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Abstract. We consider the problem of constructing Diffie-Hellman (DH)
parameters which pass standard approaches to parameter validation but
for which the Discrete Logarithm Problem (DLP) is relatively easy to
solve. We consider both the finite field setting and the elliptic curve
setting.
For finite fields, we show how to construct DH parameters (p, q, g) for
the safe prime setting in which p = 2q + 1 is prime, q is relatively smooth
but fools random-base Miller-Rabin primality testing with some reason-
able probability, and g is of order q mod p. The construction involves
modifying and combining known methods for obtaining Carmichael num-
bers. Concretely, we provide an example with 1024-bit p which passes
OpenSSL’s Diffie-Hellman validation procedure with probability 2−24 (for
versions of OpenSSL prior to 1.1.0i). Here, the largest factor of q has 121
bits, meaning that the DLP can be solved with about 264 effort using the
Pohlig-Hellman algorithm. We go on to explain how this parameter set
can be used to mount offline dictionary attacks against PAKE protocols.
In the elliptic curve case, we use an algorithm of Bröker and Stevenhagen
to construct an elliptic curve E over a finite field Fp having a specified
number of points n. We are able to select n of the form h·q such that h is a
small co-factor, q is relatively smooth but fools random-base Miller-Rabin
primality testing with some reasonable probability, and E has a point of
order q. Concretely, we provide example curves at the 128-bit security
level with h = 1, where q passes a single random-base Miller-Rabin
primality test with probability 1/4 and where the elliptic curve DLP can
be solved with about 244 effort. Alternatively, we can pass the test with
probability 1/8 and solve the elliptic curve DLP with about 235.5 effort.
These ECDH parameter sets lead to similar attacks on PAKE protocols
relying on elliptic curves.
Our work shows the importance of performing proper (EC)DH parameter
validation in cryptographic implementations and/or the wisdom of relying
on standardised parameter sets of known provenance.
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1 Introduction

In a recent paper, Albrecht et al. [AMPS18] conducted a systematic study of
primality testing “in the wild”. They found flaws in primality tests implemented
in several cryptographic libraries, for example a reliance on fixed-base Miller-
Rabin primality testing, or the use of too few rounds of the Miller-Rabin test
when testing numbers of unknown provenance. They studied the implications
of their work for Diffie-Hellman (DH) in the finite field case, showing how to
generate DH parameter sets of the form (p, q, g) in which p = kq + 1 for some k,
p is prime, q is composite but passes a Miller-Rabin primality test with some
probability, yet q is sufficiently smooth that the Discrete Logarithm Problem
(DLP) is relatively easy to solve using the Pohlig-Hellman algorithm in the
order q subgroup generated by g. Such a parameter set (p, q, g) might pass DH
parameter validation with non-negligible probability in a cryptographic library
that performs “naive” primality testing on p and q, e.g. one carrying out just
a few iterations of Miller-Rabin on each number. If such a parameter set were
used in a cryptographic protocol like TLS, then it would also allow an attacker
to recover all the keying material and thence break the protocol’s security, cf.
[Won16]. Albrecht et al. [AMPS18] posited this as a plausible attack scenario
when, for example, a malicious developer hard-codes the DH parameters into the
protocol.

It is notable that the methods of [AMPS18] for producing malicious DH
parameters do not work in the safe prime setting, wherein p = 2q + 1. This is
because Albrecht et al. need flexibility in choosing k to arrange p to be prime.
It is also because their methods can only produce q with 2 or 3 prime factors,
meaning that q needs to be relatively small so that the Pohlig-Hellman algorithm
applies (recall that Pohlig-Hellman runs in time O(B1/2) where B is a bound
on the largest prime factor of q; if q has only 3 prime factors and we want an
algorithm requiring 264 effort, then q can have at most 384 bits). Yet requiring
safe primes is quite common for DH in the finite field setting. This is because it
helps to avoid known attacks, such as small subgroup attacks [LL97,VAS+17], and
because it ostensibly makes parameter validation easier. For example, OpenSSL’s
Diffie-Hellman validation routine DH check3 insists on the safe prime setting
by default. Indeed, it was left as an open problem in [AMPS18] to find a large,
sufficiently smooth, composite q passing a primality test with high probability
such that p = 2q + 1 is also prime or passes a primality test.

Interestingly, more than a decade ago, Bleichenbacher [Ble05] addressed a
closely related problem: the construction of malicious DH parameters (p, q, g) for
which p and q pass fixed-base Miller-Rabin primality tests. This was motivated
by his observation that, at this time, the GNU Crypto library was using such
a test, with the bases being the first 13 primes a = 2, 3, . . . , 41. He produced
a number q having 1095 bits and 27 prime factors, the largest of which has 53

3 See https://www.openssl.org/docs/man1.1.1/man3/DH check.html for a descrip-
tion and https://github.com/openssl/openssl/blob/master/crypto/dh/dh check.c for
source code.
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bits, such that q always passed the primality test of GNU Crypto, and such
that p = 2q + 1 is prime. His q has very special form: it is a Carmichael number
obtained using a modified version of the Erdös method [Erd56]. Of course, his
DH parameter set (p, q, g) would not stand up to the more commonly used
random-base Miller-Rabin testing, but his construction is nevertheless impressive.
Bleichenbacher also showed how such a parameter set could be used to break the
SRP Password Authenticated Key Exchange (PAKE) protocol: he showed that a
client that accepts bad DH parameters in the SRP protocol can be subject to
an offline dictionary attack on its password. Here, the attacker impersonates the
server in a run of the SRP protocol, sending the client malicious DH parameters,
and inducing the client to send a password-dependent protocol message. It is
the attacker’s ability to solve the DLP that then enables the offline password
recovery. Thus Bleichenbacher had already given a realistic and quite standard
attack scenario where robust DH (and ECDH) parameter validation is crucial:
PAKE protocols in which an attacker impersonating one of the parties can dictate
(EC)DH parameters.

1.1 Our Contributions

In this paper, we address the problem left open from [AMPS18] of finding
malicious DH parameters in the safe prime setting. We also study the analogous
problem in the elliptic curve setting.

Finite Field Setting: As a flavour of the results to come, we exhibit a DH
parameter set (p = 2q+1, q, g) in which p has 1024 bits and q is a composite with
9 prime factors, each at most 121 bits in size, which passes a single random-base
Miller-Rabin test with probability 2−8. We show that no number with this many
factors can achieve a higher passing probability. Because of the 121-bit bound on
the factors of q, the DLP in the subgroup of order q generated by g can be solved
with about 264 effort using the Pohlig-Hellman algorithm. When OpenSSL’s DH
validation routine DH check is used in its default configuration, this parameter
set is declared valid with probability 2−24 for versions of OpenSSL prior to 1.1.0i
(released 14th August 2018). This is because OpenSSL uses the size of q to
determine how many rounds of Miller-Rabin to apply, and adopts non-adversarial
bounds suitable for average case primality testing derived from [DLP93]. These
dictate using 3 rounds of testing for 1023-bit q for versions of OpenSSL prior
to 1.1.0i, and 5 rounds in later versions (the increase was made in an effort to
achieve a 128-bit security level). We also give a DH parameter set (p = 2q+1, q, g)
in which p is a 1024 bit prime and q has 11 prime factors, each at most 100 bits
in size, which passes a single random-base Miller-Rabin test with probability
2−10. This parameter set is declared valid with a lower probability of 2−30 for
versions of OpenSSL prior to 1.1.0i, however the DLP in the subgroup of order q
generated by g can be solved using the Pohlig-Hellman algorithm with less effort,
in about 254 operations.

The probability of 2−24 or 2−30 for passing DH validation may not seem very
large, and indeed can be seen as a vindication of using safe primes for DH. On the
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other hand, Bleichenbacher-style attacks against PAKEs can be carried out over
many sessions and against multiple users, meaning that the success probability
of an overall password recovery attack can be boosted. We exemplify this in the
context of J-PAKE, a particular PAKE protocol that was supported in OpenSSL
until recently (but we stress that the attack is not specific to J-PAKE).

Obtaining such malicious DH parameter sets in the finite field setting requires
some new insights. In particular, we are interested in numbers q that are relatively
smooth (having all prime factors less than some pre-determined bound B, say),
but which pass random-base Miller-Rabin primality tests with probability as
high as possible. We therefore investigate the relationship between the number
of prime factors m of a number n and the number of Miller-Rabin non-witnesses
S(n) for n, this being the number of bases a for which the Miller-Rabin test
fails to declare n composite. We are able to prove that S(n) ≤ ϕ(n)/2m−1 where
ϕ(·) is the Euler function. Since for large n we usually have ϕ(n) ≈ n, this
shows that the highest probability a malicious actor can achieve for passing a
single, random-base Miller-Rabin test is (roughly) 21−m. (This already shows
that an adversary can only have limited success, especially if multiple rounds of
Miller-Rabin are used.) We are also able to completely characterise those numbers
achieving equality in this bound for m ≥ 3: they are exactly the Carmichael
numbers having m prime factors that are all congruent to 3 mod 4.

This characterisation then motivates us to develop constructions for such
Carmichael numbers with a controlled number of prime factors. We show how
to modify the existing Erdös method [Erd56] and the method of Granville and
Pomerance [GP02] for constructing Carmichael numbers, and how to combine
them, to obtain cryptographically-sized q with the required properties.

However, this only partly solves our problem, since we also require that
p = 2q + 1 should pass primality tests (or even be prime). We explore further
modifications of our approach so as to avoid trivial arithmetic conditions that
prevent p from being prime (the prime 3 is particularly troublesome in this
regard). We are also able to show that the probability that p is prime is higher
than would be expected for a random choice of p by virtue of properties of the
Granville-Pomerance construction: essentially, the construction ensures that p
cannot be divisible by certain small primes; we tweak the construction further to
enhance this property. Combining all of these steps leads to a detailed procedure
by which our example DH parameter set (p = 2q + 1, q, g) described above was
obtained. This procedure is amenable to parallelisation. The computation of our
particular example required 136 core-days of computation using a server with
3.2GHz processors.

Elliptic Curve Setting: While the main focus of our work is on the finite field
setting, we also briefly study the elliptic curve setting. Here ECDH parameters
(p,E, P, q, h) consist of a prime p defining a field (we focus on prime fields, Fp),
a curve E over that field defined in some standard form (for example, short
Weierstrass form), a point P , the (claimed) order q of P , and a co-factor h such
that #E(Fp) = h · q. Parameter validation should verify the primality of p and q,
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and check that P does have order q on E by computing [q]P and comparing the
result to the point at infinity.

Bröker and Stevenhagen [BS05] gave a reasonably efficient algorithm to
construct an elliptic curve E over a prime field Fp having a specified number of
points n, given the factorisation of n as an input. Their algorithm is sensitive to
the number of prime factors of n – fewer is better. We use their algorithm with n
being one of our specially constructed Carmichael numbers q passing Miller-Rabin
primality testing with highest possible probability, or a small multiple of such a
q.

Since p ≈ q in the elliptic curve setting and we only need these numbers to
have, say, 256 bits to achieve a 128-bit security level, the task of constructing q
is much easier than in the finite field setting considered above. Indeed, we could
employ a Carmichael number q with 3 prime factors to pass Miller-Rabin with
probability 1/4 per iteration. At the 128-bit security level, q then has 3 prime
factors each of roughly 85 bits, and the Pohlig-Hellman algorithm would solve
the ECDLP on the constructed curve in about 244 steps. Using a Carmichael q
with 4 prime factors each of exactly 64 bits, we would pass Miller-Rabin with
probability 1/8 per iteration and solve the ECDLP with only 234 effort. We give
concrete examples of curves having such properties.

These malicious ECDH parameters (p,E, P, q, h) lead to attacks on PAKEs
running over elliptic curves, as well as more traditional ECDH key exchanges.
These attacks are fully analogous to those in the finite field setting. They highlight
the importance of careful validation of ECDH parameters that may originate
from potentially malicious sources, especially in the case of bespoke parameter
sets sent as part of a cryptographic protocol. For example, the specification of the
TLS extension for elliptic curve cryptography [BWBG+06] caters for the use of
custom elliptic curves, though this option does not seem to be widely supported
in implementations at present. Our work shows that robust checking of any such
parameters would be highly advisable.

1.2 Further Related Work

In the light of the Snowden revelations, a body of work examining methods by
which the security of cryptographic algorithms and protocols can be deliberately
undermined has been developed. Our work can be seen as fitting into that theme
(though we stress that the application of our work to PAKE protocols shows that
there are concerns in the “standard” cryptographic setting too).

Young and Yung laid the foundations of kleptography, that is, cryptography
designed with malicious intent, see for example [YY97]. Bellare et al. [BPR14]
studied the problem of how to subvert symmetric encryption algorithms, and
how to protect against such subversions.

Fried et al. [FGHT17] followed up on early work of Gordon [Gor93] to examine
how to backdoor the DLP in the finite field setting. These works showed how
to construct large primes p for which the Special Number Field Sieve makes
solving the DLP possible if one is in possession of trapdoor information about
how p was generated. This provides another avenue to subverting the security of
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DH parameters. It appears that the 1024-bit example in [FGHT17] is not in the
safe-prime setting, however.

The NIST DualEC generator was extensively analysed [CNE+14] and found to
be used in Juniper’s ScreenOS operating system in an exploitable way [CMG+16].
This inspired more theoretical follow-up work on backdoored RNGs [DGG+15]
and PRNGs [DPSW16].

Bernstein et al. [BCC+15] extensively discuss the problem of certifying that
elliptic curve parameter sets are free of manipulation during generation.

The dangers of allowing support for old algorithms and protocol versions,
especially those allowing export-grade cryptography, are made manifest by the
FREAK [BBD+15], Logjam [ABD+15] and DROWN [ASS+16] attacks on SSL
and TLS.

2 Miller-Rabin Primality Testing and Pseudoprimes

Suppose n > 1 is an odd integer to be tested for primality. We first write
n = 2ed+ 1 where d is odd. If n is prime, then for any integer a with 1 ≤ a < n,
we have:

ad = 1 mod n or a2
id = −1 mod n for some 0 ≤ i < e.

The Miller-Rabin test then consists of checking the above conditions for some
value a, declaring a number to be composite if both conditions fail and to be
(probably) prime if either of the two conditions hold. If one condition holds,
then we say n is a pseudoprime to base a, or that a is a non-witness to the
compositeness of n (since n may be composite, but a does not demonstrate this
fact).

We begin by exploring the relationship between a composite number n and
the number of non-witnesses this number possesses, denoted S(n). Since in this
work we are interested in constructing numbers n that fool the Miller-Rabin test
with as high a probability as possible for random bases a, our main interest is in
constructing n for which S(n) is as large as possible. However, since we are also
interested in solving discrete logarithm problems in subgroups of order n, we will
also want n to be relatively smooth.

The following theorem can be used to calculate the exact number of non-
witnesses that some composite n has:

Theorem 1 ([Mon80], Proposition 1). Let n be an odd composite integer.
Suppose that n = 2e · d + 1 where d is odd. Also suppose that n has prime
factorisation n =

∏m
i=1 p

qi
i where each prime pi can be expressed as 2ei · di + 1

with each di odd. Then:

S(n) =

(
2min(ei)·m − 1

2m − 1
+ 1

) m∏
i=1

gcd(d, di). (1)

A general upper-bound on S(n) is given by results of [Mon80,Rab80]:
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Theorem 2 (Monier-Rabin Bound). Let n 6= 9 be odd and composite. Then

S(n) ≤ ϕ(n)

4

where ϕ denotes the Euler totient function.

It is known from [Mon80] that the bound in Theorem 2 is met with equality
for numbers n of the form n = (2x+ 1)(4x+ 1) with 2x+ 1, 4x+ 1 prime and x
odd. It is also known that the bound is met with equality for numbers n that
are Carmichael numbers with three prime factors, n = p1p2p3, and where each
factor pi is congruent to 3 mod 4.

Definition 1 (Carmichael numbers). Let n be an odd composite number.
Then n is said to be a Carmichael number if an−1 = 1 mod n for all a co-prime
to n.

Note that Carmichael numbers are those for which the Fermat primality test
fails to identify n as composite for all co-prime bases a.

Theorem 3 (Korselt’s Criterion). Let n be odd and composite. Then n is a
Carmichael number if and only if n is square-free and for all prime divisors p of
n, we have p− 1 | n− 1.

For a proof of this theorem, see [Mon80]. It is also known that Carmichael
numbers must have at least 3 distinct prime factors.

2.1 On the Relationship Between S(n) and m, the Number of
Prime Factors of n

The following result is central to our work.

Theorem 4 (Factor Bound on S(n)). Let n be an odd composite integer
with prime factorisation n =

∏m
i=1 p

qi
i . Write n = 2ed + 1 where d is odd and

pi = 2eidi + 1 where each di is odd. Then S(n) ≤ ϕ(n)
2m−1 , where ϕ(·) denotes

Euler’s function, with equality if and only if n is square-free and, for all i, ei = 1
and di | d.

Proof. We have:

2min(ei)·m−1
2m−1 + 1

2min(ei)·m
=

1

2m − 1
+

(
1

2min(ei)·m

)(
1− 1

2m − 1

)
≤ 1

2m − 1
+

(
1

2m

)(
1− 1

2m − 1

)
=

2(2m − 1)

(2m)(2m − 1)

=
1

2m−1
.
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Therefore, using Theorem 1, we have:

S(n) =

(
2min(ei)·m − 1

2m − 1
+ 1

) m∏
i=1

gcd(d, di) ≤
1

2m−1
· 2min(ei)·m

m∏
i=1

gcd(d, di)

(2)

≤ 1

2m−1

m∏
i=1

(2ei · di) (3)

=
1

2m−1

m∏
i=1

(pi − 1)

≤ 1

2m−1
ϕ(n). (4)

We obtain equality in equation (2) above when min(ei) = 1 and in equation
(3) when e1 = e2 = · · · = em and gcd(d, di) = di for all i (which is equivalent
to di | d). We obtain equality in equation (4) when ϕ(n) =

∏m
i=1(pi − 1). This

occurs if and only n is square free. The result follows.

Remark: For the case m = 2, the bound of Theorem 4 can be strengthened
to S(n) ≤ ϕ(n)/4, that is, the Monier-Rabin bound. As mentioned above,
Monier [Mon80] remarked that the bound is met in this case for numbers of the
form n = (2x+ 1)(4x+ 1) with 2x+ 1, 4x+ 1 prime and x odd, see also [Nar14].
This form was exploited extensively in [AMPS18], but will be less useful in our
work because we require numbers n of cryptographic size that satisfy a smaller
smoothness bound. For example, we will be interested in constructing 1024-bit n
in which each prime factor has at most 128 bits, meaning n will have at least 8
prime factors.

We now go on to show that, when m ≥ 3, the bound in the above theorem is
attained if and only if n is a Carmichael number of special form.

Theorem 5. Let n be a Carmichael number with m ≥ 3 prime factors that are

all congruent to 3 mod 4. Then S(n) = ϕ(n)
2m−1 . Conversely, if n has m ≥ 3 prime

factors and S(n) = ϕ(n)
2m−1 , then n is a Carmichael number whose prime factors

are all congruent to 3 mod 4.

Proof. By Korselt’s criterion we know that n is square-free. Write n = p1 · · · pm
where the pi are prime and, by assumption, pi = 3 mod 4 for each i. As before,
we write n = 2ed + 1 where d is odd and pi = 2eidi + 1 where each di is odd.
Since pi = 3 mod 4 for each i, it is immediate that ei = 1 for each i. Moreover,
by Korselt’s criterion, we have 2eidi|2ed, and hence di|d, for each i. The result
follows from the converse part of Theorem 4.

For the converse, let n =
∏m

i=1 p
qi
i . Suppose pi = 2eidi +1 where di is odd and

n = 2ed+ 1 where d is odd. Necessarily, e ≥ 1. By Theorem 4, since S(n) = ϕ(n)
2m−1 ,
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we have that n is square free, ei = 1 for all i and di | d for all i. Since ei = 1
∀i, we have that pi = 3 mod 4 and 2ei | 2e for all i. Also, since di | d for all i, it
follows that 2eidi | 2ed for all i, and thus pi − 1 | n− 1 for all i. Hence, n satisfies
Korselt’s criterion, and n is a Carmichael number.

Example 1. Table 1 gives, for each 3 ≤ m ≤ 10, the smallest number with m
prime factors achieving the bound of Theorem 4. In the light of Theorem 5, these
are all Carmichael numbers whose prime factors are all congruent to 3 mod 4.
These are obtained from data made available by Pinch and reported in [Pin08].
Of course, these examples are all much too small for cryptographic use.

m Cm S(Cm)

3 7 · 19 · 67 ϕ(Cm)/4
4 7 · 19 · 67 · 199 ϕ(Cm)/8
5 7 · 11 · 19 · 103 · 9419 ϕ(Cm)/16
6 7 · 11 · 31 · 47 · 163 · 223 ϕ(Cm)/32
7 19 · 23 · 31 · 67 · 71 · 199 · 271 ϕ(Cm)/64
8 11 · 31 · 43 · 47 · 71 · 139 · 239 · 271 ϕ(Cm)/128
9 19 · 31 · 43 · 67 · 71 · 103 · 239 · 307 · 631 ϕ(Cm)/256

10 7 · 11 · 19 · 31 · 47 · 79 · 139 · 163 · 271 · 2347 ϕ(Cm)/512

Table 1. The smallest number Cm with m prime factors that meets the upper bound
of ϕ(Cm)/2m−1 on S(Cm).

3 Generating Large Carmichael Numbers

The results in the previous section motivate the search for cryptographically-sized
Carmichael numbers with a chosen number of prime factors, with each factor
congruent to 3 mod 4. In this section, we discuss two existing constructions for
Carmichael numbers: the Erdös method [Erd56] and the method of Granville
and Pomerance [GP02]. We show how to combine these two methods to produce
large examples. We also show how to modify the constructions to improve the
probability that they will succeed in constructing large examples meeting our
additional congruence requirements.

3.1 The Erdös Method

Erdös [Erd56] gave a method to construct Carmichael numbers with many prime
factors. The method starts with a highly composite number L and then considers
the set P(L) = {p : p prime, p − 1 | L, p - L}. If for some subset p1, p2, . . . , pm
of P(L), we have p1p2 · · · pm = 1 mod L, then n = p1p2 · · · pm is a Carmichael
number, by Korselt’s criterion. This is easy to see: by construction, pi − 1 | L;
the condition n = 1 mod L implies that L | n− 1; it follows that pi − 1 | n− 1,
and n is evidently square-free.
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Example 2. If L = 120 = 23·3·5, then P(L) = {7, 11, 13, 31, 41, 61}. If we examine
all the subsets of P(L), we find that 41040 = 7 · 11 · 13 · 41, 172081 = 7 · 13 · 31 · 61
and 852841 = 11 ·31 ·41 ·61 are all 1 mod 120, and so are all Carmichael numbers.

The Erdös method lends itself to a computational approach to generating
Carmichael numbers with a chosen number of prime factors m for moderate
values of L. For a given L, the set P(L) can be quickly generated by considering
each factor f of the selected L and testing the primality of f + 1. One can then
examine all m-products of distinct elements from P(L) and test the product n
against the condition n = 1 mod L.

Alternatively, as pointed out in [Ble05], one can employ a time-memory
trade-off (TMTO): for some k, build a table of all k-products p1 · · · pk from
P(L), and look for collisions in that table with the inverses of (m− k)-products
(pk+1 · · · pm)−1 mod L from P(L). Such a collision gives an equation

p1 · · · pk = (pk+1 · · · pm)−1 mod L

and hence
p1 · · · pkpk+1 · · · pm = 1 mod L.

Of course, one needs to take care to avoid repeated primes in such an approach.
For the L we use later, the direct approach suffices, and so we did not explore
this direction further.

3.2 The Selection of L in the Erdös Method

Clearly, L must be even, otherwise the integers p satisfying p− 1 | L will all be
even. We can ensure that all primes p in P(L) satisfy p = 3 mod 4 by setting the
maximum power of 2 in L to be 1, i.e. by setting L = 2 mod 4. For then each
factor f of L must be 2 mod 4, and hence p = f + 1 = 3 mod 4. As we shall see
later, other conditions can be imposed on L as needed.

Note that since 2 | L, p = 3 is a candidate for inclusion in P(L). However,
if 3 is also a factor of L then it is excluded because of the additional condition
p - L on elements of P(L); this condition is needed in general, since if p | L, then
any product p1p2 · · · pm including p as a factor would be 0 mod L instead of the
required 1 mod L.

For the Erdös method to be successful in producing a Carmichael number with
m prime factors, we need to find a product pi such that p1p2 · · · pm = 1 mod L.
One can see that the number of possible products that can be considered is(|P(L)|

m

)
. Let us make the heuristic assumption that the values of p1p2 · · · pm are

uniformly distributed amongst the odd numbers modulo the even integer L. Then
we need to ensure that: (

|P(L)|
m

)
' L/2

for the method to have a reasonable chance of success.
Thus it is desirable to find L such that |P(L)| is as large as possible. In turn,

this heuristically depends on L being as smooth as possible, since such an L
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Lbound Lbest |P(Lbest)|

220 810810 = 2 · 34 · 5 · 7 · 11 · 13 39
221 2088450 = 2 · 33 · 52 · 7 · 13 · 17 50
222 4054050 = 2 · 34 · 52 · 7 · 11 · 13 58
223 7657650 = 2 · 32 · 52 · 7 · 11 · 13 · 17 65
224 13783770 = 2 · 34 · 5 · 7 · 11 · 13 · 17 73
225 22972950 = 2 · 33 · 52 · 7 · 11 · 13 · 17 89
226 53603550 = 2 · 32 · 52 · 72 · 11 · 13 · 17 93

Table 2. For a given Lbound (column 1), the value Lbest (column 2) gives the value
of L ≤ Lbound resulting in the largest set of primes P(L), subject to the additional
restriction that p = 3 mod 4 for all p ∈ P(L).

has many factors f and therefore many possible candidates p = f + 1 that, if
prime, can be included in P(L). This analysis of course depends on the primality
of the different values f + 1 being in some sense independent for the different
factors f of L; this is a reasonable assumption given standard heuristics on the
distribution of primes.

For various bounds Lbound, we have computed the value of L ≤ Lbound giving
the largest set P(L), where we impose the restriction L = 2 mod 4 to ensure the
primes in P(L) are all 3 mod 4. The results are shown in Table 2, and bear out
our heuristic analysis suggesting that smooth L make the best choices.

Example 3. Suppose L = 53603550. Then |P(L)| = 93 with:

P(L) = {19, 23, 31, 43, 67, 71, 79, 103, 127, 131, 151, 199, 211, 239, 307, 331, 443,

463, 491, 547, 631, 859, 883, 911, 991, 1051, 1123, 1171, 1327, 1471, 1531,

1667, 1871, 1951, 2003, 2143, 2311, 2551, 2731, 3571, 3823, 3851, 4951,

4999, 5851, 6007, 7151, 7351, 8191, 9283, 10711, 11467, 11551, 16831,

17851, 19891, 22051, 23563, 26951, 27847, 28051, 33151, 34651, 41651,

42043, 43759, 46411, 50051, 53551, 54979, 57331, 72931, 77351, 91631

102103, 117811, 124951, 126127, 150151, 232051, 242551, 286651,

324871, 350351, 450451, 824671, 1051051, 1093951, 1191191, 1624351,

2144143, 4873051, 10720711}.

As representative examples, the following Carmichael numbers with, respec-
tively 8 and 16 prime factors, can then be obtained by running a simple search
algorithm over subsets of P(L) to find subsets whose products are 1 mod L:

C8 =19 · 23 · 43 · 239 · 859 · 9283 · 11467 · 242551

C16 =19 · 23 · 31 · 43 · 67 · 71 · 79 · 103 · 127·
131 · 491 · 1531 · 3851 · 7151 · 11467 · 33151

Here
C8 = 99605240811373000403701
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and
C16 = 2952075740383473675231403915547850874801.

Our SAGE [S+18] implementation of the Erdös method running on a 3.3GHz
processor took 4.83 seconds to find C8 and 1.78 seconds to find C16. The code
used to generate these examples can be found in Appendix A.

It would be tempting to think that this method could easily be scaled-up to
numbers of cryptographic size. However, this is not so easy. To illustrate, suppose
we wanted to construct a 1024-bit n with, say, m = 8 prime factors, all having
about 128 bits. This would necessitate using an L substantially larger than 2128,
which would make the direct approach of finding a product p1 · · · p8 = 1 mod L
infeasible; even the TMTO version would require prohibitive time and memory,
on the order of 264 of each.

3.3 The Method of Granville and Pomerance

The second method of generating Carmichael numbers that we consider is due to
Granville and Pomerance [GP02]. This takes a small Carmichael number with m
(known) factors and produces from it a larger Carmichael number, also with m
factors. It is based on the following theorem.

Theorem 6 (Granville and Pomerance [GP02]). Let n = p1p2 · · · pm be
a Carmichael Number. Let L = lcm(pi − 1) and let M be any integer with
M ≡ 1 mod L. Set qi = 1 + M(pi − 1). Then N = q1 · · · qm is a Carmichael
number whenever each qi is prime.

Recall that we are interested in Carmichael numbers N in which all prime
factors are congruent to 3 mod 4. Fortunately, as the following lemma shows, the
method of Granville and Pomerance ‘preserves’ this property.

Lemma 1. With notation as in Theorem 6, suppose pi ≡ 3 (mod 4). Then
qi = 3 (mod 4).

Proof. The integer L is even as it is the least common multiple of even integers
pi − 1. But M ≡ 1 (mod L) implies that M is odd; write M = 2s+ 1. Moreover,
since pi = 3 mod 4, we have pi − 1 = 2di with di odd; write di = 2ti + 1. Then
qi = 1 +M(pi− 1) = 1 + (2s+ 1)(4ti + 2) = 3 + 4(2sti + s+ ti), which is evidently
3 mod 4.

There are two important choices of variable in this method: M and the
starting Carmichael number n.

Clearly, the properties of the resulting Carmichael number N are dependent
on n, for example the value of each prime factor mod 4 (as seen in Lemma 1)
and the number m of these factors.

The effects of M are more subtle. In particular, we need to select an M such
that all the resulting qi = 1 +M(pi − 1) are prime. Using the heuristic that the
values qi are as likely to be prime as random choices of odd qi of the same size,
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the probability that a random choice of M yields m primes is approximately
(2/ ln(B))m where B is a bound on the qi. This probability drops very quickly for
N of cryptographic size and even moderate m. For example, with B of 128 bits
and m = 8 (so that the target N has 1024 bits), we obtain (2/ ln(B))m ≈ 2−43.77.
Clearly then, simply making random choices of M is unlikely to yield candidates
of cryptographically interesting sizes in a reasonable amount of time. We therefore
turn to investigating methods for improving the probability that the qi are all
prime by careful choice of M .

3.4 The Selection of M in the Method of Granville and Pomerance

The only requirement on M coming from Theorem 6 is that M ≡ 1 (mod L),
where L = lcm(pi − 1). However, by a careful choice of M we can both ensure
that this is true, and that the resulting values qi = 1 +M(pi − 1) are more likely
to be prime than if M was chosen at random.

Our approach is inspired by techniques originally introduced in [JPV00,JP06]
for generating primes on low-end processors. There, one considers numbers of
the form p = kH + δ where H is smooth (say, H is the product of the first h

primes, H =
∏h

i=1 si), δ is chosen to be co-prime to H, and k is a free parameter.
Then p is guaranteed to be divisible by each of s1, . . . , sh, since p = δ 6= 0 mod si.
By choosing different values of k, one can generate different candidates for p,
and test them for primality. Numbers p generated in this way have a higher
probability of being prime than uniformly random candidates, since they are
effectively guaranteed to pass trial divisions by each of the small primes dividing
H. We refer to this process as ‘sieving’ by the primes s1, s2, . . . , sh. An analysis
using the inclusion-exclusion principle can be used to evaluate the increase in
probability that can be achieved by this means; a factor of 5 increase is typical
even for moderate values of h, since many small divisors can be eliminated.

We present an adaptation of this method to generate candidates for M in the
method of Granville and Pomerance, such that the resulting qi are guaranteed to
be indivisible by many small primes.

Since M = 1 (mod L), we can write M = kL+ 1, where k now becomes the
free parameter in the construction method. Then

qi − 1 = M(pi − 1) = (kL+ 1)(pi − 1) = kLpi + pi − kL− 1.

Rearranging, we get:

qi = kLpi + pi − kL = kL(pi − 1) + pi.

Note that, typically, many small primes will divide L because L is the least
common multiple of the pi − 1. This is especially so if we use the Erdös method
to generate the starting Carmichael number n, since it starts with a smooth
number which all the pi − 1 will divide.

Now none of the primes dividing L can be a pi (again, because L is the least
common multiple of the pi − 1). For each such prime p, we have:

qi = pi 6= 0 mod p.
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Hence, we are assured that qi is not divisible by any of the prime divisors of
L: we achieve ‘free’ sieving on qi for every such divisor.

Now we consider other primes (not equal to any of the pi, and not dividing
L). Let s denote such a prime, and suppose we choose k such that s divides k.
Recalling that M = kL+ 1, then we get:

qi = kL(pi − 1) + pi = pi 6= 0 mod s.

Hence, by choosing k so that it is divisible by a product of primes sj that do
not equal any of the pi nor any of the divisors of L, we also obtain sieving on all
the sj . Of course, we can include an additional factor when building k to ensure
that the resulting qi are of any desired bit-size and that there are sufficiently
many choices for k (and thence M). In what follows, we write k = k′

∏
j sj for

some collection of primes sj subject to the above constraints; k′ now replaces k
as the free parameter in the construction.

The overall sieving effectiveness will be determined by the collection of prime
factors present in L and the sj . Let us denote the complete set of primes from
these two sources as {s1, . . . , sh}. Then the fraction of non-prime candidates for
each qi that are removed by the sieving can be calculated using the formula:

σ = 1−
h∏

i=1

(
1− 1

si

)
. (5)

This means that the prime values of qi are now concentrated in a fraction
1−σ of the initial set of candidates, so that a random selection from this reduced
set is 1/(1− σ) times more likely to result in a prime. Notice that the effect here
is multiplicative across all m of the qi – they all benefit from the sieving on the
si. Note too how powerful the prime s = 3 is in sieving, contributing a factor 2/3
to the product term determining σ.

The overall effect is to improve the success probability for each trial of
the modified Granville-Pomerance construction (involving a choice of k′) from
(2/ ln(B))m to (2/(1− σ) ln(B))m.

Example 4. Using a C implementation of the modified Granville-Pomerance
construction, with the Carmichael number C8 of Example 3 as the starting value
n and L = 53603550, we found that choosing

k = 7891867750444302551322686487
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produces the 8-factor, 1024-bit Carmichael number N = q1 · · · q8 where:

q1 = 7614578295977916492449157442324119319

q2 = 9306706806195231268548970207285034723

q3 = 17767349357281805149048034032089611743

q4 = 100681646357930229177938859515174466539

q5 = 362961565441614019473409838084116354159

q6 = 3926584207959278937939615521091804194983

q7 = 4850486374537932805690113290760464005567

q8 = 102606442538302424735752396535317507810051.

Here, q8, the largest prime factor, has 137 bits.
As pointed out in Section 3.3, with B of 128 bits and m = 8 (so that

the target N has 1024 bits), we estimate the standard Granville-Pomerance
construction to have a success rate of (2/ ln(B))m ≈ 2−43.8 per trial, so that the
expected number of trials would be about 243.8. With our modified version of
the Granville-Pomerance construction we obtain sieving on each of the qi by
the primes 3, 5, 7, 11, 13, 17 that divide L (in this case, we did not add any more
primes to k to improve the sieving further). This gives us σ = 0.6393 and therefore
reduces the expected number of trials by a factor of about 1/(1− σ)m ≈ 211.8 to
roughly 232 trials. Finding the above N using our ‘C’ implementation actually
took 231.51 trials and less than one core-hour running on 3.3GHz CPUs.

The above example illustrates that we can generate numbers that are of
cryptographically interesting size, have a controlled number of prime factors
(and therefore achieve a given smoothness bound), achieve the upper bound of
Theorem 4 on the number of Miller-Rabin non-witnesses, and hence maximise
the probability of passing random-base Miller-Rabin primality tests.

4 Fooling Diffie-Hellman Parameter Validation in the
Safe-Prime Setting

In this section, we target the problem of producing Diffie-Hellman parameters
for the prime order setting, where the parameters are able to pass validity tests
on the parameters but where the relevant Discrete Logarithm Problem (DLP) is
relatively easy.

A Diffie-Hellman (DH) parameter set (p, q, g) in the prime order setting is
formed of a prime p with g ∈ Zp generating a group of prime order q, where
q | p − 1. As explained in the introduction, validating the correctness of DH
parameters is vital in ensuring the subsequent security of the DH key exchange.
As also explained there, Bleichenbacher [Ble05] provided an extreme example
of this in the context of Password Authenticated Key Exchange (PAKE): he
showed that a client that accepts bad DH parameters in the SRP protocol can
be subject to an offline dictionary attack on its password. Here, the attacker
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impersonates the server in a run of the SRP protocol, and induces the client to
send a password-dependent protocol message; the attacker’s ability to solve the
DLP is what enables the offline password recovery.

DH validation checks should consist of primality tests on both p and q as
well as a verification that p = kq + 1 for some integer k. The checks should
also ensure that the given generator g generates the subgroup of order q. The
security is based in part on size of q: it must still be large enough to thwart the
Pohlig-Hellman algorithm for solving the DLP. For prime q, this algorithm runs
in time O(

√
q).

Albrecht et al. [AMPS18] already showed how to subvert DH parameters
in the case where k is permitted to be large and where a weak primality test
based on Miller-Rabin with a small number of rounds is permitted. For example,
they selected q to be of the form (2x+ 1)(4x+ 1) with both factors prime, and
then tried k of a suitable size until kq + 1 was prime. This gives an O(q1/4)
algorithm using the Pohlig-Hellman algorithm in the subgroups of orders 2x+ 1
and 4x+ 1, with q passing t rounds of random-base Miller-Rabin testing with
the best possible probability 4−t (this coming from the Monier-Rabin bound).

However, many implementations insist on using DH parameters in which
p is a safe prime; that is, they require p = 2q + 1, in which case g must have
order q or 2q if it is not equal to ±1. OpenSSL in its default setting is a good
example of such a library. Insisting on safe primes to a large extent eliminates
small subgroup attacks. It is also a good option in the context of protocols like
SSL/TLS in which a server following the specification only provides p and g but
not q.4 As noted in the introduction, the techniques of [AMPS18] do not extend
to the safe-prime setting, since they need the flexibility in k to force p = kq + 1
to be prime. The resulting q would also be too large and have too few prime
factors to make the Pohlig-Hellman algorithm effective.

This leaves open the problem of fooling DH parameter validation when
random-base Miller-Rabin tests are used for checking p and q (as should be the
case in practice, in light of the work of [Arn95] and [Ble05]).

4.1 Generating Carmichael Numbers q such that p = 2q + 1 is
Prime

To summarise the above discussion, we wish to construct a number q such that q
and p = 2q + 1 both pass random-base Miller-Rabin primality testing, and such
that q is sufficiently smooth that the Pohlig-Hellman algorithm can be used to
solve the DLP in some subgroup mod p.

Our approach parallels that of [Ble05]: we construct q as a large Carmichael
number with m prime factors that are all 3 mod 4 using the techniques from the
previous section. Then q will pass random-base Miller-Rabin primality tests with

4 For if p is not a safe prime, then the client is forced to blindly accept the parameters
or to do an expensive computation to factorise p − 1 and then test g for different
possible orders arising as factors of p− 1. We know of no cryptographic library that
does the latter.
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the highest possible probability amongst all integers with m prime factors. After
constructing a candidate q, we test 2q + 1 for primality (using a robust primality
test), rejecting q if this test fails, and stopping if it passes. If 2q + 1 is prime,
then the DLP in the subgroup of order q can be solved with O(mB1/2) effort
where B is an upper bound on the prime factors of q.

The approach just described will fail in practice. The first reason is that it is
unlikely that 2q + 1 will happen to be prime by chance (the probability is about
1/ ln q by standard density estimates for primes). The second reason is that there
may be arithmetic reasons why 2q + 1 can never be prime. We investigate and
resolve these issues next.

Sieving for 2q + 1: We begin by examining the method of Granville and
Pomerance and its consequences for the values of 2q + 1 modulo small primes.

Assume we have some starting Carmichael number n = p1 · · · pm, and we
apply the method of Granville and Pomerance, setting qi = M(pi − 1) + 1 where
M = 1 + kL and L = lcm(pi − 1). We assume k is such that the qi are all prime,
and we write q = q1 · · · qm for the resulting Carmichael number.

Lemma 2. With notation as above, for all primes s dividing kL, we have that
2q + 1 = 2n+ 1 (mod s).

Proof. Since qi = M(pi − 1) + 1 = (1 + kL)(pi − 1) + 1, it follows that for any
prime s with s | kL we have qi = pi (mod s), therefore 2q + 1 ≡ 2n+ 1 (mod s).

The importance of the above lemma is that we can determine at the outset,
based only on the small starting Carmichael number n, whether 2q + 1 will be
divisible by each of the primes s or not. In particular, we should just ignore any
n for which 2n + 1 ≡ 0 (mod s) for any of the primes s dividing L or k, since
then 2q + 1 can never be prime. Typically, there are many such primes s, since
L is usually rather smooth, arising as the least common multiple of the pi − 1.
This is particularly so when the Erdös method is used to construct n.

The Prime 3: The prime 3 plays a particularly important role when applying
our sieving trick in the method of Granville and Pomerance: it contributes a

factor 2/3 to the product term
∏h

i=1

(
1− 1

si

)
when computing σ. It is therefore

desirable to keep 3 as a factor of kL in the construction. On the other hand, the
above lemma then imposes the necessary condition 2n+ 1 6= 0 mod 3 for 2q + 1
to be prime; this in turn requires n = 0 mod 3 or n = 2 mod 3.

We consider the two cases n = 0 mod 3 and n = 2 mod 3.

The case n = 0 mod 3: In this case, we have 3 | n, and so we can set p1 = 3. Recall
that, in our approach, n = p1 · · · pm will be obtained using the Erdös method,
in which case p1 = 3 is contained in the set P(L∗) (henceforth L∗ denotes the
smooth number used in the Erdös method; we use L∗ to distinguish it from
L = lcm(pi−1) in the method of Granville and Pomerance – they are often equal
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but need not be so). From the conditions on P(L∗), we deduce that 3 - L∗. Since
each prime in P(L∗) is constructed by adding 1 to a factor of L∗, we deduce that
p = 2 mod 3 for every p ∈ P(L∗) \ {3}. Since we will also have p = 3 mod 4 by
choice of L∗, we deduce that p = 11 mod 12 for every p ∈ P(L∗) \ {3}.

Hence, in the case where 3 appears as a factor in the starting Carmichael
number n, and n is obtained via the Erdös method, then the remaining primes
arising as factors of n must all be 11 mod 12. This happens automatically in the
Erdös method simply by ensuring 3 - L∗.

The case n = 2 mod 3: In this case, we can show that pi = 2 mod 3 for all primes
pi arising as factors of n. For suppose that pi = 1 mod 3 for some i. This implies
3 | pi−1. By Korselt’s criterion, we deduce that 3 | n−1, and hence n = 1 mod 3.
This contradicts our starting assumption on n.

Moreover, it is easy to see that we must take m, the number of prime factors
of n, to be odd in this case. For n =

∏m
i=1 pi = 2m mod 3, and so n = 2 mod 3 if

and only if m is odd.

Hence, in the case where n = 2 mod 3, we are forced to use a starting
Carmichael number with m odd in which pi = 2 mod 3 for each prime factor pi
(whether or not we use the Erdös method). This may sound overly restrictive.
But, fortunately, we have already seen how to arrange this for the Erdös method:
we simply need to ensure that 3 - L∗, where L∗ denotes the smooth number used
in that construction, and then all but one of the primes p ∈ P(L∗) will satisfy
this requirement. We then remove p = 3 from P(L∗) when running the last step
in the Erdös method.

Other Primes: Of course, Lemma 2 imposes a single condition on n for every
other prime s dividing kL, but these conditions are much less restrictive than
that in the case s = 3, and so we do not investigate the implications for the pi
any further here.

Completing the Construction: We have now assembled all the tools necessary
to produce a suitable Carmichael number n such that when the method of
Granville and Pomerance is applied to produce q from n, then 2q + 1 6= 0 mod 3;
moreover q will attain the bound of Theorem 4 on S(q), the number of Miller-
Rabin non-witnesses for q, namely S(q) = ϕ(q)/2m−1. Our procedure is as
follows:

1. We use the first step of the Erdös method with an L∗ such that 2 | L∗, 4 - L∗,
3 - L∗. This ensures that the resulting set P(L∗) contains the prime 3, and a
collection of other primes that are all 11 mod 12.5

5 Of course, one could choose not to restrict L∗ in this way and just filter the resulting
set P(L∗) for primes that are 11 mod 12, but this involves wasted computation and
the use of larger L∗ than is necessary.
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2. We remove 3 from P(L∗) and run the second step of the Erdös method with
an odd m to find a subset of primes p1, . . . , pm such that n := p1 · · · pm = 1
(mod L); n is then a Carmichael number with m prime factors that are all
11 mod 12 and therefore both 3 mod 4 and 2 mod 3.

3. We set L = lcm(pi − 1) and test the condition 2n + 1 6= 0 mod s for each
prime factor s of L (cf. Lemma 2). If any test fails, we go back to the previous
step and generate another n.

4. Integer n is then used in the method of Granville and Pomerance to produce
candidates for q (in which the qi are all prime). By construction of the pi, we
will have 3 - L in the Granville-Pomerance method, but we desire 3 | kL in
view of the power of sieving by 3 in that method. We therefore set k = 3k′

for k′ of suitable size when running this step, introducing the prime 3 in k.

5. Finally, we test 2q + 1 for primality. By choice of n, we are guaranteed that
2q + 1 6= 0 mod 3 and 2q + 1 6= 0 mod s for each prime divisor s of L, so we
are assured that 2q + 1 will not be divisible by certain (small) primes.

Note that the procedure as described focusses on the case n = 2 mod 3. An
alternative procedure could be developed for the case n = 0 mod 3. The procedure
can be enhanced by setting k at step 4 to contain additional prime factors s
beyond 3 not already found in L, to increase the effect of sieving. Of course, in
view of Lemma 2, certain bad choices of s should be avoided at this stage.

4.2 Examples of Cryptographic Size

Using the method described above, we now give two examples of Carmichael
numbers q such that p = 2q + 1 is a 1024-bit prime. In the first example q is
the product of 9 prime factors, which by construction will pass a random-base
Miller-Rabin primality test with probability approximately 1/28. Since the largest
factor of q is 121 bits in size, the DLP in the subgroup of order q mod p for this
parameter set can be solved in approximately 9 · 260.5 ≈ 264 operations. In the
second example, q is the product of 11 prime factors, which by construction will
pass a random-base Miller-Rabin primality test with probability approximately
1/210. However, because the q with 11 factors is smoother, with largest factor
100 bits in size, the DLP in the subgroup of order q mod p for this parameter
set can be solved in approximately 11 · 250 ≈ 254 operations. We give both these
examples to illustrate the trade off between the probability of a parameter set
being accepted and the work required to solve the DLP for that parameter set.

Example 5. Using SAGE [S+18] we examined all L∗ < 230 such that 2 | L∗,
4 - L∗, 3 - L∗. We found the largest set of primes P(L∗) was produced when
L = 565815250 = 2 · 53 · 72 · 11 · 13 · 17 · 19. Here, |P(L∗)| = 53 (including the
prime 3).

Then, using the Erdös method with L∗ = 565815250 we generated the 9-factor
Carmichael number
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n = 1712969394960887942534921587572251

= 71 · 131 · 647 · 1871 · 4523 · 4751 · 46751 · 350351 · 432251.

Using the procedure described above, we found k = 3k′ with

k′ = 1844674409176776955124

produced a 9-factor, 1023-bit Carmichael number q such that n = 2q + 1 is a
1024-bit prime.

To generate a target q with 1023 bits, with m = 9 factors each around 114
bits in size, we estimate the standard Granville-Pomerance construction to have
a success rate of (2/ ln(B))m ≈ 2−47.73 per trial, so that the expected number of
trials would be about 247.7. With our modified version of the Granville-Pomerance
construction we obtain sieving on each of the qi by the primes 5, 7, 11, 13, 17, 19
that divide L and the prime 3 since it divides k. This gives us σ = 0.658 and
therefore reduces the expected number of trials by about 1/(1 − σ)m ≈ 213.9

to roughly 233.8 trials. We then need to consider the probability that the q
produced is such that p = 2q + 1 is also prime. By Lemma 2 we know that
we obtain sieving on 2q + 1 from all primes s | kL, hence a success rate of
(2/(1 − σ) ln(21024)) ≈ 2−6.9. Therefore we expect to require 233.8+6.9 = 240.7

total trials. Finding the above q such that p = 2q+ 1 is prime actually took 238.15

trials, so we were somewhat lucky. Our implementation is in ‘C’ and ran for 136
core-days on 3.2GHz CPUs.

The factors of this q are:

q1 = 219186431519361672882122216610071

q2 = 407060515678814535352512687990131

q3 = 2022777639450109152597870741858647

q4 = 5855408956302947546993836358011871

q5 = 14159443476150764068185095193010523

q6 = 14873364995956684945572578984254751

q7 = 146385223907573688674845908950296751

q8 = 1097028089754405172775021694133400351

q9 = 1353476214632058330047104687567182251.

Since 2q ≡ 1 (mod p) we can set a generator g = 2 to obtain a complete set of
DH parameters (p, q, g). By construction q will pass a random-base Miller-Rabin
primality test with probability approximately 1/28. Since q9, the largest factor of
q, is 121 bits in size, the DLP in the subgroup of order q mod p for this parameter
set can be solved in approximately 9 · 260.5 ≈ 264 operations. The C code used to
generate this example can be found in Appendix B.
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Example 6. Again, using the Erdös method with L∗ = 565815250 we generated
the 11-factor Carmichael number

n = 96647594591145401276131753609264751

= 23 · 71 · 191 · 419 · 491 · 3851 · 4523 · 4751 · 9311 · 17291 · 113051.

Using the procedure described above, we found k = 3k′ with

k′ = 3994916512074331

produced a 11-factor, 1023-bit Carmichael number q such that p = 2q + 1 is a
1024-bit prime.

To generate a target q with 1023 bits, with m = 11 factors each around
93 bits in size, we estimate the standard Granville-Pomerance construction to
have a success rate of (2/ ln(B))m ≈ 2−55.11 per trial, so that the expected
number of trials would be about 255.1. Again, using our modified version of the
Granville-Pomerance construction we sieve as in the previous example to reduce
the expected number of trials by about 1/(1 − 0.658)m ≈ 217 to roughly 238.1

trials. Then again by considering the probability that the q produced is such that
2q + 1 is also prime we expect to require 238.1+6.9 = 245 total trials. Finding the
above q such that 2q + 1 was prime took 244.83 trials. The computation using
our ‘C’ implementation ran for 1680 core-days on 3.3GHz CPUs.

The factors of this q are:

q1 = 149185389210558730480951523

q2 = 474680783851777778803027571

q3 = 1288419270454825399608217691

q4 = 2834522395000615879138078919

q5 = 3322765486962444451621192991

q6 = 26107443111847777834166516351

q7 = 30664378636824844510675581023

q8 = 32210481761370634990205442251

q9 = 63132544252286444580802666811

q10 = 117246153611389111364347809791

q11 = 766609465920621112766889525551.

Since 2q ≡ 1 (mod p) we can set a generator g = 2 to obtain a complete set of
DH parameters (p, q, g). By construction q will pass a random-base Miller-Rabin
primality test with probability approximately 1/210. Since q11, the largest factor
of q, is 100 bits in size, the DLP in the subgroup of order q mod p for this
parameter set can be solved in approximately 11 · 250 ≈ 254 operations.

4.3 Application to OpenSSL and PAKE protocols

OpenSSL provides the DH parameter verification function DH check in dh check-

.c. This function takes a DH parameter set (p, q, g) and performs primality
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testing on both p and q. A safe-prime setting is enforced by default, and if q
is not provided then it is calculated from p via q = (p − 1)/2. For this reason,
Albrecht et al. [AMPS18] were not able to create malicious DH parameter sets
passing OpenSSL’s testing.

The primality test that OpenSSL uses is BN is prime ex; this performs t
rounds of random-base Miller-Rabin testing, where t is determined by the bit-size
of p and q. Since p and q are 1024 and 1023 bits respectively, t = 3 rounds of
Miller-Rabin are performed, at least in versions prior to OpenSSL 1.1.0i (released
14th August 2018). From version 1.1.0i onwards, t was increased to 5, with the
aim of achieving 128 bits of security instead of 80 bits.6 This change was made
independently of our work and does not appear to have been influenced by the
results of [AMPS18]: the numbers 3 and 5 were selected based on estimates
for the average case performance of Miller-Rabin primality testing, with the
OpenSSL developers implicitly assuming that p and q are generated randomly
rather than maliciously.

For the DH parameter set given in Example 5, we know that q has ϕ(q)/28

Miller-Rabin non-witnesses, and thus a probability of approximately 1/28 of
being declared prime by a single round of Miller-Rabin testing. Hence this DH
parameter set will be accepted by DH check as being valid with probability
approximately 2−24 (and the lower probability of 2−40 since version 1.1.0i of
OpenSSL).

This may seem like a small probability, and indeed it is in a scenario where,
say, malicious DH parameters are hard-coded into a server by a developer with
the hope of later compromising honestly established TLS sessions between a
client and a server: only 1 in 224 sessions would be successfully established, and
the malicious DH parameters would be quickly spotted if ever careful validation
were to be carried out.

Consider instead a PAKE scenario like that envisaged by Bleichenbacher [Ble05].
Here, a client and server use some hypothetical PAKE protocol which relies on
DH parameters as part of the protocol, with the server supplying the DH pa-
rameters. Assume OpenSSL’s DH parameter validation is used by the client.
Then an attacker impersonating the server to the client has a 1 in 224 chance of
fooling the client into using a weak set of DH parameters. For specific PAKE
protocols, this may allow the client’s password to be recovered thereafter. For
example, this is the case for SRP [Wu00,TWMP07], as seen in [Ble05]. It is
also true of J-PAKE [Hao17]: in this protocol, the client in a first flow sends
values g1 = gx1 , g2 = gx2 , while the server sends g3 = gx3 , g4 = gx4 (along with
proofs of knowledge of the exponents). In the second flow in J-PAKE, the client
sends (g1g3g4)x2s where s is the password or a derivative of it. At this point, the
attacker aborts the protocol, and uses its ability to solve the DLP to recover x2
from the first flow and then again to recover x2s and thence s from the second
flow.

6 Interestingly, the last time these iteration counts were changed was in February 2000
(OpenSSL version 0.9.5), before which they were all 2, independent of the bit-size of
the number being tested.
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We pick SRP and J-PAKE here only as illustrative examples; many other
protocols would be similarly affected. We also note that the specification for using
SRP in TLS [TWMP07] makes careful mention of the need to use trusted DH
parameters, and gives examples of suitable parameter sets. However, [TWMP07]
states that clients SHOULD only accept group parameters that come from a
trusted source, leaving open the possibility for implementations to use parameters
from untrusted sources (to remove that possibility the IETF reserved term
“MUST” should have been used). Meanwhile J-PAKE [Hao17] just assumes that
the DH parameters are agreed in advance and suggests some methods and sources
for obtaining parameters. This does not remove the possibility of the parties using
bad parameters and side-steps the important problem of parameter verification.

The power of the attack in the PAKE scenario is that the client has a secret
that an attacker would like to learn; the attacker then gains an advantage by
impersonating the server in a standard attack scenario. This is different from a
protocol like TLS where there is no such static secret and the server is usually
authenticated and therefore hard to impersonate; there we require a “malicious
developer” attack scenario.

The attack can be carried out repeatedly to boost its success probability, and
it can be done across a large population of users in a stealthy manner. Thus
even a small per-attempt success probability of 2−24 may represent a significant
weakness in practice.

As remediation, we recommend that OpenSSL and other cryptographic li-
braries modify their DH parameter testing code to carry out stronger primality
tests – as our analysis shows, 3 rounds of random-base Miller-Rabin testing
is insufficient; 5 rounds is better in that it reduces the success probability of
our attack to 2−40, but this is still far from the 128-bit security level that the
OpenSSL developers have targeted.

5 The Elliptic Curve Setting

An elliptic curve over a prime field Fp in short Weierstrass form is the set of
solutions (x, y) ∈ Fp × Fp satisfying an equation of the type y2 = x3 + ax + b,
where a, b ∈ Fp satisfy 4a3+27b2 6= 0, together with the point at infinity O. When
using a scheme such as Elliptic Curve Diffie-Hellman (ECDH), one typically
transmits a description of the used curve via a set of domain parameters as
part of the protocol, uses hard-coded parameters, or uses a standardised ‘named’
curve. An ECDH parameter set is typically composed of (p,E, P, q, h), where E
is a description of the elliptic curve equation (typically represented by a and b),
P is a base point that generates a subgroup of order q on the curve and h is the
cofactor of this subgroup.

Analogously to our attacks on the parameter sets on finite field DH, we
can create malicious ECDH parameter sets. The idea is to first construct a
composite number q that is designed to be declared ‘probably prime’ by a target
implementation of a probabilistic primality test but which is actually reasonably
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smooth, then retroactively construct a curve of suitable order n = h · q. This can
be done using the algorithm of Bröker and Stevenhagen [BS05].

Depending on the specific structure of n, a composite order will expose ECDH
to attacks like Lim-Lee style small subgroup attacks as in [LL97], or may aid in
solving the Elliptic Curve Discrete Logarithm Problem (ECDLP) in the order q
subgroup. For this we would use the Pohlig-Hellman algorithm to solve ECDLP
in time O(B1/2) where B is an upper bound on the largest prime factor of q. For
example, we could produce a 256-bit q with 4 prime factors, and hope to use the
algorithm of Bröker and Stevenhagen to find a suitable curve over a 256-bit prime
p of order n = h · q possibly even with h = 1. During parameter validation, q
would pass a single round of the Miller-Rabin test with probability 1/8. And the
ECDLP could be solved with effort approximately 4 · 232 = 234 group operations.

5.1 The algorithm of Bröker and Stevenhagen

For completeness, we give a short exposition of the algorithm of Bröker and
Stevenhagen [BS05].

An elliptic curve E over Fp has #E(Fp) = p+ 1− t points where |t| < 2
√
p.

The endomorphism ring of E contains Z[
√
t2 − 4p], which is a subring of the

imaginary quadratic field K = Q(
√
t2 − 4p). Conversely, if E is an elliptic curve

over a number field whose endomorphism ring is the ring of integers of K, then
(by the Complex Multiplication theory of elliptic curves) the reduction modulo p
of E is an elliptic curve over Fp and, by taking a suitable isomorphism (a twist),
we may ensure that the reduced curve has p+ 1− t points.

The algorithm of Bröker and Stevenhagen exploits these ideas. Given an
integer n, the first step is to construct a prime p and an integer t such that
p+ 1− t = n and such that Q(

√
t2 − 4p) has small discriminant D. Once this is

done, the curve E is constructed using standard tools in Complex Multiplication
(namely the Hilbert class polynomial).

We now briefly sketch the first step of the algorithm. The input is an integer
n, and we wish to construct an elliptic curve with n points.

Let D < 0 be a discriminant of an imaginary quadratic field. We will try to
find (p, t) such that t2 − 4p = f2D for some f ∈ N. We also need p+ 1− t = n
and so p = n+ t− 1. If t2 − 4p = f2D then

(t− 2)2 − f2D = t2 − f2D − 4t+ 4 = 4(p− t+ 1) = 4n.

Hence, to construct a curve with n points it suffices to choose a discriminant D,
solve the equation w2−f2D = 4n, and then check whether n+(w+2)−1 = n+w+1
is prime. Note that if ` | n then w2 − f2D ≡ 0 (mod `) and so (D

` ) 6= −1.
An important ingredient is Cornacchia’s algorithm, which solves the equation

w2 − f2D = 4n (note that D < 0, so the left hand side is positive definite and
the equation only has finitely many solutions). Cornacchia’s algorithm starts by
taking as input an integer x0 such that x20 ≡ D (mod 4n).

Putting everything together, the algorithm is as follows (we refer to [BS05]
for the full details). Let n = `1 · · · `k be the target group order. Search over all
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D < 0 such that D ≡ 0, 1 (mod 4), up to some bound |D| < Dbound. Ensure
that (D`i ) ≥ 0 for all `i | n. Determine all solutions x0 ∈ Z/4nZ such that x20 ≡ D
(mod 4n) and run Cornacchia’s algorithm for each. Whenever we find an integer
solution w2 − f2D = 4n check whether p = n + w + 1 is prime. If so, output
(p, t).

Note that the algorithm is not guaranteed to succeed for a given integer n,
because we are restricting to |D| < Dbound. In our application this is not a serious
problem, because we are able to generate many viable choices for n.

In practice one usually desires elliptic curves of order q (supposed to be prime)
or whose group order is 4q (Edwards and Montgomery curves have group order
divisible by 4). We make one remark about the case when n = 4q is even. If D is
odd then any solution (w, f) to w2 − f2D = 4n has w odd, and so t is odd. If n
is odd then this means p = n+ w + 1 is odd, which is all good, whereas if n is
even then p cannot be prime when D is odd, so when n is odd we must use odd
discriminants D. On the other hand, when n is even then we can take D even
(so that w and t will be even and so p = n+ w + 1 will be odd).

5.2 Examples

We implemented the algorithm of Bröker and Stevenhagen [BS05] in SAGE, and
ran it with q that are 256-bit Carmichael numbers with 3 and 4 prime factors,
all congruent to 3 mod 4. These were generated using methods described in
Section 3. By design, these values of q pass random-base Miller-Rabin primality
testing with probability 1/4 and 1/8 per iteration, respectively. We used an early
abort strategy for each q and estimate a success probability of roughly 1/4 for
each q we tried. When successful, the computations took less than a minute on a
laptop. The SAGE code for the first stage (finding p, t) of the 3-prime case can
be found in the Appendix C.

Example 7. Set q = q1q2q3 where:

q1 = 12096932041680954958693771

q2 = 36290796125042864876081311

q3 = 133066252458490504545631471

Then q is a Carmichael number with 3 prime factors that are all congruent to
3 mod 4, so q passes random-base Miller-Rabin primality testing with probability
1/4 per iteration. Using the algorithm of Bröker and Stevenhagen, we obtain the
elliptic curve E(Fp) defined by y2 = x3 + 5, where

p = 58417055476151343628013443570006259007184622249466895656635947464036346655953

such that #E(Fp) = q and p has 256 bits. Every point P on this curve satisfies
[q]P = O, the point at infinity, so any point can be used as a generator (of course
such points may not have order q, but if q is accepted as being prime then this
will not matter). The Pohlig-Hellman algorithm can be used to solve the ECDLP
on this curve using about 3 · 242.5 group operations, since the largest prime factor
of q has 85 bits.
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Example 8. Set q = q1q2q3q4 where:

q1 = 2758736250382478263

q2 = 8276208751147434787

q3 = 30346098754207260883

q4 = 91038296262621782647

Then q is a Carmichael number with 4 prime factors that are all congruent to
3 mod 4, so q passes random-base Miller-Rabin primality testing with probability
1/8 per iteration. Using the algorithm of Bröker and Stevenhagen, we obtain the
elliptic curve E(Fp) defined by y2 = x3 + 2, where

p = 63076648027364534028465951740325404957612973168788427535105160157981242952139

such that q = #E(Fp) and p has 256 bits. Every point P on this curve satisfies
[q]P = O, the point at infinity, so any point can be used as a generator. The
Pohlig-Hellman algorithm can be used to solve the ECDLP on this curve using
about 4 · 233.5 group operations, since the largest prime factor of q has 67 bits.

The two examples above both construct examples of order q. We were also
able to construct examples of order 4q, compatible with applications that use
Montgomery or Edwards curves, see for example [BL07,BCLN16].

We have not attempted to do it, but we see no reason why similar examples
could not be constructed where q passes fixed-base Miller-Rabin primality tests
with probability 1, as per [Ble05].

These examples illustrate the necessity for careful parameter validation,
in particular robust primality testing of q, when accepting bespoke curves in
cryptographic applications.

6 Conclusion and Recommendations

The best countermeasure to malicious DH and ECDH parameter sets is for
protocols and systems to use only widely vetted sets of parameters, and to
eliminate any options for using bespoke parameters. This is already widely done
in the elliptic curve setting, not necessarily because parameter validation is hard,
but because suitable parameter generation is non-trivial in the first place, and
because safe and efficient implementation is much easier with a limited and well-
understood set of curves. Nevertheless, issues can still arise with the provenance
of parameter sets. In short, it is difficult to eliminate suspicion that a curve
may have a hidden backdoor unless the generation process is fully explained
and has demonstrably little opportunity for manipulation; see [BCC+15] for an
extensive treatment. Similar concerns apply in the finite field setting, in the light
of [Gor93,FGHT17].

On the flip-side is the argument that, in the finite field setting, using a
common set of DH parameters may be inadvisable because, with the best known
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algorithms for finding discrete logarithms, the cost of solving many logarithms
can be amortised over the cost of a large pre-computation, making commonly
used DH parameter an even more attractive target. This was a crucial factor in
assessing the impact of the Logjam attack on 512-bit DH arising in export cipher
suites in TLS [ABD+15].

Our work adds to the weight of argument in favour of using only limited sets
of carefully vetted DH parameters even in the finite field setting. This approach
was recently adopted in TLS 1.3, for example, which in contrast to earlier versions
of the protocol only supports a small set of DH and ECDH parameter sets, with
the allowed DH parameters being specified in [Gil16].

If bespoke parameters must be used, then implementations should employ
robust primality testing as part of parameter validation, using, for example, at
least 64 rounds of Miller-Rabin tests, or the Baillie-PSW primality test for which
there are no known pseudoprimes, cf. [AMPS18].
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A SAGE code of the Erdös Method for Generating
Carmichael Numbers

We present below our SAGE code implementation of the Erdös Method for
generating Carmichael numbers. This particular code was used to generate the
Carmichael numbers with 8 and 16 factors in Example 3.

import itertools

from operator import mul

from sage.arith.functions import LCM_list

def all_combinations(any_list ):

"""

Wrapper for itertools to generate all possible combinations of all

(non trivial) sizes.

"""

return itertools.chain.from_iterable(

itertools.combinations(any_list , i + 1)

for i in xrange(len(any_list )))

def LCMpim1(n):

"""

Takes as input n: a list of integers p_i and returns the lcm(p_i -1) for all i

"""

pim1list = []

for pi in n:

pim1 = pi - 1

pim1list.append(pim1)

return LCM_list(pim1list)

def listbuild(L):

"""

Takes as input a (highly composite) number L and returns a list of all primes

p such that p-1 | L where p does not divide L. We include the additional

requirement that p = 3 mod 4.

"""

a = list(factor(L))

p = []

for y in a:

for i in range(0, y[1]):

p.append(y[0])

pvals = all_combinations(p)

ps = []

for pp in pvals:

t = reduce(mul , pp , 1)
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tt = t + 1

if tt.is_prime(proof=False) and L % tt != 0:

if tt not in ps:

ps.append(tt)

pps = []

ps.sort()

# we now filter results to only inlude p with p = 3 mod 4

for p in ps:

if p % 4 == 3:

pps.append(p)

return pps

def erdos_build(factors , L, k):

"""

This function takes a list of possible factors , a (highly composite) integer L

and k, and produces a Carmichael number with k factors sampled from "factors"

such that the LCM of each factor p_i - 1 is equal to L. Output is parsed as

n,[p_1 ,p_2 ,...,p_k] where n = p_1 * p_2 * ... * p_k.

"""

if k <=2:

print "Choice of factors must be >=3"

return 0

for i in itertools.combinations(factors , k):

v = reduce(mul , i, 1)

if v % L == 1:

fin = list(i)

fin.sort()

if LCMpim1(fin) == L:

return [v,fin]

print "None found , try increasing size of factor list"

L = 53603550

factors = listbuild(L)

print factors , L, len(factors)

print erdos_build(factors , L, 8)

print erdos_build(factors , L, 16)

B C Code of the Modified Granville and Pomerance
Method for Generating Carmichael Numbers q such
that p = 2q + 1 is Prime

We present below our C code used to generate a Carmichael number q with 9
prime factors such that p = 2q + 1 is a 1024 bit prime as in Example 5.

#define _XOPEN_SOURCE 500

#include <stdint.h>

#include <stdio.h> /* printf () */

#include <stdlib.h> /* abort() */

#include <unistd.h> /* getopt () */

#include <gmp.h>

/* Command Line Parsing */

#define DEFAULT_COUNT 37

#define DEFAULT_OFFSET 0

struct _cmdline_params_struct {

uint32_t count; // we use this for parallelisation

uint32_t offset; //< how much we want to offset the starting value of k by

};

typedef struct _cmdline_params_struct cmdline_params_t [1];

static inline void print_help_and_exit () {

printf("-c log2 of number of trials (default: %d)\n", DEFAULT_COUNT );

printf("-o offset on starting k value , where offset*c (default: %d)\n", DEFAULT_OFFSET );

abort ();

}

static inline void parse_cmdline(cmdline_params_t params , int argc , char *argv []) {

params ->count = DEFAULT_COUNT;

params ->offset = DEFAULT_OFFSET;

int c;

while ((c = getopt(argc , argv , "c:o:")) != -1) {

switch(c) {

case ’c’:

params ->count = (uint32_t)strtoul(optarg , NULL , 10);

break;
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case ’o’:

params ->offset = (int32_t)strtoul(optarg ,NULL , 10);

break;

case ’:’: /* without operand */

print_help_and_exit ();

case ’?’:

print_help_and_exit ();

}

}

printf("-c %d -o %d\n",

params ->count , params ->offset );

}

/* Logging */

void logit(mpz_t q, mpz_t q1 , mpz_t q2, mpz_t q3, mpz_t q4, mpz_t q5 , mpz_t q6 , mpz_t q7,mpz_t q8 , mpz_t q9) {

char tmp [2000];

snprintf(tmp , 2000, "0x%s:0x%s:0x%s:0x%s:0x%s:0x%s:0x%s:0x%s:0x%s:0x%s",

mpz_get_str(NULL , 16, q), mpz_get_str(NULL , 16, q1), mpz_get_str(NULL , 16, q2),

mpz_get_str(NULL , 16, q3), mpz_get_str(NULL , 16, q4), mpz_get_str(NULL , 16, q5),

mpz_get_str(NULL , 16, q6), mpz_get_str(NULL , 16, q7), mpz_get_str(NULL , 16, q8),

mpz_get_str(NULL , 16, q9));

FILE *fh = fopen("CARM -9.log", "a");

fprintf(fh, "%s\n", tmp);

fclose(fh);

}

/*

* Function: main

* --------------------

* This function uses the modified Granville Pomerance method to generate a

* Carmichael number q of cryptographic size , such that N = 2q+1 is prime.

*

* This function is currently not set up for generality , and does not perform

* sanity checks. We specifically set up an instance of this code to search for

* a single valid example. This is the 9 factored example that is given a starting

* Carmichael number p = p_1 *...* p_9 generated previously by the Erdos method.

*

* The function iterates through kprime (k’) values to construct:

* m = kL + 1, where k = k’ * s

* then q_i = M(p_i -1)+1 for all i

* such that q = q_1 * ... * q_9 is approx 1023 bits.

*

* We then test each q_i for primality , iterating to the next k’ value if composite.

* Finally , if all q_i are prime , we construct q = q_1 * ... * q_9 and test if

* N = 2q+1 is prime. If true , we log q, and its factors.

*

*/

int main(int argc , char *argv [])

{

mpz_t s,p1,p2 ,p3,p4,p5 ,p6,p7,p8 ,p9,q,q1,q2,q3 ,q4,q5,q6 ,q7,q8,q9 ,kprime ,fudge2 ,fudge3 ,fudge4 ,fudge5 ,k,m,off ,L,N;

mpz_init(q);

mpz_init(q1);

mpz_init(q2);

mpz_init(q3);

mpz_init(q4);

mpz_init(q5);

mpz_init(q6);

mpz_init(q7);

mpz_init(q8);

mpz_init(q9);

mpz_init(k);

mpz_init(m);

mpz_init(off);

mpz_init(N);

int res;

cmdline_params_t params;

parse_cmdline(params , argc , argv);

// here we set up our specific starting Carmichael number p and other parameters

mpz_init_set_str(s, "3", 10);

mpz_init_set_str(kprime , "1", 10);

mpz_init_set_str(fudge2 , "1", 10);

mpz_init_set_str(fudge3 , "1", 10);

mpz_init_set_str(fudge4 , "1", 10);

mpz_init_set_str(fudge5 , "1", 10);

mpz_init_set_str(p1, "70", 10);

mpz_init_set_str(p2, "130" , 10);

mpz_init_set_str(p3, "646" , 10);

mpz_init_set_str(p4, "1870" , 10);

mpz_init_set_str(p5, "4522" , 10);

mpz_init_set_str(p6, "4750" , 10);

mpz_init_set_str(p7, "46750" , 10);

mpz_init_set_str(p8, "432250" , 10);

mpz_init_set_str(p9, "350350" , 10);

mpz_init_set_str(L, "565815250" , 10);

uint64_t Lbits = 30;

mpz_init_set_ui(off ,params ->offset );

mpz_mul_2exp(off ,off ,params ->count);
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size_t p1bits = mpz_sizeinbase (p1 , 2);

size_t sbits = mpz_sizeinbase (s, 2);

// we now make some speicific alterations to ensure the final N is 1024 bits

uint64_t t = 9;

uint64_t fudgefactor = 1;

uint64_t power = 113 - (t/2 -1) -p1bits - Lbits - sbits + fudgefactor;

mpz_mul_2exp(kprime ,kprime ,power );

mpz_mul_2exp(fudge2 ,fudge2 ,power -1);

mpz_mul_2exp(fudge3 ,fudge3 ,power -4);

mpz_mul_2exp(fudge4 ,fudge4 ,power -5);

mpz_mul_2exp(fudge5 ,fudge5 ,power -6);

mpz_sub(kprime ,kprime ,fudge2 );

mpz_sub(kprime ,kprime ,fudge3 );

mpz_sub(kprime ,kprime ,fudge4 );

if (params ->offset != 0) {

mpz_add(kprime ,kprime ,off);

}

// The following for loop accounts for the bulk of the time to run

for (uint64_t i = 0; i <= (1ULL)<<params ->count; i++){

mpz_add_ui(kprime ,kprime ,1);

mpz_mul(k,kprime ,s);

mpz_mul(m,k,L);

mpz_add_ui(m,m,1);

//q1

mpz_mul(q1,m,p1);

mpz_add_ui(q1,q1 ,1);

res= mpz_probab_prime_p (q1, 2);

if (!res) {

continue;

}

//q2

mpz_mul(q2,m,p2);

mpz_add_ui(q2,q2 ,1);

res= mpz_probab_prime_p (q2, 2);

if (!res) {

continue;

}

//q3

mpz_mul(q3,m,p3);

mpz_add_ui(q3,q3 ,1);

res= mpz_probab_prime_p (q3, 2);

if (!res) {

continue;

}

//q4

mpz_mul(q4,m,p4);

mpz_add_ui(q4,q4 ,1);

res= mpz_probab_prime_p (q4, 2);

if (!res) {

continue;

}

//q5

mpz_mul(q5,m,p5);

mpz_add_ui(q5,q5 ,1);

res= mpz_probab_prime_p (q5, 2);

if (!res) {

continue;

}

//q6

mpz_mul(q6,m,p6);

mpz_add_ui(q6,q6 ,1);

res= mpz_probab_prime_p (q6, 2);

if (!res) {

continue;

}

//q7

mpz_mul(q7,m,p7);

mpz_add_ui(q7,q7 ,1);

res= mpz_probab_prime_p (q7, 2);

if (!res) {

continue;

}

//q8

mpz_mul(q8,m,p8);

mpz_add_ui(q8,q8 ,1);

res= mpz_probab_prime_p (q8, 2);

if (!res) {

continue;

}

//q9

mpz_mul(q9,m,p9);

mpz_add_ui(q9,q9 ,1);

res= mpz_probab_prime_p (q9, 2);

if (!res) {

continue;
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}

mpz_mul(q,q1,q2);

mpz_mul(q,q,q3);

mpz_mul(q,q,q4);

mpz_mul(q,q,q5);

mpz_mul(q,q,q6);

mpz_mul(q,q,q7);

mpz_mul(q,q,q8);

mpz_mul(q,q,q9);

mpz_mul_2exp(N,q,1);

mpz_add_ui(N,N,1);

res= mpz_probab_prime_p (N, 2);

if (!res) {

continue;

}

printf ("PRIME !\n" );

logit(q,q1,q2 ,q3,q4 ,q5 ,q6,q7 ,q8,q9);

}

mpz_clear(s);

mpz_clear(p1);

mpz_clear(p2);

mpz_clear(p3);

mpz_clear(p4);

mpz_clear(p5);

mpz_clear(p6);

mpz_clear(p7);

mpz_clear(p8);

mpz_clear(p9);

mpz_clear(q1);

mpz_clear(q2);

mpz_clear(q3);

mpz_clear(q4);

mpz_clear(q5);

mpz_clear(q6);

mpz_clear(q7);

mpz_clear(q8);

mpz_clear(q9);

mpz_clear(kprime );

mpz_clear(fudge2 );

mpz_clear(fudge3 );

mpz_clear(fudge4 );

mpz_clear(fudge5 );

mpz_clear(k);

mpz_clear(m);

mpz_clear(off);

mpz_clear(L);

mpz_clear(N);

return 0;

}

C SAGE code for Algorithm of Bröker and Stevenhagen

We present below our SAGE code for the first step of the algorithm of Bröker and
Stevenhagen in the case where N , the target group order, has 3 prime factors.

# Generate elliptic curve using CM with group order divisible by product p*q*r that is a fake prime.

# Cornacchia algorithm

def Cornacchia( A, B, D ):

a = A

b = B

while (b^2 > A):

rrem = int( Mod(a,b) )

a = b

b = rrem

x = b

f2 = (A - x^2) / -D

f = int( sqrt( f2 ))

return x, f

# [58417055476151343628013443570006259007635701626361239226508929045758536501851 ,

p = 12096932041680954958693771

q = 36290796125042864876081311

r = 133066252458490504545631471

N = p*q*r
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DBOUND = -2000;

# First try to construct a curve with N points

D = -3

while (D > DBOUND ):

if (1 == legendre_symbol( D, p )) and (1 == legendre_symbol( D, q )) and (1 == legendre_symbol( D, r )):

F = GF( p )

x01 = int( sqrt( F( D ) ))

F = GF( q )

x02 = int( sqrt( F( D ) ))

F = GF( r )

x03 = int( sqrt( F( D ) ))

# There are 8 possible choices for x0 coming from the 2^3 choices of sign +/- x01 , +/- x02 , +/- x03

ct = 0

while (ct < 8):

x0 = crt( crt( x01 , x02 , p, q ), x03 , p*q, r )

while (0 != Mod(x0^2-D,4*N)):

x0 = x0+N

x, f = Cornacchia( 4*N, x0, D )

if ( 0 == (x^2 - D*f^2 - 4*N)):

pp = int( N + x + 1 )

if is_prime(pp):

print "Success (D,x,f) = ", D, x, f

print "And get a prime p = ", pp

pp = int( N - x + 1 )

if is_prime(pp):

print "Success with other sign (D,x,f) = ", D, x, f

print "And get a prime p = ", pp

x01 = p - x01

if (0 == (ct % 2)):

x02 = q - x02

if (0 == (ct % 4)):

x03 = r - x03

ct = ct + 1

D = D - 4

# Now consider curves whose number of points is a multiple of 2*N

# Algorithm is basically the same except D now must be even

c = 1

while (c < 5):

NN = 2*c*N

c = c + 1

D = -4

while (D > DBOUND ):

D = D - 4

DD = D

if (1 == legendre_symbol( D, p )) and (1 == legendre_symbol( D, q )) and (1 == legendre_symbol( D, r )):

F = GF( p )

x01 = int( sqrt( F( DD ) ))

F = GF( q )

x02 = int( sqrt( F( DD ) ))

F = GF( r )

x03 = int( sqrt( F( DD ) ))

ct = 0

while (ct < 8):

x0 = crt( crt( x01 , x02 , p, q ), x03 , p*q, r )

chk=0

while (0 != Mod(x0^2-DD ,4*NN)) and (chk < 100):

chk = chk+1

x0 = x0+N

x, f = Cornacchia( 4*NN, x0, D )

if ( 0 == (x^2 - DD*f^2 - 4*NN)):

pp = int( NN + x + 1 )

if is_prime(pp):

print "Success (D,x,f) = ", DD , x, f

print "And get a prime p = ", pp

pp = int( NN - x + 1 )

if is_prime(pp):

print "Success with other sign (D,x,f) = ", DD, x, f

print "And get a prime p = ", pp

x01 = p - x01

if (0 == (ct % 2)):

x02 = q - x02

if (0 == (ct % 4)):

x03 = r - x03

ct = ct + 1
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