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Abstract

An emerging trend is for researchers to identify cryptography primitives for which feasibility was
first established under obfuscation and then move the realization to a different setting. In this work we
explore a new such avenue — to move obfuscation-based cryptography to the assumption of (positional)
witness encryption. Our goal is to develop techniques and tools, which we will dub “witness encryption
friendly” primitives and use these to develop a methodology for building advanced cryptography from
positional witness encryption.

We take a bottom up approach and pursue our general agenda by attacking the specific problem
of building collusion-resistant broadcast systems with tracing from positional witness encryption. We
achieve a system where the size of ciphertexts, public key and private key are polynomial in the security
parameter λ and independent of the number of users N in the broadcast system. Currently, systems
with such parameters are only known from indistinguishability obfuscation.

1 Introduction

Over the past five years the introduction of candidate indistinguishability obfuscation schemes [GGH+13b]
has produced a dramatic shift in the community’s view of which cryptographic primitives are plausibly
achievable. Starting with [SW14] there have been several works [SW14, BZ14, GGHR14, BP15, KLW15,
CLTV15, HJK+16, GPS16, BPW16] that leverage the power of indistiguishability obfuscation [BGI+01,
BGI+12] to give new solutions for problems ranging from deniable encryption to showing the hardness of
finding Nash equilibrium.

An emerging trend is for researchers to identify cryptography primitives for which feasibility was first
established under obfuscation and then move the realization to a different setting. For example, several
works [BP15, KW16, AP16, GKW17b, GKW17a, WZ17] proposed solutions under the Learning with Er-
rors [Reg05] (LWE) assumption of primitives (or impossibility results) that to that point were known only
under indistinguishability obfuscation. The motivation for this movement is that LWE is considered a
standard assumption with connections to certain problems on lattices, while current indistinguishability
obfuscation constructions are based on much newer multilinear map candidates. In a different line of re-
searchers [GPSZ17, LZ17] have shown how to base applications such as realizing trapdoor permutations and
the hardness of Nash equilibrium from functional encryption. While subexponentially hard functional en-
cryption is known to imply indistinguishability obfuscation [AJ15, BV15, AJS15], this direction is motivated
by building these primitives with only a polynomial loss in the reductions coupled with prospect of functional
encryption schemes realized from the polynomial hardness of standard assumptions.

In this work we explore a new such avenue — to move obfuscation-based cryptography to the assumption
of (positional) witness encryption [GGSW13, GLW14]. Recall that in a witness encryption scheme, say
for SAT, an encryption algorithm takes in a message m along with a boolean formula φ that operates an
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n bit input w producing a ciphertext ct. A decryptor can recover the message m from ct if it knows a
w such that φ(w) = 1. If no such w exists, then the message is computationally hidden. In addition to
serving as its own application, witness encryption is known to give rise to primitives such as identity-based
encryption [Sha85, BF01] and attribute-based encryption [SW05].

A natural question is why push for moving cryptography from indistinguishability obfuscation to posi-
tional witness encryption when current constructions for both rely on multilinear maps [GGH13a, CLT13,
GGH15, CLT15]. The justification (like in [GPSZ17, LZ17]) relies on some projection to the future. Since
witness encryption is a less powerful primitive than indistinguishability obfuscation, it is believed that the
community will likely arrive at a standard assumption solution earlier. This conjecture is supported by some
heuristic evidence:

• The work of [GLW14] showing provably secure positional witness encryption from simple multilinear
map assumptions came earlier than and was simpler than the later work [GLSW15] which gave a
similar result for obfuscation.

• Recently, it was shown [BJK+17] that attribute-based encryption gives rise to a non-trivial form
of witness encryption. This might lead to further advances in witness encryption which would not
necessarily translate to general obfuscation.

• Recently, the concept of lockable obfuscation [GKW17a, WZ17] was proposed and shown to be realiz-
able under the LWE assumption. Like witness encryption this is a general class of obfuscation, but is
more restricted than indistinguishability obfuscation.

• Very recently, Chen et al. [CVW18] gave a new candidate for witness encryption (albeit not posi-
tional witness encryption) inspired by [GGH15] multilinear encodings. An important feature of their
candidate is that it directly encodes read-once branching program representations of the associated
CNF formulae, thereby avoiding attacks such as input-mixing and more. Since read-once branching
programs are much less expressive than general branching programs, this also points towards reaching
the goal of witness encryption before obfuscation.

In addition, we expect future solutions to witness encryption to be practically more efficient than full blown
indistinguishability obfuscation.

Our goal is to develop techniques and tools, which we will dub “witness encryption friendly” primitives1,
and use these to develop a methodology for building advanced cryptography from positional witness encryp-
tion. While we don’t expect to move all or even “most” of obfuscation-based cryptography to positional
witness encryption, we believe that a long term effort could yield a number of applications which are compara-
ble to those achieved from the aforementioned efforts on building from functional encryption [GPSZ17, LZ17]
or lockable obfuscation [GKW17a, WZ17].

We will take a bottom-up approach and pursue our general agenda by attacking specific problems that
are not known from witness encryption. To that end in this work we study building collusion-resistant
broadcast systems with tracing from positional witness encryption. Our goal is to achieve where the size of
ciphertexts, public key and private key are polynomial in the security parameter λ and independent of the
number of users N in the broadcast system.2 Below we provide an overview of prior work, present our new
results, toolkit of “witness encryption friendly” primitives, and the techniques that allow us to achieve the
above goals.

1.1 Overview

Broadcast Encryption with Tracing. Broadcast Encryption was introduced by Fiat and Naor [FN94].
A broadcast encryption scheme, like a standard public key encryption scheme, consists of three algorithms

1This is intended to mirror the term “iO friendly” used elsewhere in the literature.
2Following prior broadcast encryption literature we will not count a description S of the recipients of a ciphertext toward

the ciphertext overhead.
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— setup, encryption and decryption. The setup algorithm outputs a public key and N secret keys, where
N represents the number of users given as an input. Using the encryption algorithm, a sender can encrypt
a message such that the corresponding ciphertext can only be decrypted by the “qualified” users S ⊆ [N ].3

Here the set S is given as input to the encryption algorithm. The decryption algorithm is self-explanatory.
For security it is required that no set of colluding users can decrypt a ciphertext if none of them are qualified.

Suppose that a set of users S1 collude to create a decoding box D which is capable of decrypting
ciphertexts intended for some (possibly different) set of users S2 with some non-negligible probability. A
broadcast system which provides tracing capabilities allows extraction of a non-empty set T (from the box
D) such that T ⊆ S1, i.e. contains at least one colluding user but none outside of it. Such broadcast systems
are referred to as Trace and Revoke systems in the folklore [NP00, NNL01]. However, we chose to refer to it
as Broadcast and Trace system as it is more appropriate. They have an additional tracing algorithm which
given only the oracle access to the box D can perform this traitor extraction.

Broadcast and Trace via Augmented Broadcast Encryption (AugBE). Boneh and Waters (BW) [BW06a]
built the first fully collusion resistant Broadcast and Trace scheme with sub-linear (in N) ciphertext size.
They also provided a framework for building Broadcast and Trace schemes by introducing an intermediate
primitive called augmented broadcast encryption (AugBE). We follow the same approach in this work and
therefore we elaborate on it now.

An AugBE scheme, as the name suggests, is a broadcast encryption scheme with an augmented en-
cryption functionality. Similar to a standard broadcast encryption scheme it consists of setup, encryption
and decryption algorithms. In an AugBE system, the encryption algorithm also receives a “cutoff” index
i ∈ [N + 1], in addition to a set S ⊆ [N ], as an input. This cutoff index affects the decryptability of the
ciphertext in such a way that the resultant ciphertext can only be decrypted by the users S′ = S \ [i − 1],
i.e. users whose indices are as large as i and belong to the set S are now labelled as qualified. BW defined
two security properties for an AugBE system — index hiding and message hiding security. The first security
property (index hiding) states that an encryption of m under set S to index i is indistinguishable from an
encryption of m under set S to index i+ 1, if either i /∈ S (even when the adversary has all the secret keys),
or the adversary does not have the ith key. The second property (message hiding) states that an encryption
of m0 under set S to index N + 1 is indistinguishable from an encryption of m1 under set S to index N + 1,
even when the adversary is given all N secret keys.

BW argued that if an AugBE scheme satisfies these two properties, then that is sufficient for constructing
a Broadcast and Trace (BT) scheme. In their transformation, the BT setup and decryption algorithm are
identical to their AugBE counterparts. For encryption, a sender runs the AugBE encryption algorithm with
the cutoff index value set to be 1. The tracing algorithm runs AugBE encryption varying the value of cutoff
index. Given a decoder box D and target set S, the tracing algorithm encrypts random messages under set S
to every index i = 1 to N +1, and estimates (for each index i) the probability D decrypts correctly. Suppose
the probability decoder D is successful, i.e. decrypts standard (index 1) ciphertexts correctly, is at least ε.
By message hiding property, we know that D can not have non-negligible success probability when run on
ciphertexts encrypting to index N + 1. This implies that there must exist an index i∗ ∈ [N ] such that the
decoder’s success probability in decrypting index i∗ ciphertexts is at least ≈ ε/N more than in decrypting
index i∗ + 1 ciphertexts. Every cutoff index i where there is a gap in the estimated success probabilities for
index i and i+ 1, the tracing algorithm adds that user i to the set of traitors. The main idea here is that if
an index i /∈ S or the adversary does not have the key for user i, then by index hiding security it should not
be able to distinguish between index i and i+ 1 ciphertexts.

Although the above transformation seems to work (at least intuitively), we would like to point out that
the proof provided in [BW06a] was inaccurate. Very briefly, the problem lies in the fact that there is a
“semantic gap” between the definitions of BT and AugBE schemes. The issue is that in a BT system an
adversary outputs a box which performs some decoding/decryption operations, whereas in an AugBE system
the adversary plays a distinguishing game. At first, it seems like one could use the decoder box to decrypt
the ciphertext and use its output for distinguishing. The problem is that decoder might work incorrectly

3Here qualified could alternatively be interpreted as “non-revoked”.
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sometime and it would affect the success probability of the reduction algorithm. Similar issues were observed
by Goyal, Koppula and Waters [GKW18] in the context of (non-broadcast) traitor tracing. They resolved
the issue by upgrading the security requirements from the underlying intermediate primitives to match the
decoder-based security notions required for traitor tracing. In this work we fix the proof of security for the
BW transformation showing that it does lead to a secure BT scheme.4 More details are provided later in
Section 3.

Our Results and Prior Work. Our main result are new collusion-resistant Broadcast and Trace schemes
from positional witness encryption where the size of ciphertexts, public key and private key are polynomial
in the security parameter λ and independent of the number of users N5. Currently, systems with such pa-
rameters are only known from indistinguishability obfuscation [NWZ16]. If we drop the tracing requirement,
that is consider only broadcast encryption, there are constructions based on multilinear maps [BWZ14] and
iO [BZ14]. If we drop the revocation requirement, that is consider only traitor tracing, schemes with such pa-
rameters are known based on iO [BZ14]. In bilinear groups we can achieve short ciphertexts [BGW05, GW09],
but with longer keys if we drop the tracing requirement. Additionally, we have solutions [BW06a] with ci-
phertexts that grow proportionally to

√
N if we keep it. Very recently, Goyal, Koppula and Waters [GKW18]

gave a polylog traitor tracing scheme from the LWE assumption. However, their system does not have the
capability to broadcast to arbitrary sets.

We further develop a toolkit of certain simpler primitives such that these could be used in conjunction
with positional witness encryption in similar vein to how we have iO friendly primitives to support appli-
cations of iO. Our BT scheme is secure assuming the existence of positional witness encryption and these
simpler primitives. We provide numerous instantiations of these primitives from a wide variety of standard
assumptions such as LWE, RSA and decision linear over bilinear groups. Now we describe our techniques
and main ideas to build a Broadcast and Trace system.

Building Augmented Broadcast Encryption from Positional Witness Encryption. The main
building block used in our construction is a positional witness encryption (PWE) scheme. In a PWE
scheme, the encryption algorithm also takes as input a cutoff index i ∈ {0, . . . , 2n} where n is the bit length
of witnesses on which the corresponding boolean formula (witness relation) φ operates. A decryptor can
recover the message m from ct if it knows a w such that φ(w) = 1 and w ≥ i.6 For security it has two
properties — message hiding and index hiding. First, message hiding states that a message encrypted for
index 2n (i.e., the last index) is hidden irrespective of the boolean formula used. Second, index hiding states
that an encryption of m under formula φ for index i is indistinguishable from an encryption of m under φ
to index i+ 1, if φ(i) = 0.

We now provide an outline of our AugBE construction. Let us start with a simple idea. Suppose during
setup, the algorithm samples a key pair for a standard signature scheme. Next, the secret key for ith user
consists of a signature σi on message i and the public key simply corresponds to the verification key vk. To
encrypt a message m under set S and index i, the encryptor runs the PWE encryption algorithm on message
m for index i || 0` and formula φvk,S , where φvk,S(j, σ) = 1 iff ‘j ∈ S’ and ‘σ is a valid signature on j under
vk’. Here ` denotes the length of the signatures. For decryption a user simply runs the PWE decryption with
its index and signature as the witness. Correctness of this scheme follows directly. However, this scheme is
clearly not compact since the set S is embedded in the formula φvk,S and since the size of PWE ciphertexts
could arbitrarily (but polynomially) depend on the size of the formula, thus the overall AugBE scheme could
be highly inefficient. In a few words the problem is that we are implementing a trivial set membership check
which breaks compactness.

To get around this problem we will use an alternate set membership check. Our idea is to embed only a
succinct commitment to the set S in the formula φ such that there exists proofs of membership in S that grow
at most logarithmically with the number of users N . Clearly such a primitive would resolve the inefficiency

4Here we only consider BT schemes with public traceability.
5Here we assume that number of users N is at most poly(λ)
6Here comparisons between bit-strings is performed by interpreting each bit-string as non-negative integer.
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problem. One possible execution of this idea is via a Merkle hash tree.7 Let IS represent the N -bit indicator
string corresponding to set S, i.e. ith bit of IS is 1 iff i ∈ S. We modify the encryption procedure as follows
— first compute a hash h of string IS ; next run the PWE encryption algorithm on message m for index
i || 0` || 0k and formula φvk,h,N , where φvk,h,N (j, σ, π) = 1 iff ‘j ≤ N ’, ‘π is a valid proof membership for
index j w.r.t. hash h’ and ‘σ is a valid signature on j under vk’. Here proof π simply corresponds to the
pre-images in the hash tree along the path from the root h to the leaf node containing the jth bit, and k
denotes the length of proof π. The decryption is then performed analogously where the decryptor computes
the membership proof by hashing IS and using the appropriate leaf-to-root path as a proof. This seems to
resolve the succinctness problem as the size of the ciphertext is independent of the number of users. Also,
at least intuitively, it seems that the scheme should satisfy both index hiding and message hiding security
properties. The intuition is that since φvk,h,N is not satisfied by any witness larger than (N + 1) || 0` || 0k,
by using security of PWE we can argue message hiding security for the above scheme.8 For arguing index
hiding security we would hope to use the fact that if i /∈ S, or if the adversary does not receive the key for
ith user, then the adversary does not know of any witnesses of the form i || {0, 1}` || {0, 1}k and thus we could
use PWE index hiding security. In the first case (i.e., i /∈ S) hardness of computing witnesses should follow
from collision resistance of the hash function, and in the second scenario it should follow from unforgeability
of the signature scheme. However, there is a problem here. Although we could argue that witnesses are
hard-to-compute while proving index hiding for AugBE, this won’t be sufficient overall as for applying PWE
index hiding security as it is necessary that there does not exist any witness of the form i || {0, 1}` || {0, 1}k.
Thus, unless the underlying PWE scheme provides some strong notion of extractable security, it is not clear
how to prove security of the above construction.9

To this end, we develop a toolkit of certain simpler primitives, which aid us in proving our construction
to be secure. Our motivation here is that using such primitives, we could somehow indistinguishably switch
between instances/formulae which have hard-to-compute witnesses to instances/formulae which do not have
any witnesses (in some particular pre-specified range). Thus this would enable applicability of the index
hiding security property of PWE scheme in the corresponding proof. Below we elaborate on two such
primitives — all-but-one signatures and somewhere perfectly binding hash functions (a primitive similar to
somewhere statistically binding hash functions described in [HW15, OPWW15]).10

A Toolkit for Witness Encryption. The first primitive we consider is a special type of signature scheme
called all-but-one (ABO) signatures. These are just like standard signatures, except the setup algorithm has
a special “punctured” mode in which it takes a message m∗ as an additional input and outputs a pair of
signing and verification key (sk, vk) such that there does not exist any signature that gets verified for message
m∗. In other words, the verification algorithm on inputs vk and m∗ rejects every signature σ. Now instead of
unforgeability-type security, we only require that an adversary should not be able to distinguish verification
keys that are output by punctured setup with message m∗ from those output by normal setup, even when
given access to the signing oracle.11 We note that the notion of ABO signatures is motivated by constrained
signatures [BZ14] and splittable signatures [KLW15], but is much weaker than both of those. In this work,
we also provide new constructions of ABO signatures from a wide variety of standard assumptions. Next we

7The idea of using Merkle hash tree for efficiently committing to large sets has also been previously used in works such
as [ABG+13, Zha16].

8The proof will invole an exponential number of hybrids. This is because for applying message hiding security property of
PWE the index used must be 2λ+`+k (i.e., the last index), therefore we need to use index hiding security to go from index
(N + 1) || 0` || 0k to 2λ+`+k which takes an exponential number of hybrid steps. Here the exact ordering of witness components,
i.e. i, σ, π, is very important for the proof to go through. We can only use the security of PWE scheme if index i is leading
term and corresponds to the most significant bits.

9Although the notion of witness encryption with extractable security has been well studied [GKP+13, GGHW14], extractabil-
ity in the case of positional witness encryption is rather non-trivial to define due to the fact that PWE already requires index
hiding to hold for all indices.

10We would like to point out that our techniques of relaxing extractably-secure assumptions to more standard
indistinguishability-based assumptions are in part inspired by analogous results in the regime of moving from differing-inputs
obfuscation (diO) to indistinguishability obfuscation (iO) [HW15, NWZ16, CDG+17].

11The adversary is not allowed to query the oracle on message m∗ to allow trivial distinguishing attacks.
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discuss the second primitive we use, and later we will circle back to the new ABO signature constructions
we provide.

The next primitive we employ is a somewhere perfectly binding (SPB) hash function [HW15, OPWW15].
An SPB hash consists of four algorithms — setup, hash, open and verify. The setup algorithm is used to
sample a hash key hk, and has two modes (akin to ABO signatures) — normal and “binding”. In the binding
mode it takes an index i as an additional input, and it ensures that the corresponding hash function Hhk is
perfectly binding for the ith message position (i.e., the hash value completely determines the ith bit of the
pre-image). Additionally, SPB hashes have a local opening property which states that for any message m,
any index i ≤ |m| and hash h = Hhk(m), one could create a short proof π proving that the message’s ith bit
is m[i] and it hashes to h.12 Such proofs could be verified by running the verification algorithm which also
take as input the hash key, hash value and a position. For security it is required that an adversary should
not be able to distinguish between hash keys that are output by binding setup and those output by normal
setup.

Next we show that if we use ABO signatures and SPB hash functions in the previously described AugBE
construction then we can prove its security using positional witness encryption.

Completing AugBE Construction. As discussed earlier, ABO signature scheme and an SPB hash
function enable us to indistinguishably turn instances with hard-to-compute witnesses into instances which
have no witnesses (in a particular range). Therefore, by simply using an ABO signature scheme and an SPB
hash function in our AugBE construction, we can also prove index hiding property of our construction. The
construction is identical to the one described before, except that checking membership of index j will now
be done by SPB verification algorithm as follows — ‘π proves that there exists a string x such that x[j] = 1
and Hhk(x) = h’. The proof of AugBE message hiding stays the same as φvk,hk,h,N is not satisfied by any
witness larger than (N + 1) || 0` || 0k. The AugBE index hiding proof is divided in two parts. Let i be the
challenge index, S the challenge set and SA the set of keys in adversary’s possession. We know that either
i /∈ S or i /∈ SA. Consider the following cases.

- i /∈ SA : The idea here is that since the adversary does not have key for user i, thus we could instead
generate the (sk, vk) key pair by running punctured setup for message i. From adversary’s perspective
this can not be distinguished with non-negligible probability by ABO security. And now, since the
verification key vk no longer accepts any signature σ for message i, we get φvk,hk,h,N (w) = 0 for all
i || 0` || 0k ≤ w < (i+ 1) || 0` || 0k. As a result, we could use PWE index hiding security to switch from
index i AugBE ciphertexts to index i + 1 ciphertexts. Finally, we could un-puncture the key vk to
complete the proof.

- i /∈ S : The proof is very similar to the one described above. The only modification will be that instead
of puncturing the verification key at index i, we bind the hash key for position i. The intuition is
that since the ith bit of string IS is zero (as i /∈ S), thus if the hash key hk was (perfectly) binding
at position i then there will not exist any proof π that proves that there exists a string x such that
Hhk(IS) = Hhk(x) the ith bit of x is 1. Thus, as before φvk,hk,h,N (w) = 0 for all indices in that range
and we can apply PWE index hiding security.

At a high level, the proposed paradigm is to first use the developed toolkit to turn formulae with hard-to-
compute satisfying inputs into formulae with only range-restricted satisfying inputs, then use PWE security
to cut through the range of inactive inputs, and finally switch back to original formulae using our toolkit.
We believe that such a methodology will find more applications especially in bringing more primitives based
on obfuscation to the assumption of (positional) witness encryption. Finally, we talk about the new ABO
signature constructions that we provide.

12Technically one could visualize the proof π as only proving that the ith bit of pre-image is m[i]. The fact that it also proves
that the message hashes to Hhk(m) is just due to the structure of the proof.
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ABO Signatures from Standard Assumptions. In this work we give two new pathways to build ABO
signatures. First, we show that an ABO signature scheme can be generically built from any verifiable random
function (VRF) [MRV99] and a perfectly-binding (non-interactive) commitment scheme. Second, we show
that any identity-based encryption (IBE) scheme [Sha85, BF01], that is anonymous [BBDP01] as well as
allows efficient key verifiability, also leads to an ABO signature scheme. VRFs can be based on a wide variety
of assumptions such as decision-linear over bilinear maps as well as RSA-like assumptions [MRV99, HJ16]
and perfectly-binding (non-interactive) commitment schemes can be based on assumptions such as DDH,
LWE and LPN [GHKW17] and perfectly injective OWFs. IBE schemes with such verifiability and anonymity
properties can be based on simple assumptions over bilinear maps as well as LWE [BW06b, SKOS09, ABB10,
LSJ+11, GKW17a, WZ17]. Thus this leads to new constructions of ABO signatures. We also point out that
ABO signatures can be built from constrained signatures [BZ14] and splittable signatures [KLW15] which
have been constructed under iO and OWFs. Constrained signatures have also been constructed from non-
interactive witness indistinguishable proofs and perfectly binding commitments [BZ14].

We now briefly highlight the main ideas to build these from VRFs. A VRF is like a pseudorandom
function (PRF) in which the secret key holder can also prove correctness and uniqueness of PRF evaluation.
Concretely, using the secret key sk, it could efficiently evaluate the function Fsk(·) on any input x as well
as generate a proof π of the statement y = Fsk(x). An ABO signing key will simply correspond to the
VRF secret key sk, and the ABO verification key will contain the VRF verification key vk as well as a
commitment COM. Here COM commits to 0 during standard setup, whereas during punctured setup (with
message x∗) COM commits to 1 where the random coins used are Fsk(x

∗). A signature σ for any message
x will simply correspond to its function evaluation y = Fsk(x) as well as corresponding proof π. While
verifying a message-signature pair x, (y, π) w.r.t. key (vk,COM), the verifier checks two things — (1) π
proves that y is a correct evaluation on input x, and (2) COM does not match the commitment of bit 1
obtained using y as randomness. Clearly this scheme satisfies the ABO scheme correctness condition if the
underlying commitment scheme is perfectly binding as in case of normal setup, condition (2) will never be
satisfied. Both our ABO constructions are provided later in Section 5.

Lastly, one might think that the full power of ABO signatures is not needed to build the above Broadcast
and Trace system. Instead a restricted version where the message space is fixed to be {1, 2, . . . , N} might
suffice. It turns out that such a restricted ABO signature scheme can be directly constructed from any SPB
Hash function and length doubling pseudo-random generator (PRG). The idea is to sample an SPB hash key
hk, random λ bit strings si for each message i ∈ [N ] during setup. The verification key consists of the hash
key hk and a hash value h, where h is computed as the SPB hash on the set {ti = PRG(si)}i. The signature
on message i consists of (si, πi) where πi is the SPB hash opening of hash h on index i. The verification
procedure first checks correctness of the hash proof πi, and then also checks that PRG(si) is ith block value.
For punctured setup at index i∗, the algorithm changes the following — 1) it samples SPB hash hk to be
binding at index i∗, 2) it samples ti∗ uniformly at random from {0, 1}2λ. With all-but-negligible probability,
ti∗ will lie outside the range space of PRG, therefore no valid signature for i∗ would exist under punctured
setup.

However, such an ABO scheme can only be used to build a Broadcast and Trace system in which the
numbers of users is a-priori (and polynomially) bounded. A more desirable setting would be where the
number of users that can be supported is exponential (i.e., unbounded), while allowing the encryptor to
choose any polynomial sized (a-priori unbounded) subset of users to broadcast to. Such a Broadcast and
Trace system would still require the full power of ABO signatures, thus we stick to the more general setting.

2 Preliminaries

Notations For a probability distribution D, we denote by x ← D that x is sampled according to D. If
S is a set, y ← S denotes that y is sampled from S according to the uniform distribution on S. We use
[m,n] to denote the set of contiguous integers {m, . . . , n} for some m,n ∈ Z. For simplicity, we simply use
[n] to denote the set [1, n] = {1, . . . , n} for any n ≥ 1. We sometimes slightly abuse notation and refer to
bit strings in {0, 1}` by integers, where the left most bit of x ∈ {0, 1}` is considered as the most significant
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bit. For any set S, we denote the size of the set of |S|. We denote security parameter by λ in the rest of the
paper. For any bit string t, we denote that int(t) as the integer representation of string t.

2.1 Positional Witness Encryption

In this section, we formally define Positional Witness Encryption (PWE) [GLW14] and list its correctness
and security properties. The encryption system is defined for an NP language L and a message space
{Mλ}λ. Let R(·, ·) be the witness relation corresponding to L i.e., for any string x ∈ {0, 1}∗, x ∈ L iff
∃w ∈ {0, 1}n(|x|) s.t. R(x,w) = 1, where n(|x|) is the witness length of instance x. For simplicty of notation,
we hereby denote n = n(|x|). A party can encrypt a message m with an instance x and index ind. Another
party can decrypt the ciphertext using a witness w to the instance x such that R(x,w) = 1 and w ≥ ind.
Given a string w ∈ {0, 1}n, we sometimes slightly abuse notation and also refer to w as an integer. Formally,
the encryption system contains two procedures defined as follows.

• Encrypt(1λ, x,m, ind) → ct. The encryption algorithm takes as input a security parameter 1λ, an
instance x ∈ {0, 1}∗, a message m, an index ind ∈ [0, 2n] and outputs a ciphertext ct.

• Decrypt(w, ct)→ m. The decryption algorithm takes as input a witness w ∈ [0, 2n− 1], a ciphertext ct
and outputs either a message m or ⊥.

Correctness. We say that a PWE scheme is correct if for every λ ∈ N, any instance x ∈ {0, 1}∗, any
message m ∈ Mλ, any witness w ∈ [0, 2n − 1], any position index ind ∈ [0, 2n] such that R(x,w) = 1 and
w ≥ ind, and ct← Encrypt(1λ, x,m, ind), we have

Pr
[
Decrypt(w, ct) = m

]
= 1

Security. A positional witness encryption scheme should satisfy 2 security properties: message indistin-
guishability and position indistinguishability defined as follows.

Definition 2.1 (Message Indistinguishability). A PWE scheme for a language L is message indistinguisha-
bility secure if for any stateful PPT adversary A, there exists a negligible function negl(·) such that for every
λ ∈ N, we have

Pr

[
A(ct) = b :

(x,m0,m1)← A(1λ);
b← {0, 1}; ct← Encrypt(1λ, x,mb, 2

n)

]
≤ 1

2
+ negl(λ).

Note that the above property needs to be satisfied even for instances x ∈ L.

Definition 2.2 (Position Indistinguishability). A PWE scheme for a language L with witness relation R(·, ·)
is position indistinguishability secure if for every stateful PPT adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N, we have

Pr

[
A(ct) = b :

(x,m, ind)← A(1λ);
b← {0, 1}; ct← Encrypt(1λ, x,m, ind + b)

]
≤ 1

2
+ negl(λ).

where the adversary A is restricted to produce a challenge (x,m, ind) such that R(x, ind) = 0.

2.2 All-But-One Signatures

In this section, we define all-but-one (ABO) signatures and describe its security properties. An ABO signa-
ture scheme is similar to a public key signature scheme, except that it offers an additional setup algorithm
which outputs a verification key punctured at input message. We note that the notion is motivated by
and is weaker than splittable signatures [KLW15] and constrained signatures [BZ14]. Both the primitives
offer an additional split algorithm that can generate constrained secret key and constrained verification key.
Formally, we define an ABO scheme with respect to message space {0, 1}n(λ) and signature space {0, 1}`(λ)
for some polynomials n(·) and `(·) as follows.
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• Setup(1λ)→ (sk, vk). The setup algorithm takes as input a security parameter λ and outputs a signing
key sk and a verification key vk.

• Setup-Punc(1λ,m∗) → (sk, vk). The punctured setup algorithm takes as input a security parameter λ
and a message m∗. It outputs a signing key sk and a verification key vk.

• Sign(sk,m) → σ. The signing algorithm takes as input a signing key sk, a message m and outputs a
signature σ.

• Verify(vk,m, σ) → 0/1. The verification algorithm is a deterministic algorithm that takes as input a
(possibly punctured) verification key vk, a message m and a signature σ. It outputs either 0 or 1.

Correctness. We say that an ABO signature scheme is correct if

1. Correctness of Setup: For any security parameter λ ∈ N, (sk, vk) ← Setup(1λ), any m ∈ {0, 1}n(λ),
σ ← Sign(sk,m), we have Verify(vk,m, σ) = 1.

2. Correctness of Punctured Setup: For any security parameter λ ∈ N, any message m∗ ∈ {0, 1}n(λ),
(sk, vk)← Setup-Punc(1λ,m∗) and any σ ∈ {0, 1}`(λ), we have Verify(vk,m∗, σ) = 0.

Security. We now define the required security property for all-but-one signatures.

Definition 2.3 (VK Indistinguishability). An all-but-one signature scheme S = (Setup,Setup-Punc,Sign,Verify)
is said to be VK indistinguishable if for any stateful PPT adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N, the following holds.

Pr

[
ASign(skb,·)(vkb) = b :

m∗ ← A(1λ); (sk0, vk0)← Setup(1λ)
(sk1, vk1)← Setup-Punc(1λ,m∗); b← {0, 1}

]
≤ 1

2
+ negl(λ).

where the adversary is not allowed to make signature query on message m∗.

Note that by a hybrid argument we can prove that if an all-but-one signature scheme satisfies VK
Indistinguishability property, it also satisfies the standard security notion of selective unforgeability.

2.3 Somewhere Perfectly Binding Hash Function

In this section, we define somewhere perfectly binding hash function, which is similar to somewhere sta-
tistically binding hash function defined in [HW15, OPWW15] and describe its correctness and security
properties.

• Setup(1λ, L) → hk. The setup algorithm takes as input a security parameters λ, a message length
L < 2λ and outputs a public hashing key hk.

• Setup-Bind(1λ, L, ind) → hk. The binding setup algorithm takes as input a security parameters λ,
message length L < 2λ, an index ind ≤ L and outputs a public hashing key hk.

• Hash(hk,m)→ h. The hash function takes as input a hash key hk, a message m ∈ {0, 1}L and outputs
a hash h.

• Open(hk,m, ind) → π. This opening algorithm takes as input a hash key hk, a message m ∈ {0, 1}L,
an index ind ≤ L and outputs a proof π.

• Verify(hk, h, ind, b, π) → 0/1. The verification algorithm is a deterministic algorithm takes as input a
hash key hk, a hash value h, an index ind ≤ L, a bit b, a proof π and outputs 0 or 1.
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Correctness of Opening. We say that an SPB hash scheme is correct if the following conditions hold.

• For every security parameter λ ∈ N, any message length L < 2λ, any message m ∈ {0, 1}L, every index
ind ≤ L, hk← Setup(1λ, L), h = Hash(hk,m), π ← Open(hk,m, ind), we have

Verify(hk, h, ind,m[ind], π) = 1

• For every security parameter λ ∈ N, any message length L < 2λ, any message m ∈ {0, 1}L, every pair
of indices ind, ind′ ≤ L, hk← Setup-Bind(1λ, L, ind′), h = Hash(hk,m), π ← Open(hk,m, ind), we have

Verify(hk, h, ind,m[ind], π) = 1

Security. An SPB Hash function need to satisfy 2 security properties - Index Hiding and Somewhere
Perfectly Binding w.r.t Opening.

Definition 2.4 (Index Hiding). An SPB Hash function is said to have index hiding property if for any
stateful PPT adversary A, there exists a negligible function negl(·) such that for every λ ∈ N, the following
holds.

Pr

[
A(hkb) = b :

(L, ind)← A(1λ); hk0 ← Setup(1λ, L)
hk1 ← Setup-Bind(1λ, L, ind); b← {0, 1}

]
≤ 1

2
+ negl(λ).

Definition 2.5 (Somewhere Perfectly Binding w.r.t. Opening). We say that a hash key hk is binding w.r.t.
opening at index ind if for every hash h, there does not exist proofs π and π′ such that

Verify(hk, h, ind, 0, π) = Verify(hk, h, ind, 1, π′) = 1

We say that a hash family is somewhere perfectly binding w.r.t opening if for any security parameter λ ∈ N,
any message length L < 2λ, and any index ind ≤ L, we have

Pr
[
hk is binding w.r.t opening at index ind : hk← Setup-Bind(1λ, L, ind)

]
= 1.

We note that such hash functions have been constructed in [HW15, OPWW15] from assumptions such
as LWE, DDH and DCR.

2.4 Verifiable and Anonymous Identity Based Encryption

In this section, we define verifiable and anonymous identity-based encryption (VAIBE) and describe its
correctness and security properties. This is an identity based encryption system with 2 additional features.
First, the ciphertext does not reveal any information about the identity used in encrypting the message.
Second, there is a deterministic verification algorithm which can be used to verify if the given secret key
corresponds to the given identity. Formally, the encryption system for message space {Mλ}λ, identity space
{Iλ}λ and key space {Kλ}λ is defined as follows.

• Setup(1λ) → (mpk,msk). The setup algorithm takes as input a security parameter λ. It outputs a
master public key mpk and a master secret key msk.

• KeyGen(msk, id)→ (skid, π). The key generation algorithm takes as input a master secret key msk and
an identity id. It outputs a secret key skid and a (possibly empty) proof π.

• Encrypt(mpk, id,m)→ ct. The encryption algorithm takes as input a master public key mpk, an identity
id, a message m and outputs a ciphertext ct.

• Decrypt(skid, ct) → m/ ⊥ . The decryption algorithm takes as input a secret key skid, a ciphertext ct
and outputs a message m or ⊥.

• Verify(mpk, id, skid, π)→ 0/1. The verification algorithm is a deterministic algorithm that takes as input
a master public key mpk, an identity id, a secret key skid, a proof π and outputs either 0 or 1.
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Correctness. A VAIBE scheme is said to be correct if for every security parameter λ ∈ N, every identity
id ∈ Iλ, every message m ∈ Mλ, every (mpk,msk) ← Setup(1λ), (skid, π) ← KeyGen(msk, id) and ct ←
Encrypt(mpk, id,m), we have

• Correctness of encryption: Decrypt(skid, ct) = m.

• Correctness of verification: Verify(mpk, id, skid, π) = 1.

Security. A VAIBE scheme is said to be secure if it satisfies the following 3 security properties.

Definition 2.6 (IND-CPA security). A VAIBE scheme is said to be selective IND-CPA secure if for every
stateful PPT adversary A, there exists a negligible function negl(·) such that for every λ ∈ N, we have

Pr

AKeyGen(msk,·)(mpk, ct) = b :
(mpk,msk)← Setup(1λ);

(id∗,m0,m1)← A(1λ); b← {0, 1};
ct← Encrypt(mpk, id∗,mb)

 ≤ 1/2 + negl(λ).

where the adversary A is not allowed to make key generation query on identity id∗.

Definition 2.7 (Anonymous IBE). A VAIBE scheme is said to be selective IND-ANON secure if for every
stateful PPT adversary A, there exists a negligible function negl(·) such that for every λ ∈ N, we have

Pr

AKeyGen(msk,·)(mpk, ct) = b :
(mpk,msk)← Setup(1λ);

(id0, id1,m)← A(1λ); b← {0, 1};
ct← Encrypt(mpk, idb,m)

 ≤ 1/2 + negl(λ).

where the adversary A is not allowed to make key generation queries on identities id0 and id1.

Definition 2.8 (Soundness of Verifiability). For every security parameter λ ∈ N, every identity id ∈ Iλ,
every (mpk,msk)← Setup(1λ), every secret key sk ∈ Kλ, we need

∃π s.t. Verify(mpk, id, sk, π) = 1 =⇒ ∀m ∈Mλ, ct← Encrypt(mpk, id,m), we have Decrypt(sk, ct) = m.

2.5 Verifiable Random Function

In this section, we define verifiable random function (VRF) [MRV99] and describe its correctness and security
properties. VRFs are similar to PRFs with an additional feature: VRF evaluation algorithm additionally
outputs a proof using which the output of the evaluation algorithm can be verified. Formally, VRFs with
input domain {Xλ}λ and output domain {Yλ}λ are defined as follows.

• Setup(1λ)→ (sk, vk). The setup algorithm takes as input a security parameter 1λ. It outputs a secret
key sk and a verification key vk.

• Eval(sk, x) → (y, π). The evaluation algorithm takes as input a secret key sk and a message x. It
outputs a value y and a proof π.

• Verify(vk, x, y, π) → 0/1. The verification algorithm takes as input a verification key vk, a message x
in input domain, a value y in output domain, a proof π and outputs either 0 or 1.

Correctness. A VRF scheme is said to be correct if for every security parameter λ ∈ N, every (sk, vk)←
Setup(1λ), every message x ∈ Xλ and (y, π)← Eval(sk, x), we have

Verify(vk, x, y, π) = 1.
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Security. A VRF is said to be secure if it satisifies the following 2 security properties.

Definition 2.9 (Selective Pseudorandomness). For every stateful PPT Adversary A, there exists a negligible
function negl(·) such that, for every λ ∈ N, we have

Pr

AEval(sk,·)(vk, yb) = b :
(sk, vk)← Setup(1λ); b← {0, 1};

x∗ ← A(1λ);
(y0, π)← Eval(sk, x∗); y1 ← Yλ

 ≤ 1/2 + negl(λ).

where the adversary is not allowed to make evaluation query on input x∗.

Definition 2.10 (Unique Provability). For every λ ∈ N and every tuple (vk, x,y1,π1, y2,π2), where x ∈
Xλ, y1, y2 ∈ Yλ, y1 6= y2, the following must hold for at least one of i ∈ {1, 2}.

Verify(vk, x, yi, πi) = 0.

Although existing schemes achieve the unique provability property for even maliciously generated verification
keys, we note that for the purpose of this paper, it is sufficient for a VRF scheme to satisfy the property
only for verification keys generated by the setup algorithm.

2.6 Perfectly Binding Commitments

In this section, we define perfectly binding computationally hiding commitments (PB-CH Coms) and describe
its security properties. This primitive can be constructed from injective one-way functions. Formally, a
commitment scheme with randomness space {Rλ}λ and commitment space {Cλ}λ is defined as follows.

• Setup(1λ) → pp. The setup algorithm takes as input a security parameter λ and outputs public
parameters pp.

• Commit(pp, b; r)→ c. The commit algorithm is a randomized algorithm that takes as input the public
parameters pp, a bit b to be committed, random coins r and outputs a commitment c.

• Verify(pp, b, c, π)→ 0/1. The verification algorithm takes as input the public parameters pp, a bit b, a
commitment c and an opening π. It outputs either 0 or 1.

For simplicity, we assume that the opening for a commitment is simply the randomness used during the
commitment phase. As a result, we do not have a separate ‘reveal’ algorithm. Below we formally define
perfectly binding and computationally hiding requirements.

Definition 2.11. (Perfect Correctness) A commitment scheme is said to be correct if for all λ ∈ N, every
public parameter pp← Setup(1λ), any bit b ∈ {0, 1} and randomness r ∈ Rλ, we have

if c = Commit(pp, b; r), then Verify(pp, b, c, r) = 1.

Definition 2.12. (PB-CH Commitments) A pair of polynomial time algorithms (Commit,Verify) is a per-
fectly binding computationally hiding (PB-CH) commitment scheme if it satisfies the following conditions:

• (Perfect Binding) For every λ ∈ N, every public parameter pp ← Setup(1λ), every (c, r0, r1) ∈ {Cλ ×
Rλ ×Rλ}, the following holds for at least one b ∈ {0, 1}:

Verify(pp, b, c, rb) = 0.

• (Computationally Hiding) For every PPT adversary A, there exists a negligible function negl(·) such
that for every λ ∈ N, we have

Pr
[
A(pp, c) = b : pp← Setup(1λ), b← {0, 1}, r ← Rλ, c← Commit(pp, b; r)

]
≤ 1

2
+ negl(λ).
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3 Revisiting Broadcast and Trace System

3.1 Broadcast and Trace System

In this section, we formally define Broadcast and Trace system and describe its security properties. The
security definition is motivated by a recent work by Goyal et al. [GKRW17] which points out problems with
previously proposed notions of traitor tracing and proposes an indistinguishability based security definiton
for the primitive.

• Setup(1λ, 1N ) → (pk, {sk1, sk2, . . . , skN}). The setup algorithm takes as input a security parameter λ
and number of users N . It outputs a public key pk, and secret keys for N users {sk1, sk2, . . . , skN}.

• Encrypt(pk, S,m)→ ct. The encryption algorithm takes as input public key pk, a set S ⊆ [N ] of users,
a message m and outputs a ciphertext ct.

• Decrypt(i, ski, pk, S, ct)→ m/ ⊥. The decryption algorithm takes as input an index i ∈ [N ], secret key
of ith user, public key pk, a set of users S ⊆ [N ], a ciphertext ct and outputs either a message m or ⊥.

• TraceD(pk, SD,m0,m1, 1
1/ε)→ S∗. The tracing algorithm takes as input a public key pk, a set of users

SD, two messages m0, m1 and parameter ε < 1. The algorithm has a black-box access to the decoder
D and outputs a set of indices S∗ ⊆ [N ].

Correctness. The Broadcast and Trace system is said to be correct if for every λ ∈ N, any number of users
N ∈ N, every subset of users S ⊆ [N ], every message m ∈ Mλ, every user i ∈ S, (pk, {sk1, sk2, . . . , skN})←
Setup(1λ, 1N ) and ct← Encrypt(pk, S,m), we have

Decrypt(i, ski, pk, S, ct) = m.

Security. Intuitively, the system is said to be secure if it is IND-CPA secure and if no poly-time adversary
can produce a decoder that can fool the tracing algorithm. We formally define both of these properties
below.

Definition 3.1 (IND-CPA security). We say that a Broadcast and Trace scheme is IND-CPA secure if for
every stateful PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr

[
AO(·)(ct) = b :

1N ← A(1λ); (pk, (sk1, . . . , skN ))← Setup(1λ, 1N );
(S′,m0,m1)← AO(·)(pk); b← {0, 1}; ct← Encrypt(pk, S′,mb)

]
≤ 1

2
+ negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index i ∈ [n] and outputs ski. Let

the set of indices queried by the adversary to the oracle be S ⊆ [N ]. Then the adversary is restricted to
output the challenge set S′ such that S′ ⊆ [N ] \ S.

Definition 3.2 (IND-secure Traitor Tracing). Let (Setup,Encrypt,Decrypt,Trace) be a Broadcast and Trace
scheme. For any non-negligible function ε(·) and stateful PPT adversary A, consider the experiment
Expt-BTA,ε(λ) defined as follows.

In order to define the security of tracing mechanism, we define the following events and probabilities as
a function of security parameter λ.

• Good-DecA,ε : Pr[D(ct) = b : b← {0, 1}, ct← Encrypt(pk, SD,mb)] ≥ 1/2 + ε(λ)
Pr-Good-DecA,ε(λ) = Pr[Good-DecA,ε]

• Correct-TrA,ε : |S∗| > 0, S∗ ⊆ S ∩ SD
Pr-Correct-TrA,ε(λ) = Pr[Correct-TrA,ε]
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Experiment Expt-BTA,ε(λ)

• 1N ← A(1λ).

• (pk, (sk1, . . . , skN ))← Setup(1λ, 1N ).

• (D,SD,m0,m1)← AO(·)(pk).

• S∗ ← TraceD(pk, SD,m0,m1, 1
1/ε(λ)).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index i ∈ [N ] and outputs ski. Let
S be the set of indices queried by A.

Figure 1: Experiment Expt-BT

• False-TrA,ε : S∗ 6⊆ S ∩ SD
Pr-False-TrA,ε(λ) = Pr[False-TrA,ε]

The Broadcast and Trace scheme is said to have Ind-secure tracing mechanism if for every stateful PPT
adversary A, polynomial q(·) and non-negligible function ε(·), there exists negligible functions negl1(·) and
negl2(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), Pr-Correct-TrA,ε(λ) ≥ Pr-Good-DecA,ε(λ)−negl1(λ)
and Pr-False-TrA,ε(λ) ≤ negl2(λ).

3.2 Augmented Broadcast Encryption

In this section, we define Augmented Broadcast Encryption (AugBE) and its security properties.

• Setup(1λ, 1N ) → (pk, {sk1, . . . , skN}). The setup algorithm takes as input security parameter λ and
number of users N . It outputs a public key pk and secret keys {sk1, . . . , skN}, where ski is the secret
key for user i.

• Encrypt(pk, S,m, ind) → ct. The encryption algorithm takes as input public key pk, a set of users
S ⊆ [N ], a message m, and an index ind ∈ [N + 1]. It outputs a ciphertext ct.

• Decrypt(i, ski, pk, S, ct) → m/ ⊥. The decryption algorithm takes as input an index i, secret key for
ith user ski, public key pk, a set of users S ⊆ [N ], a cipheretxt ct and outputs a message m or ⊥.

Correctness. An AugBE scheme is said to be correct if for every security parameter λ ∈ N, any number
of users N ∈ N, any message m ∈ Mλ, any subset of users S ⊆ [N ], any index ind ∈ [N ], any i ∈
S ∩ {ind, ind + 1, . . . , N}, (pk, {sk1, sk2, . . . , skN})← Setup(1λ, 1N ) and ct← Encrypt(pk, S,m, ind), we have

Decrypt(i, ski, pk, S, ct) = m.

Security. We need AugBE to satisfy 2 security properties. The first is message hiding property which
states that no PPT adversary can distinguish between encryptions of m0 and m1 encrypted using the last
index N + 1. The second is index hiding property which states that ciphertexts encrypted to index ind do
not reveal any non-trivial information about the index. We formally define the security properties below.

Definition 3.3 (Message Hiding). We say that an AugBE scheme satisfies message hiding property if for
every stateful PPT adversary A, there exists a negligible function negl(·) such that for every λ ∈ N, the
following holds

Pr

[
AO(·)(ct) = b :

1N ← A(1λ); (msk, pk, (sk1, . . . , skN ))← Setup(1λ, 1N );
(S′,m0,m1)← AO(·)(pk); b← {0, 1}; ct← Encrypt(pk, S′,mb, N + 1)

]
≤ 1

2
+ negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index i ∈ [N ] and outputs ski.
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Definition 3.4 (Index Hiding). We say that an AugBE scheme satisfies index hiding property if for every
stateful PPT adversary A, there exists a negligible function negl(·) such that for every λ ∈ N, the following
holds,

Pr

[
AO(·)(ct) = b :

(1N , ind)← A(1λ); (msk, pk, (sk1, . . . , skN ))← Setup(1λ, 1N );
(S′,m)← AO(·)(pk); b← {0, 1}; ct← Encrypt(pk, S′,m, ind + b)

]
≤ 1

2
+ negl(λ).

Here, O(·) is an oracle that has {ski}i∈[N ] hardwired, takes as input an index i ∈ [N ] and outputs ski. Let

the set of keys queried by the adversary be S. We restrict the adversary to satisfy ind /∈ S′ ∨ ind /∈ S.

3.3 Broadcast and Trace from AugBE

In this section, we construct a Broadcast and Trace system assuming we have an AugBE scheme. The con-
struction is same as [BW06a], but we modify their security proof as per indistinguishability based definition
of Broadcast and Trace. The construction proceeds as follows.

• SetupBT(1λ, 1N ) : SetupAugBE(1λ, 1N )

• EncryptBT(pk, S,m) : EncryptAugBE(pk, S,m, 1)

• DecryptBT(i, ski, pk, S, ct) : DecryptAugBE(i, ski, pk, S, ct)

• TraceBT(pk, SD,m0,m1, 1
1/ε) :

For index i = 1 to N + 1:
Set count = 0
For step = 1 to T : (T = 8λ(N/ε)2)

Sample b← {0, 1}
ct← EncryptAugBE(pk, S,mb, i)
if D(ct) = b then count = count + 1

Set p̂i = count
T

Output {i : i ≤ N, p̂i − p̂i+1 ≥ ε
4N }.

The correctness of the above scheme follows from the correctness of the underlying AugBE scheme. We
now prove that the above scheme is a secure Broadcast and Trace system assuming that the underlying
AugBE scheme has message hiding and index hiding properties. We first prove IND-CPA security of the
construction.

3.3.1 IND-CPA security

Theorem 3.1. Assuming that the AugBE scheme has message hiding and index hiding properties, the
Broadcast and Trace system described above is IND-CPA secure.

Proof. The IND-CPA security of the construction is already proved in [BW06a]. So, we only present the
proof at a high level. The proof proceeds using a sequence of hybrids defined as follows. Game 1 is equivalent
to IND-CPA game. Game i is similar to the IND-CPA game except that the challenger encrypts the challenge
message using index i.

Game i (i ∈ [N + 1]).

• Setup Phase. The adversary A sends the number of users 1N to the challenger. The challenger samples
(pk, {sk1, . . . , skN})← SetupAugBE(1λ, 1N ) and sends public key pk to the adversary A.

• Pre-Challenge Query Phase. The adversary then adaptively queries for a subset of the secret keys. For
each query j, the challenger responds with secret key skj .
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• Challenge Phase. The adversary then sends a set S′ ⊆ [N ] and messages m0,m1 to the challenger.
The challenger samples a bit b← {0, 1}, ct← EncryptAugBE(pk, S′,mb, i) and sends ct to the adversary.

• Post-Challenge Query Phase. This is identical to Pre-Challenge Query Phase.

• Output Phase The adversary sends a bit b′ to the challenger. The adversary wins if b′ = b.

Let the set of key queries made by the adversary be S. The adversary is restricted to produce challenge
s.t. S′ ∩ S = ∅. For any PPT Adversary A, the advantage of A in game Game i is defined as AdvAi (λ) =
Pr[A wins ] − 1/2. We prove that the advantage of any PPT adversary A in Game i is at most negligible
in security parameter. Claim 3.1 establishes that the difference of the adversary’s advantage between each
adjacent game is at most negligible in the security parameter. Finally, Claim 3.2 we show that if any
adversary wins in the last game, then it wins message hiding game against AugBE challenger as well.

Claim 3.1. Assuming index hiding property of AugBE, for every stateful PPT adversary A, i ∈ [N ], there
exists a negligible function negl(·) such that AdvAi (λ)− AdvAi+1(λ) ≤ negl(λ).

Claim 3.2. Assuming message hiding property of AugBE, for every stateful PPT adversary A, there exists
a negligible function negl(·) such that AdvAN+1 ≤ negl(λ).

Note that using the above two claims and triangle inequality, for any stateful PPT adversary A, we have
AdvA1 (λ) ≤ negl(λ) for some negligible function negl(·).

3.3.2 Correctness of Tracing

We now prove that no stateful PPT adversary can fool the tracing mechanism of the above scheme. The
following analysis is based on the analysis provided in [GKW18], which analyzes traitor tracing construction
from private linear broadcast encryption (PLBE) [BSW06]. We would like to point that in [GKW18],
the authors introduced the notion of decoder-based PLBE, proved that 1-query PLBE implies decoder-
based PLBE and decoder-based PLBE implies traitor tracing. In this paper, we prove that AugBE implies
Broadcast and Trace using similar techniques, but without introducing an intermediate primitive.

False Trace Probability. We prove that the above tracing algorithm does not falsely accuse any user.
Specifically, no stateful PPT adversary can output a decoder such that the tracing algorithm when executed
on the decoder falsely outputs an index that is not queried by the adversary with non-negligible probability.
Formally, we prove the following theorem.

Theorem 3.2. For every stateful PPT adversary A, polynomial q(·) and non-negligible function ε(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) ≥ 1/q(λ),

Pr-False-TrA,ε(λ) ≤ negl(λ)

Proof. Consider any stateful PPT adversary A in the tracing game described in Definition 3.2. It outputs a
decoder D, a set SD and a pair of messages m0,m1. Let S be the set of keys queried by A. For 1 ≤ i ≤ N+1,

let us define pi = Pr
[
D(ct) = b : b← {0, 1}, ct← EncryptAugBE(pk, SD,mb, i)

]
. For 1 ≤ i ≤ N , let us define

the events Diff-AdvDi,ε : pi − pi+1 ≥ ε
8N and Diff-AdvDε : ∨k/∈S∩SDDiff-AdvDk,ε. Note that

Pr-False-TrA,ε(λ) ≤ Pr[False-TrA,ε|Diff-AdvDε ] + Pr[False-TrA,ε ∧ Diff-AdvDε ]

≤ Pr[False-TrA,ε|Diff-AdvDε ] + Pr[Diff-AdvDε ]

≤ Pr[False-TrA,ε|Diff-AdvDε ] +
∑
i∈[N ]

Pr[i /∈ S ∩ SD ∧ Diff-AdvDi,ε]

We hereby show that each of the terms in the expression is upper bounded by a negligible function.
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Lemma 3.1. For every stateful PPT adversary A, polynomial q(·) and non-negligible function ε(·), there
exists a negligible function negl1(·) such that for all λ ∈ N satisfying ε(λ) ≥ 1/q(λ),

Pr[False-TrA,ε|Diff-AdvDε ] ≤ negl1(λ)

Proof. We are given that ∧i/∈S∩SDpi − pi+1 < ε/8N and we would like to prove that Pr[∨i/∈S∩SD p̂i − p̂i+1 ≥
ε/4N ] ≤ negl1(λ). Let us compute Pr[p̂i−p̂i+1 ≥ ε/4N ] for some i /∈ S∩SD. The tracing algorithm iteratively
samples b← {0, 1}, ct← EncryptAugBE(pk, S,mb, i) and checks if D(ct) = b. Let Xi,j be an indicator random

variable which takes value 1 if the check succeeds in the jth iteration. Let Zi,j = Xi,j −Xi+1,j . We know

that, ∀i, j, p̂i = 1
T

T∑
j=1

Xi,j , E[Xi,j ] = pi and µi = E[Zi,j ] = pi − pi+1. Since Zi,js are independent samples,

by applying the chernoff bound, we get Pr[ 1T
∑
j Zi,j ≥ 2 · ε

8N ] ≤ Pr[ 1T
∑
j Zi,j ≥ 2 ·µi] ≤ 2−O(λ). Using this,

we can say that for every i /∈ S ∩ SD, Pr[i ∈ S∗|Diff-AdvDε ] ≤ 2−O(λ), where S∗ is the output of the tracing
algorithm. Using union bound, we obtain

Pr[False-TrA,ε|Diff-AdvDε ] ≤ N · 2−O(λ) = negl1(λ)

Lemma 3.2. Assuming index hiding property of AugBE, for every PPT adversary A, polynomial q(·) and
non-negligible function ε(·), there exists a negligible function negl2(·) such that for all λ ∈ N satisfying
ε(λ) ≥ 1/q(λ) and i ∈ [N ],

Pr[i /∈ S ∩ SD ∧ Diff-AdvDi,ε] ≤ negl2(λ)

Proof. Suppose there exists a PPT adversary A, polynomial q(λ) and non-negligible functions ε(·), δ(·) such
that for every λ ∈ N satisfying ε(λ) ≥ 1

q(λ) , there exists an i∗ ∈ [N ] such that Pr[i∗ /∈ S∩SD∧Diff-AdvDi∗,ε] ≥
δ(λ). We use this adversary A to build a reduction algorithm B that can break index hiding property of the
underlying AugBE scheme.

The reduction algorithm B receives number of users 1N from A and chooses a random i← [N ]. B then
sends 1N to the challenger of index hiding game at index i. The challenger samples public key and secret
keys of AugBE scheme and sends the public key to B, which forwards the public key to A. A then adaptively
queries B for secret keys. If A queries for i, then B outputs a uniform random bit and aborts. If A queries
for j 6= i, then B forwards the query to C. The challenger responds with the corresponding secret key to B,
which forwards the secret key to A. After all queries, A sends a decoding box D, messages m0,m1 and set
SD to B. Let the set of key queries made by A be S. If i ∈ S ∩ SD, B outputs a uniformly random bit and
aborts. If i /∈ S ∩ SD, B continues playing the game and chooses a random bit γ ← {0, 1} and sends SD,mγ

to C. Note that, B acts as a valid index hiding game adversary to C. The challenger chooses a random bit
α and responds with ct1 ← EncryptAugBE(pk, SD,mγ , i + α). B then chooses a random bit β and computes
ct2 ← EncryptAugBE(pk, SD,mγ , i + β). B outputs β if D(ct1) = D(ct2) and outputs 1 − β otherwise. The
reduction algorithm wins if its output is equal to α.

Let’s analyze the probability that B wins in the index hiding game when B does not abort (i /∈ S ∩ SD).
Let pj,b = Pr[D(ct) = b : ct ← EncryptAugBE(pk, SD,mb, j)], where the probability is taken over the coin

tosses of the decoder D and the encryption algorithm. Note that pj = (pj,0 + pj,1)/2. Let ED be the event
that B wins the index hiding game, EDb be the event that B wins when it choses to send mb to the challenger.
Therefore,

Pr[EDb ] = 1/4(Pr[EDb |α = 0, β = 0] + Pr[EDb |α = 0, β = 1] + Pr[EDb |α = 1, β = 0] + Pr[EDb |α = 1, β = 1])

= 1/4
(
p2i,b + (1− pi,b)2 + 2(pi,b(1− pi+1,b) + (1− pi,b)pi+1,b) + p2i+1,b + (1− pi+1,b)

2
)

= 1/2 + 1/2(pi,b − pi+1,b)
2

(1)
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By our assumption,
Pr[i∗ /∈ S ∩ SD ∧ Diff-AdvDi∗,ε] ≥ δ(λ)

This implies,
Pr[i = i∗ ∧ i∗ /∈ S ∩ SD ∧ Diff-AdvDi∗,ε] ≥ δ(λ)/N

Let the event i = i∗ ∧ i∗ /∈ S ∩ SD ∧ Diff-AdvDi∗,ε be denoted by F . When the event F occurs, pi − pi+1 ≥
ε(λ)/8N , and therefore ∃b′ s.t. pi,b′ − pi+1,b′ ≥ ε(λ)/8N . Irrespective of whether F occurs, Pr[EDb ] ≥ 1/2
for b ∈ {0, 1}. Note that,

Pr[EDb′ ] = Pr[EDb′ |F ] · Pr[F ] + Pr[EDb′ |F ] · Pr[F ]

≥
(1

2
+

1

2

(ε(λ)

8N

)2)δ(λ)

N
+

1

2
·
(

1− δ(λ)

N

) (2)

Pr[ED] = 1/2 Pr[EDb′ ] + 1/2 Pr[ED1−b′ ]

≥ 1

2

(1

2
+
ε(λ)2δ(λ)

128N3

)
+

1

2
· 1

2

(3)

As S 6= [N ], the probability that B doesn’t abort is at least 1/N . Therefore, the algorithm B breaks index
hiding property of the underlying AugBE scheme with a non-negligible advantage.

From the above 2 lemmas, it follows that false tracing proabability Pr-False-TrA,ε(λ) ≤ negl1(λ) + N ·
negl2(λ) = negl(λ).

Correct Trace Probability. We prove that whenever an adversary produces a good decoder, the tracing
algorithm correctly traces at least one of the keys queried by the adversary with all but negligible probability.
Formally, we prove the following theorem.

Theorem 3.3. For every stateful PPT adversary A, polynomial q(·) and non-negligible function ε(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) ≥ 1/q(λ),

Pr-Correct-TrA,ε(λ) ≥ Pr-Good-DecA,ε(λ)− negl(λ)

Proof. Consider a stateful PPT adversary A of the tracing game described in Definition 3.2. It outputs a
decoder D, a set SD and a pair of messages m0,m1. Let S∗ ← TraceD(SD,m0,m1, 1

1/ε). We first compute
the probability that S∗ is non-empty. If the event Good-DecA,ε occurs, we have p1 ≥ 1/2 + ε. We know
that pN+1 ≤ 1/2 + negl2(λ) for some negligible function negl2(·) due to the message hiding property of the
underlying AugBE scheme. Hence if Good-DecA,ε occurs, the set R = {i : pi− pi+1 ≥ ε

2N } is non-empty. By
chernoff bound, we obtain

∀i ∈ R,Pr
[
p̂i − p̂i+1 <

ε

4N

]
< negl1(λ)

for some negligible function negl1(·). Hence if Good-DecA,ε occurs, S∗ is non-empty set with all but non-
negligible probability i.e.,

Pr[S∗ = ∅|Good-DecA,ε] ≤
∑
i∈[N ]

Pr
[
p̂i − p̂i+1 <

ε

4N

∣∣∣i ∈ R] ≤ N · negl1(λ).

This implies,

Pr[S∗ 6= ∅] ≥ Pr[S∗ 6= ∅ ∧ Good-DecA,ε]

≥ (1−N · negl1(λ)) · Pr-Good-DecA,ε(λ)

≥ Pr-Good-DecA,ε(λ)− negl3(λ)

for some negligible function negl3(·). Combining this result with Theorem 3.2, we get Pr-Correct-TrA,ε(λ) ≥
Pr-Good-DecA,ε(λ)− negl(λ).

18



4 Construction of Augmented Broadcast Encryption

In this section, we construct an augmented broadcast encryption (AugBE) scheme from positional witness
encryption (PWE), somewhere perfectly binding hash (SPB hash) function and all-but-one (ABO) signatures.
We also prove that the construction satisfies the message hiding and index hiding properties.

Let ABO = (SetupABO,Setup-PuncABO,SignABO,VerifyABO) be an ABO signature scheme with message
space {0, 1}λ, signature space {0, 1}k(λ), secret key space {Sλ}λ and verification key space {Vλ}λ. Let
SPB = (SetupSPB,Setup-BindSPB,HashSPB,OpenSPB,VerifySPB) be an SPB hash function with hash key space
{Kλ}λ, hash space {Hλ}λ and hash opening space {0, 1}`(λ). For simplicity of notation, we hereby use
` = `(λ) and k = k(λ). Let PWE = (EncryptPWE,DecryptPWE) be a PWE scheme with message space {Mλ}λ
with respect to the following language L. The language L contains instances of the form (1λ, N, h, hk, vk) ∈
1λ × {0, 1}λ ×Hλ ×Kλ × Vλ, where λ ∈ N, with the following witness relation R:

(1λ, N, h, hk, vk) ∈ L ⇐⇒ ∃(i, σ, π) ∈ {0, 1}λ × {0, 1}k × {0, 1}` s.t.
1 ≤ i ≤ N ∧ VerifyABO(vk, i, σ) = 1 ∧ VerifySPB(hk, h, i, 1, π) = 1.

Note that the above witness relation R is well defined as VerifyABO and VerifySPB are deterministic algo-
rithms. We construct an AugBE scheme AUGBE = (Setup,Encrypt,Decrypt) with message space {Mλ}λ.
We sometimes slightly abuse notation and denote the values in {0, 1}z (for z ∈ N) by integers. For any set
S ⊆ [N ], let IS be a bit vector of length N , where the ith element IS(i) is defined as

IS(i) =

{
1 if i ∈ S,
0 otherwise

.

• Setup(1λ, 1N ): Sample (vk, sk)← SetupABO(1λ) and hk← SetupSPB(1λ, N). Compute signatures {σi ←
SignABO(sk, i) : 1 ≤ i ≤ N}. Output pk = (1λ, N, vk, hk), and secret keys {ski = σi : 1 ≤ i ≤ N}.

• Encrypt(pk, S,m, ind): Let pk = (1λ, N, vk, hk). Compute SPB hash on IS i.e., compute the hash
h = HashSPB(hk, IS). Then encrypt the message m with PWE scheme using the instance inst =
(1λ, N, h, hk, vk) and index ind||0k+`, i.e., computes ct← EncryptPWE (inst, m, ind||0k+`).

• Decrypt(i, ski, pk, S, ct): Let pk = (1λ, N, vk, hk). Compute hash h = HashSPB(hk, IS) and proof πi ←
OpenSPB(hk, IS , i). Then decrypt the ciphertext using the witness w = i||ski||πi i.e., output message
m← DecryptPWE(w = i||ski||πi, ct).

Note that the correctness properties of SPB hash and ABO signature schemes imply that w = i||ski||πi
is a valid witness to the instance inst = (1λ, N, h, hk, vk) (i.e., R(x,w) = 1). This along with the correctness
of PWE scheme imply the correctness of the above scheme.

Note that the length of the hash key hk is poly1(λ, logN) and verification key vk is poly2(λ) for some
polynomials poly1(·) and poly2(·). This implies lengths of instance inst and witness w = i||ski||πi are at most
poly3(λ, logN) for some polynomial poly3(·). Therefore, the ciphertext length of the above scheme is also
at most poly(λ, logN) for some polynomial poly(·). In the following subsections, we prove that the above
AugBE construction satisfies message hiding and index hiding properties. Formally, we prove the following
theorem.

Theorem 4.1. If PWE is a sub-exponentially secure PWE scheme as per Definitions 2.1 and 2.2, ABO is a
secure ABO signature scheme as per Definition 2.3 and SPB is a secure SPB hash function as per Definitions
2.4 and 2.5, then AUGBE is a secure AugBE scheme as per Definitions 3.3 and 3.4.

4.1 Message Hiding

In this subsection, we prove the message hiding property of the above scheme assuming sub-exponential
security of PWE scheme. For any instance (1λ, N, h, hk, vk), let r(λ) be the length of witnesses accepted by
the witness relation R, i.e., r(λ) = λ+ k(λ) + `(λ). For simplicity of notation, we ignore the parameters and
simply denote it by r. We first describe the following games that help us in proving the property.
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Game N + 1||0k+`. This game is same as the AugBE message hiding game.

1. Setup Phase. The adversary A sends the number of users 1N to the challenger. The challenger samples
the keys (vk, sk)← SetupABO(1λ), hash key hk← SetupSPB(1λ, N) and signatures {σi ← SignABO(sk, i) :
1 ≤ i ≤ N}. It then sends the public key pk = (1λ, N, vk, hk) to A.

2. Pre-Challenge Query Phase. The adversary then adaptively queries for secret keys. For each query j,
the challenger responds with the secret key skj = σj .

3. Challenge Phase. The adversary then sends a pair of messages m0,m1 and a set S ⊆ [N ] to the
challenger. The challenger samples a bit b ← {0, 1} and computes hash h = HashSPB(hk, IS). It then
samples ciphertext ct← EncryptPWE (x = (1λ, N, h, hk, vk), mb, int(N + 1||0k+`)) and responds with ct.

4. Post-Challenge Query Phase. This is identical to Pre-Challenge Query Phase.

5. Output Phase. The adversary sends a bit b′ to the challenger. The adversary wins if b′ = b.

Game y (N + 1||0k+` < y ≤ 2r). This game is similar to Game N + 1||0k+`, except that the challenger
encrypts the challenge message using index y instead of index int(N + 1||0k+`).

3. Challenge Phase. The adversary then sends a pair of messages m0,m1 and a set S ⊆ [N ] to the
challenger. The challenger samples a bit b ← {0, 1} and computes hash h = HashSPB(hk, IS). It then
samples ciphertext ct← EncryptPWE (x = (1λ, N, h, hk, vk), mb, y) and responds with ct.

For any stateful PPT adversary A, we define the advantage of the adversary in Game x as AdvAx (λ) =
Pr[A wins]− 1/2. We prove that the advantage of any PPT adversary A in Game N + 1||0k+` is negligible
in security parameter. For any stateful PPT adversary B and λ ∈ N, let AdvPosIndB(λ) denote the advan-
tage of B in position indistinguishability game and AdvMsgIndB(λ) denote the advantage of B in message
indistinguishability game of PWE scheme. For any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosIndB(λ) and
AdvMsgInd(λ) = supPPT B AdvMsgIndB(λ). We now establish using the following lemma that the difference
of the adversary’s advantage between each adjacent game is at most 2 ·AdvPosInd(λ). Finally we show that if
any adversary wins in the last game, then it wins message indistinguishability game against PWE challenger
as well.

Claim 4.1. For every y s.t. N + 1||0k+` ≤ y ≤ 2r − 1, every PPT adversary A and λ ∈ N, we have
AdvAy (λ)− AdvAy+1(λ) ≤ 2 · AdvPosInd(λ).

Proof. Consider any y s.t. N + 1||0k+` ≤ y ≤ 2r − 1, any PPT adversary A and λ ∈ N. We build a PPT
algorithm B which uses A and has advantage (AdvAy (λ) − AdvAy+1(λ))/2 in the position indistinguishability
game of the PWE scheme. The reduction algorithm B proceeds as follows.
A first sends the number of users 1N to B. B then samples (sk, vk)← SetupABO(1λ), hk← SetupSPB(1λ, N),

signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N} and sends the public key pk = (1λ, N, vk, hk) to A. A then
adaptively queries for secret keys. For each query j, B responds with the secret key skj = σj . After query
phase, A sends a challenge set S and a pair of messages m0,m1 to B. B samples a bit b ← {0, 1} and
computes hash h = HashSPB(hk, IS). It then sends the challenge instance inst = (1λ, N, h, hk, vk), challenge
message mb and challenge index y to the challenger C of position indistinguishability game. The challenger
samples a bit β ← {0, 1} and responds with a ciphertext ct ← EncryptPWE(inst,mb, y + β) to B, which for-
wards it to A. A further adaptively queries for secret keys. For each query j, B responds with the secret key
skj = σj . Finally, A sends a bit b′ to B. If b′ = b, then B outputs 0 indicating its guess that the challenger
encrypted mb using index y. If b′ 6= b, then B outputs 1 indicating its guess that the challenger encrypted
mb using index y + 1.

We know that the index y cannot be a witness for the instance (1λ, N, h, hk, vk) as y ≥ N + 1||0k+`
(i.e., y[1 : λ] ≥ N + 1). Therefore, the reduction algorithm B acts as a valid adversary in the position
indistinguishability game. If β = 0, B simulates the view of Game y to A and Pr[b′ = b] = 1/2 + AdvAy (λ).

Otherwise, it simulates the view of Game y + 1 to A and Pr[b′ = b] = 1/2 + AdvAy+1(λ). Therefore, the
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advantage of B in position indistinguishability game is given by AdvPosIndB(λ) = 1/2 · Pr[b′ = b|β = 0] +
1/2·Pr[b′ 6= b|β = 1]−1/2 = 1/2·(AdvAy (λ)−AdvAy+1(λ)). Therefore, AdvAy (λ)−AdvAy+1(λ) ≤ 2·AdvPosInd(λ).

Claim 4.2. For every stateful PPT adversary A and every λ ∈ N, we have AdvA2r (λ) ≤ AdvMsgInd(λ).

Proof. Consider any PPT adversary A and any λ ∈ N. We build a PPT algorithm B which uses A and has
advantage AdvA2r (λ) in message indistinguishability game of the PWE scheme. The reduction algorithm B
proceeds as follows.
A first sends the number of users 1N to B. B then samples (sk, vk) ← SetupABO(1λ), hash key hk ←

SetupSPB(1λ, N) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}. It then sends the public key pk =
(1λ, N, vk, hk) to A. A then adaptively queries for secret keys. For each query j, B responds with the secret
key skj = σj . After query phase, A sends a challenge set S and messages m0,m1 to B. B computes hash
h = HashSPB(hk, IS). It then sends challenge instance inst = (1λ, N, h, hk, vk) and challenge messages m0,m1

to message indistinguishability game challenger C. The challenger samples a bit b ← {0, 1} and responds
with ciphertext ct← EncryptPWE(inst,mb, 2

r) to B, which forwards ct to A. A further adaptively queries for
secret keys. For each query j, B responds with the secret key skj = σj . Finally, A sends a bit b′ to B, which
outputs b′ as its guess in message indistinguishability game.

Clearly, B is a valid adversary of the message indistinguishability game, and also simulates the view of
Game 2r to A. Note that advantage of B in message indistinguishability game is given by AdvMsgIndB(λ) =
AdvA2r (λ), and therefore AdvA2r (λ) ≤ AdvMsgInd(λ).

Note that by combining claims 4.1 and 4.2, the advantage of any PPT adversary A in AugBE message

hiding game is AdvAN+1||0k+`(λ) =
∑2r−1
y=N+1||0k+`(AdvAy (λ) − AdvAy+1(λ)) + AdvA2r (λ) ≤ 2 · (2λ − N) · 2k+` ·

AdvPosInd(λ) + AdvMsgInd(λ). Using complexity leveraging, we demand that AdvPosInd(λ) ≤ 2−(λ+k+`+1) ·
negl(λ) for some negligible function negl(·). At the instantiation level, the security parameter will be increased
to match this condition.

4.2 Index Hiding

In this section, we prove the index hiding property of the above scheme. We first describe the following 2
games that help us in describing the lemma formally.

Game 0. This game corresponds to AugBE index hiding game where the challenger always uses bit b = 0.

1. Setup Phase. The adversary A sends the number of users 1N and index i s.t. 1 ≤ i ≤ N to the
challenger. The challenger samples (vk, sk) ← SetupABO(1λ), hash key hk ← SetupSPB(1λ, N) and
signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N} of the AugBE scheme. It then sends the public key
pk = (1λ, N, vk, hk) to A.

2. Pre-Challenge Query Phase. The adversary then adaptively queries for secret keys. For each query j,
the challenger responds with the secret key skj = σj .

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ] to the challenger.
The challenger computes hash h = HashSPB(hk, IS) and responds with ciphertext ct ← EncryptPWE

(x = (1λ, N, h, hk, vk), m, int(i||0k+`)).

4. Post-Challenge Query Phase. This is identical to Pre-Challenge Query Phase.

5. Output Phase. The adversary sends a bit b′ to the challenger.

Let the set of all secret keys queried by the adversary be S∗. The adversary is restricted to query such that
i /∈ S ∨ i /∈ S∗.
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Game 3. This game is similar to the first game, except that the challenger always uses bit b = 1.

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ] to the challenger. The
challenger computes hash h = HashSPB(hk, IS) and responds with ciphertext ct ← EncryptPWE(x =
(1λ, N, h, hk, vk),m, int(i+ 1||0k+`)).

For any stateful PPT adversary A, let the probability that A outputs 1 in Game y be pAy (λ). We denote
the advantage of a PPT adversary A in distinguishing between any two games Game x and Game y by
AdvAx,y(λ) = |pAx (λ)− pAy (λ)|.

Lemma 4.1. If ABO is a secure ABO signature scheme as per Definition 2.3, SPB is a secure SPB hash
function as per Definitions 2.4 and 2.5, and PWE is a sub-exponentially secure PWE scheme as per Definition
2.2, for every stateful PPT Adversary A, there exists a negligible function negl(·) such that for every security
parameter λ, AdvA0,3(λ) ≤ negl(λ).

Proof. We first classify the adversaries into the following 2 types.

• Type 1 adversary: Restricted to generate set of key queries S∗ and challenge set S s.t. i /∈ S.

• Type 2 adversary: Restricted to generate set of key queries S∗ and challenge set S s.t. i ∈ S ∧ i /∈ S∗.

We now prove Lemma 4.2 and 4.3 which together imply Lemma 4.1.

Lemma 4.2. If SPB is secure as per Definitions 2.4 and 2.5, and PWE is a sub-exponentially secure as
per Definition 2.2, for every stateful Type 1 PPT Adversary A, there exists a negligible function negl(·) such
that for every security parameter λ, AdvA0,3(λ) ≤ negl(λ).

Proof. We prove the lemma using the following sequence of hybrids.

Game 1.t (for 0 ≤ t < 2k+`): Here t is a bit string of length k + `. This game is similar to Game 0 except
that challenger samples SPB hash key using Setup-Bind and encrypts the challenge message using index
int(i||0k+`) + t.

1. Setup Phase. The adversary A sends the number of users 1N to the challenger. The challenger samples
(vk, sk) ← SetupABO(1λ), hk ← Setup-BindSPB(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤
N}. It then sends the public key pk = (1λ, N, vk, hk) to A.

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ] to the challenger. The chal-
lenger computes hash h = HashSPB(hk, IS) and responds with ciphertext ct← EncryptPWE((1λ, N, h, hk, vk),
m, int(i||0k+`) + t).

Game 1.2k+` : This game is similar to Game 1.2k+` − 1 except that challenger encrypts the challenge
message using index int(i+ 1||0k+`).

1. Setup Phase. The adversary A sends the number of users 1N to the challenger. The challenger samples
(vk, sk)← SetupABO(1λ), hash key hk← Setup-BindSPB(1λ, N, i) and signatures {σj ← SignABO(sk, j) :
1 ≤ j ≤ N} of the AugBE scheme. It then sends the public key pk = (vk, hk) to A.

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ] to the challenger, which
computes hash h = HashSPB(hk, IS) and responds with ciphertext ct← EncryptPWE((1λ, N, h, hk, vk),m, int(i+
1||0k+`)).

For any PPT adversary B and λ ∈ N, let AdvSpbIndB(λ) denote the advantage of B in index hiding
game of SPB scheme and AdvPosIndB(λ) denote the advantage of B in position indistinguishability game
of PWE scheme. For any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosIndB(λ) and AdvSpbInd(λ) =
supPPT B AdvSpbIndB(λ). We prove Lemma 4.2 using the following sequence of claims.
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Claim 4.3. For every Type 1 PPT adversary A and any λ ∈ N, we have AdvA0,1.0(λ) ≤ 2 · AdvSpbInd(λ).

Proof. Consider any Type 1 PPT adversary A and any λ ∈ N. We build a PPT algorithm B which uses
A and has advantage AdvA0,1.0(λ)/2 in index hiding game of the SPB scheme. The reduction algorithm B
proceeds as follows.
A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B. B then sends (N, i) to index hiding

game challenger C. The challenger samples a bit b← {0, 1}. If b = 0, it responds with hk← SetupSPB(1λ, N).
Otherwise, it responds with hk ← Setup-BindSPB(1λ, N, i). B samples (sk, vk) ← SetupABO(1λ), signatures
{σj ← SignABO(sk, j) : 1 ≤ j ≤ N} and sends the public key pk = (1λ, N, vk, hk) to A. A then adaptively
queries for secret keys. For each query j, B responds with secret key skj = σj . After query phase, A sends a
challenge set S and a message m to B. B aborts if i ∈ S. Otherwise, it computes hash h = HashSPB(hk, IS)
and responds with ciphertext ct ← EncryptPWE ((1λ, N, h, hk, vk), m, int(i||0k+`)). A further adaptively
queries for secret keys. For each query j, B responds with secret key skj = σj . Finally, A sends a bit b′ to
B, which outputs b′ as its guess in the index hiding game.

As A is a Type 1 adversary, note that i /∈ S and B does not abort. Note that if b = 0, B simulates
the view of Game 0 to A and Pr[b′ = 1] = pA0 (λ). Otherwise, it simulates the view of Game 1.0 to A and
Pr[b′ = 1] = pA1.0(λ). This implies, the advantage of B in the index hiding game is given by AdvSpbIndB(λ) =
|1/2·Pr[b′ = 0|b = 0]+1/2·Pr[b′ = 1|b = 1]−1/2| = AdvA0,1.0(λ)/2. Therefore, AdvA0,1.0(λ) ≤ 2·AdvSpbInd(λ).

Claim 4.4. Assuming SPB is somewhere perfectly binding w.r.t. opening, for any 0 ≤ t ≤ 2k+` − 1, any
stateful Type 1 PPT Adversary A and any λ ∈ N, we have AdvA1.t,1.t+1(λ) ≤ 2 · AdvPosInd(λ).

Proof. Consider any t s.t. 0 ≤ t ≤ 2k+`− 1, any Type 1 PPT adversary A and any λ ∈ N. Assuming SPB is
somewhere perfectly binding w.r.t. opening, we build a PPT algorithm B which uses A and has advantage
AdvA1.t,1.t+1(λ)/2 in position indistinguishability game of the PWE scheme. The reduction algorithm B
proceeds as follows.
A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B. B then samples (sk, vk) ←

SetupABO(1λ), hash key hk ← Setup-BindSPB(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N}.
It then sends the public key pk = (1λ, N, vk, hk) to A. A then adaptively queries for secret keys. For
each query j, B responds with secret key skj = σj . After query phase, A sends a challenge set S and
a message m to B. B aborts if i ∈ S. Otherwise, it computes hash h = HashSPB(hk, IS), and sends the
challenge instance inst = (1λ, N, h, hk, vk), challenge message m and challenge index int(i||0k+`) + t to the
position indistinguishability game challenger C. The challenger samples a bit β ← {0, 1} and responds with
a ciphertext ct← EncryptPWE(inst,m, int(i||0k+`) + t+ β)13 to B. B forwards the ciphertext to A. A further
adaptively queries for secret keys. For each query j, B responds with secret key skj = σj . Finally, A sends
a bit b′ to B, which outputs b′ as its guess in the position indistinguishability game.

AsA is a Type 1 adversary, note that IS(i) = 0 and B does not abort. We know that, Pr[hk is binding w.r.t.
opening at index i] = 1. This implies that there does not exist a proof π such that VerifySPB(hk, h, i, 1, π) = 1
and int(i||0κ+`) + t cannot be a witness of the instance (1λ, N, h, hk, vk). Therefore, B acts as a valid
adversary of the position indistinguishability game. If β = 0, B simulates the view of Game 1.t to A and
Pr[b′ = 1] = pA1.t(λ). Otherwise, it simulates the view of Game 1.t+ 1 to A and Pr[b′ = 1] = pA1.t+1(λ). This

implies, the advantage of B in the position indistinguishability game is given by AdvPosIndB(λ) = |1/2·Pr[b′ =
0|β = 0] + 1/2 · Pr[b′ = 1|β = 1] − 1/2| = AdvA1.t,1.t+1(λ)/2. Therefore, AdvA1.t,1.t+1(λ) ≤ 2 · AdvPosInd(λ).

Claim 4.5. For every Type 1 PPT adversary A and any λ ∈ N, we have AdvA1.2k+`,3(λ) ≤ 2 · AdvSpbInd(λ).

Proof. Consider any Type 1 PPT adversary A and any λ ∈ N. We build a PPT algorithm B which uses A
and has advantage AdvA1.2k+`,3(λ)/2 in the index hiding game of the SPB scheme. We ignore the description
of algorithm B as it proceeds similar to proof of Claim 4.3.

13Note that index int(i||0k+`) + 2k+` is same as int(i+ 1||0k+`).
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Note that by triangle inequality and combining Claims 4.3, 4.4, and 4.5, the advantage of any Type 1

PPT adversary A in AugBE index hiding game is AdvA0,3(λ) ≤ AdvA0,1.0 +
∑2k+`−1
t=0 AdvA1.t,1.t+1 +AdvA1.2k+`,3 ≤

4 · AdvSpbInd(λ) + 2 · 2k+` · AdvPosInd(λ). Using complexity leveraging, we demand that AdvPosInd(λ) ≤
2−(k+`+1) ·negl(λ) for some negligible function negl(·). At the instantiation level, the security parameter will
be increased to match these conditions.

Lemma 4.3. IfABO is a secure ABO signature scheme as per Definition 2.3 and PWE is a sub-exponentially
secure as per Definition 2.2, for every stateful Type 2 PPT Adversary A, there exists a negligible function
negl(·) such that for every security parameter λ, AdvA0,3(λ) ≤ negl(λ).

Proof. We prove the lemma using the following sequence of hybrids.

Game 2.t (for 0 ≤ t < 2k+`): Here t is a bit string of length k + `. This game is similar to Game 0 except,
the challenger samples ABO signature verification key using Setup-Punc algorithm and encrypts challenge
message using index int(i||0k+`) + t.

1. Setup Phase. The adversary A sends the number of users 1N to the challenger. The challenger samples
(vk, sk) ← Setup-PuncABO(1λ, i), hk ← SetupSPB(1λ, N, i) and signatures {σj ← SignABO(sk, j) : 1 ≤
j ≤ N}. It then sends the public key pk = (1λ, N, vk, hk) to A.

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ] to the challenger. The chal-
lenger computes hash h = HashSPB(hk, IS) and responds with ciphertext ct← EncryptPWE((1λ, N, h, hk, vk),
m, int(i||0k+`) + t).

Game 2.2k+` : This game is similar to Game 2.2k+` − 1 except that the challenger encrypts the challenge
message using index int(i+ 1||0k+`).

1. Setup Phase. The adversary A sends the number of users 1N to the challenger. The challenger
samples (vk, sk) ← Setup-PuncABO(1λ, i), hash key hk ← SetupSPB(1λ, N, i) and signatures {σj ←
SignABO(sk, j) : 1 ≤ j ≤ N} of the AugBE scheme. It then sends the public key pk = (vk, hk) to A.

3. Challenge Phase. The adversary then sends a message m and a set S ⊆ [N ] to the challenger, which
computes hash h = HashSPB(hk, IS) and responds with ciphertext ct← EncryptPWE((1λ, N, h, hk, vk),
m, int(i+ 1||0k+`)).

For any PPT adversary B and λ ∈ N, let AdvAboIndB(λ) denote the advantage of B in VK indistin-
guishability game of ABO scheme and AdvPosIndB(λ) denote the advantage of B in position indistin-
guishability game of PWE scheme. For any λ ∈ N, let AdvPosInd(λ) = supPPT B AdvPosIndB(λ) and
AdvAboInd(λ) = supPPT B AdvAboIndB(λ). We prove Lemma 4.3 using the following sequence of claims.

Claim 4.6. For every Type 2 PPT adversary A and any λ ∈ N, we have AdvA0,2.0(λ) ≤ 2 · AdvAboInd(λ).

Proof. Consider any Type 2 PPT adversary A and any λ ∈ N. We build a PPT algorithm B which uses A
and has advantage AdvA0,2.0(λ) in VK indistinguishability game of the ABO scheme. The reduction algorithm
B proceeds as follows.
A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B. B sends challenge message i

to VK indistinguishability game challenger C. The challenger samples a bit b← {0, 1}. If b = 0, it samples
(sk, vk) ← SetupABO(1λ). Otherwise, it samples (sk, vk) ← Setup-PuncABO(1λ, i). It then sends vk to B. B
samples hk← SetupSPB(1λ, N) and sends the public key pk = (1λ, N, vk, hk) to A. A then adaptively queries
for secret keys. For each query j, B aborts if j = i. Otherwise, it forwards the query to C, which responds
with σ ← SignABO(sk, j). B forwards the reply to A. After query phase, A sends a challenge set S and
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a message m to B. B computes hash h = HashSPB(hk, IS) and responds with ciphertext ct ← EncryptPWE

(x = (1λ, N, h, hk, vk), m, int(i||0k+`)). A then adaptively queries for secret keys. For each query j, B aborts
if j = i. Otherwise, it forwards the query to C, which responds with σ ← SignABO(sk, j). B forwards the
reply to A. Finally, A sends a bit b′ to B, which outputs b′ as its guess in the VK indistinguishability game.

As A is a Type 2 adversary, it does not query for secret key ski and therefore, B does not abort and acts
as a valid adversary of the VK indistinguishability game. If b = 0, then B simulates the view of Game 0
to A and Pr[b′ = 1] = pA0 (λ). Otherwise, it simulates the view of Game 2.0 to A and Pr[b′ = 1] = pA2.0(λ).
This implies, the advantage of B in the index hiding game is given by AdvSpbIndB(λ) = |1/2 · Pr[b′ = 0|b =
0] + 1/2 · Pr[b′ = 1|b = 1]− 1/2| = AdvA0,2.0(λ)/2. Therefore, AdvA0,2.0(λ) ≤ 2 · AdvAboInd(λ).

Claim 4.7. For every t s.t. 0 ≤ t ≤ 2k+` − 1, every Type 2 PPT adversary A and any λ ∈ N, we have
AdvA2.t,2.t+1(λ) ≤ 2 · AdvPosInd(λ).

Proof. Consider any t s.t. 0 ≤ t ≤ 2k+` − 1, a Type 2 PPT adversary A and any λ ∈ N. We build a PPT
algorithm B which uses A and has advantage AdvA2.t,2.t+1(λ) in position indistinguishability game of the
PWE scheme. The reduction algorithm B proceeds as follows.
A first sends the number of users 1N and an index i s.t. 1 ≤ i ≤ N to B. B then samples (sk, vk) ←

Setup-PuncABO(1λ, i), hash key hk← SetupSPB(1λ, N) and signatures {σj ← SignABO(sk, j) : 1 ≤ j ≤ N, j 6=
i}. It then sends the public key pk = (1λ, N, vk, hk) to A. A then adaptively queries for secret keys. For
each query j, B aborts if j = i. Otherwise, it responds with the secret key skj = σj . After query phase,
A sends a challenge set S and a message m to B. B computes hash h = HashSPB(hk, IS) and sends the
challenge instance inst = (1λ, N, h, hk, vk), challenge message m and challenge index int(i||0k+`) + t to the
position indistinguishability game challenger C. The challenger samples a bit β ← {0, 1} and responds with
a ciphertext ct← EncryptPWE(inst,m, int(i||0k+`) + t+ β)14 to B. B forwards the ciphertext to A. A further
adaptively queries for secret keys. For each query j, B aborts if j = i. Otherwise, it responds with the secret
key skj = σj . Finally, A sends a bit b′ to B, which outputs b′ as its guess in the position indistinguishability
game.

As A is a Type 2 adversary, it does not make key query on i and therefore, B does not abort. As vk is
punctured at i, 6 ∃σ s.t. VerifyABO(vk, i, σ) = 1. This implies int(i||0k+`)+t cannnot be a witness of the instance
(1λ, N, h, hk, vk) and therefore, B acts as a valid adversary of the position indistinguishability game. If β = 0,
B simulates the view of Game 2.t toA and Pr[b′ = 1] = pA2.t(λ). Otherwise, it simulates the view of Game 2.t+1
to A and Pr[b′ = 1] = pA2.t+1(λ). This implies, the advantage of B in the position indistinguishability game

is given by AdvPosIndB(λ) = |1/2 · Pr[b′ = 0|β = 0] + 1/2 · Pr[b′ = 1|β = 1] − 1/2| = AdvA2.t,2.t+1(λ)/2.

Therefore, AdvA2.t,2.t+1(λ) ≤ 2 · AdvPosInd(λ).

Claim 4.8. For every Type 2 PPT adversary A and any λ ∈ N, we have AdvA2.2k+`,3(λ) ≤ 2 · AdvAboInd(λ).

Proof. Consider any Type 2 PPT adversary A and any λ ∈ N. We build a PPT algorithm B which uses
A and has advantage AdvA2.2k+`,3(λ) in VK indistinguishability game of the ABO scheme. We ignore the
description of algorithm B as it proceeds similar to proof of Claim 4.6.

Note that by combining triangle inequality and Claims 4.6, 4.7, and 4.8, the advantage of any Type 2

PPT adversary A in AugBE index hiding game is AdvA0,3(λ) ≤ AdvA0,2.0 +
∑2k+`−1
t=0 AdvA2.t,2.t+1 +AdvA2.2k+`,3 ≤

4 · AdvAboInd(λ) + 2 · 2k+` · AdvPosInd(λ). Using complexity leveraging, we demand that AdvPosInd(λ) ≤
2−(k+`+1) ·negl(λ) for some negligible function negl(·). At the instantiation level, the security parameter will
be increased to match this condition.

14Note that index int(i||0k+`) + 2k+` is same as int(i+ 1||0k+`).
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Note that Lemma 4.1 follows by combining Lemmas 4.2 and 4.3 as any adversary A of AugBE index
hiding game is of either Type 1 or Type 2.

5 All-but-one Signatures from Standard Assumptions

In this section, we present two new constructions for all-but-one (ABO) signatures from standard assump-
tions. The first construction is based on verifiable random functions (VRF) and perfectly-binding (non-
interactive) commitment schemes. The second construction is based on verifiable and anonymous identity-
based encryption (VAIBE). The first ABO scheme satisfies perfect correctness, where as the second scheme
satisfies correctness with all but negligible probability. We would like to point that using the second ABO sig-
nature scheme to instantiate the AugBE construction described in Section 4 results in AugBE scheme without
perfect correctness. We finally note that VRFs can be based on simple assumptions over bilinear maps as well
as RSA-like assumptions [MRV99, HJ16], and perfectly binding commitments can be constructed from any
injective OWF as well as based on assumptions such as DDH, LWE and LPN [GHKW17], and VAIBE can
be based on simple assumptions over bilinear maps as well as LWE [BW06b, SKOS09, LSJ+11, ABB10].15

Therefore, this leads to constructions of ABO signatures from a wide variety of standard assumptions listed
above.

5.1 All-but-one Signatures from VRFs

Let VRF = (SetupVRF,EvalVRF,VerifyVRF) be a verifiable random function (VRF) with input space {0, 1}i(λ),
output space {0, 1}o(λ) and proof space {0, 1}p(λ). Let COM = (SetupCOM,Commit,VerifyCOM) be a perfectly
binding computationally hiding commitment scheme with randomness space {0, 1}o(λ) and commitment space
{0, 1}k(λ). We construct an ABO signature scheme ABO = (Setup,Setup-Punc,Sign,Verify) on message space
{0, 1}i(λ) and signature space {0, 1}o(λ)+p(λ) as follows. For the simplicity of notation, we hereby denote
i = i(λ), o = o(λ), p = p(λ) and k = k(λ).

• Setup(1λ). Sample (skVRF, vkVRF) ← SetupVRF(1λ) and pp ← SetupCOM(1λ). Sample y∗ ← {0, 1}o and
cm← Commit(pp, 0; y∗). Output sk = skVRF and vk = (pp, vkVRF, cm).

• Setup-Punc(1λ,m∗). Sample (skVRF, vkVRF)← SetupVRF(1λ) and pp← SetupCOM(1λ). Sample (y∗, π)←
EvalVRF(skVRF,m

∗) and cm← Commit(pp, 1; y∗). Output sk = skVRF and vk = (pp, vkVRF, cm).

• Sign(sk,m). Sample (y, π)← EvalVRF(sk,m). Output σ = (y, π).

• Verify(vk,m, σ). Let σ = (y, π) and vk = (pp, vkVRF, cm). Output 1 iff VerifyVRF(vkVRF,m, y, π) =
1 ∧ VerifyCOM(pp, 1, cm, y) = 0.

We now prove that the ABO signature scheme satisfies the required correctness properties.

Correctness of Setup. Consider any λ ∈ N, any (sk, vk) ← Setup(1λ), any message m ∈ {0, 1}i, and
signature σ = (y, π) ← Sign(sk,m). Let sk = skVRF and vk = (pp, vkVRF, cm). By the perfect binding
property of COM scheme, we have VerifyCOM(pp, 1, cm, y) = 0. By the correctness of VRF scheme, we have
VerifyVRF(vkVRF,m, y, π) = 1. Therefore, Verify(vk,m, σ) = 1.

Correctness of Punctured Setup. Consider any λ ∈ N, any messagem∗ ∈ {0, 1}i, (sk, vk)← Setup-Punc(1λ,m∗).
Let sk = skVRF and vk = (pp, vkVRF, cm). Consider any σ = (y, π) ∈ {0, 1}o × {0, 1}p. We prove that
Verify(vk,m∗, σ) = 0. We know that for any (y∗, π∗)← EvalVRF(skVRF,m

∗), we have VerifyVRF(vkVRF,m
∗, y∗, π∗) =

1. By the unique provability property of VRF scheme, we know that VerifyVRF(vkVRF,m
∗, y, π) = 1 only if

y = y∗. But we know that, VerifyCOM(pp, 1, cm, y∗) = 1. This implies, VerifyVRF(vkVRF,m
∗, y, π) = 1 and

VerifyCOM(pp, 1, cm, y) = 0 can not happen simultaneously. Therefore, Verify(vk,m∗, σ) = 0.

15We would like to point out that most existing IBE constructions based on LWE are already verifiable and they can be made
anonymous by using the transformation from [GKW17a, WZ17].
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VK Indistinguishability. Assuming that VRF satisfies pseudorandomness property and COM satisfies
computational hiding property, we now prove that ABO satisfies VK indistinguishability property. We state
the lemma formally using the following games.

Game 0. This game is same as VK indistinguishability game, except that the challenger always executes
punctured setup algorithm.

• Setup Phase. The adversary A sends a message m∗ to challenger C. The challenger C samples
(skVRF, vkVRF)← SetupVRF(1λ) and pp← SetupCOM(1λ). It then samples (y∗, π∗)← EvalVRF(skVRF,m

∗)
and cm← Commit(pp, 1; y∗). It sends vk = (pp, vkVRF, cm) to the adversary.

• Query Phase. The adversary adaptively queries for signatures to the challenger. For each query
m 6= m∗, the challenger responds with EvalVRF(skVRF,m).

• Output Phase. Finally, the adversary sends a bit b′ to the challenger.

Game 1. This game is similar to Game 0 except that the challenger samples value y∗ randomly.

• Setup Phase. The adversary A sends a message m∗ to challenger C. The challenger C samples
(skVRF, vkVRF) ← SetupVRF(1λ) and pp ← SetupCOM(1λ). It then samples y∗ ← {0, 1}o and cm ←
Commit(pp, 1; y∗). It sends vk = (pp, vkVRF, cm) to the adversary.

Game 2. This game is same as VK indistinguishability game, except that the challenger always executes
normal setup algorithm.

• Setup Phase. The adversary A sends a message m∗ to challenger C. The challenger C samples
(skVRF, vkVRF) ← SetupVRF(1λ) and pp ← SetupCOM(1λ). It then samples y∗ ← {0, 1}o and cm ←
Commit(pp, 0; y∗). It sends vk = (pp, vkVRF, cm) to the adversary.

In all the above games, the adversary is not allowed to make a signature query on message m∗.
For any stateful PPT adversary A, let the probability that A outputs 1 in Game y be pAy (λ). We denote

the advantage of a PPT adversary A in distinguishing between any two games Game x and Game y by
AdvAx,y(λ) = |pAx (λ)−pAy (λ)|. We prove that Game 0 is computationally indistinguishable from Game 2 using
the following 2 claims.

Claim 5.1. Assuming that VRF has selective pseudorandomness property, for every PPT algorithm A,
there exists a negligible function negl(·) such that for every λ ∈ N, we have AdvA0,1(λ) ≤ negl(λ).

Proof. Consider any PPT adversary A. We build a PPT algorithm B that uses A and breaks pseudoran-
domness property of VRF with advantage 1/2 · AdvA0,1(λ). The reduction algorithm B proceeds as follows.

The adversaryA first sends a challenge message m∗ to B, which it forwards to the VRF pseudorandomness
game challenger C. C samples (skVRF, vkVRF) ← SetupVRF(1λ) and a bit b ← {0, 1}. If b = 0, C samples
(y∗, π∗) ← EvalVRF(skVRF,m

∗). If b = 1, it samples y∗ ← {0, 1}o. The challenger then sends verification
key vkVRF and y∗ to B. B samples pp ← SetupCOM(1λ), computes cm ← Commit(pp, 1; y∗) and sends ABO
verification key vk = (pp, vkVRF, cm) to A. The adversary adaptively queries for signatures to B. For
each query m 6= m∗, B forwards the query to C, which responds with (y, π) ← EvalVRF(skVRF,m). B then
forwards the signature (y, π) to A. Finally, A sends a bit b′ to B, which outputs b′ as its guess in the VRF
pseudorandomness game.

Note that A is not allowed to make signature query on m∗. Therefore, B does not make any VRF
evaluation query on m∗, and acts as a valid adversary in VRF pseudorandomness game. We observe that if
b = 0, then B simulates the view of Game 0 to A and Pr[b′ = 1] = pA0 (λ). Otherwise, it simulates the view of
Game 1 to A and Pr[b′ = 1] = pA1 (λ). This implies, the advantage of B is given by Pr[b′ = b] = |1/2 ·Pr[b′ =
0|b = 0] + 1/2 · Pr[b′ = 1|b = 1] − 1/2| = 1/2 · AdvA0,1(λ). Therefore, if A has non-negligible advantage in
distinguishing between Game 0 and Game 1, then B can break pseudorandomness property of VRF scheme.
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Claim 5.2. Assuming that COM has computational hiding property, for every PPT algorithm A, there
exists a negligible function negl(·) such that for every λ ∈ N, we have AdvA1,2(λ) ≤ negl(λ).

Proof. Consider any PPT adversary A. We build a PPT algorithm B that uses A and breaks computational
hiding property of COM with advantage 1/2 · AdvA1,2(λ). The reduction algorithm B proceeds as follows.

The computational hiding game challenger C first samples pp ← SetupCOM(1λ), a bit b ← {0, 1},
y ← {0, 1}o and cm ← Commit(pp, b; y). It then sends (pp, cm) to B. The adversary A then sends a
challenge message m∗ to B. B samples (skVRF, vkVRF) ← SetupVRF(1λ) and sends ABO verification key
vk = (pp, vkVRF, cm) to A. The adversary adaptively queries for signatures to B. For each query m, B
samples (y, π)← EvalVRF(skVRF,m) and responds with signature (y, π). Finally, A sends a bit b′ to B, which
outputs b′ as its guess in the computational hiding game.

We observe that if b = 0, then B simulates the view of Game 2 to A and Pr[b′ = 1] = pA2 (λ). Otherwise,
it simulates the view of Game 1 to A and Pr[b′ = 1] = pA1 (λ). This implies, the advantage of B is given by
Pr[b′ = b] = |1/2 · Pr[b′ = 0|b = 0] + 1/2 · Pr[b′ = 1|b = 1] − 1/2| = 1/2 · AdvA1,2(λ). Therefore, if A has
non-negligible advantage in distinguishing between Game 1 and Game 2, then B can break computational
hiding property of COM scheme.

Note that by combining Claims 5.1 and 5.2, for every PPT adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N, we have AdvA0,2(λ) ≤ negl(λ).

5.2 All-but-one Signatures from VAIBE

In this section, we construct all-but-one (ABO) signatures from verifiable and anonymous identity based
encryption system (VAIBE). Let VAIBE = (SetupVAIBE,KeyGen,Encrypt,Decrypt,VerifyVAIBE) be a VAIBE
scheme for message space {0, 1}m(λ), ciphertext space {0, 1}c(λ), secret key space {0, 1}k(λ), identity space
{0, 1}i(λ) and proof space {0, 1}r(λ). We construct an ABO signature schemeABO = (Setup,Setup-Punc,Sign,Verify)
for message space {0, 1}i(λ) \ {0i(λ)} and signature space {0, 1}k(λ)+r(λ) i.e., for every λ ∈ N, identity 0i(λ) is
not supported by the signature scheme. Let Iλ = {0, 1}i(λ) \ {0i(λ)}. For simplicity of notation, we hereby
denote m = m(λ), c = c(λ), k = k(λ), i = i(λ) and p = p(λ). Also, we hereby refer to messages in ABO
scheme by identities in VAIBE scheme. Formally, the construction proceeds as follows.

• Setup(1λ). Sample VAIBE keys (mpkVAIBE,mskVAIBE) ← SetupVAIBE(1λ). Sample a random message
x ← {0, 1}m and compute ciphertext t ← Encrypt(mpkVAIBE, 0

i, x). Output secret key sk = mskVAIBE
and verification key vk = (x,mpkVAIBE, t).

• Setup-Punc(1λ, id∗). Sample VAIBE keys (mpkVAIBE,mskVAIBE) ← SetupVAIBE(1λ). Choose a ran-
dom message x ← {0, 1}m. Encrypt the message x using identity id∗ i.e., compute ciphertext t ←
Encrypt(mpkVAIBE, id

∗, x). Output secret key sk = mskVAIBE and verification key vk = (x,mpkVAIBE, t).

• Sign(sk, id). Sample (skid, π)← KeyGen(sk, id). Output signature σ = (skid, π).

• Verify(vk, id, σ). Let σ = (sk′, π) and vk = (x,mpk, t). Output 1 iff VerifyVAIBE(mpk, id, sk′, π) = 1 ∧
x 6= Decrypt(sk′, t).

We note that the ABO scheme does not achieve perfect correctness 16. We now prove that the ABO
scheme satisfies the required correctness properties with all but negligible probability.

16Using this ABO scheme in our AugBE construction results in an AugBE scheme without perfect correctness.
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Correctness of Setup.

Claim 5.3. There exists a negligible function negl(·) such that for all λ ∈ N and any identity id ∈ Iλ, we
have

Pr

[
Verify(vk, id, σ) = 0 :

(mpk,msk)← SetupVAIBE(1λ), x0 ← {0, 1}m, t← Encrypt(mpk, 0i, x0)
vk← (x0,mpk, t), σ = (skid, π)← KeyGen(msk, id)

]
≤ 1

2m
+negl(λ).

Proof. Suppose there exists a non-negligible function δ(·) such that, for every λ ∈ N, there exists an identity
id′λ ∈ Iλ such that,

Pr

[
Verify(vk, id′λ, σ) = 0 :

(mpk,msk)← SetupVAIBE(1λ), x0 ← {0, 1}m, t← Encrypt(mpk, 0i, x0)
vk← (x0,mpk, t), σ = (skid′λ , π)← KeyGen(msk, id′λ)

]
>

1

2m
+δ(λ).

By the correctness of VAIBE scheme, we know that VerifyVAIBE(mpk, id′λ, skid′λ , π) = 1. This implies,

Pr

[
Decrypt(skid′λ , t) = x0 :

(mpk,msk)← SetupVAIBE(1λ), x0 ← {0, 1}m
t← Encrypt(mpk, 0i, x0), σ = (skid′λ , π)← KeyGen(msk, id′λ)

]
>

1

2m
+ δ(λ).

(4)
For any fixed x0 ∈ {0, 1}m, let

px0 = Pr

[
Decrypt(skid′λ , t) = x0 :

(mpk,msk)← SetupVAIBE(1λ), x1 ← {0, 1}m
t← Encrypt(mpk, 0i, x1), (skid′λ , π)← KeyGen(msk, id′λ)

]
.

We know that
∑
x0
px0

= 1. This implies,

Pr

[
Decrypt(skid′λ , t) = x0 :

(mpk,msk)← SetupVAIBE(1λ), x1 ← {0, 1}m, x0 ← {0, 1}m
t← Encrypt(mpk, 0i, x1), (skid′λ , π)← KeyGen(msk, id′λ)

]
=

1

2m
. (5)

We build a non-uniform PPT adversary A that breaks IND-CPA security of VAIBE scheme. The
algorithm proceeds as follows. Assume the adversary is given id′λ as a non-uniform advice. A first samples
two random messages x0 ← {0, 1}m, x1 ← {0, 1}m and sends challenge messages (x0, x1) and challenge
identity 0i to VAIBE IND-CPA challenger C. C samples VAIBE keys (mpk,msk) ← SetupVAIBE(1λ), a
bit b ← {0, 1}, and computes ciphertext t ← Encrypt(mpk, 0i, xb). C sends public key mpk and challenge
response t to A. The adversary then makes a key query on index id′λ to the challenger, which responds with
(skid′λ , π)← KeyGen(msk, id′λ). A outputs 1 if Decrypt(skid′λ , t) = x0 and outputs 0 otherwise.

By equation 4, if b = 0, A outputs 1 with probability greater than 1
2m + δ(λ). By equation 5, if b = 1,

A outputs 1 with probability 1
2m . This implies that the advantage of A in the IND-CPA game is at least

1/2 · δ(λ).

Correctness of Punctured Setup.

Claim 5.4. For all λ ∈ N, any identity id∗ ∈ Iλ, any keys (sk, vk)← Setup-Punc(1λ, id∗), any σ ← {0, 1}k+r,
we have Verify(vk, id∗, σ) = 0.

Proof. Let vk = (x,mpk, t) and σ = (sk′, π). From the soundness of verifiability property of VAIBE scheme,
we know that if VerifyVAIBE(mpk, id∗, sk′, π) = 1, then Decrypt(sk′, t) = x. Therefore, Verify(vk, id∗, σ) = 0.

5.2.1 VK Indistinguishability

We now prove that ABO scheme satisfies the VK indistinguishability property. We first define the VK
indistinguishability game below.
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Game VK-IND.

• Setup Phase. The adversary sends a challenge id∗ to the challenger. The challenger samples (mpkVAIBE,mskVAIBE)←
SetupVAIBE(1λ), a message x ← {0, 1}m and a random bit b ← {0, 1}. If b = 0, it samples t ←
Encrypt(mpkVAIBE, 0

i, x). If b = 1, it samples t ← Encrypt(mpkVAIBE, id
∗, x). It then sends verification

key vk = (x,mpkVAIBE, t) to the adversary.

• Query Phase. The adversary adaptively queries for signatures to the challenger. For each query id, the
challenger computes (skid, π)← KeyGen(mskVAIBE, id) and responds with signature σ = (skid, π).

• Output Phase. The adversary sends a bit b′ to the challenger. The adversary wins if b′ = b.

Here, A is not allowed to make signature query on id∗. For any stateful PPT adversary A, we define the
advantage of the adversary AdvAVK-IND(λ) = |Pr[A wins]− 1/2|.

Lemma 5.1. Assuming that VAIBE scheme is IND-ANON secure as per Definition 2.7, for every PPT
adversary A, there exists a negligible function negl(·) such that for every λ ∈ N, we have AdvAVK-IND(λ) ≤
negl(λ).

Proof. Suppose there exists an adversary A and a non-negligible function δ(·) such that AdvAVK-IND(λ) > δ(λ)
for every λ ∈ N. We describe a reduction algorithm B that uses A and breaks anonymous IBE property of
VAIBE scheme. The algorithm B proceeds as follows.

The adversary A sends an identity id∗ ∈ Iλ to B. The reduction algorithm B samples a message
x← {0, 1}m, and sends challenge identities (0i, id∗) and challenge message x to IND-ANON game challenger
C. The challenger samples (mpkVAIBE,mskVAIBE) ← SetupVAIBE(1λ), a random bit b ← {0, 1}, and responds
with either (mpkVAIBE, t← Encrypt(mpkVAIBE, 0

i, x)) if b = 0 or with (mpkVAIBE, t← Encrypt(mpkVAIBE, id
∗, x))

if b = 1. B sends the ABO verification key (x,mpkVAIBE, t) to the adversary A. The adversary adaptively
queries for signatures to B. For each query id, B aborts if id = id∗. Otherwise, it makes a secret key query on
id to C. The challenger responds with (skid, π) ← KeyGen(mskVAIBE, id), which B forwards to the adversary.
Finally, A sends a bit b′ to B, which outputs b′ as its guess in IND-ANON game.

As A does not make signature query on id∗, B does not make secret key queries on 0i, id∗. Therefore,
B acts as a valid adversary in the anonymous IBE property game. In addition, B simulates the view of
Game VK-IND to A. Therefore, AdvAVK-IND(λ) > δ(λ) and the advantage of B in the IND-ANON game is at
least δ(λ).

Acknowledgement

We thank the anonymous reviewers of PKC 2019 for helpful feedback, especially for pointing out the con-
nection between SPB hashes and (a weakening of) ABO signatures.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard model.
In Proceedings of the 29th Annual international conference on Theory and Applications of Cryp-
tographic Techniques, EUROCRYPT’10, pages 553–572, Berlin, Heidelberg, 2010. Springer-
Verlag.

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Advances in Cryptology - CRYPTO 2015, pages 308–326, 2015.

30



[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness generically: Indis-
tinguishability obfuscation from non-compact functional encryption. IACR Cryptology ePrint
Archive, 2015.

[AP16] Navid Alamati and Chris Peikert. Three’s compromised too: Circular insecurity for any cycle
length from (ring-)lwe. In Advances in Cryptology - CRYPTO 2016, pages 659–680, 2016.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in
public-key encryption. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 566–582. Springer, 2001.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil Pairing. In
Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’01, 2001.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology -
CRYPTO 2001, pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In CRYPTO, pages 258–275, 2005.

[BJK+17] Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelegue, and Daniel Wichs. Non-
trivial witness encryption and null-io from standard assumptions. Cryptology ePrint Archive,
Report 2017/874, 2017. https://eprint.iacr.org/2017/874.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability from
indistinguishability obfuscation. In Theory of Cryptography, pages 401–427. Springer Berlin
Heidelberg, 2015.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos - trap-
door permutations from indistinguishability obfuscation. In Theory of Cryptography - 13th
International Conference, TCC 2016-A, pages 474–502, 2016.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In EUROCRYPT, pages 573–592, 2006.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
pages 171–190, 2015.

[BW06a] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke system.
In Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS
2006, pages 211–220, 2006.

[BW06b] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without
random oracles). In Advances in Cryptology - CRYPTO 2006, pages 290–307, 2006.

[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption from mul-
tilinear maps. In Advances in Cryptology - CRYPTO 2014, pages 206–223, 2014.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In Advances in Cryptology - CRYPTO 2014, pages 480–499,
2014.

31

https://eprint.iacr.org/2017/874
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