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Abstract

In non-zero inner product encryption (NIPE) schemes, ciphertexts and secret keys are
associated with vectors and decryption is possible whenever the inner product of these vectors
does not equal zero. So far, much effort on constructing bilinear map-based NIPE schemes
have been made and this has lead to many efficient schemes. However, the constructions of
NIPE schemes without bilinear maps are much less investigated. The only known other NIPE
constructions are based on lattices, however, they are all highly inefficient due to the need of
converting inner product operations into circuits or branching programs.

To remedy our rather poor understanding regarding NIPE schemes without bilinear maps,
we provide two methods for constructing NIPE schemes: a direct construction from lattices
and a generic construction from functional encryption schemes for inner products (LinFE). For
our first direct construction, it highly departs from the traditional lattice-based constructions
and we rely heavily on new tools concerning Gaussian measures over multi-dimensional lattices
to prove security. For our second generic construction, using the recent constructions of LinFE
schemes as building blocks, we obtain the first NIPE constructions based on the DDH and
DCR assumptions. In particular, we obtain the first NIPE schemes without bilinear maps or
lattices.

1 Introduction

1.1 Background

An attribute-based encryption (ABE) scheme is an advanced form of public key encryption where
an access control over encrypted data is possible. In an ABE scheme, a ciphertext and a secret
key are associated with attributes X and Y , respectively, and the decryption is possible only
when they satisfy R(X,Y ) = 1 for a certain relation R. The concept of ABE was first proposed
by Sahai and Waters [SW05]. Since then, many study followed in order to improve the scheme in
many aspects: security [LOS+10, OT10], expressibility [GPSW06, LW11, GVW13], and efficiency
[ALDP11]. While the early constructions of ABE schemes are based on bilinear maps, some of
the more recent schemes are based on lattices.

In this paper, we focus on a special form of an ABE scheme called non-zero inner product
encryption (NIPE) scheme. In an NIPE scheme, a ciphertext attribute is a vector x⃗ and a se-
cret key attribute is a vector y⃗, and the relation is defined as R(x⃗, y⃗) = 1 iff ⟨x⃗, y⃗⟩ ̸= 0. The
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notion of NIPE was first introduced in [KSW08]. It was not until Attrapadung and Libert [AL10]
who gave the direct first construction of an NIPE scheme using bilinear maps.1 In their work,
they provided interesting applications of NIPE schemes such as identity-based revocation (IBR)
schemes, where an IBR scheme is a type of broadcast encryption scheme that allows for efficient
revocation of small member size. Since then, many efficient NIPE schemes have been proposed
[AL10, ALDP11, OT10, OT15, YAHK14, CW14, CLR16]. They are all based on number theo-
retic assumptions on bilinear maps.

On the other hand, the constructions of NIPE schemes without bilinear maps are much less
investigated. The only known other constructions are based on lattices. However, unlike in the
bilinear map setting, we do not know of any direct constructions of a NIPE scheme in the lattice
setting. In more detail, we have ABE schemes for any circuit (i.e. the relation R being general
circuits) [GVW13, BGG+14] and any branching programs [GVW13, GV15] from the learning
with errors (LWE) assumption. Here, the expressibility of the latter constructions are more lim-
ited, however, these schemes can be proven secure under the LWE assumption with polynomial
approximation factors unlike the former schemes that require sub-exponential approximation fac-
tors, i.e., the required hardness assumption is much weaker. Although we have two lines of works
that allow us to indirectly construct lattice-based NIPE schemes, they are both highly ineffi-
cient. In particular, we can use the former constructions from circuits to implement an NIPE
scheme, however, this would require us to express the computation of the non-zero inner product
predicates as a circuit, which would result in a highly inefficient scheme. Furthermore, it would
require us to base security on a sub-exponential LWE assumption, which is not desirable both
from the efficiency and security stand points. Alternatively, we can use the latter construction for
branching programs. To do so, we would first represent the non-zero inner product predicate as
an NC1 circuit, which is possible because arithmetic operations are known to be in NC1 [BCH86],
and then convert it into a branching program using the Barrington’s theorem. Using [GVW13]
or [GV15], the construction by this approach enjoys security from the standard polynomial LWE
assumption. However, the approach is still highly inefficient due to the large overhead incurred
by the invocation of the Barrington’s theorem [Bar89].

More on NIPEs. Although NIPE schemes allows us to construct other cryptographic primitives
such as IBR schemes as explained above, it may be more helpful to understand the usefulness
of the primitive through its “negating” feature. As the name suggests, NIPE scheme is the
counterpart of inner-product encryption (IPE) schemes. It is well known that IPE schemes can
be used to construct functional encryption schemes that can handle many practical predicates
such as polynomial evaluations, disjunction and/or conjunctions of equality tests, membership
tests and so on (for concrete applications see for example [BW07, KSW08]). In brief, NIPE
schemes are primitives that can handle the exact opposite of all these predicates. Due to its
usefulness in practice, negated policies in the area of ABE have been highlighted in prior works
[OSW07, AL10, ABS17].

Furthermore, aside from its practical interest, NIPE schemes are theoretically interesting in
its own right, since as we show as one of our results, NIPE schemes can be constructed from much
weaker assumptions than one would expect. In particular, we construct NIPE schemes from the
DDH or DCR assumption, where it currently seems that stronger assumptions such as the DBDH
or DLIN assumption is required to construct its counterpart — IPE schemes. Therefore, although
an NIPE scheme may be simply understood as an IPE scheme in the opposite flavor, our result

1We note that Goyal et al. [GPSW06] propose an ABE scheme for NC1 circuit, which in turn implies a NIPE
scheme, since the computation of inner products can be performed in NC1. However, the resulting construction is
highly inefficient.
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indicates a distinct gap between the two primitives when it comes to concrete constructions.
Considering the recent breakthrough in constructing identity-based encryption schemes [DG17]
and functional encryption schemes for inner products [ABDCP15, ALS16] from weak assumptions,
we hope our work to spark interest to finding the minimum assumption for other ABE-related
primitives.

1.2 Our Contributions

To remedy our rather poor understanding regarding NIPE schemes without bilinear maps, we
provide two methods for constructing NIPE schemes: a direct construction from lattices and a
generic construction from functional encryption schemes for inner products (LinFE)2 . For the
first direct lattice-based approach, we propose two NIPE constructions where the differences lie
in where the inner products between attribute and predicate vectors are taken. The first scheme
is over Z whereas the second scheme is over Zp. For the second generic approach, we show how to
generically construct NIPE schemes from any LinFE scheme. In particular, we can use the recent
works of [ABDCP15, ALS16] to instantiate various types of NIPE schemes. Concretely, since
[ALS16] provides us with LinFE schemes from the LWE assumption, the DDH assumption and
the DCR assumption, we obtain NIPE schemes secure under all of these assumptions. Notably,
we obtain the first NIPE constructions without bilinear maps or lattices.

We give a brief overview on the properties that our NIPE schemes satisfy. As for the first direct
approach, we obtain two NIPE schemes with different properties: a selectively secure stateless
NIPE scheme over Z and a selectively secure stateful NIPE scheme over Zp. As for the second
generic approach, by using the LinFE schemes provided in [ALS16], which subsumes the work
of [ABDCP15], we obtain an adaptively secure stateless or stateful NIPE scheme over Z or Zp,
depending on what we use as the underlying LinFE scheme. The main advantage of the first
approach is that it leads to a more efficient NIPE scheme in the amortized sense compared with
the second approach instantiated with a lattice-based LinFE scheme. In more detail, to encrypt a
message of ℓM -bit length, the first approach requires (ℓM +m+mℓ) elements of Zq in a ciphertext
and the second requires (m+ ℓ)ℓM . Here, ℓ is the dimension of the predicate vectors in the NIPE
scheme and q and m are the modulus size and the number of columns of the LWE matrix involved
in the scheme, respectively. The first approach is more efficient than the second one when we
encrypt more than mℓ/(m + ℓ) bits at once. For a natural setting of ℓ < m, λ where λ is the
security parameter, this encompasses the most interesting case of KEM-DEM settings where one
encrypts λ bits of session key. In fact, when we are in the ring setting, since m is O(log λ), the first
approach will be more efficient regardless of the size ℓ. Furthermore, for NIPE schemes over Zp,
the first approach would require smaller LWE modulus. Indeed, in certain regime of parameters
such as ℓ = log n/ log log log n and p = log log n, the first approach would yield a scheme with
polynomial modulus whereas the second requires super-polynomial modulus. However, on the
other hand, the advantage of the second approach is that it achieves adaptive security and allows
us to instantiate the NIPE scheme with different types of hardness assumptions such as the DDH
and DCR assumptions. Below, we give an outline of the techniques we used for constructing our
lattice-based NIPE schemes and the generic construction of NIPE schemes from LinFE. We believe
the techniques we utilized for the lattice-based direct NIPE construction to be of independent
interest.

Lattice-Based Constructions. We propose two NIPE schemes built directly from lattices.

2 The term LinFE is borrowed from [ALS16]. It is named as such, since it is a special type of functional
encryption scheme restricted to the class of linear functions.
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At a high level, our two NIPE constructions share many similarities; both constructions highly
depart from the previous lattice-based ABE constructions [GVW13, BGG+14, GV15] and they
rely heavily on the tools of Gaussian measures over multi-dimensional lattices during the security
proof. Notably, for both of our constructions: a trapdoor TA ∈ Zm×m for the public matrix
A ∈ Zn×m

q is not required, a secret key for a user is simply a linear combination of the master secret
keys, and the algorithm SampleRight of [ABB10] is used during decryption. To the knowledgeable
readers of lattice-based cryptography, this may seem somewhat peculiar, since SampleRight is an
algorithm that customary appears in the security proof for allowing the simulator to sample a
short vector e such that [A|B]e = u without knowledge of the trapdoor of A, in case B is in
the special form AR+ t ·G mod q, where t ∈ Zq is some invertible element and G [MP12] is a
special matrix with a publicly known trapdoor TG.

Below we sketch our construction. We set the master public key MPK and the master secret
key MSK as follows:

MPK = (A,B1, · · · ,Bℓ,u) and MSK = (R1, · · · ,Rℓ),

where ℓ denotes the dimension of the vectors, {Ri}i∈[ℓ] are random matrices whose columns are
sampled from the discrete Gaussian distribution and Bi = ARi mod q. In the following, we focus
on the overview of our first NIPE scheme with inner product space Z. Although the high level
construction is the same for our second NIPE scheme with inner product space Zp, we require
some additional technicalities during key generation, which we describe later.

Given the master secret key MSK, our secret key generation algorithm is very simple and
does not require any Gaussian sampling as in prior works. Concretely, given a predicate vec-
tor y⃗ = (y1, · · · , yℓ) ∈ Zℓ, we simply return Ry⃗ =

∑ℓ
i=1 yiRi ∈ Zm×m as the secret key. To

embed an attribute vector x⃗ = (x1, · · · , xℓ) ∈ Zℓ into the ciphertext, we use the techniques of
[AFV11, BGG+14], and create vectors {ci = s⊤(Bi + xi ·G) + zi}i∈[ℓ] along with c0 = s⊤A+ z0.
Here, s is a randomly sampled vector in Zn

q and {zi}i∈[0,ℓ] are short vectors in Zm sampled from
a particular discrete Gaussian distribution. Then, for decryption, a user with predicate vector y⃗
computes the following:

ℓ∑
i=1

yi · ci = s⊤(
ℓ∑

i=1

yiBi + ⟨x⃗, y⃗⟩ ·G) + noise = s⊤(ARy⃗ + ⟨x⃗, y⃗⟩ ·G) + noise.

Therefore, if ⟨x⃗, y⃗⟩ ̸= 0 (over Z), we can use the algorithm SampleRight to sample a short vector
e ∈ Z2m such that [A|ARy⃗ + ⟨x⃗, y⃗⟩ ·G]e = u mod q. Here, to take care of the subtle problem
that ⟨x⃗, y⃗⟩ has to be invertible over Zq, we require the attribute and predicate vectors to be in
some restricted domains.

However, despite the simplicity of our construction, the security proof requires a rather sen-
sitive and technical analysis that calls for new techniques. In particular, building upon the prior
works of [BF11], we prepare new tools concerning Gaussian measures over mulit-dimensional lat-
tices, which we believe to be of independent interest. Using these tools, we are able to provide
a rigorous treatment on the distribution of the secret keys Ry⃗ of the real world and the simu-
lated world. In more detail, given a challenge attribute x⃗∗ ∈ Zℓ at the outset of the game, the
simulator samples random matrices {RSIM

i }i∈[ℓ] as in the real world and sets the public matri-

ces Bi as ARSIM
i − x∗i ·G. We answer the secret key queries as in the real world, i.e., given a

predicate vector y⃗ = (y1, · · · , yℓ) ∈ Zℓ, we simply return RSIM
y⃗ =

∑ℓ
i=1 yiR

SIM
i ∈ Zm×m. At first

glance this seems completely insecure, since an adversary may query y⃗ = (1, 0, · · · , 0) ∈ Zℓ and
recover R1 or RSIM

1 depending on which world it is in. Then, the adversary can check whether
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B1 = AR1 or B1 = ARSIM
1 − x∗1 · G to distinguish between the real world and the simulated

world. However, this seemingly acute tactic cannot be used to attack our NIPE scheme. The
main observation is that, if y⃗ = (1, 0, · · · , 0) ∈ Zℓ is a valid predicate for the key extraction query,
then we must have ⟨x⃗∗, y⃗⟩ = 0, or in other words x∗1y1 = x∗1 = 0. Therefore, since R1 and RSIM

1

are distributed statistically close, the above attack cannot be used to distinguish between the two
worlds. Our security analysis builds on this idea and proves that the distribution of the secret
keys the adversary obtains in the two worlds {Ry⃗(j)}j∈[Q] and {RSIM

y⃗(j)
}j∈[Q] are indeed statistically

indistinguishable. The main technical contribution is developing new tools for Gaussian mea-
sures over multi-dimensional lattices, and analyzing the (set of) linear combinations of Gaussian

distributions {Ry⃗(j) =
∑ℓ

i=1 y
(j)
i Ri}j∈[Q].

Finally, we briefly note on the aforementioned technical issue that arises for our second NIPE
construction with inner product space Zp. Notably, we require our NIPE scheme to be stateful.
This is similar to an issue that came up in the works of [ALS16] for their LinFE scheme over
Zp. Unlike in the NIPE construction with inner product space Z, the linear dependency of the
predicate vectors y⃗ ∈ Zℓ

p and the secret keys Ry⃗ ∈ Zm×m are no longer consistent. In other
words, even when an adversary queries for secret keys corresponding to predicate vectors that are
linearly dependent over Zp, the corresponding secret keys may no longer be linearly dependent
over Z. Therefore, the adversary can recover the full master secret key {Ri}i∈[ℓ] by querying the
right predicate vectors. To prevent this from happening, we make the key generation algorithm
stateful and pay special attention so as not to give out linearly independent secret keys for linearly
dependent predicate vectors. In addition, we also specify how to maintain the state in a clever
way. This is because the representation of the state has a direct effect on the required LWE
assumption, and if we maintain the state naively, we would have to base our security on the
subexponential LWE assumption.

Generic Construction from LinFE. Besides the direct constructions from lattices, we also
propose a generic construction of a NIPE scheme from a LinFE scheme. The idea for the generic
conversion is inspired by the works of [ABP+17] and is surprisingly simple. To explain the idea,
let us first recall that in a LinFE scheme, a ciphertext and a private key are associated with
vectors x⃗ and y⃗, and when we decrypt the ciphertext using the private key, we recover ⟨x⃗, y⃗⟩.
Given a LinFE scheme, we construct a NIPE scheme as follows. To encrypt a message M for a
vector x⃗, we encrypt a vector M · x⃗ using the underlying LinFE scheme to obtain a ciphertext. A
private key for a vector y⃗ in the NIPE scheme is exactly the same as a private key for y⃗ in the
underlying LinFE scheme. Observe that when we decrypt the ciphertext using the private key, we
recover ⟨M · x⃗, y⃗⟩ = M · ⟨x⃗, y⃗⟩. This value corresponds to 0 when ⟨x⃗, y⃗⟩ = 0 regardless of the value
of the message. On the other hand, when x⃗ and y⃗ are known, M can be recovered by computing
M · ⟨x⃗, y⃗⟩/⟨x⃗, y⃗⟩ = M. That is, the message is recovered if and only if ⟨x⃗, y⃗⟩ ̸= 0. Indeed, this
functionality exactly matches that of NIPE schemes.

While the idea is very simple, it leads to interesting consequences. By applying our LinFE-
to-NIPE conversion to existing LinFE constructions [ABDCP15, ALS16], we obtain several new
NIPE schemes. Notably, we obtain the first NIPE constructions from the DDH and DCR assump-
tions. In other words, we obtain NIPE constructions without relying on bilinear maps or lattices.
This result may be somewhat surprising, since we do not know any other similar primitives to
inner product encryption (IPE)3 schemes that can be constructed without bilinear maps or lat-
tices. In particular, it was not until recently for even a simple primitive such as an identity-based

3IPE is a special kind of ABE where decryption is possible iff the inner product of the vectors corresponding
to a ciphertext and a private key is 0. This should not be confused with LinFE, where the decryption is always
possible and the decryption result is the inner product itself.
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encryption scheme (in the standard model) to be constructed without relying on bilinear maps
or lattices [DG17]. Therefore, our result indicates that NIPE schemes may be a primitive quite
different from other ABE type primitives in nature.

2 Preliminaries

Notation. We treat vectors in their column form. For a vector v ∈ Rn, denote ∥v∥ as the
standard Euclidean norm. For a matrix R ∈ Rn×n, denote ∥R∥GS as the longest column of the
Gram-Schmidt orthogonalization of R and denote s1(R) as the largest singular value (spectral
norm). We denote [·|·] as the horizontal concatenation of vectors and matrices. Denote Im as the
m×m identity matrix and 0n×m as the n×m zero matrix. We occasionally view elements in Zp

as elements in Z by its obvious embedding.
We denote [a, b] as the set {a, a + 1, . . . , b − 1, b} for any integers a, b ∈ N satisfying a ≤ b,

and for simplicity write [b] for the special case a = 1. Statistical distance between two random
variables X and Y with support Ω is defined as ∆(X;Y ) = 1

2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|. A

function f : N → R≥0 is said to be negligible, if for all c, there exists λ0 such that f(λ) < 1/λc

for all λ > λ0. We denote by negl(λ) a negligible function in λ.

2.1 Non-Zero Inner Product Encryption

Syntax. Let P and I denote the predicate space and attribute space, where the inner product
between elements (i.e., vectors) from P and I are well-defined. Furthermore, let S denote the
space where the inner product is taken. A stateful non-zero inner product encryption (NIPE)
scheme over S consists of the following four algorithms:

Setup(1λ, 1ℓ)→ (MPK,MSK, st): The setup algorithm takes as input a security parameter 1λ and
the length ℓ of the vectors in the predicate and attribute spaces, and outputs a master public
key MPK, a master secret key MSK and an initial state st.

KeyGen(MPK,MSK, st, y⃗)→ (sky⃗, st): The key generation algorithm takes as input the master
public key MPK, the master secret key MSK, the state st and a predicate vector y⃗ ∈ P. It
outputs a private key sky⃗ and a updated state st. We assume that y⃗ is implicitly included
in sky⃗.

Encrypt(MPK, x⃗,M)→ C: The encryption algorithm takes as input a master public key MPK, an
attribute vector x⃗ ∈ I and a message M. It outputs a ciphertext C.

Decrypt(MPK, sky⃗, (x⃗, C))→ M or ⊥: The decryption algorithm takes as input the master public
key MPK, a private key sky⃗, and a ciphertext C with an associating attribute vector x⃗. It
outputs the message M or ⊥, which means that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, ℓ ∈ N, all x⃗ ∈ I, y⃗ ∈ P,
and all M in the specified message space, the following holds:

- if ⟨x⃗, y⃗⟩ ̸= 0, then Pr[Dec(MPK, sky⃗,Enc(MPK, x⃗,M)) = M] = 1− negl(λ)

- if ⟨x⃗, y⃗⟩ = 0, then Pr[Dec(MPK, sky⃗,Enc(MPK, x⃗,M)) = ⊥] = 1− negl(λ),

where the inner products are taken over S and the probability is taken over the randomness used
in all the algorithms.

We also define a stateless non-zero inner product encryption, where we do not require any
state information in the above algorithms.
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Security. We define the security of a (stateful) NIPE scheme over S with predicate space P and
attribute space I by the following game between a challenger and an adversary A.
- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ← Setup(1λ, 1ℓ) and
gives the public parameter MPK to A.
- Phase 1. A may adaptively make key-extraction queries. If A submits a predicate vector y⃗ ∈ P
to the challenger, the challenger runs (sky⃗, st)← KeyGen(MPK,MSK, st, y⃗) and returns sky⃗.

- Challenge Phase. At some point, A outputs messages M0,M1 and an attribute vector x⃗∗ ∈ I
on which it wishes to be challenged, with the restriction that ⟨x⃗∗, y⃗⟩ = 0 (over S) for all y⃗
queried during Phase 1. Then, the challenger picks a random bit b ∈ {0, 1} and returns C∗ ←
Enc(MPK, x⃗∗,Mb) to A.
- Phase 2. After the challenge query, Amay continue to make key-extraction queries for predicate
vectors y⃗ ∈ P, with the added restriction that ⟨x⃗∗, y⃗⟩ = 0 (over S).
- Guess. Finally, A outputs a guess b′ for b.

The advantage of A is defined as AdvNIPEA,S =
∣∣Pr[b′ = b]− 1

2

∣∣ . We say that a stateful NIPE
scheme with inner product space S is adaptively secure, if the advantage of any PPTA is negligible.
Similarly, we define selective security for a stateful NIPE scheme with inner product space S, by
modifying the above game so that the adversary A is forced to declare its challenge attribute
vector x⃗∗ before Setup. Therefore, we also add the restriction that ⟨x⃗∗, y⃗⟩ = 0 (over S) during
Phase 1. Finally, we define an analogous security notion for stateless NIPE schemes, where we
do not require any state information during the above game.

Remark on the Security Model. In the stateful setting, it may be more natural to consider
a security model where the adversary is allowed to request the challenger to create a secret key
without actually seeing it. Such a query will change the internal state of KeyGen in a possibly
malicious way. In our work, we follow the stateful functional encryption formalization of [ALS16]
and do not consider this stronger security model. We leave it open the problem of constructing
efficient NIPE scheme satisfying this security notion.

2.2 Lattices

A (full-rank-integer) m-dimensional lattice Λ in Zm is a set of the form {
∑

i∈[m] xibi|xi ∈ Z},
where B = {b1, · · · ,bm} are m linearly independent vectors in Zm. We call B the basis of the
lattice Λ. For any positive integers n,m and q ≥ 2, a matrix A ∈ Zn×m

q and a vector u ∈ Zn
q , we

define Λ⊥(A) = {z ∈ Zm|Az = 0 mod q} and Λ⊥
u (A) = {z ∈ Zm|Az = u mod q}.

For anm-dimensional lattice Λ ⊆ Zm, define them-dimensional k-multi lattice Λk as [Λ| · · · |Λ] =
{[z1| · · · |zk]|∀zi ∈ Λ,∀i ∈ [k]} ⊆ Zm×k. For a matrix T = [t1| · · · |tk] ∈ Zm×k, denote Λk + T
as [Λ + t1| · · · |Λ + tk] ⊆ Zm×k. For a matrix M ∈ Zk×ℓ define Λk ·M as the multi lattice
{VM|V ∈ Λk} ⊆ Zm×ℓ.4

Gaussian Measures. For any vector c ∈ Rm and positive real σ > 0, the m-dimensional
Gaussian function over Rm centered at c with parameter s is defined as ρσ,c(x) = exp(−π∥x −
c∥2/σ2). The continuous Gaussian distribution Dσ over Rm centered at c with parameter σ
is defined as Dσ,c(x) = ρσ,c(x)/σ

m. For an m-dimensional lattice Λ, the discrete Gaussian
distribution over Λ with center c and parameter σ is defined as DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ) for
all x ∈ Λ, where ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). Finally, for an m-dimensional shifted lattice Λ + t,

4 In Appendix B, we provide a more general definition of multi lattices. We omit this from the main body for
simplicity as it only comes up during in the security proof.
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we define the Gaussian distribution DΛ+t,σ with center c = 0 and parameter σ as the process of
adding the vector t to a sample from DΛ,σ,−t. We omit the subscripts σ and c when they are
taken to be 1 and 0, respectively.

Lemma 1 ([GPV08], Lem. 5.2, Cor. 5.4 and Adapted from [ALS16], Lem. 9). Let q be a prime
or some power of a prime5 p and let n,m be positive integers such that m ≥ 2n log q. Let σ be
any positive real such that σ ≥ ω(

√
log n). Then for A← Zn×m

q and e← DZm,σ, the distribution
of u = Ae mod q is statistically close to uniform over Zn

q .
Furthermore, fix u ∈ Zn

q and let t ∈ Zm be an arbitrary solution to At = u mod q. Then the
conditional distribution of e← DZm,σ, given Ae = u mod q for a uniformly random A in Zn×m

q

is exactly DΛ⊥(A)+t,σ with all but negligible probability.

Lemma 2 ([MP12], Lem. 2.8 and Lem. 2.9). Let m, k be positive integers, {σi}ki=1 a set of
positive reals and denote σmax = maxi{σi}. Let R ∈ Zm×k be a matrix where its i-th column is
sampled from DZm,σi. Then there exists a universal constant C > 0 such that we have s1(R) ≤
C · σmax(

√
m+

√
k) with all but negligible probability in m.

Lemma 3 ([ABB10], Lem. 8). Let n,m, q be positive integers with m > n, A ∈ Zn×m
q be a

matrix, u ∈ Zn
q be a vector, TA be a basis for Λ⊥(A), and σ > ∥TA∥ · ω(

√
logm). Then, if we

sample a vector x← DΛ⊥
u (A),σ, we have Pr[∥x∥ >

√
mσ] < negl(n).

Lemma 4 (Noise Rerandomization, [KY16], Lem. 1). Let q, ℓ,m be positive integers and r a
positive real satisfying r > max{ω(

√
logm), ω(

√
log ℓ)}. Let b ∈ Zm

q be arbitrary and z chosen

from DZm,r. Then for any V ∈ Zm×ℓ and positive real σ > s1(V), there exists a PPT algorithm
ReRand(V,b+z, r, σ) that outputs b′⊤ = b⊤V+z′⊤ ∈ Zℓ

q where z′ is distributed statistically close
to DZℓ,2rσ.

Analogously to above, for an m-dimensional k-multi lattice Λk, we define the discrete Gaussian
distribution over Λk with center C ∈ Zm×k and parameter σ denoted as DΛk,σ,C by the process
of sampling a matrix whose i-th column is a sample from DΛ,σ,Ci for i ∈ [k], where Ci denotes
the i-th column of C. This definition extends naturally to shifted multi-lattices as well.

Key Theorem. The following theorem concerning the distribution of the sum of discrete Gaus-
sians plays a central roll in our security proof. The proof of the theorem is given in the Appendix B
with a more formal treatment on the output distribution.

Theorem 1. Let q be a prime or some power of a prime p. Let n,m, ℓ, t be positive integers such
that m ≥ 2n log q and ℓ > t, let A ∈ Zn×m

q be a random matrix and T ∈ Zm×ℓ be an arbitrary

matrix. Let M ∈ Zℓ×(ℓ−t) and W ∈ Zℓ×t be full rank matrices satisfying W⊤M = 0 ∈ Zt×(ℓ−t).
Finally, let σ be a positive real such that σ >

√
s1(W⊤W) · ω(

√
logm).

If, X ∈ Zm×ℓ is distributed as DΛ⊥(A)ℓ+T,σ, then XM ∈ Zm×(ℓ−t) is statistically close to to a

distribution parameterized by Λ⊥(A), σ,M, (TM mod Λ⊥(A)ℓM).

Remark 1. An important observation is that, if we independently sample X0 ← DΛk+T0,σ and
X1 ← DΛk+T1,σ, then the distributions of X0M and X1M are statistically close whenever T0M =

T1M mod ΛkM. This is the key insight used in our security proof; in the real world the secret
components are sampled as X0 and in the simulated world they are sampled as X1. Furthermore,

5Note that for the case q = pk for some k ∈ N, we set the statistical distance to be n−ω(1) rather than 2−Ω(n) as
in [ALS16], Lem. 9.

8



for any matrix M̄, if we let M be an arbitrary maximal independent subset of the columns of
M̄, since all the columns of XM̄ are linear combinations of the columns of XM, the distribution
of XM̄ is parameterized solely by the distribution of Λ, σ,M, (TM mod ΛkM). (For further
discussion see Appendix B of [BF11].

Sampling Algorithms. The following lemma states useful algorithms for sampling short vectors
from lattices.

Lemma 5. Let n,m, q > 0 be integers with m > n. Then:

− ([GPV08]) SamplePre(A,u,TA, σ) → e : There exists a randomized algorithm that, given
a matrix A ∈ Zn×m

q , a vector u ∈ Zn
q , a basis TA for Λ⊥(A), and a Gaussian parameter

σ > ∥TA∥GS · ω(
√
logm), outputs a vector e ∈ Zm sampled from a distribution which is

negl(n)-close to DΛ⊥
u (A),σ.

− ([ABB10]) SampleRight(A,G,R, t,u,TG, σ) → e: There exists a randomized algorithm that,
given a full-rank matrix A,G ∈ Zn×m

q , an invertible element t ∈ Zq, a matrix R ∈ Zm×m,

a vector u ∈ Zn
q , a basis TG for Λ⊥(G), and a Gaussian parameter σ > s1(R) · ∥TG∥GS ·

ω(
√
logm), outputs a vector e ∈ Z2m sampled from a distribution which is negl(n)-close to

DΛ⊥
u ([A|AR+tG]),σ.

− ([MP12]) Let m ≥ n⌈log q⌉. Then, there exists a fixed full-rank matrix G ∈ Zn×m
q such that

the lattice Λ⊥(G) has publicly known basis TG ∈ Zm×m with ∥TG∥GS ≤
√
5.

Observe that even if we are in possession of a “nice” trapdoor matrix R, we can not use the
SampleRight algorithm in case t is not invertible over Zq. Below we consider the case where q = pd

for some prime p and positive integer d, and slightly modify SampleRight so that we can sample
short vectors from some shifted lattice of Λ⊥([A|AR+pd−1t′G]) for an invertible element t′ ∈ Zq.
Note that t = pd−1t′ is no longer invertible over Zq. The proof is provided in Appendix A.

Lemma 6 (Algorithm SampleSkewed). Let q = pd for a prime p and positive integer d. Then,
there exists a polynomial time algorithm SampleSkewed with the following property.

SampleSkewed(A,G,R, t, pd−1u,TG) → e: a randomized algorithm that, given full-rank ma-
trices A,G ∈ Zn×m

q , a matrix R ∈ Zm×m, a vector pd−1u ∈ Zn
q , and an invertible element

t ∈ Zq, outputs a vector e ∈ Z2m such that [A|AR + pd−1 · t · G]e = pd−1u mod q and
∥e∥ ≤ s1(R)

√
m · ω(

√
log n) with all but negligible probability.

Hardness Assumptions. We define the Learning with Errors (LWE) problem first introduced by
Regev [Reg05], and further define a variant of LWE called the First-is-Errorless LWE (FE.LWE)
problem introduced by [BLP+13]. Looking ahead, FE.LWE will be used for our lattice-based
NIPE construction over Zp.

Definition 1 (LWE and FE.LWE). For integers n = n(λ),m = m(n), q = q(n) > 2, an error
distribution over χ = χ(n) over Z, and a PPT algorithm A, an advantage for the learning with
errors problem LWEn,m,q,χ of A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣∣∣Pr [A({ai}mi=1, {a⊤i s+ xi}mi=1

)
= 1

]
− Pr

[
A
(
{ai}mi=1, {vi}mi=1

)
= 1

]∣∣∣
9



where ai ← Zn
q , s ← Zn

q , xi ← χ, vi ← Zq for each i ∈ [m]. We say that the LWE assumption

holds if Adv
LWEn,m,q,χ

A is negligible for all PPT A.
In addition, we define the first-is-errorless learning with errors problem FE.LWEn,m,q,χ, which

is the LWE problem where the first sample is noise free, i.e., we have x1 = 0 instead of x1 ← χ.
The advantage for the FE.LWEn,m,q,χ problem of A is defined analogously to above.

The next result shows that the FE.LWE problem is as hard as the LWE problem.

Theorem 2 (LWE to FE.LWE. [BLP+13, Lem. 4.3]). For any integer n ≥ 2,m, q ≥ 1, and error
distribution χ over Z, if there exists a PPT algorithm A that solves FE.LWEn,m,q,χ with advantage
ϵ, then it can be converted into a PPT algorithm B that solves LWEn−1,m,q,χ with advantage at
least ϵ · (1−

∑
p p

−n), with the sum going over all prime factors of q.

The (decisional) LWE problem with a prime modulus q was first shown to be as hard as
approximating the worst-case GapSVP problem by [Reg05]. Several works [Pei09, ACPS09, MP12,
BLP+13, PRSD17] handling the case of non-prime modulus q have appeared in the literatures.

Theorem 3 (Hardness of LWE. [Reg05, PRSD17]). Let n,m, q be positive integers, and let α ∈
(0, 1) be a positive real such that αq ≥ 2

√
n. Then, there exists a probabilistic polynomial-time

quantum reduction from GapSVPÕ(n/α) to LWEn,m,q,χ with χ = DZ,αq.

3 Construction from Lattices with Inner Product over Z

3.1 Constructions

Here we construct a stateless NIPE scheme with inner product space Z. We consider the predicate
space P = {−P + 1, . . . , P − 2, P − 1}ℓ ⊂ Zℓ and attribute space I = {−I+1, . . . , I−2, I−1}ℓ ⊂
Zℓ for some integers P = P (n), I = I(n), where ℓ = ℓ(n) is typically taken to be poly(n),
and set the modulus size to be a prime q = q(n) such that the inner products of the predi-
cate and attribute vectors do not wrap around q, i.e., ℓPI < q. Other parameters including
m(n), σ(n), α(n), α′(n), s(n) are specified later. Here, we assume that the message space is {0, 1}.
For the multi-bit variant, we refer Sec. 3.4.

Setup(1n, 1ℓ): On input 1n, 1ℓ, it samples a random matrix A← Zn×m
q , a random vector u← Zn

q

and random matrices Ri ←
(
DZm,σ

)m
for i ∈ [ℓ]. It then sets Bi = ARi mod q. Finally,

it outputs

MPK = (A,B1, · · · ,Bℓ,u) and MSK = (R1, · · · ,Rℓ).

KeyGen(MPK,MSK, y⃗ ∈ P): Given a predicate vector y⃗ = (y1, · · · , yℓ) ∈ P, it computes

Ry⃗ =
ℓ∑

i=1

yiRi ∈ Zm×m.

Then, it returns the secret key sky⃗ = Ry⃗.

Enc(MPK, x⃗ ∈ I,M): To encrypt a message M ∈ {0, 1} for an attribute x⃗ = (x1, · · · , xℓ) ∈ I, it
samples s← Zn

q , z ← DZ,αq and zi ← DZm,α′q for i ∈ [0, ℓ], and computes
c = u⊤s+ z +M⌊q/2⌉,
c0 = A⊤s+ z0,

ci = (Bi + xiG)⊤s+ zi, (i ∈ [ℓ]).
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Then, it returns the ciphertext C = (c, (ci)i∈[0,ℓ]) ∈ Zq × (Zm
q )(ℓ+1) with the corresponding

attribute x⃗.

Dec(MPK, (y⃗, sky⃗), (x⃗, C)): To decrypt a ciphertext C = (c, (ci)i∈[0,ℓ]) with an associating at-

tribute x⃗ ∈ I using a secret key sky⃗ = Ry⃗ =
∑ℓ

i=1 yiRi with an associating predicate y⃗ ∈ P,
it first computes

cy⃗ =
ℓ∑

i=1

yici ∈ Zm
q .

Next, it samples a short vector e ∈ Z2m by running SampleRight(A,G,Ry⃗, ⟨x⃗, y⃗⟩,u,TG, s).
Then, it computes w = c − e⊤[c⊤0 |c⊤y⃗ ]

⊤ ∈ Zq. Finally, it returns 1 if |w − ⌈q/2⌉| < ⌈q/4⌉
and 0 otherwise.

3.2 Correctness and Parameter Selection

The following lemma guarantees correctness of the scheme.

Lemma 7 (correctness). Assume
(
αq + ℓP 2σmα′q

)
· ω(
√
log n) < q/5 holds with overwhelming

probability. Then the above scheme has negligible decryption error.

Proof. To establish correctness of decryption, we only need to consider the case ⟨x⃗, y⃗⟩ ̸= 0 ∈ Z.
Note that due to our parameter selection, we have |⟨x⃗, y⃗⟩| < q, hence ⟨x⃗, y⃗⟩ is invertible in Zq for
q a prime. First, notice that

cy⃗ =
ℓ∑

i=1

yici =
ℓ∑

i=1

yi

(
(Bi + xiG)⊤s+ zi

)

=

(
A

ℓ∑
i=1

yiRi + ⟨x⃗, y⃗⟩G
)⊤

s+

ℓ∑
i=1

yizi

=

(
ARy⃗ + ⟨x⃗, y⃗⟩G

)⊤
s+ z′,

where we set z′ =
∑ℓ

i=1 yizi and recall sky⃗ = Ry⃗. Now, since each row of Ri are independent,
each row of Ry⃗ are distributed according to DZm,∥y⃗∥σ from the linear structure of subgaussian
random variables. Therefore,

s1(Ry⃗) = s1
( ℓ∑
i=1

yiRi

)
≤ C ·

√
ℓPσ ·

√
m (1)

where, the inequality follows from Lemma 2 and the fact that y⃗ ∈ P.
Next, since ⟨x⃗, y⃗⟩ is invertible in Zq, algorithm SampleRight work as specified, i.e., it outputs

a short vector e ∈ Z2m such that [A|ARy⃗ + ⟨x⃗, y⃗⟩G]e = u. Therefore,

e⊤
[
c0
cy⃗

]
= e⊤[A|ARy⃗ + ⟨x⃗, y⃗⟩G]⊤s+ e⊤[z⊤0 |z′⊤]⊤ = u⊤s+ z′′ ∈ Zq,
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where we set z′′ = e⊤[z⊤0 |z′⊤]⊤. Then, we have w = M⌊q/2⌉+ z − z′′. Finally,

|z − z′′| ≤ |z|+ |e⊤[z⊤0 |z′⊤]⊤|
≤ |z|+ ∥e⊤z0∥+ ∥e⊤z′∥ (2)

= |z|+ ∥e⊤z0∥+ ∥
ℓ∑

i=1

yi · e⊤zi∥

≤
(
αq + P · s1(Ry⃗)

√
mℓα′q

)
ω(

√
log n) (3)

≤
(
αq + ℓP 2σmα′q

)
ω(

√
log n) (4)

where Eq.(2) follows from the sub-additivity of the square root function
√
·, Eq.(3) follows from

the linear structure of subgaussian random variables, Lemma 5, Lemma 3 and the fact that y⃗ ∈ P,
Eq.(4) follows from Eq.(1). Note that we hide the constant factors inside ω(·).

By assumption this is smaller than q/5 with overwhelming probability. Hence, the error
probability of the Dec algorithm is negligible.

Parameter Selection. To satisfy the correctness requirement and make the security proof follow
through, we need the following:

− the inner product between any attribute vector x⃗ ∈ I and predicate vector y⃗ ∈ P satisfies
|⟨x⃗, y⃗⟩| < q (i.e., ℓPI < q),

− the error term is less than q/5 with overwhelming probability (i.e.,
(
αq+ℓP 2σmα′q

)
ω(
√
log n) <

q/5. See Lemma 7),

− the gadget matrix G is well defined (i.e., m ≥ n⌈log q⌉. See Lemma 5.),

− σ is sufficiently large so that Ri’s are samplable, and Theorem 1 is applicable during the
security proof. (i.e., σ > ω(

√
log n) and σ >

√
ℓI · ω(

√
log n)). See Lemma 5),

− the SampleRight algorithm works as specified (i.e., s > s1(R⃗y⃗) · ω(
√
logm) for all predicate

vector y⃗ ∈ P. See Lemma 5),

− the ReRand algorithm in the security proof works as specified (i.e., α′ > 2α(s1(R⃗) + 1), αq >
ω(
√
logmℓ) where R⃗ ∈ Zm×m(ℓ+1) is the concatenation of the Ri’s. See Lemma 4),

− the worst case to average case reduction works (i.e., αq > 2
√
n). See Theorem 3.).

Recall that P (n) and I(n) is the bound on the size of the predicate and attribute vectors
and ℓ(n) is the dimension of the attribute/predicate vectors, where ℓ is set as poly(n) in a typical
setting. To satisfy the above requirements, we propose a candidate parameter selections as follows:

m = n⌈log q⌉, q = ℓ2P 2Im2 · ω(log n)1.5, σ =
√
ℓI · ω(

√
log n),

α = (ℓ2P 2Im1.5 · ω(log n)1.5)−1, α′ = (ℓ1.5P 2Im · ω(log n))−1, s = ℓPI
√
m · ω(log n),

and round up q to the nearest larger prime. Notably, in case for the standard setting where all
ℓ, P , and I are polynomial in n, the modulus q is also polynomial.
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3.3 Security Proof

Theorem 4. The above NIPE scheme with inner product space Z is selectively secure assuming
LWEn,m+1,q,χ is hard, where χ = DZ,αq.

Proof. Let A be a PPT adversary that breaks the selective security of the NIPE scheme. In
addition, let Q = Q(n) be the number of key extraction queries A makes, and denote y⃗(k) ∈ P as
the k-th predicate vector A queries, where k ∈ [Q]. Here, we assume that A always queries for
ℓ − 1 linearly independent predicate vectors, which are all orthogonal to the challenge attribute
vector x⃗∗ over Z. This can be done without loss of generality, since A can simply ignore these
additional queries. The proof proceeds with a sequence of games that starts with the real game
and ends with a game in which A has negligible advantage. For each game Gamei denote Si the
event that A wins the game.

Game0 : This is the real security game. Namely, adversary A declares its challenge attribute
vector x⃗∗ ∈ I at the beginning of the game. Note that any predicate vector y⃗ ∈ P queried by
A to the challenger as a key extraction query must satisfy ⟨x⃗∗, y⃗⟩ = 0 over Z if A is a legitimate
adversary.

Game1 : In this game, we change the way the public matrices B1, · · · ,Bℓ are created. On receiving
the challenge attribute vector x⃗∗ = (x∗1, · · · , x∗ℓ) ∈ I from adversary A at the beginning of the
game, the challenger samples random matrices Ri ←

(
DZm,σ

)m
and sets Bi = ARi − x∗iG

mod q for i ∈ [ℓ]. Otherwise, the behavior of the challenger is identical as in Game0. Namely, the
challenger remains to answer the key extraction query for a predicate vector y⃗ ∈ P as sky⃗ = Ry⃗ =∑ℓ

i=1 yiRi where y⃗ = (y1, · · · , yℓ), and creates the challenge ciphertext as in Game0.

Before continuing to Game2, we show that Game0 is statistically indistinguishable from Game1;
this is the crux of our proof. In particular, we show that the view of the adversary in both games
is statistically close. Here, the view of the adversary is completely determined by{

MPK =
{
A, {Bi}i∈[ℓ],u

}
, {Ry⃗(k)}k∈[Q], C∗

}
where {Ry⃗(k)}k∈[Q] is the set of secret keys returned by the challenger during the key extraction
query and C∗ ← Enc(MPK, x⃗∗,Mb) is the challenge ciphertext, where b is the random bit chosen
by the challenger. Observe that in both games A,u are distributed identically. Furthermore, the
challenge ciphertext C∗ is created using only the terms in MPK (with some extra randomness
that are identical in both games). Furthermore, from our assumption on A, we assume that
{y⃗(k)}k∈[ℓ−1] is the set of the ℓ − 1 linearly independent vectors that A queries. Then, what we
need to consider are only the ℓ − 1 secret keys {Ry⃗(k)}k∈[ℓ−1], since all the other secret keys can
be created by the linear combinations of {Ry⃗(k)}k∈[ℓ−1]. Therefore, the difference in the views of
the adversary in Game0 and Game1 is determined solely by the difference in the distribution of{

{Bi}i∈[ℓ], {Ry⃗(k)}k∈[ℓ−1]

}
. (5)

Hence, we aim at proving that the view of Eq.(5) for the adversary is statistically close in
both games. More strictly, we compare the following probability of each game:
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Pr

[{
{Bi}i∈[ℓ], {Ry⃗(k)}k∈[ℓ−1]

}
=

{
{B̂i}i∈[ℓ], {R̂y⃗(k)}k∈[ℓ−1]

}]
=Pr

[
{Ry⃗(k)}k∈[ℓ−1] = {R̂y⃗(k)}k∈[ℓ−1]

∣∣∣ {Bi}i∈[ℓ] = {B̂i}i∈[ℓ]
]

︸ ︷︷ ︸
(A)

·Pr
[
{Bi}i∈[ℓ] = {B̂i}i∈[ℓ]

]
︸ ︷︷ ︸

(B)

,

where the probability is taken over the randomness of {Ri}i∈[ℓ] during Setup; recall each Ri is

distributed according to
(
DZm,σ

)m
in both games. Note that in the above we abuse the notation

for sets by implicitly assigning an order over the elements, i.e., {X,Y} ̸= {Y,X}.
We first prove that the value of (B) is negligibly close in both games. Observe that for all

i ∈ [ℓ], ARi is distributed uniformly at random over Zn×m
q with all but negligible probability

where Ri ←
(
DZm,σ

)m
, which follows from Lemma 1 and our parameter selections. Concretely,

since Bi = ARi and Bi = ARi − x∗iG for Game0 and Game1, respectively, we have that in both

games {Bi}i∈[ℓ] is distributed statistically close to uniform over
(
Zn×m
q

)ℓ
.

We now proceed to prove that the value of (A) is negligibly close in both games. We
first analyze the case for Game0. Let B⃗view ∈ Zn×mℓ

q and R⃗ ∈ Zm×mℓ denote the matrices

[B1| · · · |Bℓ] and [R1| · · · |Rℓ], respectively. Then we have B⃗view = AR⃗ mod q. Furthermore,
let T⃗ = [T1| · · · |Tℓ] ∈ Zm×mℓ be an arbitrary solution to B⃗view = AT⃗ mod q. Then, due to
Lemma 1, conditioned on {B̂i}i∈[ℓ] = {ARi}i∈[ℓ] (mod q), the conditional distribution of R⃗ is
D

Λ⊥(A)mℓ+T⃗,σ
. Now, we are ready to determine the conditional distribution of the secret keys

{Ry⃗(k)}k∈[ℓ−1] obtained by the adversary A. Observe the following equation:

[Ry⃗(1) |Ry⃗(2) | · · · |Ry⃗(ℓ−1) ]︸ ︷︷ ︸
:=R⃗sk ∈Zm×m(ℓ−1)

= [R1|R2| · · · |Rℓ]︸ ︷︷ ︸
=R⃗ ∈Zm×mℓ


y
(1)
1 Im

y
(1)
2 Im
...

y
(1)
ℓ Im

y
(2)
1 Im

y
(2)
2 Im
...

y
(2)
ℓ Im

· · ·

· · ·

y
(ℓ−1)
1 Im

y
(ℓ−1)
2 Im

...

y
(ℓ−1)
ℓ Im

 ,

︸ ︷︷ ︸
:=M=Y⊗Im ∈Zmℓ×m(ℓ−1)

(6)

where y
(k)
j is the j-th entry of the k-th predicate vector y⃗(k) and Y ∈ Zℓ×(ℓ−1) is a full rank

matrix whose k-th column is y⃗(k). We also denote the left and right hand matrices as R⃗sk and
M ∈ Zmℓ×m(ℓ−1), respectively. Note that the equality is taken over Z. Now, since x⃗⋆⊤Y =
0 ∈ Z1×(ℓ−1), we have W⊤M = 0 ∈ Zm×m(ℓ−1) where W = x⃗⋆ ⊗ Im ∈ Zmℓ×m is a full rank
matrix. Furthermore, by construction, we have

√
s1(W⊤W) = ∥x⃗∗∥. Therefore, by Theorem 1

and from the fact that R⃗ is distributed according to D
Λ⊥(A)mℓ+T⃗,σ

, for our parameter selection,

we have that the distribution of R⃗sk = R⃗M is statistically close to a distribution parameterized
by Λ⊥(A), σ,M and (T⃗M mod Λ⊥(A)mℓM).

We now show that this holds in case for Game1 as well. Similarly to above, we begin by
determining the conditional distribution of R⃗ given {Bi}i∈[ℓ] = {ARi − x∗iG}i∈[ℓ]. Let us denote
G⃗x⃗∗ ∈ Zn×mℓ

q as the matrix [x∗1G|x∗2G| · · · |x∗ℓG]. Then, B⃗view + G⃗x⃗∗ = AR⃗ mod q. Next, let

us chose an arbitrary matrix E ∈ Zm×m such that G = AE mod q, and define E⃗x⃗∗ ∈ Zm×mℓ

as the matrix [x∗1E|x∗2E| · · · |x∗ℓE]. Then, we have G⃗x⃗∗ = AE⃗x⃗∗ mod q. Combining this with the

T⃗ we have defined above in Game0, we obtain B⃗view + G⃗x⃗∗ = A(T⃗ + E⃗x⃗∗) mod q. Therefore,
by Lemma 1, the conditional distribution of R⃗ given {Bi}i∈[ℓ] is D

Λ⊥(A)mℓ+T⃗+E⃗x⃗∗ ,σ
. Next, we
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determine the conditional distribution of the secret keys {Ry⃗(k)}k∈[ℓ−1] obtained by the adversary
A. Observe that equation Eq.(6) holds for Game1 as well, since we do not change the way we answer
the key extraction queries. Concretely, we have M = Y⊗Im and W⊤M = 0 where W = x⃗⋆⊗Im.
Hence, by Theorem 1 and the fact that R⃗ is distributed according to D

Λ⊥(A)mℓ+T⃗+E⃗x⃗∗ ,σ
, we

have that the distribution of R⃗sk = R⃗M is statistically close to a distribution parameterized by
Λ⊥(A), σ,M and (T⃗M+ E⃗x⃗∗M mod Λ⊥(A)mℓM). Finally, it remains to prove that E⃗x⃗∗M = 0
(over Z) in order to prove equivalence of (A) between Game0 and Game1. Observe that

E⃗x⃗∗M = E · [x∗1Im|x∗2Im| · · · |x∗ℓIm]


y
(1)
1 Im

y
(1)
2 Im
...

y
(1)
ℓ Im

y
(2)
1 Im

y
(2)
2 Im
...

y
(2)
ℓ Im

· · ·

· · ·

y
(ℓ−1)
1 Im

y
(ℓ−1)
2 Im

...

y
(ℓ−1)
ℓ Im


= E · [⟨x⃗∗, y⃗(1)⟩Im|⟨x⃗∗, y⃗(2)⟩Im| · · · |⟨x⃗∗, y⃗(ℓ−1)⟩Im]

= 0 ∈ Zm×m(ℓ−1),

since we have ⟨x⃗∗, y⃗(k)⟩ = 0 over Z for k ∈ [ℓ − 1]. Hence, we conclude that the value of (A),
i.e., the conditional probability of R⃗sk given {Bi}i∈[ℓ], in Game0 and Game1 are statistically close.
Therefore, we have

|Pr[S0]− Pr[S1]| = negl(n).

Game2 : In this game, we change the way the challenge ciphertext is created. Recall that in the
previous game, the challenge ciphertext was created as

c = u⊤s+ z +Mb⌊q/2⌉, c0 = A⊤s+ z0, (ci = (ARi)
⊤s+ zi)i∈[ℓ] (7)

where s← Zn
q , z ← DZ,αq, zi ← DZm,α′q for i ∈ [0, ℓ], and b← {0, 1}, where the last term follows

from the fact that in Game1 we modified Bi so that Bi = ARi − x∗iG, and M0,M1 are the two
messages sent by the adversary A. To create the challenge ciphertext in Game2, the challenger
first picks s← Zn

q and z← DZm,αq and computes v = A⊤s+ z ∈ Zm
q . It then runs the algorithm

ReRand
(
[Im|R⃗],v, αq,

α′

2α

)
→ c ∈ Zm(ℓ+1)

q

from Lemma 4, and parses c into ℓ+ 1 vectors (ci)i∈[ℓ+1] in Zm
q such that c⊤ = [c⊤0 |c⊤1 | · · · |c⊤ℓ ] ∈

Zm(ℓ+1)
q . Finally, it picks z ← DZ,αq, b← {0, 1} and sets the challenge ciphertext as

C∗ =
(
c = v +Mb⌊q/2⌉, c0, (ci)i∈[ℓ]

)
∈ Zq × Zm

q × (Zm
q )ℓ, (8)

where v = u⊤s+ z.

We claim that this change alters the view of A only negligibly. First, the first term c is
distributed identically as in Eq.(7). Next, observe that the input to ReRand is [Im|R⃗] ∈ Zm×m(ℓ+1)

and v = A⊤s + z ∈ Zm
q . Therefore, due to Lemma 4, for our choices of α and α′, the output of

ReRand is

c⊤ =
(
A⊤s

)⊤
[Im|R⃗] + z′⊤

= s⊤[A|AR⃗] + z′⊤ ∈ Zm(ℓ+1)
q ,
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where the distribution of z′ is within statistical distance from z′ ← DZm(ℓ+1),α′q. By parsing c
appropriately as above, it can be seen that it is statistically close to (ci)i∈[0,ℓ] of Eq.(7). Therefore,
the challenge ciphertexts of Game1 and Game2 are statistically indistinguishable. Hence, we have

|Pr[S1]− Pr[S2]| = negl(n).

Game3 : In this game, we further change the way the challenge ciphertext is created. To create
the challenge ciphertext, the challenger first samples v ← Zq, v

′ ← Zm
q and z← DZm,αq, and runs

ReRand
(
[Im|R⃗],v, αq,

α′

2α

)
→ c ∈ Zm(ℓ+1)

q ,

where v = v′ + z. Then, the challenge ciphertext is set as in Eq.(8). We show in Lemma 8
that assuming LWEn,m+1,q,χ is hard, we have

|Pr[S2]− Pr[S3]| = negl(n).

Furthermore, since v is uniformly random over Zq and independent of the other values, the
term in the challenge ciphertext c = v +Mb⌊q/2⌉ that conveys the information on the message is
distributed independently from the value of Mb. Therefore, we have

Pr[S3] = 1/2.

Combining everything together, we have∣∣∣∣Pr[S0]−
1

2

∣∣∣∣ =
∣∣∣∣∣

2∑
i=0

(Pr[Si]− Pr[Si+1]) + Pr[S3]−
1

2

∣∣∣∣∣
≤

2∑
i=0

|Pr[Si]− Pr[Si+1]|+
∣∣∣∣Pr[S3]−

1

2

∣∣∣∣ ≤ negl(n).

Therefore, the probability thatA wins Game0 is negligible. Now, to complete the proof of Theorem
4, it remains to prove the following Lemma 8.

Lemma 8. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[S2]− Pr[S3]| ≤ Adv
LWEn,m+1,q,χ

B .

In particular, under the LWEn,m+1,q,χ assumption, we have |Pr[S2]− Pr[S3]| = negl(n).

Proof. Suppose there exists an adversary A with non-negligible advantage in distinguishing be-
tween Game2 and Game3 that outputs a value coin ∈ {0, 1}, where coin = 1 in case A decides its
interacting with a Game2 challenger. We use A to construct an LWE algorithm B as follows.

Instance. B is given {ai, vi}mi=0 ∈
(
Zn
q ×Zq

)m+1
as the problem instance of LWEn,m+1,q,χ, where

recall that χ = DZ,αq. We can assume without loss of generality that vi = v′i + zi for zi ← DZ,αq
and restate the LWE problem so that B’s task is now to distinguish whether v′i = a⊤i s for some
s ∈ Zn

q or v′i ← Zq for i ∈ [0,m]. We note this subtle change from the standard LWE problem is
only a syntactical change made for the convenience of the proof.

Setup. To construct the master public key MPK, B first sets the random vector u as a0, and
assembles the random matrix A ∈ Zn×m

q from the remaining LWE samples {ai}mi=1 by letting
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the i-th column be the vector ai. It also samples ℓ random matrices Ri ← (DZm,σ)
m and sets

Bi = ARi − x∗iG mod q for i ∈ [ℓ]. Finally, it returns MPK = (A,B1, · · · ,Bℓ,u) to A.
Phase 1 and Phase 2. The key extraction queries made by A are answered as in Game1 (which
is equivalent to both Game2 and Game3), using the Ri’s created during Setup.

Challenge Query. When A makes the challenge query for the challenge attribute vector x⃗∗ and
challenge messages M0,M1, B sets the challenge ciphertext C∗ as in Eq.(8) and returns C∗ to A.
Guess. At last, A outputs its guess coin. Then, B outputs 1 if coin = 1 and 0 otherwise.

Analysis. It can be seen that B perfectly simulates the view of A in Game2 if {ai, vi}mi=0 are
valid LWE samples (i.e., v′i = a⊤i s) and Game3 otherwise (i.e., v′i ← Zq). We therefore conclude

that Adv
LWEn,m+1,q,χ

B = |Pr[S2]− Pr[S3]| as desired.

3.4 Multi-bit Variant

Here, we explain how to extend our scheme to a multi-bit variant without increasing much
the size of the master public keys, secret keys, and ciphertexts following the techniques of
[PVW08, ABB10, Yam16]. To modify the scheme to deal with message space of length ℓM ,
we replace u ∈ Zn

q in MPK with U ∈ Zn×ℓM
q . The component c in the ciphertext is replaced with

c = U⊤s+z+M⌈q/2⌉ where z← DZℓM ,αq andM ∈ {0, 1}ℓM is the message to be encrypted. When

decrypting the message, one samples a matrix E ∈ Z2m×ℓM such that [A|ARy⃗ + ⟨x⃗, y⃗⟩G]E = U,
which is possible given sky⃗ by running SampleRight in a column wise manner. We can prove
security for the multi-bit variant from LWEn,m+ℓM ,q,χ by naturally extending the proof of The-
orem 4. We note that the same parameters as in the single-bit variant work for the multi-bit
variant. By this change, the sizes of the master public keys, ciphertexts, and private keys become
Õ((n2ℓ + nℓM ) log q), Õ((n + ℓ + ℓM ) log q), and Õ(n2 log q) from Õ(n2ℓ log q), Õ((n + ℓ) log q),
and Õ(n2 log q), respectively. The sizes of the master public keys and ciphertexts will be asymp-
totically the same as long as ℓM = Õ(n). To deal with longer messages, we employ a KEM-DEM
approach as suggested in [Yam16]. Namely, we encrypt a random ephemeral key of sufficient
length and then encrypt the message by using the ephemeral key.

4 Constructions from Lattices with Inner Product over Zp

In this section, we construct a stateful NIPE scheme with inner product space Zp for p = p(n) a
prime, where the predicate and attribute spaces are Zℓ

p.

Overview. We give a more detailed overview on the intuition given in the introduction. First,
we need the state to keep track of what kind of predicate vectors y⃗ we gave out secret keys
to. Unlike in the NIPE construction of Sec. 3, for our NIPE scheme with predicate space Zp,
the linear dependency of the predicate vectors (over Zp) and the secret keys (over Z) are no
longer consistent. Namely, when an adversary queries for linearly dependent predicate vectors
over Zp, the corresponding secret keys may no longer be linearly dependent over Z. For our
particular construction, when an adversary obtains secret keys to a linearly independent predicate
vectors over Z, the scheme leads to a complete break in security. Therefore, we need to maintain
information on the linear span of the predicate vectors (over Zp and Z) that it has generated
secret keys to, and create a secret key for a new predicate vector y⃗ as a Z-linear combination of
the previously generated secret keys if y⃗ lies in the Zp-linear span maintained in the state.
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Here, we also maintain our state in a unique way, which allows us to base security of our
scheme on a weaker polynomial LWE assumption. As already mentioned, the state maintains the
information of the linear span of the predicate vectors that it has generated secret keys to. In
our scheme, this is expressed by a list of tuples of the form (⃗h(i), h⃗(i), sk

h⃗(i)) ∈ Zℓ
p × Zℓ × Zm×m,

where i ∈ list ⊆ [ℓ]. Informally, list indicates the distinctive indices that specifies the linear span
of the so far queried predicate vectors, and |list| is the dimension of the linear span. Furthermore,
h⃗(i) ∈ Zℓ

p are vectors specifying the linear span of the queried predicate vectors, h⃗(i) are vectors

in Zℓ that is in a sense encodings of h⃗(i) that maintain linear dependency over Z, and sk
h⃗(i) are

the secret keys corresponding to the predicate vector h⃗(i). When queried a new predicate vector
y⃗, the algorithm first checks if it lies in the Zp-linear span of {h⃗(i)}i∈list. If so, (informally) it
computes secret keys as a Z-linear combination of {sk

h⃗(i)}i∈list. If not, it processes y⃗ into a new

vector h⃗(j) ∈ Zℓ
p that does not lie in the Zp-linear span of {h⃗(i)}i∈list and adds j to list. Here, in

order for us to base security on an LWE assumption with polynomial approximation factor, we
need to process y⃗ in such a way that the matrix with columns {h⃗(i)}i∈list interpreted as vectors
in Zℓ has a small singular value. At a high level, this can be achieved by keeping the diagonal
elements small, which we can do since we can store any factor of h⃗(i) ∈ Zℓ

p without altering the

Zp-linear span. Here, the crucial observation is that the Zp-linear dependency of {h⃗(i)}i∈list and
the size of the singular values of {h⃗(i)}i∈list interpreted as a matrix over Z are (almost completely)
independent with each other.

Construction. Let q = pd for some positive integer d ≥ 3 and let m(n), σ(n), α(n), α′(n), s(n)
be parameters that are specified later. Here, we assume that the message space is {0, 1}. We can
easily extend the scheme to the multi-bit variant similarly to Sec. 3.4.

Setup(1n, 1ℓ): On input 1n, 1ℓ, it samples a random matrix A← Zn×m
q , a random vector u← Zn

q ,

random matrices Ri ←
(
DZm,σ

)m
for i ∈ [ℓ] and sets Bi = ARi mod q. Furthermore, it

initializes a state st that inculdes an empty list list ⊆ [ℓ]. Finally, it outputs

MPK =
(
A, {Bi}i∈[ℓ],u

)
and MSK =

(
st, {Ri}i∈[ℓ]

)
.

KeyGen (MPK,MSK, y⃗ ∈ Zℓ
p, st): Given a predicate vector y⃗ ∈ Zℓ

p and an internal state st, it
computes the secret key sky⃗ as follows. At any point of the execution, the internal state

st contains a list of indices list ⊆ [ℓ] and at most ℓ tuples of the form (⃗h(i), h⃗(i), sk
h⃗(i)) ∈

Zℓ
p × Zℓ × Zm×m, where the vectors {h⃗(i)}j∈list form a basis of the Zp-linear span of the

predicate vectors which the key extraction queries has been made so far.

If y⃗ ∈ Zℓ
p is linearly independent modulo p from all the {h⃗(j)}j∈list in the state st, it

first runs the following procedure. By construction, for all j ∈ list, we will have (j =

argmini∈[ℓ]{h
(j)
i ̸= 0}) ∧ (h

(j)
j = 1), i.e., the smallest index for which the entry of h⃗(j) is

non-zero is j, and at that index it holds that h
(j)
j = 1. It sets h⃗ = y⃗, and starting with the

smallest index j ∈ list, it iterates through list in ascending order by updating h⃗← h⃗−hj ·h⃗(j)

mod p so that the updated h⃗ satisfies hj = 0 mod p, where hj denotes the j-th element

of h⃗. After it runs through all the element in list, it finds the smallest index j′ such that
h⃗j′ ̸= 0. This always exists since y⃗ is linearly independent modulo p from {h⃗(j)}j∈list. Then,
it updates h⃗ once more by h⃗← (1/hj′) · h⃗ mod p and sets h⃗(j

′) = h⃗ ∈ Zℓ
p. It can be checked

that (j′ = argmini∈[ℓ]{h
(j′)
i ̸= 0}) ∧ (h

(j′)
j′ = 1). Finally, it sets h⃗(j

′) = h⃗(j
′), interpreted as a
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vector in Zℓ, and sets sk
h⃗(j′) as

R
h⃗(j′) =

ℓ∑
i=1

h
(j′)
i Ri ∈ Zm×m, (9)

where h
(j′)
i is the i-th entry of h⃗(j

′). It then adds j′ to list and the tuple (⃗h(j
′), h⃗(j

′), sk
h⃗(j′))

to st.6 Note that after this procedure, the predicate vector y⃗ is linearly dependent modulo
p with the vectors {h⃗(j)}j∈list in the state st. Furthermore, when ℓ linearly independent

queries has been made, we have list = [ℓ] and the set of vectors {h⃗(j)}j∈[ℓ] forms a lower
triangular matrix with ones along the diagonal.

Finally, to construct the secret key for y⃗, it sets y⃗ =
∑

j∈list λj h⃗
(j) mod p for some λj ’s

in Zp and sets y⃗ =
∑

j∈list λj h⃗
(j) ∈ Zℓ where here λj is viewed as an element over Z. Finally,

it sets sky⃗ as

Ry⃗ =

ℓ∑
i=1

yiRi ∈ Zm×m,

where yi is the i-th entry of y⃗, and returns the tuple (⃗y, sky⃗) ∈ Zℓ×Zm×m as the secret key.

Enc(MPK, x⃗ ∈ Zℓ
p,M): To encrypt a message M ∈ {0, 1} for an attribute x⃗ = (x1, · · · , xℓ) ∈ Zℓ

p,
it samples s← Zn

q , z0, zi ← DZm,α′q for i ∈ [ℓ], and computes
c = pd−1 ·

(
u⊤s+M⌊p/2⌉

)
,

c0 = A⊤s+ z0,

ci = (Bi + pd−1 · xiG)⊤s+ zi, (i ∈ [ℓ]),

Then, it returns the ciphertext C = (c, c0, (ci)i∈[ℓ]) ∈ Zq × (Zm
q )ℓ+1 with its corresponding

attribute x⃗.

Dec(MPK, (y⃗, y⃗, sky⃗), (x⃗, C)): To decrypt a ciphertext C = (c, c0, (ci)i∈[ℓ]) with an associating

attribute x⃗ ∈ Zℓ
p, it first computes

cy⃗ =

ℓ∑
i=1

yici mod q ∈ Zm
q ,

where yi is the i-th entry of y⃗. Next, it samples a short vector e ∈ Z2m by running
SampleSkewed(A, sky⃗ = Ry⃗, ⟨x⃗, y⃗⟩, pd−1u,TG). Then, it computes t = c− e⊤[c⊤0 |c⊤y⃗ ]

⊤ ∈ Zq

Finally, it returns 1 if |t− ⌈q/2⌉| < ⌈q/4⌉ and 0 otherwise.

6 Although h⃗(j′) ∈ Zℓ
p and h⃗(j

′) ∈ Zℓ are in some sense identical, we intentionally write it redundantly in this

form for consistency with the other predicate vectors y⃗, i.e., (⃗h(j
′), sk

h⃗(j′)) acts as a valid secret key for the predicate

vector h⃗(j′).
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4.1 Correctness and Parameter Selection

The following lemma guarantees correctness of the scheme.

Lemma 9 (correctness). Assume
(
αq + ℓp2σmα′q

)
· ω(
√
log n) < q/5 holds with overwhelming

probability. Then the above scheme has negligible decryption error.

Proof. To establish correctness of decryption, we only need to consider the case ⟨x⃗, y⃗⟩ ̸= 0 ∈ Zp.
First, notice that

cy⃗ =
ℓ∑

i=1

yici =
ℓ∑

i=1

yi

(
(Bi + pd−1 · xiG)⊤s+ zi

)

=

(
A

( ℓ∑
i=1

yiRi

)
︸ ︷︷ ︸
=Ry⃗ (=sky⃗)

+pd−1 · ⟨x⃗, y⃗⟩G
)⊤

s+

ℓ∑
i=1

yizi︸ ︷︷ ︸
:=z′ (noise)

=

(
ARy⃗ + pd−1 · ⟨x⃗, y⃗⟩G

)⊤
s+ z′ mod q, (10)

where we set z′ =
∑ℓ

i=1 yizi.

Next, we show that pd−1 · ⟨x⃗, y⃗⟩ = pd−1 · ⟨x⃗, y⃗⟩ mod q. Recall that y⃗ =
∑

j∈list h⃗
(j) mod p

and y⃗ =
∑

j∈list λj h⃗
(j) for some λj ’s in Zp (or view λj as an element in Z for the latter equality),

where {h⃗(j)}j∈list are the vectors stored in the state st at the time of constructing the secret

key for y⃗ and h⃗(j) = h⃗(j) over Z. Therefore, we have ⟨x⃗, y⃗⟩ = ⟨x⃗, y⃗⟩ mod p, which implies
pd−1 · ⟨x⃗, y⃗⟩ = pd−1 · ⟨x⃗, y⃗⟩ mod q. Hence, Eq.(10) is equivalent to

cy⃗ =

(
ARy⃗ + pd−1 · ⟨x⃗, y⃗⟩G

)⊤
s+ z′ ∈ Zm

q .

Observe that since each rows of Ri are independent, each row of R⃗y⃗ are distributed according
to DZm,∥⃗y⊤∥σ from the linear structure of subgaussian random variables. Therefore,

s1(R⃗y⃗) = s1

( ℓ∑
i=1

yiRi

)
≤ C ·

√
ℓpσ ·

√
m (11)

where, the inequality follows from Lemma 2 and the fact that y⃗ ∈ Zℓ
p.

Since p is a prime, q = pd and ⟨x⃗, y⃗⟩ ∈ Zp\{0}, we have that ⟨x⃗, y⃗⟩ is invertible in Zq.
Therefore, algorithm SampleSkewed works as specified, i.e., it outputs a short vector e ∈ Z2m

such that [A|ARy⃗ + pd−1 · ⟨x⃗, y⃗⟩G]e = pd−1 · u mod q. Hence,

e⊤
[
c0
cy⃗

]
= e⊤[A|ARy⃗ + pd−1 · ⟨x⃗, y⃗⟩G]⊤s+ e⊤[z⊤0 |z′⊤]⊤ = pd−1 · u⊤s+ z′′ ∈ Zq,
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where we set z′′ = e⊤[z⊤0 |z′⊤]⊤. Then, we have w = M · pd−1⌊p/2⌉+ z − z′′. Finally,

|z − z′′| ≤ |z|+ |e⊤[z⊤0 |z′⊤]⊤|
≤ |z|+ ∥e⊤z0∥+ ∥e⊤z′∥ (12)

= |z|+ ∥e⊤z0∥+ ∥
ℓ∑

i=1

yi · e⊤zi∥

≤
(
αq + p · s1(R⃗y⃗)

√
mℓα′q

)
ω(

√
log n) (13)

≤
(
αq + ℓp2σmα′q

)
ω(

√
log n) (14)

where Eq.(12) follows from the sub-additivity of the square root function
√
·, Eq.(13) follows

from the linear structure of subgaussian random variables, Lemma 3, Lemma 5 and the fact that
y⃗ ∈ Zℓ

p, Eq.(14) follows from Eq.(11). Note that we hide the constant factors inside ω(·).
By assumption this is smaller than q/5 with overwhelming probability. Hence, from the fact

that q = pd, the error probability of the Dec algorithm is negligible.

Parameter Selection. To satisfy the correctness requirement and make the security proof follow
through, we need the following:

− the error term is less than q/5 with overwhelming probability (i.e.,
(
αq+ℓp2σmα′q

)
ω(
√
logn) <

q/5. See Lemma 7),

− the gadget matrix G is well defined (i.e., m ≥ n⌈log q⌉. See Lemma 5.),

− σ is sufficiently large so thatRi’s are samplable and Theorem 1 is applicable during the security
proof (i.e., σ > ω(

√
log n) and σ > (p+ 1)ℓ+2 · ω(

√
logm). See Lemma 5 and Lemma 10),

− the ReRand algorithm in the security proof works as specified (i.e., α′ > 2α(s1(R⃗) + 1), αq >
ω(
√
logmℓ) where R⃗ ∈ Zm×m(ℓ+1) is the concatenation of the Ri’s. See Lemma 4),

− the worst case to average case reduction works (i.e., αq > 2
√
n). (See Theorem 2 and Theorem

3).

Recall that p(n) is the size of the predicate/attribute space and ℓ(n) is the dimension of the
attribute/predicate vectors and the modulus size q is pd for d := d(n). To satisfy the above
requirements, we propose a candidate parameter selections as follows:

m = n⌈log q⌉, q = pd, pd−2(ℓ+1) ≥ ℓ1.5m2ω(log n)2.5,

α = p−2(ℓ+1) · (ℓmω(log n))−1.5, α′ = p−(ℓ+2) · (ℓmω(log n))−1, σ = pℓ · ω(
√

log n).

Therefore, to base the construction on the LWE problem with polynomial modulus q, for example
we can set ℓ, d = O(log n/ log log n) and p = O(log n) or set ℓ, d = O(log n) and p as some positive
constant.

4.2 Security Proof

Theorem 5. The above NIPE scheme with inner product space Zp is selectively secure assuming
FE.LWEn,m+1,q,χ is hard, where χ = DZ,αq
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Proof. Let A be a PPT adversary that breaks the selective security of the NIPE scheme. Here,
assume that A makes key extraction queries in a way that at the end of the game the state st
contains ℓ − 1 linearly independent (modulo p) predicate vectors {h⃗(j)}j∈list where |list| = ℓ − 1
(which are all orthogonal modulo p to the challenge attribute vector x⃗∗). Note that this assumption
can be made without loss of generality, since A may simply ignore unnecessary additional secret
keys, and A can not obtain no more than ℓ− 1 linearly independent (modulo p) vectors without
violating the ⟨x⃗∗, y⃗⟩ = 0 mod p condition. The proof proceeds with a sequence of games that
starts with the real game and ends with a game in which A has negligible advantage. For each
game Gamei denote Si the event that A wins the game.

Game0 : This is the real security game. Namely, adversary A declares its challenge attribute
vector x⃗∗ ∈ Zℓ

p at the beginning of the game. Note that any predicate vector y⃗ ∈ Zℓ
p queried by

A to the challenger as a key extraction query must satisfy ⟨x⃗∗, y⃗⟩ = 0 mod p if A is a legitimate
adversary.

Game1 : In this game, we change the way the public matrices B1, · · · ,Bℓ are created. On receiving
the challenge attribute vector x⃗∗ = (x∗1, · · · , x∗ℓ) ∈ Zℓ

p from adversary A at the beginning of the

game, the challenger samples random matrices Ri ←
(
DZm,σ

)m
and sets Bi = ARi − pd−1 · x∗iG

mod q for i ∈ [ℓ]. Otherwise, the behavior of the challenger is identical as in Game0. Namely, the
challenger remains to answer the key extraction query for a predicate vector y⃗ ∈ Zℓ

p and creates
the challenge ciphertext as in Game0.

Before moving on to Game2, we show that Game0 is statistically indistinguishable from Game1.
In particular, we prove that the view of the adversary in both games is statistically close. In doing
so, we first show that every secret keys are Z-linear combinations of the secret keys stored in the
state st. Namely, let {h⃗(j)}j∈list denote the vectors stored in the state st on time of constructing
the secret key for the queried predicate vector y⃗, where list ⊆ [ℓ] is the index set contained in st.
Then, we want to show that for a predicate vector y⃗ of the form

∑
j∈list λj h⃗

(j) mod p for some λj ’s
in Zp, the corresponding secret key sky⃗ (= Ry⃗) is a Z-linear combination of {sk

h⃗(j) = R
h⃗(j)}j∈list.

To see this let the tuples stored in st be (⃗h(j), h⃗(j), sk
h⃗(j) = R

h⃗(j)) ∈ Zℓ
p × Zℓ × Zm×m for j ∈ list.

Then, we have the following:

Ry⃗ =
ℓ∑

i=1

yiRi
(i)
=

ℓ∑
i=1

( ∑
j∈list

λjh
(j)
i

)
Ri =

∑
j∈list

λj

( ℓ∑
i=1

h
(j)
i Ri

)
(ii)
=

∑
j∈list

λjRh⃗(j) ∈ Zm×m,

where h
(j)
i is the i-th entry of h⃗(j). Eq. (i) follows from the definition of yi and Eq. (ii) follows

from Eq. (9)
Therefore the distribution of the secret keys obtained by adversary A is completely determined

by the distribution of the secret keys {sk
h⃗(j) = R

h⃗(j)}j∈list stored in the state st at the end of the
game. Therefore, the view of the adversary in both games is determined by{

MPK =
{
A, {Bi}i∈[ℓ],u

}
, {R

h⃗(j)}j∈list, C∗
}
,

where C∗ ← Enc(MPK, x⃗∗,Mb) is the challenge ciphertext, b is the random bit chosen by the
challenger and |list| = ℓ − 1 by assumption. Observe that in both games A,u are distributed
identically and the challenge ciphertext C∗ is created using only the terms in MPK (with some
extra randomness that are identical in both games). Therefore, the differences in the views of the
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adversary in Game0 and Game1 is solely determined by the difference in the distribution of{
{Bi}i∈[ℓ], {R

h⃗(j)}j∈list
}
. (15)

Hence, we aim at proving that the view of Eq.(15) in both games are statistically close to the
adversary. More specifically, we compare the following probability of each game:

Pr

[{
{Bi}i∈[ℓ], {Rh⃗(j)}j∈list

}
=

{
{B̂i}i∈[ℓ], {R̂h⃗(j)}j∈list

}]
=Pr

[
{R

h⃗(j)}j∈list = {R̂h⃗(j)}j∈list
∣∣∣ {Bi}i∈[ℓ] = {B̂i}i∈[ℓ]︸ ︷︷ ︸

(A)

]
· Pr

[
{Bi}i∈[ℓ] = {B̂i}i∈[ℓ]

]
︸ ︷︷ ︸

(B)

,

where the probability is taken over the randomness of {Ri}i∈[ℓ] during Setup; recall each Ri is

distributed according to
(
DZm,σ

)m
in both games. Note that in the above we abuse the notation

for sets by implicitly assigning an order over the elements, i.e., {X,Y} ̸= {Y,X}.
We first prove that the value of (B) is negligibly close in both games. Observe that for all

i ∈ [ℓ], ARi is distributed uniformly at random over Zn×m
q with all but negligible probability

where Ri ←
(
DZm,σ

)m
, which follows from Lemma 1 and our parameter selections. Concretely,

since Bi = ARi and Bi = ARi − pd−1 · x∗iG for Game0 and Game1 respectively, we have that in

both games {Bi}i∈[ℓ] is distributed statistically close to uniform over
(
Zn×m
q

)ℓ
.

We now proceed to prove that the value of (A) is negligibly close in both games. We
first analyze the case for Game0. Let B⃗view ∈ Zn×mℓ

q and R⃗ ∈ Zm×mℓ denote the matrices

[B1| · · · |Bℓ] and [R1| · · · |Rℓ], respectively. Then, we have B⃗view = AR⃗ mod q. Furthermore,
let T⃗ = [T1| · · · |Tℓ] ∈ Zm×mℓ be an arbitrary solution to B⃗view = AT⃗ mod q. Then, due to
Lemma 1 and the conditions on {B̂i}i∈[ℓ] = {ARi}i∈[ℓ], the conditional distribution of R⃗ is given
by D

Λ⊥(A)mℓ+T⃗,σ
. Now, we are ready to determine the conditional distribution of the secret

keys {R
h⃗(j)}j∈list obtained by the adversary A. Here, let j∗ ∈ [ℓ] denote the index [ℓ]\list where

|list| = ℓ− 1, and observe the following equation:

[R
h⃗(1) |Rh⃗(2) | · · · |Rh⃗(ℓ−1)︸ ︷︷ ︸
:=R⃗sk ∈Zm×m(ℓ−1)

] = [R1|R2| · · · |Rℓ]︸ ︷︷ ︸
=R⃗ ∈Zm×mℓ


h
(1)
1 Im

h
(1)
2 Im
...

h
(1)
ℓ Im

· · ·
· · ·

· · ·

h
(j∗−1)
1 Im

h
(j∗−1)
2 Im

...

h
(j∗−1)
ℓ Im

h
(j∗+1)
1 Im

h
(j∗+1)
2 Im

...

h
(j∗+1)
ℓ Im

· · ·
· · ·

· · ·

h
(ℓ−1)
1 Im

h
(ℓ−1)
2 Im

...

h
(ℓ−1)
ℓ Im


︸ ︷︷ ︸

:=M ∈Zmℓ×m(ℓ−1)

,

(16)

where h
(j)
k is the k-th entry of h⃗(j) that is associated with the j-th vector h⃗(j) in st for j ∈ list. We

denote the left and right hand matrices as R⃗sk ∈ Zm×m(ℓ−1) and M ∈ Zmℓ×m(ℓ−1) respectively.
We show in Lemma 10 that there exists a matrix W ∈ Zmℓ×m such that W⊤M = 0 over Z
with a sufficiently small singular value. Therefore, for our parameter selection and the fact that
R⃗ is distributed according to D

Λ⊥(A)mℓ+T⃗,σ
we can apply Theorem 1. Namely, the distribution

of R⃗sk = R⃗M is statistically close to a distribution parameterized by Λ⊥(A), σ,M and (T⃗M
mod Λ⊥(A)mℓM). We postpone the proof of Lemma 10 to the end so as not to interrupt the
proof.

23



We now show that this holds in case for Game1 as well. We begin by determining the condi-
tional distribution of R⃗ given {Bi}i∈[ℓ] = {ARi − pd−1 · x∗iG}i∈[ℓ]. Let us denote G⃗x⃗∗ ∈ Zn×mℓ

q

as the matrix pd−1 · [x∗1G|x∗2G| · · · |x∗ℓG]. Then, B⃗view + G⃗x⃗∗ = AR⃗ mod q. Next, let us chose

an arbitrary matrix E ∈ Zm×m such that G = AE mod q, and define E⃗x⃗∗ ∈ Zm×mℓ as the
matrix pd−1 · [x∗1E|x∗2E| · · · |x∗ℓE]. Then, we have G⃗x⃗∗ = AE⃗x⃗∗ mod q. Combining this with the

T⃗ we have defined above in Game0, we obtain B⃗view + G⃗x⃗∗ = A(T⃗ + E⃗x⃗∗) mod q. Therefore,
by Lemma 1, the conditional distribution of R⃗ given {Bi}i∈[ℓ] is D

Λ⊥(A)mℓ+T⃗+E⃗x⃗∗ ,σ
. Next, we

determine the conditional distribution of the secret keys {R
h⃗(j)}j∈list obtained by the adversary

A. Observe that equation Eq.(16) holds for Game1 as well, since we do not change the way we
answer the key extraction query. Hence, following the same argument as above, by Theorem 1 and
the fact that R⃗ is distributed according to D

Λ⊥(A)mℓ+T⃗+E⃗x⃗∗ ,σ
, we have that the distribution of

R⃗sk = R⃗M is statistically close to a distribution parameterized by Λ⊥(A), σ,M and (T⃗M+E⃗x⃗∗M
mod Λ⊥(A)mℓM).

Finally, we prove that E⃗x⃗∗M ∈ Λ⊥(A)mℓM to prove equivalence of the distributions between
Game0 and Game1. Observe that

E⃗x⃗∗M = pd−1 ·E · [x∗1Im|x∗2Im| · · · |x∗ℓIm] ·


h
(1)
1 Im

h
(1)
2 Im
...

h
(1)
ℓ Im

· · ·
· · ·

· · ·

h
(j∗−1)
1 Im

h
(j∗−1)
2 Im

...

h
(j∗−1)
ℓ Im

h
(j∗+1)
1 Im

h
(j∗+1)
2 Im

...

h
(j∗+1)
ℓ Im

· · ·
· · ·

· · ·

h
(ℓ−1)
1 Im

h
(ℓ−1)
2 Im

...

h
(ℓ−1)
ℓ Im

 ,

= pd−1 ·E · [⟨x⃗∗, h⃗(1)⟩Im| · · · |⟨x⃗∗, h⃗(j
∗−1)⟩Im|⟨x⃗∗, h⃗(j

∗+1)⟩Im| · · · |⟨x⃗∗, h⃗(ℓ−1)⟩Im]

= q ·E · [n1Im| · · · |nj∗−1Im|nj∗+1Im| · · · |nℓ−1Im] ∈ qZm×m(ℓ−1),

where we set nj = ⟨x⃗∗, h⃗(j)⟩/p ∈ N for j ∈ list. Note that this is well-defined since ⟨x⃗∗, h⃗(j)⟩ =
⟨x⃗∗, h⃗(j)⟩ = 0 mod p (See Sec. 4.1) and q = pd. Therefore, to prove E⃗x⃗∗M ∈ Λ⊥(A)mℓM, it suf-
fices to prove that qZm×m(ℓ−1) ⊂ Λ⊥(A)mℓM. Namely, we prove that for every Z ∈ qZm×m(ℓ−1),
there exists a matrix V ∈ Λ⊥(A)mℓ ⊂ Zm×mℓ such that VM = Z (over Z). Here, recall that for

the vectors {h⃗(j)}j∈list in the state st, we had (j = argmini∈[ℓ]{h
(j)
i ̸= 0})∧(h(j)j = 1). Namely, the

smallest index with a non-zero entry for h⃗(j) is j, and at that index we have h
(j)
j = 1. Therefore,

denoting H ∈ Zℓ×(ℓ−1) as the matrix whose columns are the vectors in {h(j)}j∈list, we can prop-
erly rearrange the columns and rows of H, or more concretely there exists a permutation matrix
P ∈ {0, 1}ℓ×ℓ,Q ∈ {0, 1}(ℓ−1)×(ℓ−1), such that H gets transformed into the following matrix:

PHQ =



⋆ · · · ⋆ ⋆

1 0 · · · · · · 0

⋆ 1
. . .

...
... ⋆

. . .
. . .

...
...

. . . 1 0
⋆ ⋆ · · · ⋆ 1


=

[
a⊤

U

]
∈ Zℓ×(ℓ−1), (17)

where ⋆ denotes an arbitrary element in Z, a ∈ Zℓ−1 is some vector and U ∈ Z(ℓ−1)×(ℓ−1) is
unimodular. Recall that permutation matrices are orthogonal matrices: Q−1 = Q⊤, and that the
inverse of a unitary matrix is also unitary: U−1 ∈ Z(ℓ−1)×(ℓ−1). We now proceed to prove that
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V = [0m×m | Z·(QU−1⊗Im)]·(P⊗Im) ∈ Zm×mℓ satisfies the above condition, i.e., V ∈ Λ⊥(A)mℓ

and VM = Z (over Z). First, it is easy to check that V ∈ Λ⊥(A)mℓ, since Z ∈ qZm×m(ℓ−1) and
qZm ⊂ Λ⊥(A). Then, recalling that M = H⊗ Im, we have

VM =
(
[0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)

)
· (H⊗ Im)

=
(
[0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)

)
·
(
P⊤

[
a⊤

U

]
Q⊤

)
⊗ Im (18)

= [0m×m | Z · (QU−1 ⊗ Im)](P⊗ Im)(P⊤ ⊗ Im)

([
a⊤Q⊤

UQ⊤

]
⊗ Im

)
(19)

= [0m×m | Z · (QU−1 ⊗ Im)]

[
a⊤Q⊤ ⊗ Im
UQ⊤ ⊗ Im

]
(20)

= Z, (21)

where Eq. (18) follows from Eq. (17), Eq. (19) follows from the fact that (AB⊗Im) = (A⊗Im)(B⊗
Im) and Eq. (20),(21) follows from the fact that P,Q are orthogonal matrices. Therefore, we have
E⃗x⃗∗M ∈ Λ⊥(A)mℓM.

Hence, we conclude that the value of (A), i.e., the conditional probability of R⃗sk given {Bi}i∈[ℓ]
in Game0 and Game1 are statistically close. Therefore, we have

|Pr[S0]− Pr[S1]| = negl(n).

Game2 : In this game, we change the way the challenge ciphertext is created. Recall that in the
previous game, the challenge ciphertext was created as

c = pd−1 ·
(
u⊤s+Mb⌊p/2⌉

)
, c0 = A⊤s+ z0, (ci = (ARi)

⊤s+ zi)i∈[ℓ] (22)

where s ← Zn
q , z0, zi ← DZm,α′q for i ∈ [ℓ], and b ← {0, 1}. Note the term (ci)i∈[ℓ] follows from

the fact that in Game1 we modified Bi so that Bi = ARi − pd−1 · x∗iG, and M0,M1 are the two
messages sent by the adversary A. To create the challenge ciphertext in Game2, the challenger
first picks s← Zn

q and z← DZm,αq and computes v = A⊤s+ z ∈ Zm
q . It then runs the algorithm

ReRand
(
[Im|R⃗],v, αq,

α′

2α

)
→ c ∈ Zm(ℓ+1)

q

from Lemma 4, and parses c into ℓ+ 1 vectors (ci)i∈[ℓ+1] in Zm
q such that c⊤ = [c⊤0 |c⊤1 | · · · |c⊤ℓ ] ∈

Zm(ℓ+1)
q . Finally, it picks b← {0, 1} and sets the challenge ciphertext as

C∗ =
(
c = v +Mb · pd−1⌊p/2⌉, c0, (ci)i∈[ℓ]

)
∈ Zq × Zm

q × (Zm
q )ℓ, (23)

where v = pd−1 · u⊤s.

We claim that this change alters the view of A only negligibly. First, observe c is distributed
identically as in Eq.(22). Next, observe that the input to ReRand is [Im|R⃗] ∈ Zm×m(ℓ+1) and
v = A⊤s+z ∈ Zm

q . Therefore, due to Lemma 4, for our choices of α and α′, the output of ReRand
is

c⊤ =
(
A⊤s

)⊤
[Im|R⃗] + z′⊤

= s⊤[A|AR⃗] + z′⊤ ∈ Zm(ℓ+1)
q ,

25



where the distribution of z′ is within statistical distance from z′ ← DZm(ℓ+1),α′q. By parsing c

appropriately as above, it can be seen that it is statistically close to
(
c, (ci)i∈[ℓ]

)
of Eq.(22). There-

fore, the challenge ciphertexts of Game1 and Game2 are statistically indistinguishable. Hence, we
have

|Pr[S1]− Pr[S2]| = negl(n).

Game3 : In this game, we further change the way the challenge ciphertext is created. To create
the challenge ciphertext, the challenger first samples v ← pd−1Z/qZ (i.e., {a | pd−1 · a, ∀a ∈ Zq}),
v′ ← Zm

q and z← DZm,αq, and runs

ReRand
(
[Im|R⃗],v, αq,

α′

2α

)
→ c ∈ Zm(ℓ+1)

q ,

where v = v′+z. Then, the challenge ciphertext is set as in Eq.(23). We show below in Lemma 11
that by assuming FE.LWEn,m+1,q,χ is hard, we have

|Pr[S2]− Pr[S3]| = negl(n).

Furthermore, since v is uniformly random over pd−1Z/qZ and independent of the other val-
ues, the term in the challenge ciphertext c = v + Mb · pd−1⌊p/2⌉ ∈ pd−1Z/qZ that conveys the
information on the message is distributed independently from the value of Mb. Therefore, we have

Pr[S3] = 1/2.

Combining everything together, we have∣∣∣∣Pr[S0]−
1

2

∣∣∣∣ =
∣∣∣∣∣

2∑
i=0

(Pr[Si]− Pr[Si+1]) + Pr[S3]−
1

2

∣∣∣∣∣
≤

2∑
i=0

|Pr[Si]− Pr[Si+1]|+
∣∣∣∣Pr[S3]−

1

2

∣∣∣∣ ≤ negl(n).

Therefore, the probability that A wins Game0 is negligible. Now, to complete the proof of Theo-
rem 4, it remains to prove the following two lemmas Lemma 10 and 11.

Lemma 10. There exits a full rank matrix W ∈ Zmℓ×m such that W⊤M = 0 (over Z) and√
s1(W⊤W) ≤ (p+ 1)ℓ+2, where M ∈ Zmℓ×m(ℓ−1) is the full rank matrix defined in Eq. (16).

Proof. Here, we use the matrices and vector P,Q,U,a defined in Eq. (17). First, let w ∈ Zℓ be a
non-zero vector such that w⊤PHQ = 0 (over Z). Then, we can set W = (P⊤w)⊗ Im ∈ Zmℓ×m.
It is easy to check that W is rank m and satisfies

W⊤M =
(
(P⊤w)⊗ Im

)⊤ ·M =
(
(w⊤P)⊗ Im

)
· (H⊗ Im) =

(
(w⊤PHQ) ·Q⊤)⊗ Im = 0,

where we have QQ⊤ = Iℓ−1 due to the fact that Q is a permutation matrix. Furthermore, by the
way we construct W, we have

W⊤W = (P⊤w ⊗ Im)⊤(P⊤w ⊗ Im) = w⊤w ⊗ Im = w⊤w · Im.
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Therefore s1(W
⊤W) = w⊤w. Hence, it suffices to prove that there exists w ∈ Zℓ such that

w⊤PHQ = 0 and ∥w∥ ≤ 3pℓ. Recalling Eq. (17), we have

(w⊤PHQ)⊤ =


a1 1 u1,1 · · · · · · u1,ℓ−1

a2 0 1 u2,2 · · · u2,ℓ−1
...

...
. . .

. . .
. . .

...

aℓ−2
...

. . . 1 uℓ−1,ℓ−1

aℓ−1 0 · · · · · · 0 1




w1

w2
...

wℓ−1

wℓ

 = 0 ∈ Zℓ−1, (24)

where ai, ui,k ∈ Z for i ∈ [ℓ − 1], k ∈ [i]. Furthermore, since P,Q are permutation matrices and
all elements of H were chosen from Zp (See the KeyGen algorithm), we have |ai|, |ui,k| < p. Now,
from Eq. (24), if we set w1 = 1 we can solve for the other {wi}ℓi=2 terms recursively as follows:

wℓ = −aℓ−1w1

wℓ−1 = −aℓ−2w1 − uℓ−1,ℓ−1wℓ−1
...

w2 = −a1w1 −
∑ℓ−1

i=1 u1,iwi+1

Since, w1 = 1 and |ai|, |ui,k| < p for all i ∈ [ℓ − 1], k ∈ [i], we have |wi| ≤
∑ℓ+1−i

t=1 p|wt| ≤
p(p+ 1)ℓ+1−i. Therefore, we have

w⊤w =
ℓ∑

i=1

w2
i ≤

ℓ∑
i=1

p2(p+ 1)2(ℓ+1−i) ≤ (p+ 1)2(ℓ+2).

Thus, we conclude that
√

s1(W⊤W) = ∥w∥ ≤ (p+ 1)ℓ+2.

Lemma 11. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[S2]− Pr[S3]| ≤ Adv
FE.LWEn,m+1,q,χ

B .

In particular, under the FE.LWEn,m+1,q,χ assumption, we have |Pr[S2]− Pr[S3]| = negl(n).

Proof. Suppose there exists an adversary A with non-negligible advantage in distinguishing be-
tween Game2 and Game3 that outputs a value coin ∈ {0, 1}, where coin = 1 in case A decides its
interacting with a Game2 challenger. We use A to construct an FE.LWE algorithm B as follows.

Instance. B is given {ai, vi}mi=0 ∈
(
Zn
q × Zq

)m+1
as the problem instance of FE.LWEn,m+1,q,χ,

where recall that χ = DZ,αq and the first term is errorless, i.e., v0 = a⊤0 s in case of a valid FE.LWE
sample. We can assume without loss of generality that vi = v′i + zi for zi ← DZ,αq (i ∈ [m]) and
restate the FE.LWE problem so that B’s task is now to distinguish whether v′i = a⊤i s for some
s ∈ Zn

q or v′i ← Zq for i ∈ [0,m]. We note this subtle change from the standard FE.LWE problem
is only a syntactical change made for the convenience of the proof.

Setup. To construct the master public key MPK, B first sets the random vector u as a0, and
assembles the random matrix A ∈ Zn×m

q from the remaining FE.LWE samples {ai}mi=1 by letting
the i-th column be the vector ai. It also samples ℓ random matrices Ri ← (DZm,σ)

m and sets
Bi = ARi − pd−1 · x∗iG mod q for i ∈ [ℓ]. Finally, it returns MPK = (A, {Bi}i∈ℓ,u) to A.
Phase 1 and Phase 2. The key extraction queries made by A are answered as in Game1 (which
is equivalent to both Game2 and Game3), using the Ri’s and R′

i’s created during Setup.
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Challenge Query. When A makes the challenge query for the challenge attribute vector x⃗∗ and
challenge messages M0,M1, B sets the challenge ciphertext C∗ as in Eq.(23) and returns C∗ to A.
Guess. At last, A outputs its guess coin. Then, B outputs 1 if coin = 1 and 0 otherwise.

Analysis. It can be seen that B perfectly simulates the view of A in Game2 if {ai, vi}mi=0 are valid
FE.LWE samples (i.e., v′i = a⊤i s) and Game3 otherwise (i.e., v′i ← Zq). We therefore conclude that

Adv
FE.LWEn,m+1,q,χ

B = |Pr[S2]− Pr[S3]| as desired.

5 A Generic Construction of NIPE from LinFE

In this section, we show a generic conversion from a functional encryption scheme for inner
products to a NIPE scheme. We note that the former primitive is a special case of the notion
of functional encryption schemes where only linear functions are available. Henceforth we call
this primitive as LinFE in the following. The idea for the conversion is drawn from the work of
Agrawal et al. [ABP+17], who constructed trace and revoke schemes from LinFE.

5.1 Definition of Functional Encryption for Inner Product

Syntax. Let Q and J denote the predicate space and attribute spaces, where the inner product
between elements (i.e., vectors) from Q and J are well-defined. Furthermore, let D denote the
space where the inner product is taken. A stateful functional encryption scheme for inner products
over D consists of the following four algorithms:

Setup(1λ, 1ℓ)→ (MPK,MSK, st): The setup algorithm takes as input a security parameter 1λ and
the length ℓ of the vectors in the predicate and an attribute spaces, and outputs a master
public key MPK, a master secret key MSK and an initial state st.

KeyGen(MPK,MSK, st, y⃗)→ (sky⃗, st): The key generation algorithm takes as input the master
public key MPK, the master secret key MSK, the state st and a predicate vector y⃗ ∈ Q. It
outputs a private key sky⃗ and a updated state st. We assume that y⃗ is implicitly included
in sky⃗.

Encrypt(MPK, x⃗)→ C: The encryption algorithm takes as input a master public key MPK and
attribute vector x⃗ ∈ J . It outputs a ciphertext C.

Decrypt(MPK, sky⃗, C)→ ⟨x⃗, y⃗⟩or ⊥: The decryption algorithm takes as input the master public
key MPK, a private key sky⃗, and a ciphertext C. It outputs ⟨x⃗, y⃗⟩ or ⊥, which means that
the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, ℓ ∈ N, and all x⃗ ∈ J , y⃗ ∈ Q,
we require

Pr[Dec(MPK, sky⃗,Enc(MPK, x⃗,M)) = ⟨x⃗, y⃗⟩] = 1− negl(λ)

holds, where the probability is taken over the randomness used in (MPK,MSK, st)← Setup(1λ, 1ℓ),
(sky⃗, st)← KeyGen(MPK,MSK, st, y⃗), and Enc(MPK, x⃗).

We also define a stateless LinFE scheme, where we do not require any state information in
the above algorithms.

Security. We define the security of a (stateful) LinFE scheme for inner product space D with
predicate space Q and attribute space J by the following game between a challenger and an
adversary A.
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- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ← Setup(1λ, 1ℓ) and
gives the public parameter MPK to A.
- Phase 1. A may adaptively make key-extraction queries. If A submits a predicate vector y⃗ ∈ Q
to the challenger, the challenger runs (sky⃗, st)← KeyGen(MPK,MSK, st, y⃗) and returns sky⃗ to A.
- Challenge Phase. At some point, A outputs messages x⃗∗0, x⃗

∗
1 on which it wishes to be chal-

lenged, with the restriction that ⟨x⃗∗0, y⃗⟩ = ⟨x⃗∗1, y⃗⟩ (over D) for all y⃗ queried during Phase 1. Then,
the challenger picks a random bit b ∈ {0, 1} and returns C∗ ← Enc(MPK, x⃗∗b) to A.
- Phase 2. After the challenge query, Amay continue to make key-extraction queries for predicate
vectors y⃗ ∈ Q, with the added restriction that ⟨x⃗∗0, y⃗⟩ = ⟨x⃗∗1, y⃗⟩ (over D).
- Guess. Finally, A outputs a guess b′ for b. The advantage of A is defined as

AdvLinFEA,D =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
We say that an LinFE scheme with inner product space D is adaptively secure, if the advantage
of any PPT A is negligible. Similarly, we define selective security for a stateful LinFE scheme
with inner product space D, by modifying the above game so that the adversary A is forced
to declare its challenge attribute vectors x⃗∗0, x⃗

∗
1 before Setup. Finally, we define an analogous

security notion for stateless LinFE schemes, where we do not require any state information during
the above game.

5.2 Generic Construction of NIPE from LinFE

Here, we show a generic construction of NIPE from LinFE. Specifically, we convert a LinFE
scheme with predicate space Q, attribute space J with inner product space D into an NIPE
scheme over D with predicate space P, attribute space I, and message spaceM. The conversion
is possible when the following properties are satisfied:

• We require P,Q, I,J ⊆ Dℓ andM⊆ D for some integral domain D.

• We also require { M · x⃗ | M ∈M, x⃗ ∈ I } ⊆ J and P = Q.

• Division can be efficiently performed over D. More specifically, we require that given α, β ∈
D, it is possible to efficiently compute γ ∈ D satisfying α = βγ if such γ exists.

We now show the construction. Note that the conversion works both for the stateless and state-
ful cases. Let (Setup,KeyGen,Enc,Dec) be the underlying LinFE scheme and (Setup′,KeyGen′,
Enc′,Dec′) be the resulting NIPE scheme.

Setup′(1λ, 1ℓ): It is the same as Setup(1λ, 1ℓ).

KeyGen′(MPK,MSK, y⃗ ∈ P, st): It is the same as KeyGen(MPK,MSK, y⃗ ∈ P, st).

Enc′(MPK, x⃗ ∈ I,M ∈M): To encrypt a message M ∈M for an attribute x⃗ = (x1, · · · , xℓ) ∈ I,
it runs C ← Enc(MPK,M · x⃗) and outputs C.

Dec′(MPK, (y⃗, sky⃗), (x⃗, C)): To decrypt a ciphertext C with an associating attribute x⃗ ∈ I using
a secret key sky⃗ with an associating predicate y⃗ ∈ P, it first computes z = Dec(MPK, sky⃗, C).
It then computes ⟨x⃗, y⃗⟩ and outputs ⊥ if ⟨x⃗, y⃗⟩ = 0 over D. Otherwise, it outputs z/⟨x⃗, y⃗⟩.
Note that the final step is possible because of the requirement on D.
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Correctness. Due to the requirements on the domains, we have M · x⃗ ⊆ J and y⃗ ∈ Q = P.
Therefore, by the correctness of the underlying LinFE scheme, we have z = ⟨M · x⃗, y⃗⟩ = M · ⟨x⃗, y⃗⟩
with overwhelming probability. Thus, the correctness of the resulting NIPE scheme follows.

Theorem 6. If the underlying LinFE scheme is adaptively secure, so is the above NIPE scheme.

Proof. Suppose there exists an adversary A against the NIPE scheme that has non-negligible
advantage. We use A to construct another adversary B against the underlying LinFE scheme as
follows.

- Setup. At the outset of the game, the challenger runs (MPK,MSK, st) ← Setup(1λ, 1ℓ) and
gives the public parameter MPK to B. B then passes MPK to A.
- Phase 1. When A makes a key-extraction query for a vector y⃗, B submits the same y⃗ to its
challenger and is given sky⃗. Then, it passes the same sky⃗ to A.
- Challenge Phase. When A outputs the messages (M0,M1) and the challenge attribute x⃗∗ on
which it wishes to be challenged, B submits (M0 · x⃗∗,M1 · x⃗∗) to its challenger and receives the
challenge ciphertext C∗. B then passes C∗ to A.
- Phase 2. It is the same as Phase 1.

- Guess. Finally, A outputs a guess b′. B outputs the same bit as its guess.

Analysis. We first show that B does not violate the restriction of the security game as long as
A does not. To see this, observe that

⟨M0 · x⃗∗, y⃗⟩ = M0 · ⟨x⃗∗, y⃗⟩ = 0 = M1 · ⟨x⃗∗, y⃗⟩ = ⟨M1 · x⃗∗, y⃗⟩

holds for all y that is queried during the game. Here, the second and the third equalities follow
from the restrictions on the queries posed on A. It is clear that B’s simulation for A is perfect
and B’s advantage is exactly the same as A. This concludes the proof of the theorem.

One may expect that the above proof works also in the selective setting (i.e., if we start from a
selectively secure LinFE, we obtain a selectively secure NIPE). However, interestingly we require
to modify the proof to work in the selective setting. In particular, in the selective setting, the
LinFE adversary B above has to declare its target (M0x⃗

∗,M1x⃗
∗) at the beginning of the game.

However, since the NIPE adversary A only declares x⃗∗ at the outset and decides (M0,M1) later in
the game, it is difficult for B to correctly decide its target. One way to circumvent this problem is
to restrict the message spaceM to be of polynomial size and change the proof so that B simply
guesses (M0,M1). The probability of B correctly guessing the values is noticeable due to the
restriction on the size of the message space, which will be enough for our purpose. The drawback
of the approach is that we can only encrypt short messages of logarithmic length. To encrypt a
longer message, one needs to run the encryption algorithm many times to encrypt each chunk of
the message. Formally, we have the following theorem.

Theorem 7. Let us assume that the size of the message spaceM is polynomially bounded. Then,
if the underlying LinFE scheme is selectively secure, so is the above NIPE scheme.

Proof. Suppose there exists an adversary A against the NIPE scheme that has non-negligible
advantage. We use A to construct another adversary B against the underlying LinFE scheme as
follows.

- Initial Phase. At the outset of the game, A declares its target vector x⃗∗ on which it wishes to
be challenged. Then, B randomly picks M̂0, M̂1 ←M and declares (x⃗∗M̂0, x⃗

∗M̂1) as its target.
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- Setup. Then, the challenger runs (MPK,MSK, st)← Setup(1λ, 1ℓ) and gives the public param-
eter MPK to B. B passes the same MPK to A.
- Phase 1. When A makes a key-extraction query for a vector y⃗, B submits the same y⃗ to its
challenger and is given sky⃗. Then, it passes the same sky⃗ to A.
- Challenge Phase. When A outputs the messages (M0,M1), B proceeds as follows. If
(M̂0, M̂1) ̸= (M0,M1), B aborts and outputs a random bit. Otherwise, B queries the challenge
ciphertext for its challenger to obtain C∗. Then it passes the same C∗ to A.
- Phase 2. It is the same as Phase 1.

- Guess. Finally, A outputs a guess b′. B outputs the same bit as its guess.

Analysis. We first observe that B does not violate the restriction of the security game as long
as A does not. We then evaluate the advantage of B. In the following, we denote the event of B
correctly guessing (M̂0, M̂0) by guess. Then, it is easy to see that B’s simulation for A is perfect
when guess occurs. Otherwise, B outputs a random bit. Therefore, we have∣∣∣∣Pr[B outputs b]− 1

2

∣∣∣∣
= |Pr[guess] · Pr[B outputs b | guess] + Pr[¬guess] · Pr[B outputs b | ¬guess]|

=

∣∣∣∣ 1

|M|2
· Pr[A outputs b] +

1

2
·
(
1− 1

|M|2

)
− 1

2

∣∣∣∣
=

1

|M|2

∣∣∣∣Pr[A outputs b]− 1

2

∣∣∣∣ ,
which is non-negligible because A’s advantage is non-negligible andM is of polynomial size. This
completes the proof of the theorem.

5.3 Instantiations

By applying the conversion to the existing adaptively secure LinFE schemes of [ABDCP15, ALS16],
we obtain several new NIPE schemes. Since the result of [ALS16] subsumes that of [ABDCP15] in
the sense that the former achieves adaptive security whereas the latter achieves selective security,
we discuss new schemes obtained by applying our conversion to the former schemes. This results
in new adaptively secure NIPE schemes from the LWE assumption, the DDH assumption, and
the DCR assumption. In particular, our DDH and DCR instantiations are the first construc-
tions of NIPE schemes without bilinear maps or lattices. One thing to note is that the resulting
scheme obtained by our conversion can only deal with logarithmic-size message space when D is
of polynomial size and in order to encrypt a longer message, one needs to separate the message
into chunks and run the encryption algorithm multiple times to encrypt each of them.

Construction from the LWE Assumption. In [ALS16], the authors proposed two LinFE
schemes from lattices. One is in the stateless setting where the inner product is taken over Z,
and the other one is in the stateful setting where the inner product is taken over Zp for some
prime p. To apply the conversion to the former scheme, we set D = Z, P = Q = {0, . . . , P − 1}ℓ,
I = {0, . . . , I − 1}ℓ,M = {0, . . . ,M − 1} and J = {0, . . . ,MI − 1} for (polynomially bounded)
integers P, I,M . It is straightforward to see that these domains satisfy our conditions for the
conversion. This results in a stateless NIPE scheme over Z. To apply the conversion to the latter
scheme, we set D = Zp, P = Q = I = J = Zℓ

p, and M = Zp. It is also easy to see that these
domains satisfy our condition for the conversion. This results in a stateful NIPE scheme over Zp.
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Since the original scheme is adaptively secure under the LWE assumption with sub-exponential
approximation factors, so is our scheme obtained by the conversion.

Here, we compare our direct construction in Section 4 with the scheme obtained via the above
conversion. To encrypt a message of ℓM -bit length, the first approach requires (ℓM + m + mℓ)
elements of Zq in a ciphertext and the second requires (m + ℓ)ℓM . The first approach is more
efficient than the second one when we encrypt more than mℓ/(m+ ℓ) bits at once. For a natural
setting of ℓ < m, λ, this condition encompasses the most interesting case of KEM-DEM settings
where one encrypts λ bits of session key. In fact, when we are in the ring setting, since m is
O(log λ), the first approach will be more efficient regardless of the size ℓ. Furthermore, for NIPE
schemes over Zp, the first approach would require smaller LWE modulus. Indeed, in certain
regime of parameters such as ℓ = log n/ log log log n and p = log log n, the first approach would
yield a scheme with polynomial modulus whereas the second requires super-polynomial modulus.
However, on the other hand, the advantage of the second approach is that it achieves adaptive
security.

Construction from the DDH Assumption. In [ALS16], the authors proposed a stateless
LinFE scheme from the DDH assumption. In the scheme, the inner product is taken over Zq,
where q is the order of the underlying group G. One subtlety regarding their scheme is that
the decryption algorithm is efficient only when the inner product ⟨x⃗, y⃗⟩ is polynomially bounded.
This is because the decryption algorithm first recovers g⟨x⃗,y⃗⟩ for the generator g of G and then
retrieves ⟨x⃗, y⃗⟩ by solving the discrete logarithm problem. Due to this problem, we cannot apply
the conversion in a completely black box manner and some modification is needed. To apply our
conversion to their scheme, we set D = Zq, P = Q = I = J = Zℓ

q, and M = {0, 1, . . . ,M}
for polynomially bounded M . Then, (Setup′,KeyGen′,Enc′) are defined as in Section 5.2. We
slightly modify the decryption algorithm. We run the decryption algorithm of the underlying
LinFE scheme to obtain Z = gM·⟨x⃗,y⃗⟩, but halt it before computing the discrete logarithm logg Z,

which is impossible when M · ⟨x⃗, y⃗⟩ is exponentially large. Instead, we compute Z1/⟨x⃗,y⃗⟩ = gM and
then retrieve the message M by solving the discrete logarithm problem.

The above scheme can encrypt only short messages. We can modify the scheme so that it can
encrypt longer messages without degrading the efficiency much. The main idea is that we can
use the above scheme as a key encapsulation mechanism (KEM). Namely, we change the above
scheme so that the encryption algorithm first encrypts a randomness s ∈ Zp and then encrypt the
message M by using the “DEM key” K = gs. The decryption algorithm first retrieves K = gs

and then retrieves the message M using the key K.

Construction from the DCR Assumption. In [ALS16], the authors proposed two LinFE
schemes from the DCR assumption. One is in the stateless setting where the inner product
is taken over Z, and the other is in the stateful setting where the inner product is taken over
ZN . To apply the conversion to the former scheme, we set D = Z, P = Q = {0, . . . , P − 1}ℓ,
I = {0, . . . , I − 1}ℓ, M = {0, . . . ,M − 1} and J = {0, . . . ,MI − 1} for (possibly exponentially
large) integers P, I,M . It is straightforward to see that these domains satisfy our condition for
the conversion. This results in a stateless NIPE scheme over Z. To apply the conversion to the
latter scheme, we set D = ZN , P = Q = I = J = Zℓ

N , and M = ZN . Rigorously speaking, we
cannot apply the conversion because ZN is not an integral domain. However, we can treat ZN

as if it were an integral domain, since any element x ∈ ZN with gcd(x,N) ̸= 1 will allow us to
factorize N , which contradicts the hardness of the DCR assumption.
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A Omitted Proof from Sec. 2.2

Proof. The proof follows in a straight forward manner from the trapdoor technique used in [MP12].
We describe how algorithm SampleSkewed works. It first samples a vector z ∈ Zm such that
Gz = t−1u mod q by invoking SamplePre with trapdoor TG of G, where t−1 is well-defined since

t is invertible in Zq. Then it returns the vector e =

[
−R
Im

]
z ∈ Z2m as its output.

We show that vector e has the desired property. First, observe that

[A|AR+ pd−1 · t ·G]e = [A|AR+ pd−1 · t ·G]

[
−R
Im

]
z

= pd−1 · t ·Gz

= pd−1u mod q.
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Finally, we have ∥e∥ ≤ (s1(R)+1)∥z∥ ≤ s1(R)
√
m ·ω(

√
log n), since we have ∥z∥ ≤

√
mω(
√
log n)

from Lemma 3 and Lemma 5. This completes the proof.

B A Note on Sum of Discrete Gaussians

In this section, we provide some discussions on the main tool of our paper — multi-dimensional
lattices. We believe the new definitions and developed techniques to be of interest to applications
elsewhere.

B.1 Background

A symmetric positive-definite matrix Σ ∈ Rℓ×ℓ, expressed as Σ > 0 for short, is a matrix such
that Σ = Σ⊤ and x⊤Σx > 0 for all non-zero x ∈ Rℓ. Furthermore, for any Σ > 0, there exists a
unique lower triangular matrix U ∈ Rℓ×ℓ such that Σ = UU⊤. In the following, we denote this
matrix U as

√
Σ. Positive definiteness defines a partial ordering on symmetric matrices: we say

Σ1 > Σ2 if (Σ1 − Σ2) > 0. In the supplemental materials for any matrix R, we use smax(R) and
smin(R) to denote the largest and smallest singular value of R, respectively. Note that in the
main body, we used s1(R) to denote smax(R).

B.2 Discrete Gaussian Measures over Multi Lattices

In this section, we define the discrete Gaussian distribution over an m-dimensional ℓ-multi lattice
Λ̄ ⊆ Rm×ℓ where the Gaussian parameter is given by a symmetric positive-definite matrix Σ ∈
Rℓ×ℓ. Here an m-dimensional ℓ-multi lattice is defined as a discrete additive subgroup of Rm×ℓ.
We emphasize that unlike in the main body of the paper, we do not require the multi lattice to
be of the specific form Λℓ = [Λ| · · · |Λ] = {[z1| · · · |zℓ] | ∀zi ∈ Λ,∀i ∈ [ℓ]} ∈ Zm×ℓ. From here
on, we add a bar on top of multi lattice related notations, e.g., Λ̄, η̄, when we want to explicitly
differentiate between a normal lattice notion and a multi lattice notion. Furthermore, the dual
multi lattice Λ̄∗ is defined as Λ̄∗ = {W ∈ Rm×ℓ | X⊤W ∈ Zℓ×ℓ,∀X ∈ Λ̄}. Note that for the
special case Λ̄ = Λℓ, we have (Λℓ)∗ = (Λ∗)ℓ. Also, for any matrix M ∈ Zℓ×t, Λ̄M denotes the
m-dimensional t-multi lattice {ZM | Z ∈ Λ̄} ∈ Rm×t.

We first define the m-dimensional ℓ-multi Gaussian function ρ̄√Σ(X) over Rm×ℓ with a sym-

metric positive-definite matrix Σ ∈ Rℓ×ℓ as ρ̄√Σ(X) = exp(−π · tr(XΣ−1X⊤)). Similarly, the
discrete Gaussian distribution for an m-dimensional ℓ-multi shifted lattice Λ̄ + T is defined as
DΛ̄+T,

√
Σ(X) = ρ̄√Σ(X)/ρ̄√Σ(Λ̄ + T) for all X ∈ Λ̄ + T and T ∈ Zm×ℓ, where ρ̄√Σ(Λ̄ + T) =∑

X∈Λ̄+T ρ̄√Σ(X). Note that when Λ̄ = Λℓ for some lattice Λ and Σ = σ2Iℓ, this corresponds to
the special case we described in the main body, where each column of X are independent samples
from Λ. This fact can be seen by observing that

exp(tr(XX⊤)) = exp(tr(X⊤X)) = exp(
ℓ∑

i=1

∥xi∥2) =
ℓ∏

i=1

exp(∥xi∥2),

where xi ∈ Zm is the i-th column of X ∈ Zm×ℓ.

Vectorization of Matrices. To argue how well discrete Gaussian distributions over multi
lattices behave, we need something similar to the smoothing parameter for (standard one-multi)
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lattices. We do this by observing that multi lattices can be viewed equivalently as a standard
lattice via the isomorphism7 ϕ : Rm×ℓ → Rmℓ defined as follows:

ϕ (X = [x1|x2| · · · |xℓ]) =


x1

x2
...
xℓ

 ∈ Rmℓ.

Since this is an isomorphism between vector spaces, it can be checked that a multi lattice Λ̄ in
Zm×ℓ is isomorphic to a lattice ϕ(Λ̄) in Zmℓ. Above we defined ϕ for a particular pair of variables
(m, ℓ), however with an abuse of notation, hereafter we define ϕ for any (m, ℓ), i.e., we view ϕ
as simply an operation that stacks the columns of a given matrix on top of one another. Some
standard formulas we use are as follows: for any X ∈ Rm×ℓ,Y ∈ Rℓ×t,Z ∈ Rℓ×ℓ we have

• ϕ(XY) = (Y⊤ ⊗ Im) · ϕ(X) = (It ⊗X) · ϕ(Y) ∈ Rmt

• tr(XZX⊤) = ϕ(X)⊤(Z⊗ Im)ϕ(X)

Using this, we can relate the m-dimensional ℓ-multi Gaussian function ρ̄√Σ(X) to an mℓ-
dimensional Gaussian function ρ√Σ′(x). Concretely,

ρ̄√Σ(X) = exp(−π · tr(XΣ−1X⊤))

= exp
(
− π · ϕ(X)⊤(Σ−1 ⊗ Im)ϕ(X)

)
(25)

= exp
(
− π · ϕ(X)⊤(Σ⊗ Im)−1ϕ(X)

)
(26)

= ρ√Σ⊗Im
(ϕ(X)), (27)

where Eq.(25) follows from the second formula, Eq.(26) follows from A−1⊗B−1 = (A⊗B)−1, and
Eq.(27) follows from Σ⊗Im = (

√
Σ⊗Im)(

√
Σ⊗Im)⊤. Therefore,DΛ̄+T,

√
Σ(X) = Dϕ(Λ̄)+ϕ(T),

√
Σ⊗Im

(ϕ(X))

for any X ∈ Λ̄ +T.
Furthermore, using ϕ we can check that a multi lattice Λ̄M ∈ Rm×t for M ∈ Zℓ×t is isomorphic

to the lattice (M⊤ ⊗ Im) · ϕ(Λ̄) = {(M⊤ ⊗ Im)z | z ∈ ϕ(Λ̄)} ⊆ Rmt. Finally, for the special case
Λ̄ = Λℓ, we have (ϕ(Λℓ))∗ = ϕ((Λ∗)ℓ).

Useful Lemmas for Multi Lattices. We will now study the behavior of a discrete Gaussian
distribution over multi lattices by observing its lattice counterparts. To do so, we prepare one
last tool; the smoothing parameter for lattices.

Definition 2. For an m-dimensional lattice Λ and positive real ϵ > 0, we define the smoothing
parameter ηϵ(Λ) as the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ϵ. Furthermore, let Σ > 0

be any symmetric positive-definite matrix in Rm×m. We say
√
Σ ≥ ηϵ(Λ) if ρ√Σ−1(Λ

∗\{0}) ≤ ϵ.

It is informative to observe that, if
√
Σ ≥ ηϵ(Λ), then

√
λmax ≥ ηϵ(Λ) where λmax denotes the

largest eigenvalue of Σ. Equivalently, since for symmetric positive-definite matrices eigenvalues
equal their singular values,

√
smax ≥ ηϵ(Λ) where smax denotes the largest singular value. On the

other hand, if
√
λmin =

√
smin ≥ ηϵ(Λ), then

√
Σ ≥ ηϵ(Λ) where λmin and smin denotes the smallest

eigenvalue and singular value of Σ, respectively.
We define the smoothing parameter for a multi lattice as below.

7 In linear algebra, this isomorphism is sometimes called the vectorization of matrices.
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Definition 3. For an m-dimensional ℓ-multi lattice Λ̄ and positive real ϵ > 0, we define the
(multi lattice) smoothing parameter η̄ϵ(Λ̄) as ηϵ(ϕ(Λ̄)). I.e., the smallest real s > 0 such that
ρ̄1/s(Λ̄

∗\{0m×ℓ}) = ρ1/s(ϕ(Λ̄
∗)\{0}) ≤ ϵ. Furthermore, let Σ > 0 be any symmetric positive-

definite matrix in Rℓ×ℓ. We say
√
Σ ≥ η̄ϵ(Λ̄) if and only if

√
Σ⊗ Im ≥ ηϵ(ϕ(Λ̄)).

Observe that if Λ̄0 ⊆ Λ̄1, then η̄ϵ(Λ̄0) ≥ η̄ϵ(Λ̄1) for any ϵ, since Λ̄∗
0 ⊇ Λ̄∗

1 ⇔ ϕ(Λ̄∗
0) ⊇ ϕ(Λ̄∗

1).
Furthermore, the same argument we did above, e.g., if

√
smin ≥ η̄ϵ(Λ̄), then

√
Σ ≥ η̄ϵ(Λ̄), holds,

since the smallest (resp. largest) singular value of the symmetric positive definite matrix Σ⊗ Im
is the same as Σ. Now that we have formally defined the smoothing parameter for multi lattices,
we obtain a standard result analogous to that of one-multi lattices.

Lemma 12. [Corollary of [MR04, Lemma 4.4]] Let Λ̄ be any m-dimensional ℓ-multi lattice. For
any ϵ ∈ (0, 1), symmetric positive-definite matrix Σ in Rℓ×ℓ such that

√
Σ ≥ η̄ϵ(Λ̄), and any

T ∈ Rm×ℓ, we have

ρ̄√Σ(Λ̄ +T) ∈
[1− ϵ

1 + ϵ
, 1
]
· ρ̄√Σ(Λ̄).

Proof. This follows from the standard results of [MR04, Lemma 4.4] and [MP12, Lemma 2.4].
Namely, it follows directly from the definition

√
Σ ≥ η̄ϵ(Λ̄) ⇔

√
Σ ⊗ Im ≥ ηϵ(ϕ(Λ̄)) and that√

Σ⊗ Im is non-singular.

Finally, for the special case Λ̄ = Λ, we can bound the smoothing parameter of Λ̄ using Λ.

Lemma 13. For any m-dimensional lattice Λ and ϵ ∈ (0, 1/2), we have η̄ϵ(Λ
ℓ) ≤ ηϵ′(Λ), where

ϵ′ = (1 + ϵ)1/ℓ − 1. In particular, for any ϵ = negl(λ) and ℓ = poly(λ), we have ϵ′ = negl(λ).

Proof. Observe that ϕ(Λℓ) = {[x⊤
1 | · · · |x⊤

ℓ ]
⊤ ∈ Rmℓ | xi ∈ Λ, ∀i ∈ [ℓ]} and (Λℓ)∗ = (Λ∗)ℓ. Then,

by definition ρ̄1/s((Λ
ℓ)∗) = ρ1/s(Λ

∗)ℓ. Furthermore, for any positive real s ≥ ηϵ′(Λ), we have
ρ1/s(Λ

∗\{0}) ≤ ϵ′. Equivalently, ρ1/s(Λ
∗) ≤ 1 + ϵ′, since ρ1/s(0) = 1. Therefore,

ρ̄1/s((Λ
ℓ)∗\{0m×ℓ}) = ρ̄1/s((Λ

ℓ)∗)− 1 ≤ (1 + ϵ′)ℓ − 1 = ϵ.

Hence, ηϵ′(Λ) ≥ η̄ϵ(Λ
ℓ).

B.3 Sum of Discrete Gaussians

The following theorem is a generalization of [BF11, Theorem B.1.], and can be used as an alterna-
tive tool to [BF11, Theorem B.3.]. The main advantage of our theorem is that, in the special case
when the multi lattice is of the form Λℓ, our theorem may allow for a much tighter (exponentially
tighter) bound on the Gaussian parameter.

Theorem 8 (Generalization of [BF11], Theorem B.1.). Let m, ℓ, t be positive integers such that
t < ℓ. Let Λ̄ ⊆ Zm×ℓ be a multi lattice, M ∈ Zℓ×(ℓ−t) be a full rank matrix, T ∈ Zm×ℓ be a matrix
and Σ ∈ Rℓ×ℓ be a symmetric positive-definite matrix. Let W ∈ Zℓ×t be a full rank matrix that
satisfies W⊤M = 0 ∈ Zt×(ℓ−t) and let L be the m-dimensional t-multi lattice

L := {U ∈ Rm×t | UW⊤ ∈ Λ̄}.

Furthermore, suppose that
√

(W⊤Σ−1W)−1 > η̄ϵ(L) for some negligible ϵ.
If X is distributed as DΛ̄+T,

√
Σ, then XM is statistically close to D

Λ̄M+TM,
√
M⊤ΣM

.
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Proof. The proof follows the outline of the proof of [BF11, Theorem B.1.], with additional tech-
niques to work with multi lattices.

Below, we aim at computing the probability of Pr[XM = V] for V ∈ Λ̄M +TM when X is
distributed as DΛ̄+T,

√
Σ. First, define the set SV = {Z ∈ Λ̄ + T | ZM = V}. Let X0 ∈ Λ̄ + T

be an arbitrary solution ot ZM = V. Then, since the kernel of the linear map M ∈ Zℓ×(ℓ−t) is
spanned by the columns of W ∈ Zℓ×t, we have

SV = X0 + {Z ∈ Λ̄ | ZM = 0m×(ℓ−t)} = X0 + {UW⊤ ∈ Λ̄ | U ∈ L},

where L is a multi lattice as defined in the theorem. Now,

Pr[XM = V] = Pr[X ∈ SV] =
∑
U∈L

Pr[X = X0 +UW⊤]

=
1

ρ̄√Σ(Λ̄ +T)

∑
U∈L

exp
(
−π · tr

(
(X0 +UW⊤)Σ−1(X0 +UW⊤)⊤

))
(28)

To properly decouple the terms in tr(·), we use the following fact on linear algebra.

Fact 1. Let M ∈ Rℓ×(ℓ−t), W ∈ Rℓ×t be full-rank matrices such that W⊤M = 0t×(ℓ−t), and

Σ ∈ Rℓ×ℓ be a symmetric positive-definite matrix. Then, we have the following:

M
(
M⊤ΣM

)−1
M⊤ = Σ−1 − Σ−1W

(
W⊤Σ−1W

)−1
W⊤(Σ−1)⊤.

Proof. Denote the matrix on the right (resp. left) hand side as A ∈ Rℓ×ℓ (resp. B ∈ Rℓ×ℓ). Then,
using the fact that W⊤M = 0t×(ℓ−t) and Σ = Σ⊤, direct calculation shows that[

Σ⊤M |W
]⊤

A =
[
M | 0ℓ×t

]⊤
=

[
Σ⊤M |W

]⊤
B.

Since Σ and [M|W] ∈ Rℓ×ℓ are non-singular, we have that A = B.

Then, the term tr(·) in Eq.(28) can be expressed as follows:

tr
(
(X0 +UW⊤)Σ−1(X0 +UW⊤)⊤

)
=tr

(
UW⊤Σ−1WU⊤)+ 2 · tr

(
X0Σ

−1WU⊤)+ tr
(
X0Σ

−1X⊤
0

)
=tr

(
(U+Y)

(
W⊤Σ−1W

)
(U+Y)⊤

)
+ tr

(
X0Σ

−1X⊤
0

)
− tr

(
Y
(
W⊤Σ−1W

)
Y⊤) (29)

=tr
(
(U+Y)

(
W⊤Σ−1W

)
(U+Y)⊤

)
+ tr

(
X0M

(
M⊤ΣM

)−1
M⊤X⊤

0

)
(30)

=tr
(
(U+Y)

(
W⊤Σ−1W

)
(U+Y)⊤

)
+ tr

(
V
(
M⊤ΣM

)−1
V⊤

)
(31)

where in Eq.(29) we substitute Y = X0Σ
−1W

(
W⊤Σ−1W

)−1
, in Eq.(30) we use Fact 1, and in

Eq.(31) we use the equality V = X0M. Then plugging Eq.(31) back in Eq.(28), we obtain

Pr[XM = V] =
ρ̄√

M⊤ΣM
(V)

ρ̄√Σ(Λ̄ +T)

∑
U∈L

exp
(
−π · tr

(
(U+Y)

(
W⊤Σ−1W

)
(U+Y)⊤

))
=

ρ̄√
M⊤ΣM

(V)

ρ̄√Σ(Λ̄ +T)
· ρ̄√

(W⊤Σ−1W)−1(L+Y).
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Since
√
(W⊤Σ−1W)−1 > η̄ϵ(L) and from Lemma 12, for all Y ∈ Rm×ℓ we have

Pr[XM = V] ∈
[
1− ϵ

1 + ϵ
, 1

]
·
ρ̄√

(W⊤Σ−1W)−1(L)

ρ̄√Σ(Λ̄ +T)
· ρ̄√

M⊤ΣM
(V)

Since ϵ is negligible and ρ̄√
(W⊤Σ−1W)−1(L)/ρ̄

√
Σ(Λ̄+T) is a constant independent of V, it follows

that Pr[XM = V] ∈ [1−ϵ
1+ϵ , 1] · ρ̄√

M⊤ΣM
(V)/ρ̄√

M⊤ΣM
(Λ̄M+TM). Hence, by definition, XM is

statistically close to D
Λ̄M+MT,

√
M⊤ΣM

.

Corollary 1. Let q be a prime or some power of a prime p. Let n,m, ℓ, t be positive integers such
that m ≥ 2n log q and ℓ > t, let A ∈ Zn×m

q be a random matrix and T ∈ Zm×ℓ be an arbitrary

matrix. Let M ∈ Zℓ×(ℓ−t) be a full rank matrix and let W ∈ Zℓ×t satisfy W⊤M = 0 ∈ Zt×(ℓ−t).
Finally, let σ be a positive real such that σ >

√
smax(W⊤W) · ω(

√
logm).

If, X ∈ Zm×ℓ is distributed as DΛ⊥(A)ℓ+T,σIℓ
, then XM ∈ Zm×(ℓ−t) is statistically close to

D
Λ⊥(A)ℓM+TM,σ

√
M⊤M

.

Proof. Plugging in Σ = σ2Iℓ, to use Theorem 8 it suffices to show that σ ·
√
(W⊤W)−1 > η̄ϵ(L)

for some negligible ϵ, where L is the m-dimensional t-multi lattice defined as

L := {U ∈ Rm×t | UW⊤ ∈ Λ⊥(A)ℓ}.

First, notice that, since Λ⊥(A) is closed under addition, we have Λ⊥(A)t ⊆ L. This implies
that η̄ϵ(L) ≤ η̄ϵ(Λ

⊥(A)t). Next, by Lemma 13 we have η̄ϵ(Λ
⊥(A)t) ≤ ηϵ′(Λ

⊥(A)), where
ϵ′ = (1 + ϵ)1/t − 1 is negligible, since t = poly(λ). Furthermore, for a random choice of
A ∈ Zn×m

q , we have ηϵ′(Λ
⊥(A)) < ω(

√
logm) with all but negligible probability [GPV08].

Therefore, since (smax(W
⊤W))

−1
= smin((W

⊤W)−1), if σ >
√

smax(W⊤W) · ω(
√
logm), then

σ ·
√

smin((W⊤W)−1) > η̄ϵ(L). Here, smax(Z) (resp. smin(Z)) denotes the largest (resp. smallest)
singular value of Z. Finally, by definition this implies σ ·

√
(W⊤W)−1 > η̄ϵ(L) for some negligible

ϵ, which completes the proof.
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