
upload their blood pressure via wearable activity trackers, several high value
measurements are not critical when they are distributed over many participants,
but might be alarming when originating from a single user.

Often the exact purpose of the data might not be clear at the point of data
collection. In fact, given the rapid advancements in machine learning and the
ubiquitously available and cheap storage, data collectors tend to gather large
amounts of data at first, and will only use small subsets for particular appli-
cations as they arise. A famous example are the Google Street View cars that
inadvertently recorded public Wi-Fi data like SSID information, which later got
used to improve Google’s location services.

Ideally, the data should be collected and stored in authenticated and unlink-
able form, and only the particular subsets that are needed later on should be
correlated in a controlled and flexible manner.

Linkability in Group Signatures. To address the tension between privacy
and utility, group signatures often have built-in measures that control linkability
of otherwise anonymously authenticated information. Interestingly, despite the
long line of work on this subject, none of the solutions provides the functionality
to cater for the flexibility needed in practice: They either recover linkablity in a
privacy-invasive way or offer control only in a static manner.

Group Signatures with Opening. Standard group signatures [22, 9, 4, 5, 10, 33]
guarantee full unlinkability of signatures, except to the group manager (or ded-
icated opening authority) that owns a so-called opening key. The opening key
allows the group manager, when given a signature, to recover the signer’s iden-
tity. Originally, the opening was intended to prevent abuse of anonymity, and
rather meant to be used in extreme situations. Clearly, the opening capability
can also be leveraged to determine the linkability of various data events, but at
high costs for privacy: every request for linkability will recover the full identity
of the signer, and the central group manager learns the (signed) data of the data
collectors and their correlation.

Group Signatures with Controlled Linkability. A more suitable solution are group
signatures with controlled linkability [28, 29, 36]. In these schemes, signatures are
unlinkable except to a dedicated linking authority with a secret key: on input

2

two signatures it tells whether they stem from the same user or not. This is
much better then revealing the identity of the user, but still relies on a fully
trusted entity that will learn the collectors’ signed data. Further, this approach
does not scale well for applications where a data collector is interested in the
correlations within a large data set. To link a data set of n signed entries, each
pair of signatures would have to be compared, which would require npn � 1q{2
requests to the linking authority. Another related concept are traceable group
signatures [30] where a dedicated entity can generate a tracing trapdoor for each
user which allows to trace this user’s signatures. This approach is not suitable
for our use case of controlled data linkage either, as it requires knowledge of
the users’ identities behind the anonymous group signatures or trapdoors for all
users, and also needs every signature to be tested for every trapdoor.

Group Signatures with User-Controlled Linkability. Finally, schemes with user-
controlled linkability exist, mostly in the context of Direct Anonymous Attes-
tation (DAA) [11, 6, 12, 15, 14] or anonymous credentials [34, 19]. For linkability,
a so-called basename is chosen alongside the message and all signatures with
the same basename can easily be linked, but signatures for different basenames
remain unlinkable. In contrast to solutions with opening or linking authorities,
the linkability here can be publicly verified: a signature in such schemes contains
a pseudonym that is deterministically derived from the user’s secret key and
the basename. Thus, the user re-uses the same pseudonym whenever he wants
to be linkable. On the downside, this linkage is immediate and static. That is,
the users have to choose at the beginning whether they want to disclose their
data in a fully unlinkable manner, or linked w.r.t. a context-specific pseudonym.
There is no option to selectively correlate the data after it has been disclosed.
Therefore, users, or rather the data collectors allowing the use of such protocols,
will hesitate to choose the option of unlinkability, as they fear to lose too much
information by the irreversible decorrelation.

Our Contributions. In this work we overcome the aforementioned limita-
tions by introducing a new type of group signatures that allows for flexible
and selective linkability. We achieve that functionality by combining ideas from
the different approaches discussed above: Group signatures are associated with
pseudonyms, but pseudonyms are all unlinkable per default. Only when needed,
a set of signatures – or rather the pseudonyms – can be linked in an efficient
manner through a central entity, the converter. The converter receives a batch of
pseudonymous data and transforms them into a consistent representation, mean-
ing that all pseudonyms stemming from the same user will be converted into the
same value. To preserve the privacy of the users and their data, the converter
correlates the data in a fully blind way, i.e., not learning anything about the
pseudonyms he transforms. We term these new form of group signatures CLS,
which stands for convertably linkable (group) signatures.

Security and Privacy for CLS. A crucial property that we want from pseudonym
conversions is that they establish linkability only strictly within the queried data,

3

i.e., linked pseudonyms from different queries should not be transitive. Other-
wise, different re-linked data sets with overlapping input data could be pieced
together, thereby gradually eroding the user’s privacy. Aiming for such non-
transitivity has an immediate impact on the overall setting: we need to channel
both, the pseudonyms and messages, blindly through the converter, as trans-
forming pseudonyms without the messages would require linkability between
the in- and outputs of the conversion query, which in turn allows to correlate
outputs from different queries.

We formally define the security of CLS through a number of security games,
strongly inspired by the existing work on group signatures and DAA [4, 5, 15].
That is, we want signatures to be fully anonymous and unlinkable bearing in
mind the information that is revealed through the selective linkability. We dis-
cuss that the classic anonymity notion adapted to our setting won’t suffice, as
it cannot guarantee the desired non-transitivity. In fact, capturing the achiev-
able privacy and non-transitivity property in the presence of adaptive conversion
queries was one of the core challenges of this work, and we formalize this property
through a simulation-based definition. If the converter is corrupt, then unlink-
ability of signatures no longer holds, but the adversary should neither be able
to trace signatures to a particular user, nor harm the obliviousness of queries
which is captured in the conversion blindness and join anonymity properties.
The guarantees in terms of unforgeability are captured through non-frameability
and traceability requirements. The former says that corrupt users should not be
able to impersonate honest users, and the latter guarantees that the power of
an adversary should be bounded by the number of corrupt users he controls.

From a corruption point of view, we assume the data collector to be at most
honest-but-curious towards the converter, i.e., even a corrupt data collector will
only query pseudonym-message pairs that it has received along with a valid sig-
nature. We consider this a reasonable assumption, as data collectors that will use
such a CLS scheme do so in order to implement the principle of data minimization
on their own premises, and don’t have an incentive to cheat themselves.

Efficient Instantiation. We propose an efficient construction of such CLS schemes,
following the classical sign-and-encrypt paradigm that underlies most group sig-
natures. Roughly, we use BBS+ signatures [3] for attesting group membership,
i.e., a user will blindly receive a BBS+ signature from the group issuer on a
secret key y chosen afresh by the user. To sign a message m on behalf of the
group, the user computes a signature-proof-of-knowledge (SPK) for m where he
proves knowledge of such an issuer’s signature on its secret key and also encrypts
it’s user key (or rather its “public key” version hy) under the converter’s public
key. The ciphertext that encrypts hy serves as the pseudonym nym.

When the converter is asked to recover the correlations for a set of k pseudonym-
message pairs pnym1,m1q, . . . pnymk,mkq, it blindly decrypts each pseudonym
and blindly raises the result to the power of r which is chosen fresh for every
conversion query, but used consistently within. That is, all pseudonyms belong-
ing to the same user will be mapped to the same query-specific DDH tuple hyr

which allows for linkage of data within the query, but guarantees that converted

4

pseudonyms remain unlinkable across queries. To achieve obliviousness and non-
transitivity of conversions, we encrypt all pseudonyms and messages with a re-
randomisable (homomorphic) encryption scheme under the blinding key of the
data collector. The re-randomisation is applied by the converter before he re-
turns the transformed values, which ensures that the data collector cannot link
the original and the converted pseudonyms by any cryptographic value. Clearly,
if the associated messages are unique, then the data collector can link in- and
outputs anyway, but our scheme should not introduce any additional linkage.
Given that the pseudonyms are encryptions under the converter’s public key,
we need to add the second layer of encryption in a way that it doesn’t interfere
with the capabilities of the inner ciphertext. Using a nested form of ElGamal
encryption [23] gives us these properties as well as the needed re-randomisability.

Finally, we prove that our instantiation satisfies the desired security and pri-
vacy requirements under the DDH, q-SDH and DCR assumption in the random
oracle model. Our construction relies on type-3 pairings and performs most of
the work in G1 which comes with significant efficiency benefits. In fact, we show
that our construction is reasonably efficient considering the increased flexibility
when establising the linkability in such a selective and controlled manner.

Other Related Work. A number of results exist that establish convertible
pseudonyms in the setting of distributed databases and have inspired our work.
Therein, the data gets created and maintained in a distributed manner. For
privacy, related data is stored under different, database-specific pseudonyms that
are seemingly unlinkable and can only be correlated by a central entity that
controls the data flow. While the initial approach by Galindo and Verheul [26]
required the converter to be a trusted third party, Camenisch and Lehmann [17,
18] later showed how the converter can operate in an oblivious manner. However,
none of these solutions supports authenticated data collection and [26] and [17]
even let the (trusted) converter establish all pseudonyms. The pseudonym system
in [18] bootstraps pseudonyms in a blind way from a user secret, but for every
new pseudonym that requires the user, converter and targeted data base to
engage in an interactive protocol. Clearly, this is not practical for a setting
where users frequently want to upload data. Further, all schemes re-use the same
pseudonym for a user within a database, whereas our solution creates fresh and
unlinkable pseudonyms for every new data item.

2 Preliminaries

This section presents all building blocks and assumptions that are needed for
our CLS construction. We use ElGamal encryption as re-randomisable and homo-
morphic encryption scheme that is chosen plaintext secure, BBS+ signatures [3],
and standard proof protocols.

Bilinear Maps & q-SDH Assumption. Let G1, G2, GT be cyclic groups of
prime order p. A map e : G1 �G2 Ñ GT must satisfy the following conditions:

5

bilinearity, i.e., epgx1 , g
y
2 q � epg1, g2q

xy; non-degeneracy, i.e., for all generators
g1 P G1 and g2 P G2, epg1, g2q generates GT ; and efficiency, i.e., there exists an
efficient algorithm Gp1τ q that outputs a bilinear group pp,G1, G2, GT , e, g1, g2q,
and an efficient algorithm to compute epa, bq for all a P G1, b P G2.

We use type-3 pairings [25] in this work, i.e., we do not assume G1 � G2

or the existence of an isomorphism between both groups in our scheme and
security proofs. The advantage of type-3 pairings is that they enjoy the most
efficient curves.

q-Strong Diffie Hellman Assumption (q-SDH). There are two versions of the q-
Strong Diffie Hellman Assumption. The first version, given by Boneh and Boyen
in [7], is defined in a type-1 or type-2 pairing setting. We use their second version
of that definition that supports type-3 pairings and was stated in the journal
version of their paper [8].

Given pg1, g
χ
1 , g

pχq2

1 , ..., g
pχqq

1 , g2, g
χ
2 q such that g1 P G1, g2 P G2, output

pg
1

χ�x

1 , xq P G1 � Zpzt�χu.

BBS+ Signatures. Our scheme will make use of BBS+ signatures given by
Au et al. [3], and inspired by BBS group signatures introduced in [9].

Key Generation: Take ph1, h2q Ð$G2
1, xÐ$Z�

p , w Ð gx2 , and set sk � x and
pk � pw, h1, h2q.

Signature: On input a message m P Zp and secret key x, pick e, sÐ$Zp and

compute AÐ pg1h
s
1h
m
2 q

1
e�x . Output signature σ Ð pA, e, sq.

Verification: On input a public key pw, h1, h2q P G2�G2
1, message m P Zp, and

purported signature pA, e, sq P G1 � Z2
p, check epA,wge2q � epg1h

s
1h
m
2 , g2q.

When proving the unforgability of our scheme (called traceability in our
setting), we will make use of techniques from [14] which prove the unforgeability
of BBS+ signatures in the type-3 setting. Originally, Au et al. [3], proved the
BBS+ signature secure under the first version of the q-SDH assumption given
in [7], making use of the isomorphism between the groups in the security proof.

Re–Randomisable ElGamal Encryption. We use the ElGamal encryption
scheme [23] with public parameters pG1, g, pq, such that the DDH problem is
hard with respect to τ , i.e p is a τ bit prime.

Key Generation: Choose skÐ$Z�
p , pk Ð gsk, and output ppk, skq.

Encryption: On input ppk,mq, choose rÐ$Z�
p , and output cÐ pgr, pkrmq.

Decryption: On input psk, pc1, c2qq, output mÐ c2c
�sk
1 .

ElGamal encryption is chosen-plaintext secure under the DDH assumption.
In our construction, we will use the homomorphic property of ElGamal, i.e., if
C1 P Encppk,m1q, and C2 P Encppk,m2q, then C1 d C2 P Encppk,m1 �m2q.

We further use that ElGamal ciphertexts c � Encppk,mq are publicly re-
randomisable in the sense that a re-randomised version c1 of c looks indistin-
guishable from a fresh encryption of the underlying plaintext m. The following
procedure clearly satisfies this:

6

Re-randomisation: On input ppk, pc1, c2qq, get r1 Ð$Z�
p and output pc1g

r1 , c2pk
r1q.

2.1 Proof Protocols

We follow the notation defined in [16] when referring to zero-knowledge proofs of
knowledge of discrete logarithms. For example PKtpa, b, cq : y � gahb^ỹ � g̃ah̃cu
denotes a zero knowledge proof of knowledge of integers a, b and c such that
y � gahb and ỹ � g̃ah̃c hold. SPK denotes a signature proof of knowledge, that
is a non-interactive transformation of a proof PK, e.g., using the Fiat-Shamir
heuristic [24] in the random oracle. Using the Fiat-Shamir heuristic, the witness
can be extracted from these proofs by rewinding the prover and programming
the random oracle. Alternatively, these proofs can be extended to be online-
extractable, by verifiably encrypting the witness to a public key defined in the
common reference string. Clearly this requires a trusted common reference string.
We underline the values that we need to be online-extractable in our proofs.

We require the proof system to be simulation-sound and zero-knowledge.
The latter roughly says that there must exist a simulator that can generate
simulated proofs which are indistinguishable from real proofs from the view of
the adversary. The simulation-soundness is a strengthened version of normal
soundness and guarantees that an adversary, even after having seen simulated
proofs of false statements of his choice, cannot produce a valid proof of a false
statement himself.

3 Definition & Security Model for CLS

In this section we first introduce the syntax and generic functionality of CLS and
then present the desirable security and privacy properties for such schemes.

The following entities are involved in an CLS scheme: an issuer I, a set of
users U � tuidiu, a Verifier V and a converter C. The issuer I is the central entity
that allows users to join the group. Once joined, a user can then sign on behalf of
the group in a pseudonymous way. That is, a verifier V can test the validity of a
signature w.r.t the group’s public key but does not learn any information about
the particular user that created the signature. Most importantly, we want the
pseudonymously signed data to be linkable in a controlled yet blind manner. Such
selected linkability can be requested through the converter C that can blindly
transform tuples of pseudonym-message pairs into a consistent representation.

3.1 Syntax of CLS

Our notation closely follows the definitional framework for dynamic group sig-
natures given in [5]. We stress that our algorithms (and security notions) are
flexible enough to cover settings where multiple verifiers and converters exist.
For the sake of simplicity, however, we focus on the setting where there is only
one entity each.

Definition 1 (CLS). A convertably linkable group signature scheme CLS con-
sists of the following algorithms:

7

Setup & Key Generation. We model key generation individually per party, and
refer to pparam, ipk, cpkq as the group public key gpk.

Setupp1τ q Ñ param: on input a security parameter 1τ , outputs param, the pub-
lic parameters for the scheme.

IKGenpparamq Ñ pipk, iskq: performed by the issuer I, outputs the issuer secret
key isk, and the issuing public key ipk.

CKGenpparamq Ñ pcpk, cskq: performed by the Converter C, outputs the con-
verter secret key csk, and the converter public key cpk.

BKGenpparamq Ñ pbpk, bskq: performed by the verifier V3, outputs a blinding
secret key, bsk, and blinding public key, bpk. As the key is only used for
blinding purposes, pbpk, bskq can be ephemeral. We write BPK as the public
key space induced by BKGen.

Join, Sign & Verify. As in standard dynamic group signatures we have a dedi-
cated join procedure that a user has to complete with the issuer. All users that
have successfully joined the group can then create pseudonymous signatures on
behalf of the group, i.e., that verify w.r.t. the group public key bpk. For ease of
expression we treat the pseudonym nym as a dedicated part of the signature.

xJoinpgpkq, Issuepisk, gpkqy: a user uid joins the group by engaging in a interac-
tive protocol with the Issuer I. The user uid and Issuer I perform algorithms
Join and Issue respectively. These are input a state and an incoming mes-
sage respectively, and output an updated state, an outgoing message, and a
decision, either cont, accept, or reject. The initial input to Join is the group
public key, gpk, whereas the initial input to Issue is the issuer secret key,
isk, and the issuer public key ipk. If the user uid accepts, Join has a private
output of gskruids.

Signpgpk,gskruids,mq Ñ pnym, σq: performed by the user with identifier uid,
with input the group public key gpk, the user’s secret key gskruids, and a
message m. Outputs a pseudonym nym and signature σ.

Verifypgpk,m, nym, σq Ñ t0, 1u: performed by the Verifier V. Outputs 1 if σ is
a valid signature on m for pseudonym nym under the group public key gpk,
and 0 otherwise.

Blind Conversion. Finally, we want our pseudonymous group signatures to be
blindly convertable. Thus, we introduce a dedicated Blind and Unblind proce-
dure for the verifier and a Convert algorithm that requires the converter’s secret
key. The latter transforms the unlinkable pseudonyms in a consistent manner,
i.e., outputting converted pseudonyms that are consistent whenever the input
pseudonyms belong to the same user.

3 For sake of simplicity we state the algorithms for the setting where the requester
and receiver of conversions is the same party, namely the verifier. However, our
algorithms work in a public key setting to facilitate more general settings as well.

8

Blindpgpk, bpk, pnym,mqq Ñ pcnym, cq: performed by the verifier V on input a
pseudonym-message pairpnym,mq and blinding public key bpk, group public
key gpk. Outputs a blinded pseudonym and message.

Convertpgpk, csk, bpk, tpcnymi, ciqukq Ñ tpcnymi, ciquk: performed by the con-
verter C, on input k blinded pseudonym-message tuples tpcnymi, ciquk �
ppcnym1, c1q, ..., pcnymk, ckqq, and the public blinding key bpk used. Out-
puts converted pseudonyms tpcnymi, ciquk � ppcnym1, c1q, ..., pcnymk, ckqq

Unblindpbsk, pcnym, cqq Ñ pnym,mq: performed by the Verifier V on input a
converted pseudonym-message tuple, and the blinding secret key bsk. Out-
puts an unblinded converted pseudonym-message tuple pnym,mq.

We sometimes make the randomness r used in these algorithms explicit, and
e.g. write Blindpgpk, bpk, pnym,mq; rq.

3.2 Security Properties

We want that CLS schemes enjoy roughly the same security and privacy proper-
ties as group signatures when taking the added linkability into account. Defining
these properties when pseudonyms can be selectively and adaptively converted
is very challenging, though, as it requires a lot of care to avoid trivial wins while
keeping the adversary as powerful as possible.

In a nutshell, we require the following guarantees from convertably link-
able group signatures, where (join) anonymity and non–transitivity capture the
privacy-related properties and non–frameability and traceability formalize the
desired unforgeability.

(Join) Anonymity: Pseudonymous signatures should be unlinkable and un-
traceable (to a join session) even when the issuer and verifier are corrupt.
When the converter is honest, unlinkability holds for all signatures for which
the associated pseudonyms have not been explicitly linked through a conver-
sion request. If the converter is corrupt and also controlled by the adversary,
unlinkability is no longer possible, yet the anonymity of joins must remain.

Non–Transitivity: Converted pseudonyms should be non-transitive, i.e., the
verifier should not be able to link the outputs of different convert queries.
Otherwise, a corrupt verifier would be able to gradually link together all
pseudonyms that have ever been queried to the converter.

Conversion Blindness: The converter learns nothing about the pseudonyms
(and messages) it receives and the transformed pseudonyms it computes.

Non–Frameability: An adversary controlling the issuer and some corrupt users,
should not be able to impersonate other honest users, i.e., create pseudony-
mous signatures that would be linked to a pseudonym of an honest user.

Traceability: An adversary should not be able to create more signatures that
remain unlinkable in a conversion than he controls corrupt users.

Clearly, any re-linked subset of the originally anonymous data increases
the risk of re-identification. Thus, the converter could enforce some form of

9

access control to the re-linked data, e.g., only converting a certain amount
of pseudonyms at once. The non-transitivity requirement then ensures that
a corrupt verifier cannot further aggregate the individually learned data. We
stress that our security properties only formalize the achievable privacy for the
pseudonyms and signatures. They do not and cannot capture information leak-
age through the messages that the users sign. This is the case for all group
signatures though, and not special to our setting.

Oracles & State. The security notions we formalize in the following make use
a number of oracles which keep joint state, e.g., keeping track of queries and
the set of corrupted parties. We present the detailed description of all oracles in
Fig. 1 and an overview of them and their maintained records below.

ADDU (join of honest user & honest issuer) Creates a new honest user
for uid and internally runs a join protocol between the honest user and
honest issuer. At the end, the honest user’s secret key gskruids is generated
and from then on signing queries for uid will be allowed.

SNDU (join of honest user & corrupt issuer) Creates a new honest user
for uid and runs the join protocol on behalf of uid with the corrupt issuer. If
the join session completes, the oracle will store the user’s secret key gskruids.

SNDI (join of corrupt user & honest issuer) Runs the join protocol on be-
half of the honest issuer with corrupt users. For joins of honest users, the
ADDU oracle must be used.

SIGN This oracle returns signatures for honest users that have successfully
joined (via ADDU or SNDU, depending on the game).

CONVERT The oracle returns a set of converted pseudonyms along with their
messages. To model that conversion is triggered by an at most honest-but-
curious verifier, we request V to provide the unblinded set of pseudonyms
along with signatures. The conversion will only be done when all signatures
are valid. The oracle then internally blinds the pseudonym-message pairs
and returns the blinded input, the randomness used for the blinding along
with the converted output. When this oracle is used in the anonymity game,
it further checks that the input does not allow the adversary to trivially
win by converting the challenge pseudonym together with pseudonyms from
either of the challenge users.

All oracles have access to the following records maintained as global state:

HUL List of uid’s of honest users, initially set to H. New honest users can be
added by queries to the ADDU oracle (when the issuer is honest) or SNDU
oracle (when the issuer is corrupt).

CUL List of corrupt users that have (requested) to join the group. Initially set
to H, new corrupt users can be added through the SNDI oracle if the issuer
is honest. If the issuer is corrupt, we do not keep track of corrupt users.

SL List of puid,m, nym, σq tuples requested from the SIGN oracle.

10

ADDUpuidq

if uid P HULY CUL return K

HULÐ HULY tuidu,gskruids ÐK

decuid Ð cont, stuidJoin Ð gpk

stuidIssue Ð pisk, gpkq

pstuidJoin,MIssue,dec
uidq Ð JoinpstuidJoin,Kq

while decuid � cont

pstuidIssue,MJoin,dec
uidq Ð IssuepstuidIssue,MIssueq

pstuidJoin,MIssue,dec
uidq Ð JoinpstuidJoin,MJoinq

if decuid � accept gskruids Ð stuidJoin

return accept

SIGNpuid,mq

if uid R HUL or gskruids �K

return K

pnym, σq Ð Signpgpk,gskruids,mq

SLÐ SLY tpuid,m, nym, σqu

return pσ, nymq

SNDIpuid,Minq

if uid P HUL return K

if uid R CUL

CULÐ CULY tuidu

decuid Ð cont

if decuid � cont return K

if undefined stuidIssue Ð pisk, gpkq

pstuidIssue,Mout,dec
uidq Ð IssuepstuidIssue,Minq

return pMout, dec
uidq

SNDUpuid,Minq

if uid P CUL return K

if uid R HUL

HULÐ HULY tuidu

gskruids ÐK,Min ÐK,decuid Ð cont

if decuid � cont return K

if stuidJoin undefined stuidJoin Ð gpk

pstuidJoin,MOut,dec
uidq Ð JoinpstuidJoin,Minq

if decuid � accept gskruids Ð stuidJoin

return pMOut,dec
uidq

CONVERTppnym1,m1, σ1q, . . . , pnymk,mk, σkq, bpkq

if Di P r1, ks s.t. Verifypgpk,mi, nymi, σiq � 0 return K

if bpk R BPK return K

if Di s.t. nymi � nym� and Dj � i s.t. Identifypuid�d , nymjq � 1 for d P t0, 1u

return K

else compute pcnymi, ciq Ð Blindpgpk, bpk, pnymi,miq; riq for i � 1, . . . , k

and tpcnymi, ciquk Ð Convertpgpk, csk, bpk, tpcnymi, ciqukq

return ptpcnymi, ciquk, tpcnymi, ciquk, r1, . . . , rkq

Fig. 1. Oracles used in our security games

11

Helper Algorithms. We introduce two additional algorithms for notational sim-
plicity in our security games: Identify and UnLink. Roughly, Identify allows to
test whether a pseudonym belongs to a certain uid by exploiting the converta-
bility of pseudonyms. That is, we create a second signature for gskruids and use
the converter’s secret key to test whether both are linked. If so, Identify returns
1. This algorithm already uses our second helper algorithm UnLink internally,
which takes a list of (correctly formed) pseudonym-message pairs and returns 1
if they are all unlinkable and 0 otherwise.

Identifypgpk, csk, uid,m, nymq

pnym1, σ1q Ð Signpgpk,gskruids, 0q

if UnLinkpgpk, csk, ppnym,mq, pnym1, 0qqq � 0 return 1

else return 0

UnLinkpgpk, csk, ppnym1,m1q, ..., pnymk,mkqqq

pbpk, bskq Ð BKGenpparamq

@i P r1, ks pcnymi, ciq Ð Blindpgpk, bpk, pnymi,miqq

tpcnymi, ciquk Ð Convertpgpk, csk, bpk, tpcnymi, ciqukq

@i P r1, ks pnymi,miq Ð Unblindpbsk, pcnymi, ciqq

if Dpi, jq with i � j s.t. nymi � nymj return 0

else return 1

For even more simplicity we often omit the keys for the algorithms (as they
are clear from the context). That is, we write Identifypuid, nymq which will indi-
cate whether the pseudonym nym belongs to the user with identity uid or not.
Likewise we write UnLinkpnym1, . . . , nymkq to test whether all pseudonyms are
uncorrelated or not.

Correctness. CLS signatures should be correct and consistent when being pro-
duced by honest parties. More precisely, we formulate correctness via three re-
quirements: Correctness of sign guarantees that signatures formed using the
Sign algorithm with a user secret key generated honestly will verify correctly.
Correctness of conversion guarantees that after blinding, converting and then
unblinding correctly, the output will be correctly linked messages/ pseudonyms.
Consistency is a stronger variant of conversion-correctness and requires that the
correlations of pseudonyms established through the conversion procedure must
be consistent across queries. More precisely, if a conversion query reveals that
two pseudonym nym1 and nym2 are linked, and another one that nym2 and
nym3 are linked, then it must also hold that a conversion query for nym1 and
nym3 returns linked pseudonyms. We require that this property even holds for
maliciously formed pseudonyms, which will be a helpful property in some of
our security proofs. For sake of brevity, the detailed correctness definitions are
deferred to Appendix A.

12

Anonymity (Corrupt Issuer & Verifier). This security requirement cap-
tures the desired anonymity properties when both the issuer and verifier are
corrupt. Just as in conventional group signatures, we want that the signatures
of honest users are unlinkable and cannot be traced back to a user’s join session
with the corrupt issuer. To model this property, we let the adversary output uid’s
of two honest users together with a message and return a challenge pnym�, σ�q
that is created either by user uid0 or uid1. For anonymity, the adversary should
not be able to determine the user’s identity better than by guessing.

In our setting, this property must hold when the corrupt verifier has access
to the conversion oracle where it can obtain linked subsets of the pseudonymous
data. To avoid trivial wins, the adversary is not allowed to make conversion
queries that link the challenge pseudonym nym� to another pseudonym belong-
ing to one of the two honest challenge users.

Definition 2 (Anonymity). A CLS scheme satisfies anonymity if for all poly-
nomial time adversaries A the following advantage is negligible in τ :

�
�PrrExpanon�0

A,CLS pτq � 1s � PrrExpanon�1
A,CLS pτq � 1s

�
� .

Experiment: Expanon�bA,CLS pτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq,HUL, CUL, SLÐH

puid�0 , uid
�
1 ,m

�, stq Ð ASNDU,SIGN,CONVERTpchoose, gpk, iskq

if uid�0 R HUL or gskruid�0 s �K or uid�1 R HUL or gskruid�1 s �K return 0

pnym�, σ�q Ð Signpgpk,gskruid�b s,m
�q

b� Ð ASNDU,SIGN,CONVERTpguess, st, nym�, σ�q

return b�

Non–Transitivity (Corrupt Issuer & Verifier). The second privacy-related
property we want to guarantee when both the issuer and verifier are corrupt,
is the strict non-transitivity of conversions. This ensures that the outputs of
separate convert queries cannot be linked together, further than what is already
possible due the messages queried. For example if nym1 and nym2 are outputs by
two separate convert queries, the adversary should not be able to decide whether
they were derived from the same pseudonym or not. Otherwise the verifier could
gradually build lists of linked pseudonyms, adding to these during every convert
query and eventually recover the linkability among all pseudonymous signatures.

To model non-transitivity of conversions we use a simulation-based approach,
requiring the indistinguishability of an ideal and a real world. In the real world,
all convert queries are handled normally through the CONVERT oracle defined
in Fig 1. Whereas in the ideal world, the converted pseudonyms are produced by
a simulator SIM through the CONVSIM oracle defined below. For a conversion
request of input pnym1,m1, σ1q, . . . , pnymk,mk, σkq the simulator will only learn
which of the messages belong together, i.e., are associated to pseudonyms that
belong to the same user uid. For honest users this can be looked up through

13

the records of the signing oracle that stores tuples puid,mi, nymi, σiq for each
signing query. Thus, we let the simulator mimic the conversion output for all
pseudonyms stemming form honest users, and convert pseudonyms from corrupt
users normally (as there is no privacy to guarantee for them anyway). Finally, the
CONVSIM oracle outputs a random shuffle of the correctly converted pseudonyms
of corrupt users, and the simulated ones for honest users. As mentioned before,
we assume the verifier to be honest-but-curious, which we enforce by request-
ing the adversary to output valid signatures along with the pseudonyms to be
converted and handle the blinding step within the conversion oracle.

Definition 3 (Non-Transitivity). A CLS scheme satisfies non-transitivity if
for all polynomial time adversaries A there exists an efficient simulator SIM such
that the following advantage is negligible in τ :

�
�PrrExpnontrans�0

A,CLS pτq � 1s � PrrExpnontrans�1
A,CLS pτq � 1s

�
� .

Experiment: Expnontrans�bA,CLS pτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq,HUL, CUL, SLÐH

b� Ð ASNDU,SIGN,CONVXpguess, gpk, iskq

where the oracle CONVX works as follows:

if b � 0 (real world) then CONVX is the standard CONVERT oracle

if b � 1 (ideal world) then CONVX is the simulated CONVSIM oracle

return b�

CONVSIMppnym1,m1, σ1q, . . . , pnymk,mk, σkq, bpkq

if Di P r1, ks s.t. Verifypgpk,mi, nymi, σiq � 0 or bpk R BPK return K

Set CLÐH

Compute pcnymi, ciq Ð Blindpgpk, bpk, pnymi,miq; riq for i � 1, . . . , k

@i P r1, ks // determine message clusters Luid for honest users and list CL of corrupt pseudonyms

if puid,mi, nymi, σiq P SL // pseudonyms from honest users

if Luid does not exist, create Luid Ð tmiu else set Luid Ð Luid Y tmiu

else CLÐ CLY tpci, cnymiqu // pseudonyms from corrupt users

tpcnymi, ciqui�1,...k1 Ð Convertpgpk, csk, bpk,CLq for k1 Ð |CL| // normally convert corrupt nyms

Let Luid1 , . . . Luidk2 be the non-empty message clusters created above

tpcnymi, ciqui�k1�1,...k Ð SIMpgpk, bpk, Luid1 , . . . Luidk2 q // simulate conversion for honest nyms

Let tpcnym1
i, c

1
iqui�1,...k be a random permutation of tpcnymi, ciqui�1,...k

return ptpcnymi, ci, riqui�1,...,k, tpcnym
1
i, c

1
iqui�1,...k, r1, . . . , rkq

Anonymity vs. Non–Transitivity. Note that non-transitivity is not covered by
the anonymity notion defined before: A scheme that satisfies anonymity could
output the converted pseudonyms in the exact same order as the input ones,
allowing trivial linkage between the in- and output of each conversion request.
Thus, whenever the same pseudonym is used as input to several conversion
queries, this would enable the linkability of the transformed pseudonyms across
the different conversions, which is exactly what non-transitivity aims to avoid.

14

On the first glance, it might seem odd that having transitive conversions does not
harm our anonymity property. However, transitivity is only useful when several
pseudonyms belonging to the same user appear in each conversion request with
one pseudonym being re-used in all these sessions. In the anonymity game, the
challenge pseudonym is not allowed to be used in combination with any other
pseudonym stemming from either of the challenge users (as this would make
the definition unachievable), and thus the transitivity of conversions can not be
exploited.

Conversion Blindness (Corrupt Issuer & Converter). A crucial prop-
erty of our signatures is that they can be converted in an oblivious manner,
i.e., without the converter learning anything about the pseudonyms or messages
it converts. In particular, this blindness property ensures the unlinkability of
blinded inputs across several conversion requests. Conversion blindness should
hold if both the issuer and converter are corrupt, but the verifier is honest. We
formalize this property in a classic indistinguishability style: the adversary out-
puts two tuples of pseudonym-message pairs and receives a blinded version of
either of them. Given that blinding of pseudonyms is a public-key operation we
don’t need an additional blinding oracle. In fact, we don’t give the adversary any
oracle access at all in this game. He already corrupts the issuer and converter,
and this property does not distinguish between honest and corrupt users, thus
we simply assume that the adversary has full control over all users as well.

Definition 4 (Conversion Blindness). A CLS scheme satisfies conversion
blindness if: for all polynomial time adversaries A the following advantage is
negligible in τ :

�
�
�PrrExpblind�conv�0

A,CLS pτq � 1s � PrrExpblind�conv�1
A,CLS pτq � 1s

�
�
� .

Experiment: Expblind�conv�bA,CLS pτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq, pbpk, bskq Ð BKGenpparamq

pst, pnym0,m0q, pnym1,m1qq Ð Apchoose, gpk, isk, csk, bpkq
pcnym�, c�q Ð Blindpgpk, bpk, pnymb,mbqq

b� Ð Apguess, st, cnym�, c�q

return b�

Join Anonymity (Corrupt Issuer & Converter & Verifier). The final
privacy related property we require from a CLS is the anonymity of joins even
if all central entities are corrupt. Here the challenge is that the adversary, con-
trolling the issuer, converter and verifier, should not be able to link signatures
of an honest user back to a particular join session. This is the best one can hope
for in this corruption setting as unlinkability of signatures (as guaranteed by
our anonymity property) is no longer possible: the corrupt converter can sim-
ply convert all signatures/pseudonyms into a consistent representation. Such a

15

property does not exist in conventional group signatures, as therein a corrupt
opener can always reveals the join identity. In our setting, signatures can only
be linked instead of being opened and thus anonymity of the join can and should
be preserved.

To model this property we let the adversary output two identities of honest
users uid0, uid1 that have successfully joined. We then give the adversary access
to a signing oracle for one them. This is done by adding the challenge user uid�

(where uid� stands for a dummy handle) to the list of honest users HUL with
user secret key gskruidbs. Thus, in the second stage of the game, the adversary
can invoke the SIGN oracle on uid� to receive signatures of messages of his choice
for the challenge user. The adversary wins if he can determine the bit b better
than by guessing. To avoid trivial wins, the adversary is not allowed to see any
signature directly from uid0 or uid1.

Definition 5 (Join Anonymity). A CLS scheme satisfies join anonymity if:
for all polynomial time adversaries A the following advantage is negligible in τ :

�
�
�PrrExpanon�join�0

A,CLS pτq � 1s � PrrExpanon�join�1
A,CLS pτq � 1s

�
�
� .

Experiment: Expanon�join�bA,CLS pτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq,HUL, CUL, SLÐH

pst, uid0, uid1q Ð ASNDU,SIGNpchoose, gpk, isk, cskq

if uid0 or uid1 R HUL or gskruid0s �K or gskruid1s �K return K

Choose uid�,HULÐ HULY tuid�u,gskruid�s Ð gskruidbs

b� Ð ASNDU,SIGNpguess, st, uid�q

return b� if puidd, �q R SL for d � 0, 1 else return 0

Non–Frameability (Corrupt Issuer & Converter & User) This no-
tion captures the desired unforgeability properties when the issuer, converter
and some of the users are corrupt, and requires that an adversary should not
be able to impersonate an honest user. Our definition is very similar to the
non-frameability definitions in standard group signature or DAA schemes [4–6].
Roughly, the only part we have to change is how we detect that an honest user
has been framed. In group signatures, non-frameability exploits the presence of
the group manager that can open signatures and requests that an adversary can-
not produce signatures that will open to an honest user who hasn’t created said
signature. Here we have the converter instead of the group manager (or dedi-
cated opening authority), and thus express non-frameability through the linkage
that is created in a conversion. More precisely, an adversary should not be able
to produce a valid signature pnym�, σ�q that within a conversion request would
falsely link to a signature of an honest user. For generality (and sake of brevity),
we use our helper function Identify that we introduced at the beginning of this
section to express that the adversary’s signature should not be recognized as a
signature of an honest user.

16

Definition 6 (Non-Frameability). A CLS scheme satisfies non–frameability

if for all polynomial time adversaries A, the advantage PrrExpnonframeA,CLS pτq � 1s
is negligible in τ .

Experiment: ExpnonframeA,CLS pτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq,HUL, CUL, SLÐH

puid,m�, nym�, σ�q Ð ASNDU,SIGNpgpk, isk, cskq

return 1 if all of the following conditions are satisfied:

Verifypgpk,m�, nym�, σ�q � 1 and

Identifypuid,m�, nym�q � 1 where uid P HUL and

puid,m�, nym�, σ�q R SL

Traceability (Corrupt Converter & User) Our final requirement formal-
izes the unforgeability properties when only the converter and some users are cor-
rupt. In this setting, an adversary should not be able to output more pseudony-
mous signatures that remain unlinkable in a conversion than the number of users
it has corrupted. This is again an adaptation of the existing traceability notions
for group signatures with an opening authority [4, 5] or user-controlled linkabil-
ity [6]. Interestingly, in the latter work (that is closer to our setting than standard
group signatures), two traceability notions where introduced: While one is sim-
ilar in spirit to our notion, a second property guarantees that all signatures of
corrupt users can be traced back to the exact signing key that the corrupt user
has established in the join protocol with the honest issuer. This seems a bit of
an odd requirement, as it is not noticeable in the real world. In fact, we do not
limit the strategy of the adversary in that way and only require his power to be
bounded by the amount of corrupt users he controls.

Our definition stated below uses our helper algorithm UnLink that we in-
troduced at the beginning of this section and that internally uses the Convert
algorithm to detect whether pseudonyms are unlinkable or not. Note that UnLink
returns 1 only if all inputs are mutually unlinkable, i.e., there is not a single tuple
of input pseudonyms that got converted to the same value.

Definition 7 (Traceability). A CLS scheme satisfies traceability if for all poly-
time adversaries A the advantage PrrExptraceA,CLSpτq � 1s is negligible in τ .

Experiment: ExptraceA,CLSpτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq,HUL, CUL, SLÐH

ppm1, nym1, σ1q, ..., pmk, nymk, σkqq Ð AADDU,SNDI,SIGNpgpk, cskq

return 1 if all of the following conditions are satisfied:

@j P r1, ks : Verifypgpk,mj , nymj , σjq � 1 and p�,mj , nymj , σjq R SL and

k ¡ |CUL| and

UnLinkpgpk, csk, ppnym1,m1q, ..., pnymk,mkqqq � 1

17

4 Our CLS Construction

We now present our construction that securely realizes such CLS group signa-
tures. Our scheme follows the classical sign-and-encrypt paradigm: we use BBS+
signatures [3] for attesting group membership, i.e., a user will blindly receive a
BBS+ signature from the group issuer on the user’s secret key y. To sign a mes-
sage m on behalf of the group, the user computes a SPK for m where he proves
knowledge of a BBS+ signature on y and also encrypts hy under the converter’s
public key. The ElGamal ciphertext that encrypts hy serves as the associated
pseudonym nym.

To blind a set of k pseudonym-message pairs pnym1,m1q, . . . pnymk,mkq for
conversion, the verifier encrypts each value under its own ElGamal public key.
As the pseudonyms are already ElGamal ciphertexts themselves, this results in a
nested double-encryption of hy being encrypted under both keys. The converter
then decrypts the “inner” part of the ciphertext and blindly raises the result to
a random value r. This r is chosen fresh for every conversion query, but used
consistently within. That is, all pseudonyms belonging to the same user will be
mapped to the same query-specific DDH tuple hyr. Finally, the converter re-
randomises all ciphertexts and shuffles them to destroy any linkage between the
in- and output tuples — this is crucial for achieving the desired non-transitivity
property. The verifier then simply decrypts the received tuples and can link
correlated data via the converted pseudonyms cnymi.

4.1 Detailed Description of CLS–DDH

Setup & Key Generation. We use a bilinear group pp,G1, G2, GT , e, g1, g2q with
g1 and g2 being generators of G1 and G2 respectively. Further, we need four
additional generators g, h and h1, h2 in G1, where h1, h2 are used for the BBS+
part, and g, h will be used for the ElGamal encryption.

Setupp1τ q

pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q, g, h, h1, h2 Ð$G1

return paramÐ pG1,G2,GT , p, e, g1, g2, g, h, h1, h2q

IKGenpparamq

iskÐ$Z�p , ipk Ð gisk2

return pipk, iskq

CKGenpparamq

cskÐ$Z�p , cpk Ð gcsk

return pcpk, cskq

BKGenpparamq

bskÐ$Z�p , bpk Ð gbsk

return pbpk, bskq

Join. To join the group, users perform an interactive protocol with the issuer to
obtain their user secret key and group credential. Roughly, the gskruids of a user
consists of a secret key y P Z�

p and a BBS+ signature pA, x, sq of I on y, where

A � pg1h
y
1h
s
2q

1{pisk�xq. The detailed protocol of xJoinpgpkq, Issuepisk, gpkqy is
given in Figure 2.

18

U .Joinpgpkq é I.Issuepisk, gpkq

choose nÐ$ t0, 1uτ

� n

yÐ$Z�p , H Ð hy1 ,

πH Ð SPKtpyq : H � hy1upnq

-H,πH

Verify πH and that H P G1

xÐ$Z�p , sÐ$Z�p
AÐ pHhs2g1q

1{pisk�xq

� A, x, s

check that A � 1G1 and that

epA, g2q
xepA, ipkq � epg1Hh

s
2, g2q

return gskruids Ð pA, x, y, sq

Fig. 2. Join protocol of our CLS–DDH construction.

Sign & Verify. To sign a message m under gskruids � pA, x, y, sq, the user proves
knowledge of a BBS+ credential pA, x, sq on its secret key y and also encrypts
hy under the converter’s public key cpk. The proof π then proves knowledge of
the BBS+ credential and asserts that the encryption contains the same value y.
From π we only need the value y to be online extractable. We use the improved
SPK from Camenisch et al. [14] who have shown how to move most of the work
from GT to G1 and thus yield a much faster instantiation than the original proof
by Au et al. [3]. For verification, one verifies the proof π and some correctness
properties of the re-randomised versions of A that are sent along with the proof.
In more detail, Sign and Verify are defined as follows:

Signpgpk,gskruids,mq

parse gskruids � pA, x, y, sq, gpk � pipk, cpkq

αÐ$Z�p , nym1 Ð gα, nym2 Ð cpkαhy, r1, r2, r3 Ð$Z�p ,

A1 Ð Ar1 , ÂÐ A1�xpg1h
y
1h

s
2q
r1 , dÐ pg1h

y
1h

s
2q
r1h�r22 , r3 Ð r�1

1 , s1 Ð s� r2r3

π Ð SPKtpx, y, r2, r3, s
1, αq : nym1 � gα ^ nym2 � cpkαhy

^ Â{d � A1�xhr22 ^ g1h
y
1 � dr3h�s

1

2 upmq

σ Ð pA1, Â, d, πq, nymÐ pnym1, nym2q

return pnym, σq

Verifypgpk,m, nym, σq

parse σ � pA1, Â, d, πq

return 1 if A1 � 1G1 , epA
1, ipkq � epÂ, g2q,

and π holds for A1, Â, d, nym,m w.r.t. gpk

19

Blind Conversions. When the verifier wants to learn which of the pseudony-
mously received messages belong together, it sends a batch of pseudonym-message
pairs in blinded form to the converter. That is, it encrypts the messages and
pseudonyms using ElGamal encryption. The pseudonyms are ElGamal cipher-
texts itself and we roughly wrap them in another encryption layer. The converter
then blindly decrypts the pseudonyms, i.e., decrypts the “inner” part of the ci-
phertext, which yields hy encrypted under the verifiers blinding key bpk. To en-
sure non-transitivity, i.e., restrict the linkage of pseudonyms to hold only within
the queried batch, the converter blindly raises the encrypted hy to a random ex-
ponent r. This value is chosen afresh for every batch but used consistently within
the query, i.e., all pseudonyms that belong to the same user with secret key y will
be mapped consistently to hyr. To ensure that the ciphertexts and their order
cannot leak any additional information, we let the converter re-randomize and
shuffle all ciphertexts before he returns them to the verifier. Both the verifier
and the converter are assumed to be at most honest-but-curious, and so proofs
that they have performed Blind and Convert correctly are not needed.

Blindpgpk, bpk, nym,mq

parse gpk � pipk, cpkq, nym � pnym1, nym2q

α, β, γ Ð$Z�p
cnym1 Ð nym1g

β , cnym2 Ð gα, cnym3 Ð nym2cpk
βbpkα

c1 Ð gγ , c2 Ð bpkγm

cnymÐ pcnym1, cnym2, cnym3q, cÐ pc1, c2q

return pcnym, cq

Convertpgpk, csk, bpk, ppcnym1, c1q, ..., pcnymk, ckqqq

parse cnymi � pcnymi,1, cnymi,2, cnymi,3q, ci Ð pci,1, ci,2q, rÐ$Z�p
for i � 1, . . . k :

cnym1
i,1 Ð cnymr

i,2, cnym
1
i,2 Ð pcnymi,3cnym

�csk
i,1 qr // decrypt nym and raise to r

r1, r2 Ð$Z�p // re-randomize all ciphertexts

cnym2
i,1 Ð cnym1

i,1g
r1 , cnym2

i,2 Ð cnym1
i,2bpk

r1

c1i,1 Ð ci,1g
r2 , c1i,2 Ð ci,2bpk

r2

choose random permutation Π, for i � 1, . . . , k : pcnymi, ciq Ð pcnym2
Πpiq, c

1
Πpiqq

return ppcnym1, c1q, ..., pcnymk, ckqq

Unblindpbsk, pcnym, cqq

parse cnym � pcnym1, cnym2q, cÐ pc1, c2q

nymÐ cnym2cnym
�bsk
1 , mÐ c2c

�bsk
1

return pnym,mq

20

4.2 Security of CLS–DDH

We now show that our scheme satisfies all security properties defined in Section 3.
More precisely, we show that the following theorem holds (using the type-3
pairing version of the q-SDH assumption given in [8]).

Theorem 1. The CLS–DDH construction presented in Sec. 4.1 is a secure CLS
as defined in Sec. 3 if the DDH assumption holds in G1, the q-SDH assumption
holds, and the SPK is simulation-sound, zero-knowledge and online extractable
(for the underlined values).

In the following we focus on the proof of non-transitivity which was the most
challenging property to define and prove. For the other properties we provide
short proof sketches and refer for the detailed proofs to Appendix B.

Lemma 1. The CLS–DDH construction presented in Sec. 4.1 satisfies anonymity
if the DDH assumption holds in G1, and the SPK is unbounded simulation-sound,
zero knowledge and online extractable (for the underlined values).

Proof (sketch). Roughly, anonymity follows from the unlinkability property of
BBS+ signatures, the CPA-security from ElGamal (used to compute the pseudo-
nyms under cpk), and the DDH assumption (for showing that the conversion
doesn’t leak any information). Recall that in this setting, the converter is honest,
i.e., A does not know csk but is given access to the CONVERT oracle. Thus, the
surprising part might be that CPA encryption is sufficient, despite the converter
having to decrypt the blinded pseudonyms. However, in the security proof we
can simulate decryption queries by computing the converted pseudonyms from
scratch and returning fresh encryptions of them (under bpk) to the adversary.
That is, here we use that the convert algorithm returns re-randomised cipher-
texts which, for ElGamal encryption, are distributed as fresh encryptions. To
recover the plaintext, i.e., hy that needs to be encrypted under bpk, we either
look up hy from our internal records (when the pseudonyms stem from honest
users) or extract y from π (when the pseudonym belongs to a corrupt user).
Thus, for each tuple pmi, nymi, σiq sent to the CONVERT we check if an entry
puidi,mi, nymi, σiq in the list of created signatures SL exist, and if so we look up
the hyi value we have chosen when mimicking the join protocol for this honest
user uidi. For computing the converted pseudonyms, we then simply compute
cnymi � Encpbpk, hyirq for a fresh r. Note that in the case of pseudonyms from
corrupt users it is not sufficient to extract just hy, which would be much more
efficient than extracting y: When we have to embed a DDH challenge in the con-
verted output, we won’t be privy of the converter’s exponent r that is supposed
to be used in all converted pseudonyms hyir. Knowing y we can simply compute
Ry for R � gr being a part of the DDH challenge. The full proof is given in
Appendix B.2.

Lemma 2. The CLS–DDH construction presented in Sec. 4.1 satisfies non-
transitivity if the DDH assumption holds in G1, and the SPK is unbounded
simulation-sound, zero knowledge and online extractable (for the underlined value).

21

Proof. For proving non-transitivity, we have to show that there exists an efficient
simulator SIM that makes the real and simulated game indistinguishable. We
start by describing the simulator and then explain why the real and simulated
conversion oracles CONVERT and CONVSIM are indistinguishable.

SIMpgpk, bpk, Luid1 , . . . Luidk1 q

lÐ 0,@j P r1, k1s

nym1 Ð$G1;@m P Luidj

lÐ l � 1, pcnyml, clq Ð Blindpgpk, bpk, pnym1,mqq

return ppcnym1, c1q, . . . pcnyml, clqq

We assume that an adversary A exists, that makes q queries to the SNDU
oracle for distinct user identifiers, that guesses b correctly in the non-transitivity
game with SIM given above and wins with probability ε� 1{2.

We will stepwise make the real-world (b=0) and the simulated world (b=1)
equivalent, using a sequence of Games Hj for j � 0, . . . , q. The idea is that in
Game Hj we will not use simulated conversions for all users uid1, . . . , uidj in
order of when they were queried to SNDU. More precisely, we define Game Hj to
be as given in Figure 3 with all other oracles identical to in the non–transitivity
experiment. Let Sj be the event that A guesses b correctly in Game Hj , with the
simulator given above. Game Hj keeps track of the queries to SNDU, adding the
first j queries uid to a set UL. Then during queries to CONVSIM, if a signature
of a user in UL is queried, these are treated in the same way as pseudonyms for
corrupted users, i.e., they are normally converted using the Convert algorithm.

Game H0 is identical to the non-transitivity game, because UL is empty.
Therefore, PrrS0s � ε � 1{2. In Game Hq, UL contains all honest users, and so
the CONVSIM oracle is now identical to the CONVERT oracle, and inputs to the
adversary are now independent of b , therefore PrrSqs � 1{2.

We now show that if an adversary can distinguish Games Hj and Hj�1, we
can turn this into a distinguisher Dj that can break the DDH assumption. We
describe the reduction and the additional simulation that is needed therein in
Figures 4 and 5.

We now argue that when a DDH tuple pD1, D2, D3, D4q is input to Dj , the
inputs to A are distributed identically to in Game Hj�1; when a DDH tuple is
not input, the inputs to A are distributed identically to in Game Hj . That is for
D1 � h,D2 � ha, D3 � hb, D4 � hc, the oracles provided by Dj will be exactly
as in Hj�1 when c � ab, and as in Hj otherwise.

First, note that gpk, csk, isk are distributed identically as to the non–transitivity
game, as χ is chosen randomly and independently when setting h1 Ð hχ.

The SNDU oracle only differs from the oracle in the non–transitivity exper-
iment during the pj � 1q-th query by embedding D2 of the DDH challenger
into the user’s “public key” H using knowledge of χ. Clearly, H is distributed
identically as when computed normally, and πH can be simulated due to the

22

Game Hj

tÐ 0, bÐ$ t0, 1u, paramÐ Setupp1τ q

HUL, CUL, SLÐH

pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq, b� Ð ASNDU,SIGN,CONVXpguess, gpk, iskq

return b�

SNDUpuid,Minq

if uid R HUL, tÐ t� 1, if t ¤ j ULÐ ULY tuidu

Continue from line 5 of standard SNDU oracle

CONVSIMppnym1,m1, σ1q, . . . , pnymk,mk, σkq, bpkq

if Di P r1, ks s.t. Verifypgpk,mi, nymi, σiq � 0 or bpk R BPK return K

Set CLÐH

Compute pcnymi, ciq Ð Blindpgpk, bpk, pnymi,miq; riq for i � 1, . . . , k

@i P r1, ks

if puid,mi, nymi, σiq P SL

if Luid does not exist, create Luid Ð tmiu,CLuid Ð tpci, cnymiqu

else set Luid Ð Luid Y tmiu,CLuid Ð CLuid Y tpci, cnymiqu

else CLÐ CLY tpci, cnymiqu

tpcnymi, ciqui�1,...k1 Ð Convertpgpk, csk, bpk,CLY
¤

uidPUL

CLuidq

for k1 Ð |CLY
¤

uidPUL

CLuid|

let Luid1 , . . . Luidk2 be the non-empty message clusters created above

Let NULÐ tuid1, . . . uidk2uzUL

tpcnymi, ciqui�k1�1,...k Ð SIMpgpk, bpk,
¤

uidPNUL

Luidq

Choose random permutation Π;@i P r1, ks pcnym1
i, c

1
iq Ð pcnymΠpiq, cΠpiqq

return ptpcnymi, ci, riqui�1,...,k, tpcnym
1
i, c

1
iqui�1,...k, r1, . . . , rkq

Fig. 3. Description of Game Hj and the changes to the SNDU and CONVSIM oracles.

23

DjpD1, D2, D3, D4q

tÐ 0, b, Ð$ t0, 1u, hÐ D1, χÐ$Z�p , h1 Ð hχ

Finish computing gpk, csk, isk as in Setup, IKGen,CKGen

HUL, CUL, SLÐH

b� Ð ASNDU,SIGN,CONVXpguess, gpk, iskq

return b�

SNDUpuid, nq

if uid R HUL, tÐ t� 1, if t ¤ j ULÐ ULY tuidu

HULÐ HULY tuidu,gskruids ÐK,Min ÐK,decuid Ð cont

if t � j � 1 uidj�1 Ð uid,H Ð Dχ
2 simulate πH with H,n, stuid Ð pK, H, πHq

return ppH,πHq, contq

Continue from line 5 of standard SNDU oracle

SIGNpuid,mq

if uid � uidj�1 perform SIGN oracle from Anonymity experiment

else α, βÐ$Z�p , nym1 Ð gα, nym2 Ð cpkαD2

A1, dÐ$Z�p , ÂÐ A1isk

Simulate π with A1, Â, d, nym1, nym2,m

σ Ð pA1, Â, d, πq return ppnym1, nym2q, σq

Fig. 4. Oracles for Dj our distinguishing algorithm for the DDH problem. The
CONVERT oracle remains unchanged, and the CONVSIM oracle using the DDH chal-
lenge is given in Figure 4.

zero-knowledge property of the proof system. Note that y is not defined for this
honest user, but this is not output to A, or used in the next stage of the protocol.

The SIGN oracle is identical to the oracle in the non–transitivity experiment,
when uid � uidj�1 is queried. When uidj�1 is queried, we simply encrypt D2

instead of hy.

This is consistent with SNDU, as H � Dχ
2 � hỹ1. Further, A1, d1 are chosen

randomly and independently, and Â � A1isk and so these are distributed identi-
cally to in Sign. The SPK π can be simulated due to the zero knowledge property
of the proof system.

What remains to be shown is that the CONVSIM oracle created by Dj either
behaves identical to the CONVSIM oracle in Game Hj or as in Hj�1, depending
on whether its input was a DDH tuple or not. We know that D3 � hr̃ for some
r̃ and thus it must hold that Dyr

3 � hr̃ry. Finally, we derive cnym by encrypting
Dyr

3 from scratch under bpk, which is not noticeable to the adversary due to the
re-randomisation that is applied in the conversion algorithm.

If pD1, D2, D3, D4q is a DDH tuple, then Dr
4 � hr̃rỹ. Therefore as ỹ � yuid1 ,

the inputs to A are also distributed identically to in Game Hj�1. Whereas if
pD1, D2, D3, D4q is not a DDH tuple, then Dr

4, is distributed identically to nym1,

24

CONVSIMppnym1,m1, σ1q, . . . , pnymk,mk, σkq, bpkq

if Di P r1, ks s.t. Verifypgpk,mi, nymi, σiq � 0 or bpk R BPK return K

Set CLÐH, rÐ$Z�p
Compute pcnymi, ciq Ð Blindpgpk, bpk, pnymi,miq; riq for i � 1, . . . , k

@i P r1, ks

if puid,mi, nymi, σiq P SL

if Luid does not exist Luid Ð tmiu,CLuid Ð tpmi, yuidqu

else Luid Ð Luid Y tmiu,CLuid Ð CLuid Y tpmi, yuidqu

else Extract yi from σi,CLÐ CLY tpmi, yiqu

let Luid1 , . . . Luidk2 be the non-empty message clusters created above

nÐ 0; @pm, yq P CLY
¤

uidPUL

CLuid

nÐ n� 1, pcnymn, cnq Ð Blindpgpk, bpk, pDyr
3 ,mqq

if Luid1 exists @m P Luid1

nÐ n� 1, pcnymn, cnq Ð Blindpgpk, bpk, pDr
4,mqq

tpcnymi, ciqui�n�1,...k Ð SIMpgpk, bpk,
¤

uidPNUL,uid�uid1

Luidq

Choose random permutation Π;@i P r1, ks pcnym1
i, c

1
iq Ð pcnymΠpiq, cΠpiqq

return ptpcnymi, ci, riqui�1,...,k, tpcnym
1
i, c

1
iqui�1,...k, r1, . . . , rkq

Fig. 5. The CONVSIM oracle used by distinguisher Dj given in Figure 5. To avoid
confusion, we write uid1 to refer to the j� 1-th user that has joined the group (and for
which Dj embedded the DDH challenge).

which was chosen randomly and independently. Therefore the inputs to A are
distributed identically to in Game Hj .

Therefore the probability that Dj outputs 1 if it was given a valid DDH tuple
as input is PrrSj�1s, and PrrSjs is the probability that Dj outputs 1 when the
input was not a DDH tuple. The advantage of Dj is then |PrrSjs � PrrSj�1s|,
therefore |PrrSjs � PrrSj�1s| � εDDH.

Overall, for our sequence of games H0 to Hq it holds that |PrrS0s�PrrSqs| ¤
qεDDH and thus ε ¤ qεDDH is negligible. This concludes our proof that the
CLS–DDH construction satisfies non–transitivity.

Lemma 3. The CLS–DDH construction presented in Sec. 4.1 satisfies conver-
sion blindness if the DDH assumption holds in G1.

Proof (sketch). Given that all a corrupt converter sees are ElGamal ciphertexts
that are encrypted under a key bpk for which bsk is not known to the adversary,
the proof for conversion blindness is a straightforward reduction to the CPA-
security of ElGamal which holds under the DDH assumption. The detailed proof
is given in Appendix B.3.

Lemma 4. The CLS–DDH construction presented in Sec. 4.1 satisfies join anon-
ymity if the DDH assumption holds in G1, and the SPK is zero knowledge.

25

Proof (sketch). For proving that can adversary A cannot break the join anonymity
of our CLS–DDH construction we have to show that it is infeasible to link a join
session of an honest user to the user’s signatures. In this setting the adversary
controls both the converter and issuer. The only value the corrupt issuer learns
during the join protocol from an honest user is H � hy1 for the user’s secret y
and πH , the proof of knowledge of y. When receiving signatures from the user,
the adversary can use the converter’s secret key to recover hy from nym and also
sees π, the proof-of-knowledge of a BBS+ signature on y. By the zero-knowledge
property of the proof system, neither π nor πH leak any information about y. It
is easy to see that an adversary that can link hy1 and hy for the independent gen-
erators h1 and h can be turned into an adversary breaking the DDH assumption.
We give the full proof of this property in Appendix B.4.

Lemma 5. The CLS–DDH construction presented in Sec. 4.1 satisfies non-
frameability if the DL assumption holds in G1, and the SPK is simulation-
sound and zero knowledge.

Proof (sketch). If an adversary A exists that can break the non-frameability of
our CLS–DDH scheme, then we can build an adversary A1 that breaks the discrete
logarithm assumption. Recall that non-frameability ensures that an adversary
should not be able to create a valid signature that Convert will falsely link to
signatures of an honest user. In the proof we embed re-randomized versions
of a DL challenge D � hy in the join protocol for all users, i.e., using Dr

instead of H when receiving the BBS+ signature from the corrupt issuer. We
also set the public parameters such that h1 � hz for a random exponent z.
For signature queries we use the knowledge of z to compute proper looking
pseudonyms, and then mimic the SPK by choosing A1, d1 randomly, setting ÂÐ
A1isk, and simulating π. If the adversary outputs his forgery pnym�, σ�,mq we
extract y from π� contained in σ�. Clearly, this also relies on the simulation
soundness and zero-knowledge property of the proof system. The full proof is
given in Appendix B.5.

Lemma 6. The CLS–DDH construction presented in Sec. 4.1 satisfies trace-
ability if the q-SDH assumption holds, and the SPK is simulation-sound, zero
knowledge and online extractable.

Proof (sketch). We show that if an adversary A can break traceability for the
CLS–DDH construction then we can build an adversary A1 that breaks the q-SDH
assumption. Roughly, to win the traceability game the adversary must be able to
create more signatures that remain unlinkable in Convert than users he controls,
which requires A to forge BBS+ signatures. Our proof closely follows the revised
proof of the unforgeability of BBS+ signatures given in [14]. Note that this uses
the newer version of the q-SDH assumption [8] that supports type-3 pairings,
which in turn allows to prove the unforgeability of BBS+ signatures in the type-3
pairing setting. We give the full proof of this property in Appendix B.6.

26

4.3 Instantiation of SPK and Efficiency

We now discuss how to securely instantiate the online-extractable SPK’s used
in our CLS–DDH construction and state the computational cost and lengths of
signatures and pseudonyms.

Instantiation of SPK’s. We have two non-interactive zero-knowledge proofs
of knowledge in our scheme: πH used in the join protocol for proving knowledge
of y in H � hy1, and π proving knowledge of a BBS+ signature on y and that
nym encrypts the same y. In both cases we need the witness y to be online
extractable. For this, we additionally encrypt y under a public key that needs to
be added to param (and to which in security proof we will know the secret key
for), and extend π and πH to prove that the additional encryption contains the
same y that is used in the rest of the proof. For the verifiable encryption of y we
use Paillier encryption [20], that is secure under the DCR assumption [35].

For transforming interactive into non-interactive zero-knowledge proofs we
rely on the Fiat-Shamir heuristic that ensures security in the random oracle
model. Due to this, we can now state Corollary 1.

Corollary 1. The CLS–DDH construction presented in Sec. 4.1, with the SPK
instantiated as above, is a secure CLS as defined in Sec. 3 under the DDH, q-SDH
and DCR assumption in the random oracle model.

Computational Cost. We give the operations required for the entities involved
in the scheme in the table below. We denote k exponentiation in group Gi by
kexpGi , k hash function calls by khash, and k pairing operations by kpair. We
denote k exponentiations in Z�

n2 due to the Paillier encryption used, by kexpZ�
n2

.

Entity Algorithm Computational Cost

User Sign 16expG1
� 15expZ

n2
� 1hash

Verifier
Verify 12expG1

� 11expZ
n2
� 1hash� 2pair

Blind 6expG1

Unblind 2expG1

Converter Convert(k pseudonyms input) 7kexpG1

Pseudonym & Signature Length. We give the sizes of pseudonyms and
signatures of our CLS–DDH scheme in terms of the amount of group elements
below. We denote the length required to represent k elements in G1 as kG1,
the length required to represent k outputs of a hash function as kH, the length
required to represent k elements in Z�

n2 as kZ�
n2 . We represent elements in Z�

n2

because of the Paillier encryption used for the online extractable proofs.

27

Pseudonym Signature

Original Blinded Converted Unblinded Converted
nym cnym cnym nym σ

2G1 3G1 2G1 1G1 3G1 6Zp 1H 6Z�
n2

5 Conclusion and Future Work

In this work we have introduced a new form of group signatures that support
flexible and controlled linkability: data can be collected in authenticated and
fully unlinkable form, whilst still allow the data to be obliviously relinked by
queries to a central entity. We have formalized the required security properties
in a dynamic model, i.e., users are able to join the scheme, and proposed an
efficient scheme that satisfies these requirement under discrete logarithm and
Paillier assumptions in the random oracle model.

There a number of open problem we consider to be interesting avenues for
future work: Compared with the anonymity requirements of conventional dy-
namic group signatures, our anonymity notions are somewhat weaker as we do
not allow the adversary to corrupt the two challenge users after it received the
challenge signature. This means that our privacy related requirements do not
yield forward anonymity. Given the conversion functionality that is inherent our
setting, achieving such stronger notion seems challenging, if not even impossible.
In fact, for the related problem of group signatures with user-controlled linkabil-
ity with signature-based revocation, forward anonymity has not been achieved
by any of the existing schemes either.

Another direction for further work would be to investigate how to achieve
security against fully malicious verifiers. On a high level, this will require to
forward blinded versions of the users’ signatures to the converter, allowing him
to check the validity of the blinded inputs. The challenge is to do this while
preserving the converter’s capability to blindly decrypt and transform the inputs.

In a similar vein, we have considered the verifier to be both the data collector
and data processor so far. However, our blind and unblind algorithms already
cater for a more flexible setting, as they are specified in the public-key setting.
That is, the verifier could blind and push the data to be linked towards a dedi-
cated data processor holding the secret unblinding key. This has the advantage
that data storage and processing can be strictly separated. For such a setting
it might be desirable to preserve the authenticity of the data throughout the
process, i.e., the blind conversion must also take the signatures as input and
transform them into valid signatures for the re-linked pseudonyms.

Acknowledgments. The first author is supported by the UK Government as
part of the CDT in Cyber Security program at Royal Holloway University of
London (EP/K035584/1). The second author was supported by the European
Union’s Horizon 2020 research and innovation program under Grant Agreement
Number 768953 (ICT4CART).

28

References

1. Eu general data protection regulation. https://gdpr-info.eu
2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure

coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (Aug 2000)

3. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: Prisco, R.D.,
Yung, M. (eds.) SCN 06. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (Sep
2006)

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (May 2003)

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (Feb 2005)

6. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. International Journal of Information
Security 12(3), 219–249 (2013)

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin and
Camenisch [13], pp. 56–73

8. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (Apr 2008)

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (Aug 2004)

10. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.)
ACNS 16. LNCS, vol. 9696, pp. 117–136. Springer, Heidelberg (Jun 2016)

11. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri,
V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 04. pp. 132–145. ACM Press
(Oct 2004)

12. Brickell, E., Li, J.: A pairing-based daa scheme further reducing tpm resources.
In: International Conference on Trust and Trustworthy Computing. pp. 181–195.
Springer (2010)

13. Cachin, C., Camenisch, J. (eds.): EUROCRYPT 2004, LNCS, vol. 3027. Springer,
Heidelberg (May 2004)

14. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
diffie hellman assumption revisited. In: International Conference on Trust and
Trustworthy Computing. pp. 1–20. Springer (2016)

15. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016, Part II. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (Mar 2016)

16. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (Apr 2009)

17. Camenisch, J., Lehmann, A.: (Un)linkable pseudonyms for governmental
databases. In: Ray, I., Li, N., Kruegel:, C. (eds.) ACM CCS 15. pp. 1467–1479.
ACM Press (Oct 2015)

18. Camenisch, J., Lehmann, A.: Privacy-preserving user-auditable pseudonym sys-
tems. In: Security and Privacy (EuroS&P), 2017 IEEE European Symposium on.
pp. 269–284. IEEE (2017)

29

19. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May 2001)

20. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (Aug 2003)

21. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (Aug 1997)

22. Chaum, D.: Some weaknesses of “weaknesses of undeniable signatures” (rump
session). In: Davies, D.W. (ed.) EUROCRYPT’91. LNCS, vol. 547, pp. 554–556.
Springer, Heidelberg (Apr 1991)

23. ElGamal, T.: On computing logarithms over finite fields. In: Williams, H.C. (ed.)
CRYPTO’85. LNCS, vol. 218, pp. 396–402. Springer, Heidelberg (Aug 1986)

24. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987)

25. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

26. Galindo, D., Verheul, E.R.: Microdata sharing via pseudonymization. Joint UN-
ECE/Eurostat work session on statistical data confidentiality (2007)

27. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (Dec 2007)

28. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Short group signatures
with controllable linkability. In: Lightweight Security & Privacy: Devices, Protocols
and Applications (LightSec), 2011 Workshop on. pp. 44–52. IEEE (2011)

29. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with
controllable linkability for dynamic membership. Information Sciences 222, 761–
778 (2013)

30. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin and Ca-
menisch [13], pp. 571–589

31. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg
(May 2005)

32. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 1–31. Springer, Heidelberg (May 2016)

33. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (Apr 2012)

34. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (Aug 1999)

35. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (May 1999)

36. Slamanig, D., Spreitzer, R., Unterluggauer, T.: Adding controllable linkability to
pairing-based group signatures for free. In: International Conference on Information
Security. pp. 388–400. Springer (2014)

30

A Correctness of CLS

We now present our correctness definitions that is expressed in requirements:
correctness of signatures, correctness of conversions and conversion consistency.
The detailed definitions for correctness are given in Figure 6 and follow the
game-based style already used in [5] for correctness definitions.

Definition 8 (Correctness). A CLS scheme satisfies correctness if: for all ad-
versaries A, PrrExpcorr�sigA,CLS pτq � 1s � 0, PrrExpcorr�convA,CLS pτq � 1s ¤ neglpτq,

and, PrrExpconsistA,CLS pτq � 1s � 0.

For the correctness of conversion, the negligible chance that the adversary
has of winning corresponds to the negligible chance that multiple user identifiers
have the same secret key.

B Proofs of Security

We now give full proofs of Lemmas 1, 3, 4, 5, 6, showing that our CLS–DDH
construction satisfies the correctness, traceability, non-frameability, conversion
blindness, join anonymity and anonymity requirements given in Section 3.

B.1 Correctness

The construction satisfies correctness of sign due to the correctness of the sig-
nature zero knowledge proofs used, and because Â � A�xr1Ar1pisk�xq � Ar1isk �
A1isk.

Let pAi, xi, yi, siq be the secret signing key for user with identifier uidi.
Then @i P k, for ai, a

1
i, a

2
i chosen randomly, nymi � pgai , cpkaihyiq, cnymi �

pgai�a
1
i , ga

2
i , cpkai�a

1
ihyibpka

2
i q. Then for r, r1iÐ$ t0, 1u� and a random permu-

tation Π, cnymΠpiq � pga
2
i r�r

1
i , hyirbpka

2
i r�r

1
iq, and nymΠpiq � hyir. There-

fore nymΠpiq � nymΠpjq if and only if yi � yj . Except with negligible prob-
ability, as y is chosen randomly, this only occurs if and only if uidi � uidj .
@i P r1, ks, for α chosen randomly, ci � pgα,mibpk

αq, for r2i chosen randomly,

cΠpiq � pgα�r
2
i ,mibpk

α�r2i q, therefore mΠpiq � mi. Therefore the construction
satisfies correctness of conversion.

Assume UnLinkpgpk, csk, ppnym0,m0q, pnym1,m1qqq � 0 and UnLinkpgpk, csk,
ppnym1,m1q, pnym2, m2qqq � 0. Due to the above argument, letting r1, r2 be
the randomness chosen in convert, pnym0,2nym

�csk
0,1 qr1 � pnym1,2nym

�csk
1,1 qr1

and pnym1,2nym
�csk
1,1 qr2 � pnym2,2nym

�csk
2,1 qr2 . Therefore, nym0,2nym

�csk
0,1 �

nym2,2nym
�csk
2,1 . However, if UnLinkpgpk, csk, ppnym0,m0q, pnym2,m2qqq � 1,

then pnym0,2nym
�csk
0,1 qr3 � pnym2,2nym

�csk
2,1 qr3 , where r3 was chosen during

Convert. This is a contradiction. Therefore the construction satisfies consis-
tency.

31

Experiment: Expcorr�sigA,CLS pτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq,HUL, CULÐH, puid,mq Ð AADDUpgpkq

if gskruids �K return 0

pnym, σq Ð Signpgpk,gskruids,mq

if Verifypgpk,m, nym, σq � 0 return 1 else return 0

Experiment: Expcorr�convA,CLS pτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq,HUL, CULÐH, pbpk, bskq Ð BKGenpparamq

ppuid1,m0q, ..., puidk,mkqq Ð AADDUpgpkq

if Di P r1, ks st gskruidis �K return 0

@i P r1, ks pnymi, σiq Ð Signpgpk,gskruidis,miq

@j P r1, ks pcnymj , cjq Ð Blindpgpk, bpk, pnymj ,mjqq

tpcnymi, ciquk Ð Convertpgpk, csk, bpk, tpcnymi, ciqukq

@j P r1, ks pnymj ,mjq Ð Unblindppcnymj , cjq, bskq

if D permutation Π : r1, ks Ñ r1, ks s.t.

1.@i P r1, ks mΠpiq � mi

2.@pi, jq P r1, ks with uidi � uidj nymΠpiq � nymΠpjq

3.@pi, jq P r1, ks with uidi � uidj nymΠpiq � nymΠpjq

return 0

else return 1

Experiment: ExpconsistA,CLS pτq

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq

ppm0, nym0, σ0q, pm1, nym1, σ1q, pm2, nym2, σ2qq Ð Apgpk, isk, cskq
if UnLinkpnym0, nym1q � 1 or UnLinkpnym1, nym2q � 1 return 0

if UnLinkpnym0, nym2q � 1 return 1

else return 0

Fig. 6. Security games for correctness of CLS

32

B.2 Anonymity

Assuming the DDH assumption, and the SPK is unbounded simulation-sound,
zero knowledge and online extractable (for the underlined values) then the
CLS–DDH construction satisfies the anonymity requirement.

We define Game 0 to be the anonymity experiment, with b chosen randomly
at the beginning, using the CLS–DDH construction. Let S0 be the event that an
adversary A correctly guesses b after Game 0.

We define Game 1 to be identical to Game 0 except for when nym� is queried
to the CONVERT oracle. We give the new convert oracle in Game 1 in Figure 7.
Let S1 be the event that the adversary A correctly guesses b after Game 1.

CONVERTppnym1,m1, σ1q, . . . , pnymk,mk, σkq, bpkq

if Di P r1, ks s.t. Verifypgpk,mi, nymi, σiq � 0 return K

if bpk R BPK return K

if Di s.t. nymi � nym� and Dj � i s.t. Identifypuid�d , nymjq � 1 for d P t0, 1u

return K

else compute pcnymi, ciq Ð Blindpgpk, bpk, pnymi,miq; r
1
iq for i � 1, . . . , k

rÐ$Z�p ,@i P r1, ks
αÐ$Z�p , c1i Ð pci,1g

α, ci,2bpk
αq

if nymi � nym� nym1
i Ð$G1, pcnym

1
i, .q Ð Blindpgpk, bpk, pnym1

i,miqq

if nymi � nym�

βÐ$Z�p , cnym1
i,1 Ð cnymr

i,2g
β , cnym1

i,2 Ð cnymr
i,3cnym

�rcsk
i,1 bpkβ

Choose random permutation Π;@i P r1, ks pcnymi, ciq Ð pcnym1
Πpiq, c

1
Πpiqq

return ptpcnymi, ciquk, tpcnymi, ciquk, r
1
1, . . . , r

1
kq

Fig. 7. Convert oracle in Game 1

We show that Game 0 and Game 1 are indistinguishable assuming the DDH
assumption. We give a distinguishing algorithm D in Figures 8 and 9, and below
explain why D simulates inputs to A that are distributed identically to in Game
0 if a DDH tuple is input, and D simulates inputs to A that are distributed
identically to in Game 1 if a DDH tuple is not input.

The values gpk, csk, isk are distributed identically to in the anonymity game,
as everything but h, h1 are chosen in the same way, and χ is chosen randomly
and independently, therefore h1 is distributed correctly.

Simulating the SNDU Oracle The SNDU oracle only differs from the oracle in
the Anonymity experiment during the k-th query. In this case H is distributed
identically, and πH can be simulated due to the zero-knowledge property of the
proof system used. The value y is not defined, but this is not output to A, or used
in the next stage of the protocol. Therefore the outputs of SNDU are distributed
identically to in the anonymity experiment.

33

SNDUpuid, nq

if uid R HUL

HULÐ HULY tuidu, lÐ l � 1,gskruids ÐK,Min ÐK,decuid Ð cont

if l � k uid1 Ð uid,H Ð Dχ
2 , simulate πH with H,n, stuid Ð pK, H, πHq

return ppH,πHq, contq

Continue from line 5 of oracle in Anonymity experiment

SIGNpuid,mq

if uid � uid1 perform SIGN oracle from Anonymity experiment

else α, βÐ$Z�p , nym1 Ð gα, nym2 Ð cpkαD2

A1, dÐ$Z�p , ÂÐ A1isk, simulate π with A1, Â, d, nym1, nym2,m

σ Ð pA1, Â, d, πq return ppnym1, nym2q, σq

CONVERTppnym1,m1, σ1q, . . . , pnymk,mk, σkq, bpkq

if Di P r1, ks s.t. Verifypgpk,mi, nymi, σiq � 0 return K

if bpk R BPK return K

if Di s.t. nymi � nym� and Dj � i s.t. Identifypuid�d , nymjq � 1 for d P t0, 1u

return K

else compute pcnymi, ciq Ð Blindpgpk, bpk, pnymi,miq; r
1
iq for i � 1, . . . , k

if Di s.t. nymi � nym� rÐ$Z�p
@j P r1, ks

αÐ$Z�p , c1j Ð pcj,1g
α, cj,2bpk

αq Let σj � p., ., ., πjq

if nymj � nym� nym1
j Ð Dr

4

if nymj � nym�

if puid, ., nymj , σjq P SL yj Ð yuid else extract yj from πj

nym1
j Ð D

ryj
3

pcnym1
j , .q Ð Blindpgpk, bpk, pnym1

j ,mjqq

Choose random permutation Π;@i P r1, ks pcnymi, ciq Ð pcnym1
Πpiq, c

1
Πpiqq

else ppcnym1, c1q, . . . , pcnymk, ckqq Ð Convertpgpk, csk, bpk, ppcnym1, c1q, . . . , pcnymk, ckqqq

return ptpcnymi, ciquk, tpcnymi, ciquk, r
1
1, . . . , r

1
kq

Fig. 8. D a distinguishing algorithm for the DDH problem

34

DpD1, D2, D3, D4q

lÐ 0, kÐ$ r1, qs, b, b1 Ð$ t0, 1u, hÐ D1, χÐ$Z�p , h1 Ð hχ

Finish computing gpk, csk, isk as in Setup, IKGen,CKGen

HUL, SLÐH

puid�0 , uid
�
1 ,m

�, stq Ð ASNDU,SIGN,CONVERTpgpk, isk, chooseq

if uid�b � uid1 return b1

if uid�0 R HUL or gskruid�0 s �K or uid�1 R HUL or gskruid�1 s �K return K

pnym�, σ�q Ð SIGNpuid1,m�q

b� Ð ASNDU,SIGN,CONVERTpst, nym�, σ�, guessq

if b� � b return 1

Fig. 9. D a distinguishing algorithm for the DDH problem

Simulating the SIGN Oracle The SIGN oracle is identical to the oracle in the
anonymity experiment, when uid � uid1 is queried. When uid1 is queried, we
write logD1

pD2q as ỹ, then D2 � hỹ. This is consistent with SNDU, as H �

Dχ
2 � hỹ1. A1, d1 are chosen randomly and independently, and Â � A1isk and so

these are distributed identically to in Sign. π can be simulated due to the zero-
knowledge property of the proof system used. Therefore the outputs of SIGN is
distributed identically to in the anonymity experiment.

Simulating the CONVERT Oracle If the input to D is a DDH tuple, then outputs
from the CONVERT oracle are identically distributed to in the anonymity game.
This is because, if nym� is not queried the oracle behaves identically to in the
anonymity game. If nym� is queried, the ci are chosen identically to in the
anonymity game. Writing logD1

pD3q as r̃, Dr
4 � hỹr̃r, and D

ryj
3 � hrr̃yj . The

nym1 are then blinded, and shuffled with a random permutation. Therefore,
due to the re-randomisation property, the freshly blinded nym1 are distributed
identically to the re-randomised nym1. Therefore the outputs of CONVERT are
distributed identically to in the anonymity game.

Simulating pnym�, σ�q pnym�, σ�q input to A in the guessing stage is distributed
identically to in the anonymity game, due to outputs of the SIGN oracle being
distributed identically to the anonymity game.

Reduction to the DDH problem If the input to D is not a DDH tuple, then
outputs of the CONVERT oracle are identically distributed to in Figure 7. This is
because for all pseudonyms nymi input, except for nym�, cnym1

i are distributed
identically to the oracle in the anonymity game. When nym� is queried, as D4

is random and independent, nym1
i is now chosen randomly and independently,

and so is identically distributed to in Figure 7. D only aborts early if uid�b � uid1

which occurs with probability q� 1{q. Therefore the probability that D outputs

35

1 given a DDH tuple was input is PrrS0s{q. The probability that D outputs
1 given a DDH tuple was not input is PrrS1s{q. The advantage of D is then
|PrrS0s � PrrS1s|{q, therefore |PrrS0s � PrrS1s| � qεDDH.

Next, we show that |PrrS1s � 1{2| ¤ εDDH . We build an adversary A1, that
distinguishes between DDH tuples, given A that successfully guesses b in Game
1 with PrrS1s. We give A1 in Figure 10, and below explain why the simulation
input to A given in Figure 10 is identically distributed to Game 1, provided a
DDH tuple is input, and A guesses correctly with probability 1/2, if a DDH
tuple is not input .

pgpk, iskq are computed identically to in Game 1, except for g, cpk, which
are distributed identically to in Game 1.

Simulating the Oracles The SNDU and SIGN oracles are identical to in Game 1.
The CONVERT oracle is identical to the CONVERT oracle for Game 1 given in
Figure 7, except for when nymi � nym�. nym1

i is computed using yuid, which is
already known if nym1

i was output by the Sign oracle, and for other signatures
yuid can be extracted using the soundness property of the zero-knowledge proofs
used . Due to the re-randomisation property, the freshly blinded nym1 are dis-
tributed identically to the re-randomised nym1. Therefore, the cnym1

i generated
are distributed identically to in Figure 7.

Reduction to the DDH problem As a DDH tuple is input pD3, D4h
ybq are dis-

tributed identically to in Sign. A1, d are chosen randomly, Â � A1isk, and so they
are distributed identically to in the Sign algorithm. π can be simulated, due
to the zero-knowledge property of the zero-knowledge proofs used. Therefore
nym�, σ� are distributed identically to in Game 1. Therefore A guesses success-
fully with probability PrrS1s. If the input is not a DDH tuple then all inputs
to A are independent of b therefore A guesses successfully with probability 1/2.
Therefore, on input a DDH tuple, A1 outputs 1 with probability PrrS1s. On an
input that is not a DDH tuple, A1 outputs 1 with probability 1{2. Therefore
PrrS1s � 1{2 ¤ εDDH , and so |PrrS1s � 1{2| � εDDH .

Therefore |PrrS0s � 1{2| ¤ pq� 1qεDDH. As εDDH is negligible, our construction
satisfies anonymity.

B.3 Conversion Blindness

Assuming the DDH assumption, then the construction satisfies conversion blind-
ness.

We define Game 0 be the conversion blindness experiment, using the CLS–DDH
construction. Let S0 be the event that an adversary A correctly guesses b after
Game 0.

We define Game 1 to be identical to Game 0, except instead cnym� is chosen
randomly. Let S1 be the event that the adversary A correctly guesses b after
Game 1.

36

SNDUpuid,Minq

Same as in anonymity experiment

SIGNpuid,mq

Same as in anonymity experiment

CONVERTppnym1,m1, σ1q, . . . , pnymk,mk, σkq, bpkq

if Di P r1, ks s.t. Verifypgpk,mi, nymi, σiq � 0 return K

if bpk R BPK return K

if Di s.t. nymi � nym� and Dj � i s.t. Identifypuid�d , nymjq � 1 for d P t0, 1u

return K

else compute pcnymi, ciq Ð Blindpgpk, bpk, pnymi,miq; r
1
iq for i � 1, . . . , k

if Di s.t. nymi � nym� rÐ$Z�p
@j P r1, ks

αÐ$Z�p , c1j Ð pcj,1g
α, cj,2bpk

αq

Let σj � p., ., ., πjq

if nymj � nym� nym1
j Ð$G1

if nymj � nym�

if puid, ., nymj , σjq P SL yj Ð yuid else extract yj from σj

nym1
j Ð hryj

pcnym1
j , .q Ð Blindpgpk, bpk, pnym1

j ,mjqq

Choose random permutation Π;@i P r1, ks pcnymi, ciq Ð pcnym1
Πpiq, c

1
Πpiqq

else ppcnym1, c1q, . . . , pcnymk, ckqq Ð Convertpgpk, csk, bpk, ppcnym1, c1q, . . . , pcnymk, ckqqq

return ptpcnymi, ciquk, tpcnymi, ciquk, r
1
1, . . . , r

1
kq

A1pD1, D2, D3, D4q

Set g Ð D1, bÐ$ t0, 1u, cpk Ð D2

Otherwise set gpk, isk as in Setup, IKGen,CKGen

puid�0 , uid
�
1 ,m

�, stq Ð ASNDU,SIGN,CONVERTpchoose, gpk, iskq

Let gskruid�0 s � py0, ., .q and gskruid�1 s � py1, ., ., .q, if y0, y1 undefined return K

nym�
1 Ð D3, nym

�
2 Ð D4h

yb

A1, dÐ$G1, ÂÐ A1isk, simulate π with A1, Â, d, nym�
1 , nym

�
2 ,m

�

nym� Ð pnym�
1 , nym

�
2 q, σ

� Ð pA1, Â, d, πq, b� Ð ASNDU,SIGN,CONVERTpguess, st, nym�, σ�q

if b� � b return 1 else return 0

Fig. 10. A1 which distinguishes between DDH tuples using A

37

Game 1

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq, pbpk, bskq Ð BKGenpparamq

pst, pnym0,m0q, pnym1,m1qq Ð Apchoose, gpk, isk, csk, bpkq
p., c�q Ð Blindpgpk, bpk, pnymb,mbqq, cnym

� Ð$G3
1

b� Ð Apguess, st, cnym�, c�q

return 1 if b� � b
We define Game 2 to be identical to Game 1, except c� is chosen randomly.

Let S2 be the event that the adversary A correctly guesses b after Game 2.
Clearly the probability that A correctly guesses b is 1/2, as they are given no
information about b. Therefore PrrS2s � 1{2.

Game 2

paramÐ Setupp1τ q, pipk, iskq Ð IKGenpparamq, pcpk, cskq Ð CKGenpparamq

gpk Ð pparam, ipk, cpkq, pbpk, bskq Ð BKGenpparamq

pst, pnym0,m0q, pnym1,m1qq Ð Apchoose, gpk, isk, csk, bpkq
c� Ð$G2

1, cnym
� Ð$G3

1

b� Ð Apguess, st, cnym�, c�q

return 1 if b� � b

D1pD1, D2, D3, D4q

bÐ$ t0, 1u

g Ð D1, bpk Ð D2, otherwise generate gpk, isk, csk as in Setup, IKGen,CKGen

pst, ppnym0, nym
1
0q,m0q, ppnym1, nym

1
1q,m1qq Ð Apchoose, gpk, isk, csk, bpkq

p., c�q Ð Blindpgpk, bpk, pnymb,mbqq, βÐ$Z�p , cnym� Ð pnymbg
β , D3, nym

1
bD4cpk

βq

b� Ð Apguess, st, cnym�, c�q

return 1 if b� � b

Fig. 11. D1 that distinguishes between Game 0 and Game 1

We show that Game 0 and Game 1 are indistinguishable assuming the DDH as-
sumption. We give a distinguishing algorithm D1 in Figure 11. If D1 is input a
DDH tuple, all inputs to A are distributed identically to in Game 0. This is be-
cause, letting α � loggD3, then D4 � bpkα, and therefore cnym� is distributed
identically to in the Blind algorithm.

If D1 is not input a DDH tuple, all inputs to A are distributed identically
to in Game 1. This is because, β,D3, D4 are now chosen independently and
randomly.

Therefore |PrrS0s � PrrS1s ¤ εDDH , where εDDH is the DDH advantage,
and therefore negligible.

38

We show that Game 1 and Game 2 are indistinguishable assuming the DDH
assumption. We give a distinguishing algorithm D2 in Figure 12.

D2pD1, D2, D3, D4q

bÐ$ t0, 1u

g Ð D1, bpk Ð D2, otherwise generate gpk, isk, csk as in Setup, IKGen,CKGen

pst, ppnym0, nym
1
0q,m0q, ppnym1, nym

1
1q,m1qq Ð Apchoose, gpk, isk, csk, bpkq

c� Ð pD3,mbD4q, cnym
� Ð$G3

1

b� Ð Apguess, st, cnym�, c�q

return 1 if b� � b

Fig. 12. D2 that distinguishes between Game 1 and Game 2

If D2 is input a DDH tuple, all inputs to A are distributed identically to in
Game 1. This is because, letting α � loggD3, then D4 � bpkα, and so c� is
distributed identically to an output of the Blind algorithm.

If D2 is not input a DDH tuple, all inputs to A are distributed identically to
in Game 2. This is because D3, D4 are now chosen independently and randomly.

Therefore |PrrS1s �PrrS2s ¤ εDDH . Therefore |PrrS0s �PrrS2s| ¤ 2εDDH ,
and so |PrrS0s � 1{2| ¤ 2εDDH .

B.4 Join Anonymity

Assuming the DDH assumption and the SPK is zero knowledge, then the CLS
construction satisfies the join anonymity requirement.

First we show that if an adversary A exists,that makes q queries for distinct
user identifiers to the SNDU oracle, such that |PrrExpanon�join�0

A,CLS pτq � 1s �

PrrExpanon�join�1
A,CLS pτq � 1s| � ε, where ε is non-negligible, then we can can

build an adversary A1, that breaks the DDH assumption, with non-negligible
probability. We give A1 in Figure 13. Below we describe why the simulation
given in Figure 13 is indistinguishable to the join anonymity experiment to A
if a DDH tuple is input, and that A guesses correctly with probability 1/2 if a
DDH tuple is not input.

Assuming the input to A1 is not a DDH tuple, then the probability A1 aborts
due to uidb � ũid is (q-1)/q. If A1 aborts due to ũid being input to the SIGN
oracles, then A1 outputs 1 with probability 1/2. As D4 is random and indepen-
dent to all other variables, all inputs to A are independent of b, therefore the
probability they guess correctly is 1{2. Therefore the probability that A1 outputs
1 is 1{2q.

Assuming the input to A1 is a DDH tuple, and A1 does not abort early, we
now show that all inputs to A are distributed identically to in the join anonymity
experiment.

39

SNDUpuid, nq

if uid R HUL

HULÐ HULY tuidu, lÐ l � 1,gskruids ÐK,Min ÐK,decuid Ð cont

if l � k ũidÐ uid,H Ð D2, simulate πH with H,n, stuid Ð pK, H, πHq

return ppH,πHq, contq

Continue from line 5 of oracle in second converter anonymity experiment

SIGNpuid,mq

if uid R HUL return K

if uid � ũid A1 aborts, returning b’

if uid � uid� perform SIGN oracle from Join Anonymity

else if Aũid, xũid or sũid undefined return K

else α, βÐ$Z�p , nym1 Ð gα, nym2 Ð cpkαD4

A1, dÐ$G1, ÂÐ A1isk, simulate π with A1, Â, d, nym1, nym2,m

σ Ð pA1, Â, d, πq return ppnym1, nym2q, σq

A1pD1, D2, D3, D4q

b, b1 Ð$ t0, 1u

gpk, csk, isk chosen as in Setup, IKGen,CKGen except h1 Ð D1, hÐ D3

kÐ$ r1, qs, l � 0,HULÐH

pst, uid0, uid1q Ð ASNDU,SIGNpchoose, gpk, isk, cskq

if uidb � ũid A1 aborts

Choose uid� as in experiment,HULÐ HULY tuid�u, b� Ð ASNDU,SIGNpguess, st, uid�q

if b� � b return 1 else return 0

Fig. 13. A1 which breaks the DDH assumption, using A which breaks the join
anonymity requirement with probability ε

40

The keys pgpk, isk, cskq given to A are distributed identically to in the join
anonymity experiment. The only difference is in choosing h1, h, which are dis-
tributed randomly and independently.

Simulating the SNDU Oracle The SNDU oracle only differs from the oracle in the
join anonymity experiment during the k-th query. In this case H is distributed
identically, and πH can be simulated due to the zero-knowledge property of the
proof system used. The value yũid is not defined but this is not output to A,
or used in the next stage of the protocol. Therefore the output of SNDU is
distributed identically to in the join anonymity experiment.

Simulating the SIGN Oracle The SIGN oracle is identical to the oracle in the join
anonymity experiment, when uid � uid� is queried. When uid� is queried, letting

y� � logD1
pD2q, D4 � hy

�

. This is consistent with SNDU, as H � D2 � hy
�

1 .

A1, d1 are chosen randomly and independently, and Â � A1isk and so these are
distributed identically to in Sign. The proof π can be simulated due to the zero-
knowledge property of the proof system used. Therefore the output of SIGN is
distributed identically to in the join anonymity experiment.

Reduction to the DDH problem Assume A is successful, and A1 is input a DDH
tuple. Assume uidb output by A is ũid, which occurs with probability 1{q. Then
ũid will not be input to the SIGN oracle, and A1 will not abort due to uidb � ũid.

Therefore, assuming A is successful, A1 outputs 1 with probability 1{q. The
probability A is successful is:
1{2PrrExpanon�join�0

A,CLS pτq � 0s � 1{2PrrExpanon�join�1
A,CLS pτq � 1s � pε � 1q{2.

Therefore A1 outputs 1 with probability pε� 1q{2q.

Therefore A1 has advantage ε{2q, in distinguishing DDH tuples.

B.5 Non-Frameability

Assuming the discrete log assumption, and the SPK is simulation sound and zero
knowledge, then the CLS–DDH construction satisfies non-frameability.

We show that if there exists an adversary A such that PrrExpnonframeA,CLS pτq �
1s � ε, where ε is non-negligible, that makes q queries to the SNDU oracle with
different user identifiers, then we can can build an adversary A1, that breaks the
discrete log assumption with non-negligible probability. We give A1 in Figure 14,
where we describe how A1 simulates the oracles needed in the non-frameability
game and extracts the DL solutions. Below we describe why the simulation given
in Figure 14 is indistinguishable towards A.

All inputs to A are distributed identically to in the non-frameability ex-
periment: pgpk, isk, cskq are distributed identically to in the non-frameability
experiment, because h1, h are distributed correctly.

41

SNDUpuid,Minq

if uid R HUL

HULÐ HULY tuidu,gskruids ÐK,Min ÐK,decuid Ð cont

yuid Ð$Z�p , H Ð D
yuid
2 , simulate πH with H, stuid Ð pK, H, πHq

return ppH,πHq, contq

Continue from line 5 of oracle in non-frameability experiment

SIGNpuid,mq

α, βÐ$Z�p , nym1 Ð gα, nym2 Ð cpkαD
zyuid
2

A1, dÐ$G1, ÂÐ A1isk, simulate π with A1, Â, d, nym1, nym2,m

σ Ð pA1, Â, d, πq return ppnym1, nym2q, σq

A1pD1, D2q

gpk, csk, isk chosen as in Setup, IKGen,CKGen except h1 Ð D1, zÐ$Z�p , hÐ Dz
1

HULÐH, puid�,m�, nym�, σ�q Ð ASNDU,SIGNpgpk, isk, cskq

Extract y� from π� included in σ� return y�y�1
uid�

Fig. 14. A1 which breaks the discrete log assumption, using A which breaks the non-
frameability requirement with probability ε

Simulating the SNDU Oracle: When a new user identifier is queried to SNDU,
H is distributed identically as yuid is chosen randomly and independently, and
πH can be simulated due to the zero-knowledge property of proof system used.
Note that y is set as K, but this is not output to A, or used in the next stage of
the protocol.

Simulating the SIGN Oracle: Letting ỹ � logD1
pD2q, D

zyuid
2 � hỹyuid . This

is consistent with SNDU, because H � hỹyuid1 . Therefore nym1, nym2 are dis-

tributed correctly. A1, Â, d are distributed identically to in Sign because Â �
A1isk, and A1, d are chosen randomly. π can be simulated due to the zero knowl-
edge property of the zero knowledge proofs used. Therefore the output of SIGN
is distributed identically to in the non-frameability experiment.

Reduction to the DL problem. Assume A is successful. pm�, nym�, σ�q cannot
have been returned by the SIGN oracle, as A is successful, therefore we can
extract y�, due to the soundness property of the zero knowledge proof used.
As Identifypgpk, csk, uid�,m�, nym�q � 1, this means that nym�

2nym
��csk
1 �

D
zyuid�
2 � hỹyuid� . Therefore due to the zero-knowledge proof, hỹyuid� � hy

�

and ỹ is output by A1.

Overall, if A is successful with probability ε, A1 solves the discrete logarithm
problem with probability at least ε.

42

B.6 Traceability

Assuming the q-SDH assumption holds, and the SPK is simulation sound, zero
knowledge and online extractable, then the CLS–DDH construction satisfies trace-
ability.

First we show that if there exists an adversary A such that PrrExptraceA,CLSpλq �
1s � ε, where ε is non-negligible, which makes q queries to the SNDI oracle for
distinct user identifiers, then we can can build an adversary A1, that breaks the
q-SDH problem with non-negligible probability. We give the detailed description
of A1 in Figure 15, and explain here how A1 works.

First note that all inputs that A1 provides to A are distributed identically
to in the traceability experiment. This is because G1,G2,GT , p, e, g2, ipk are
distributed identically to in the traceability experiment, and g, h, cpk, csk were
chosen identically to in the traceability experiment. The generators g1, h2 are
distributed correctly, due to the fact µ and ν1 were chosen randomly and in-
dependently. As θ is chosen randomly h1 is distributed correctly too. Therefore
pgpk, cskq given to A are distributed identically to in the traceability experiment.

We will use the fact that Γ � gisk1 , and Bi � g
1{pisk�xiq
1 later. This is because:

g1 �
±q�1
i�0 S

µζi
i � g̃

µfpiskq
1 , therefore Γ �

±q�1
i�0 S

µζi
i�1 �

±q�1
i�0 S

µζiisk
i � gisk1 , and

Bi �
±q�2
j�0 S

µηi,j
j � g̃

µfipiskq
1 � g

1{pisk�xiq
1 .

Simulating the ADDU Oracle: The ADDU oracle simply returns accept, when a
valid uid is input, as in the traceability experiment.

Simulating the SNDI Oracle: In the case of SNDI, y can be extracted due to
the soundness property of the zero-knowledge proofs used. We now show that
answers to SNDI queries are correctly distributed.

During the kth query to SNDI, suid, xuid are distributed correctly, as ν2 is
chosen randomly and independently. Because ν2 � suid � θy, Auid � gν11 �

pg1g
ν1pisk�xq�1
1 q1{pisk�xq � pg1h

ν2
2 q

1{pisk�xq � pg1h
suid�θy
2 q1{pisk�xq �

pg1h
suid
2 hy1q

1{pisk�xq. Therefore Auid is also distributed correctly.
For all other queries, suid, xuid are chosen randomly and independently, and

so are distributed correctly. Auid is also distributed correctly due to the follow-

ing: Auid � BlpB
ppx�xlqν1�1q{ν2
l g

ν1{ν2
1 qsuid�θy �

BlpB
ppx�xlqν1�1q{ν2
l B

ν1pisk�xlq{ν2
l qsuid�θy � BlB

psuid�θyqpν1pisk�xq�1q{ν2
l =

pg1g
psuid�θyqpν1pisk�xq�1q{ν2
1 q1{pisk�xlq � pg1h

suid�θy
2 q1{pisk�xlq �

pg1h
suid
2 hy1q

1{pisk�xlq. Therefore answers to SNDI queries are distributed identi-
cally to in the traceability experiment.

Simulating the SIGN Oracle: For the SIGN oracle, nym1, nym2 are chosen iden-
tically to in the traceability experiment. As a is chosen randomly and inde-
pendently, A1, d are chosen randomly, and as Γ � gisk1 , Â � A1isk, therefore
pA1, Â, dq are distributed identically to in Sign. Due to the zero-knowledge prop-
erty of SPK, π can be simulated identically to in the traceability experiment us-
ing A1, Â, d, nym1, nym2,m. Therefore answers to these queries are distributed
identically to in the traceability experiment.

43

ADDUpuidq

if uid P HULY CUL return K else return accept

SNDIpuid, pH,πHqq

if uid P HUL return K else CULÐ CULY tuidu, lÐ l � 1

Extract y as a witness of πH

if l � k suid Ð ν2 � θy, xuid Ð x,Auid Ð gν11 , yuid Ð y

else xuid Ð xl, suid Ð$Z�p , Auid Ð BlpB
ppx�xlqν1�1q{ν2
l g

ν1{ν2
1 qsuid�θy, yuid Ð y

return ppAuid, xuid, suidq, contq

SIGNpuid,mq

if uid R HUL return K

if yuid undefined yuid Ð$Z�p
α, βÐ$Z�p , nym1 Ð gα, nym2 Ð cpkαhyuid , aÐ$Z�p , A1 Ð ga1 , ÂÐ Γ a, dÐ$G1

Simulate π using A1, Â, d, nym1, nym2,m

return ppnym1, nym2q, pA
1, Â, d, πqq

A1pG1,G2,GT , p, e, g̃1, S1, ..., Sq, g2, wq

G1,G2,GT , p, e, g2 given as input, ipk Ð w,HUL, CULÐH

g, h chosen as in Setup, csk, cpk chosen as in CKGen

@i P r1, q � 1s xi Ð$Z�p

µÐ$Z�p , let fpXq �
q�1¹

i�1

pX � xiq �
q�1̧

i�1

ζiX
i, g1 Ð

q�1¹

i�0

Sµζii , Γ Ð
q�1¹

i�0

Sµζii�1

x, ν1, ν2 Ð$Z�p , h2 Ð ppΓgx1 q
ν1g�1

1 q1{ν2 , θÐ$Z�p , h1 Ð hθ2, gpk Ð pcpk, ipk, paramq

@i P r1, q � 1s let fipXq �
q�1¹

j�1,j�i

pX � xiq �
q�2̧

j�0

ηi,jX
j , Bi Ð

q�2¹

j�0

S
µηi,j
j

lÐ 0, kÐ$ r1, qs, ppm1, nym1, σ1q, ..., pmr, nymr, σrqq Ð AADDU,SNDI,SIGNpgpk, cskq

Parse σi � pA1
i, Âi, di, πiq

@i P r1, rs H̃i Ð nymi,2nym
�csk
i,1

if Di P r1, rs s.t. @uid P CUL H̃i � hyuid

Extract x̃, ỹ, r̃2, r̃3, s̃1 from πi

if r̃3 � 0, ÃÐ 1, s̃Ð s̃1

else ÃÐ A1r̃3
i , s̃Ð s̃1 � r̃2r̃3

s� Ð s̃� θỹ return ppÃg
�ν1s

�{ν2
1 q

ν2
ν2�s

��ν1s
�px̃�xq , x̃q

else return K

Fig. 15. A1 which breaks the q-SDH assumption, using A which breaks the traceability
requirement with probability ε

44

Reduction to q-SDH. Assume A is successful. Then it outputs at least q � 1
valid signatures that are unlinkable and not returned by the SIGN oracle for an
uncorrupted user. As there are at least q � 1 unlinkable signatures, there will
be i such that @uid P CUL : H̃i � hyuid . As the signatures were not returned
by the SIGN oracle, we can extract the witnesses for πi due to soundness of the
zero-knowledge proofs used.

We now show that we correctly extract a BBS+ signature Ã on s̃, x̃, ỹ from
πH .

If r̃3 � 0, then g1h
ỹ
1, h

s̃1
2 � 1. Therefore Ã � pg1h

ỹ
1h
s̃
2q

1{pisk�x̃q � 1.

If r̃3 � 0, then Âi � A1�x̃
i dih

r̃2
2 , and Âi � A1isk

i , therefore A1isk�x̃
i � dih

r̃2
2 �

pg1h
ỹ
1h
s̃1
2 q

1{r̃3hr̃22 � pg1h
ỹ
1h
s̃1�r̃2r̃3
2 q1{r̃3 � pg1h

ỹ
1h
s̃
2q

1{r̃3 . Therefore Ã � A1r̃3
i �

pg1h
ỹ
1h
s̃
2q

1{pisk�x̃q.
There are three possible cases for the BBS+ signature Ã, x̃, ỹ, s̃.
Consider the first case, when x̃ R tx1, ..., xq�1uYtxu. If ν2�s

��ν1s
�px̃�xq �

0, then ν1 �
ν2�s

�

s�px̃�xq , if s� � 0 then ν2 � 0 which is not possible. Therefore the

adversary can obtain ν1 and so break the discrete logarithm problem, which is
implied by the q-SDH problem.

We now show that A1 outputs g
1{pisk�x̃q
1 , with which we can obtain a solution

to the q-SDH problem.

pÃg
�ν1s

�{ν2
1 q

ν2
ν2�s

��ν1s
�px̃�xq � pg1h

s�

2 q
ν2

pisk�x̃qpν2�s
��ν1s

�px̃�xqq g
�ν1s

�

ν2�s
��ν1s

�px̃�xq

1

� pg1g
s�pν1pisk�xq�1q{ν2
1 q

ν2
pisk�x̃qpν2�s

��ν1s
�px̃�xqq g

�ν1s
�

ν2�s
��ν1s

�px̃�xq

1

� g
s�ν1pisk�xq�s

��ν2�s
�ν1pisk�x̃q

pisk�x̃qpν2�s
��ν1s

�px̃�xqq

1 � g
1{pisk�x̃q
1 . Given this, which is a forgery as

x̃ R tx1, ..., xq�1u, A can break the q-SDH assumption as shown in [8].

For the second case, if for some uid, x̃ � xuid, and Ã � Auid, but ỹ � yuid,
then A1 can break the discrete log assumption implied by the q-SDH assumption.
logh2ph1q �

s̃�suid
yuid�ỹ

.

Finally we consider the third case, where x̃ P tx1, ..., xq�1u Y txu, but if

x̃ � xuid, then Ã � Auid. We assume x̃ � x which occurs with probability 1{q.
As Ã � Auid, ν2 � s� � psuid � s̃q � θpy � ỹq � 0.

We now show that A1 outputs g
1{pisk�x̃q
1 , with which we can obtain a solution

to the q-SDH problem.

pÃg
�ν1s

�{ν2
1 q

ν2
ν2�s

� � pg1h
s�

2 q
ν2

pisk�xqpν2�s
�q g

�ν1s
�

ν2�s
�

1

� pg1g
s�pν1pisk�xq�1q{ν2
1 q

ν2
pisk�xqpν2�s

�q g
�ν1s

�

ν2�s
�

1 � g
s�ν1pisk�xq�s

��ν2�s
�ν1pisk�xq

pisk�xqpν2�s
�q

1 �

g
1{pisk�xq
1 . Given this, A can break the q-sdh assumption as shown in [8] .

Therefore, if A is successful with probability ε, A1 solves the q-SDH problem
with probability at least ε{q

45

