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Abstract. Hard learning problems are central topics in recent crypto-
graphic research. Many cryptographic primitives relate their security to
difficult problems in lattices, such as the shortest vector problem. Such
schemes include the possibility of decryption errors with some very small
probability. In this paper we propose and discuss a generic attack for se-
cret key recovery based on generating decryption errors. In a standard
PKC setting, the model first consists of a precomputation phase where
special messages and their corresponding error vectors are generated.
Secondly, the messages are submitted for decryption and some decryp-
tion errors are observed. Finally, a phase with a statistical analysis of
the messages/errors causing the decryption errors reveals the secret key.
The idea is that conditioned on certain secret keys, the decryption error
probability is significantly higher than the average case used in the er-
ror probability estimation. The attack is demonstrated in detail on one
NIST Post-Quantum Proposal, ss-ntru-pke, that is attacked with com-
plexity below the claimed security level.
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1 Introduction

Lattice-based cryptography and the learning with errors problem (LWE) [21] has
recently developed into one of the main research areas in cryptography. We have
considered factoring and the discrete logarithm problem to be fundamental dur-
ing the last 50 years, but now we may see a shift towards other problems, due to
the possibility of quantum computers. Lattice-based cryptography is now an en-
abler for a rich collection of cryptographic primitives, ranging from simpler ones
like key exchange and (public-key) encryption to more advanced constructions
like fully homomorphic encryption.

There are several factors in favor of using LWE or related problems as the
underlying problem in cryptographic constructions. One is that constructions can



be computationally efficient compared to existing solutions. Another motivating
factor is the hope that LWE-based constructions will be resistant towards a
quantum computer. It is also potentially the problem that can best provide us
with constructions of fully homomorphic encryption [7,5].

A very important problem is to establish the difficulty of solving various
LWE-like problems, as it directly gives an upper bound on the security of the
cryptographic primitives that base their security on them. There are reductions
for LWE to worst-case lattice problems [21,20,6], but it may not always be appli-
cable or it may not give useful help in choosing parameters. Today, the security of
a primitive is often estimated from the computational complexity of lattice-basis
reduction algorithms like BKZ and its different versions.

Several standardization initiatives for post-quantum primitives are currently
running, where most focus is on the NIST post-quantum standardization project [1].
In the analysis of submitted proposals, the most important aspect is their secu-
rity. Traditionally, the computational complexity for solving problems like LWE
through lattice basis reduction is the guide for explicitly suggested parameter
choices. Then most proposals are accompanied by some proof of security, relating
to some well known and difficult problem in lattice theory, such as the shortest
vector problem.

Most lattice-based schemes include the possibility of having decryption errors
with some small probability. Making this probability very small has a price, as
the parameters should be adjusted accordingly, resulting in a performance loss.
A common approach used by some schemes is to use error-correcting codes to
correct errors. In essence, a part of the "message" is parity-check bits that enable
correction of a fixed number of errors. Such schemes can then have a much larger
error probability in each bit position, as it requires that a number of them are in
error for a decryption error to occur. Still, the possibility of having decryption
errors can be used in cryptanalysis.

In our setting we are considering CCA (chosen-ciphertext attacks) security
for PKE (public-key encryption) schemes. It equally well applies to KEMs (key
encapsulation mechanisms) and key exchange in the public key setting, assuming
that a large number of session keys are exchanged for the same fixed public key.
The most basic form of security is the notion of CPA (chosen plaintext attacks)
security, which is often not sufficient. A common tool for transforming a CPA-
secured PKE into a scheme secured against CCA attacks is the Fujisaki-Okamoto
transformation. But a CCA secured cryptosystem using such a transformation
requires decryption with a negligible error probability because the attacker can
exploit decryption errors in an attack. For schemes trying to provide resistance
against attacks exploiting decryption errors, we typically see probabilities smaller
than 2−128. Sometimes the calculations of the probability for a decryption error
use independence assumptions when there is actually a correlation between the
coefficients in the error. The correctness of such approximations on the failure
rate is an open and frequently discussed research question.
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1.1 Related Works

The idea of exploiting decryption errors has been around for a long time and
applies to all areas of cryptography [4]. For lattice-based encryption systems,
the old Ajtai-Dwork and NTRU have been a target for attacks based on de-
cryption failures. Hall, Goldberg, and Schneier developed already in 1999 [14] a
reaction attack which recovers the Ajtai-Dwork private key by observing decryp-
tion failures. Hoffstein and Silverman [15] adapted the attack to NTRU. They
also suggested to modify NTRU to use the Fujisaki-Okamoto transform [11] to
protect against such attacks, but there were still problems [17]. Further work in
this direction on NTRU is given in [12].

More recently, Fluhrer [10] showed how to attack key-exchange protocols
in a key reuse setting. In [8] his work was extended to more protocols. In [3] a
chosen-ciphertext attack on the proposal HILA5 [22] was given, using decryption
failures. These attacks are CCA attacks on proposals with only CPA-security.

In this paper we will only consider CCA attacks on schemes proposed for
CCA security. For this setting, Guo, Johansson and Stankovski [13], proposed
a key-recovery attack against the CCA-secure version of QC-MDPC, which is a
code-based scheme. It uses a distinguishing property that ’colliding pairs’ in the
noise and the secret can change the decryption failure rate.

1.2 Contributions

In this paper we propose and discuss a generic attack for secret key recovery
based on generating decryption errors. It is a chosen-ciphertext attack and it
targets schemes proposed for CCA security. The attack is described in a standard
PKC setting, assuming that a number of messages are decrypted for a fixed pair
of public and secret keys. It can however also be applied to for example KEM
schemes if many keys are exchanged for a fixed pair of public and secret keys.

The model first consists of a precomputation phase where special messages
and their corresponding error vectors are generated. Secondly, the messages are
submitted for decryption and some decryption errors are observed. Finally, a
phase with a statistical analysis of the messages/errors causing the decryption
errors reveals the secret key.

The idea is that conditioned on certain secret keys, the decoding error proba-
bility is significantly higher than the average case used in typical error probability
estimations. The attack is demonstrated in detail on one NIST Post-Quantum
Proposal, the ss-ntru-pke version of NTRUEncrypt, that is attacked with com-
plexity below the claimed security level.

A result of the attack is that it is questionable whether it is possible to
achieve high security (say 256 bits in the classic sense) for proposals with mid-
level decryption error probability (say 2−100).

1.3 Organization

The remaining of the paper is organized as follows. We introduce some back-
ground in Section 2 and the general attack model in Section 3. We later describe
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the proposed CCA attack on ss-ntru-pke in details in Section 4. This is followed
by a section concluding the paper.

2 Background

In this section we want to provide the setting for the attack approach that we
propose. It applies to PKC schemes that use ideas from lattice-based cryptogra-
phy, which at least includes schemes making use of the LWE problem or related
lattice problems, like NTRU. It makes use of the fact that decryption is in general
not error-free, but can occasionally fail. We illustrate in more detail by giving a
generic example of LWE-based schemes and then present some background on
employing the Fujisaki-Okamoto transform to achieve CCA security.

Let q be an odd prime and Zq = {−(q−1)/2, .., (q−1)/2}. Let R denote the
ring Zq[x]/(xN + 1). In different contexts, we use a polynomial u(x) or a vector
u to denote an element in R. We frequently mix between the notion of u being
a vector and a polynomial, but the meaning should be clear from the context.
For two vectors a,b, we denote a ·b their inner product. The notion a∗b means
multiplying the polynomials a and b in the ring R.

2.1 LWE-Based Scheme

A basic encryption scheme based on the ring-LWE problem has been proposed
by Lyubashevsky, Peikert and Regev in [19]. The scheme is described below.

– Key Generation: Generate a polynomial a with coefficients chosen uniformly
in Zq. Next, randomly generate two polynomials s, e ∈ R with coefficients
chosen from a special distribution X (often a discrete Gaussian distribution)
and compute b = a ∗ s+ e ∈ R. The public key is (a,b) and the private key
is (s, e).

– Encryption: Let the message m have length N and binary coefficients (mi ∈
{0, 1}). Map m to m̂ by computing m̂ = (q − 1)/2 ·m. Randomly sample
three polynomials e1, e2, e3 with coefficients in X . The ciphertext is now the
pair (c1, c2), where the polynomials are computed as c1 = a ∗ e1 + e2 and
c2 = b ∗ e1 + e3 + m̂.

– Decryption : Compute m0 = −c1 ∗ s+ c2 and decode the coefficients of m0

to either 0 or 1, depending on whether the value is closest to 0 or (q − 1)/2
in Zq.

Now computing −c1 ∗ s + c2 = −(a ∗ e1 + e2) ∗ s + b ∗ e1 + e3 + m̂ = −e2 ∗
s + e ∗ e1 + e3 + m̂ Because −e2 ∗ s + e ∗ e1 + e3 only contains polynomials
with coefficients from X , which means very small coefficients, we can expect that
also −e2 ∗ s+ e ∗ e1 + e3 contains rather small coefficients. This means that the
coefficients of m0 will be rather close to the coefficients of m̂ and this allows us
to determine whether the original value was 0 or (q − 1)/2.

However, with some small probability we can have an erronously decoded
coefficient, leading to a decryption error. So if we encrypt messages and send
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them for decryption, we can detect whether a decryption error occured, since
then the decrypted message is not the same as the original one. To be more
precise, we will have a decryption error if

||−e2 ∗ s+ e ∗ e1 + e3||∞ ≥ q/4. (1)

Hence, the probability of having a decryption error can be computed by com-
puting the probability of the above event to happen.

Clearly, for the above scheme (providing CPA security only) an attacker Eve
can construct a ciphertext by picking polynomials e1, e2, e3 of her own choice
and in this way affect the decryption error probability to be potentially very
large. But such a possibility is not available when schemes are using a transform
to provide CCA security.

The scheme described in this subsection only provides CPA security and since
CCA security is usually a demand, one has to provide additional mechanisms.
The most common approach is to use the FO transformation. We do not provide
details on how this is done, but we point at the relevant consequences for our
attack. Namely, after transformations to provide CCA security, the randomness
used in the encryption is no longer controllable in the encryption, e.g. one can no
longer choose polynomials e1, e2, e3. Rather, it is the result of a hash function
call, hashing the message and other parameters, that determines the values of
these parameters picked from a given distribution. In our case this means that
we cannot control the choice of randomness, but rather just pick a message and
observe what sample values of e1, e2, e3 we will obtain.

3 Attack Models

In this section we present and discuss the proposed attack model. The major
targets are NIST post-quantum proposals with CCA security using some CCA
transformations, e.g., the Fujisaki-Okamoto (FO) one [11] and its variant [16].
We propose a general attack recovering secret keys from the observed decryption
errors. The assumptions are the following:

– We are considering schemes of lattice-based types, where in addition there is
a small probability of error in the decryption process. This is in accordance
with typical lattice-based schemes, which in their encryption add vectors
with small noise and and then remove the noise in the decryption.

– We consider chosen-ciphertext attacks, i.e., we may submit a number of
ciphertexts and observe the result of decryption. If the ciphertext is an en-
crypted message, the decryption should return the message. But occasionally
there can be a decryption error and then we assume that we observe the out-
put provided by the scheme in case of a decryption error.

– We consider the existence of a number of public keys that can be attacked.
For example, this may be a network of users each holding a public key.

We set the maximun number of ciphertexts that can be submitted to a node with
a public key to be 2K and we set the maximum number of public keys in the
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system to be 2L. Refering again to the NIST PQ-project, they have indicated
in their call that at least K = 64 can be considered. In the discussion forum
for the same project, we have also seen researchers mentioning that L = 64
can be considered. We will adopt K = L = 64 in this paper since it looks like
values that are not questioned, although larger values can give more powerful
attacks and could definitely be relevant. For example, comparing with attacks on
symmetric schemes, such attacks may require receiving a number of plaintext-
ciphertext pairs that are close to the number of keys (like 2200), and still they
are considered valid attacks.

The proposed attack procedure is split in three steps.

1. Do a precomputation step to establish pairs of messages and corresponding
ciphertexts and let informally the set S denote error vectors corresponding to
the different messages. These selected error vectors should be with particular
properties, e.g, with large norm and/or with several large entries in certain
positions, etc.

2. Send the ciphertexts connected to S and assume that we learn the decrypted
messages. Assume further that a subset have been erroneously decrypted
(wrong decoding due to too large error) and let S ′ be the error vectors
causing decryption failure. This cardinality of this set could be larger than
average if certain properties of the secret vector hold. So we submit the set
of ciphertexts to each node holding a public key. The node giving the largest
decryption failure rate is selected as the target public key for the attack.

3. Do statistical testing on the set S ′ (and possibly the set S) to establish
relationships between the secret key and given the noise vectors leading to a
decryption failure. Analyzing their correlation, we may be able to to recover
partial secrets, which can considerably reduce the solving complexity of the
underlying hard problem. We are then able to perform a full key-recovery
attack via classic approaches like using lattice reduction algorithms.

Generally, this attack model is called reaction attack as we only need to
know whether the decryption was successful or not, we do not need to know the
message that the decryption process gave as output.

We discuss the three steps briefly. In the precomputation step, we can observe
a first difference between different schemes. Most schemes include the public key
in the generation of the noisy vectors (as input in the hash function generating
the noise). This means that a constructed set S can only be used for a single
public key and then a new such set must be constructed for the next public key.
For simplicity, we assume |S| = 2K . If we set the computational complexity of
precomputing a set S to be 2λ, the overall complexity of this first step is 2λ+L.
On the other hand, there are also schemes where error vectors are generated
independent of the public key (e.g. LAC). In such a case the same set S can
be used on all public keys and the complexity is only 2λ. We could also use
Grover-type algorithms to accelerate the pre-computation step. For the sake of
simplicity, however, we keep arguments in the classic regime throughout the
paper.
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For the second step, the idea is that among many public keys, there will
be one where the corresponding secret values have a property that causes more
decryption errors than on average. So to increase the decryption error probability
to a reasonable and detectable level, we consider that a special property in the
secret value is held with probability p′, where 0 < p′ < 1. We then assume that
p′ = 2−L, so we can expect that this special property in the secret value holds for
one public key. As mentioned, with respect to the CCA security, NIST restricts
to have at most 264 decryption calls to each user (public key). So in order to
distinguish a special property in the secret value corresponding to a public key,
one needs to get the failure rate for this case to be larger than 2−64.

Finally, in the statistical testing part, we have a set of error vectors that have
caused decryption errors. There seems to be a plethora of methods that can be
used to recover secret values. A general approach that we adopt is to consider
a smaller part of the secret vector under reconstruction, and select the most
probable values for this part, based on the observed error vectors in S. Then
one combines such guesses for different part and builds an approximation of a
seeked secret vector. A good approximation will mostly be sufficient as it can be
used in lattice-basis reduction algorithms.

4 Application to ss-ntru-pke

We have applied the described approach and provide the details of attacking ss-
ntru-pke, a version in the NIST PQ submission – NTRUEncrypt [24]. Connected
is also the provably secure NTRU [23] whose security is based purely on the
hardness of Ring-LWE. NTRUEncrypt with different parameter choices has been
around for a long time and is one of the most competitive lattice-based schemes
when it comes to performance.

4.1 The Scheme

ss-ntru-pke is the version of NTRUEncrypt targeting the highest security level, be-
ing 256 bits. This scheme achieves CCA2 security via the NAEP transform [18], a
transform similar to the Fujisaki-Okamoto one with an additional mask. We give
a very brief explanation of the scheme. For most of the description and details,
we refer to [24]. In the key generation (see Algorithm 1), two secret polynomials
f ,g ∈ R are selected, where the coordinates are chosen from a discrete Gaussian
Xσ distribution with standard deviation σ. A public key is formed by computing
h = g/(pf + 1).

We show in Algorithm 2 the encryption algorithm of ss-ntru-pke and in Algo-
rithm 3 the decryption algorithm, both from the original proposal [24]. In these
descriptions, Hash() represents a hash function, and B represents a set including
all binary polynomials with degree at most N−1. The Pad() operation is a func-
tion to ensure the message has sufficient entropy, and the Extract() operation is
the inverse of Pad().
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Algorithm 1 ss-ntru-pke.KeyGen

Input: Parameter sets Param = {N, p, q, σ} and a seed.
Output: Public key h and secret key (f ,g).
1) Instantiate Sampler with XNσ and seed;
2) f ← Sampler, g← Sampler;
3) h = g/(pf + 1) mod q;

In each encryption of a message m, two polynomials r, e ∈ R are generated,
where the coordinates are again chosen from a discrete Gaussian distribution
Xσ with standard deviation σ. This randomness source uses a seed generated as
Hash(m,h). This means that each choice of a message m will generate also the
polynomials r, e ∈ R. Let us denote this by

(r, e) = G(m,h).

Algorithm 2 ss-ntru-pke.Encrypt

Input: Public key h, message msg of length mlen, Param and a seed.
Output: Ciphertext c.
1) m = Pad(msg, seed);
2) rseed = Hash(m|h);
3) Instantiate Sampler with XNσ and rseed;
4) r← Sampler, e← Sampler;
5) t = p · r ∗ h;
6) tseed = Hash(t);
7) Instantiate Sampler with B and tseed;
8) mmask ← Sampler;
9) m′ = m - mmask (mod p);
10) c = t+ p · e+m′;

In decryption, with ciphertext c, one computes the message by computing

f ∗ c =p · r ∗ g + p · e ∗ f +m′ ∗ f .

A decryption error occurs if ||p · r ∗ g+ p · e ∗ f +m′ ∗ f ||∞ > q/2. This basically
translates to ||r ∗ g + e ∗ f ||∞ > q/4 as p = 2 and the last term is much smaller
than the first two.

The proposed parameters for ss-ntru-pke for the security level of NIST-V are
shown in Table 1.

The decoding error probability is estimated to be less than 2−80 in [24].
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N q p R σ ε Security

1024 230 + 213 + 1 2 Zq [x]

xN+1
724 < 2−80 V

Table 1. Proposed ss-ntru-pke parameters.

Algorithm 3 ss-ntru-pke.Decrypt

Input: Secret key f, public key h, ciphertext c, and Param.
Output: result.
1) m′ = f ∗ c (mod p);
2) t = c − m′;
3) tseed = Hash(t);
4) Instantiate Sampler with B and tseed;
5) mmask ← Sampler;
6) m = m′ +mmask (mod p);
7) rseed = Hash(m|h);
8) Instantiate Sampler with XNσ and rseed;
9) r← Sampler;
10) e = p−1 (t − r ∗ h);
11) if ||e||∞ is big then

result = ⊥;
else

result = Extract(m);

4.2 The Attack

We now follow the approach of the previous section and describe an attack. The
detailed attack is shown in Algorithm 4, where a more efficient CCA2 version is
adopted. We define an equivalence relation for two polynomials u(x), v(x) ∈ R
if u(x) = xi ·v(x)

(
mod xN + 1

)
, or if u(x) = −xi ·v(x)

(
mod xN + 1

)
, for i ∈ Z.

Attack step 1 – pre-computation.
We pick random messages m and generate corresponding (r, e) = G(m,h)

for a given public key h. We keep only vectors e equivalent to a polynomial that
has the first l (e.g., l = 2) positions with the same sign and each with size larger
than c · σ, where c is a constant determining the computational effort of finding
such error vectors. These vectors form our chosen set S.

We set l = 2 to illustrate the idea in a concrete attack. For one position, the
probability that the entry is larger than cσ is 1 − erf(c/

√
2). As we can start

from any position, the probability to have two consecutive positions with the
same sign and entries larger than cσ is pe = N ∗ (1− erf(c/

√
2))2/2. If we set pe

to be 2−120, then c can be as large as 9.193.

Attack step 2 – submit ciphertexts for decryption.
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Algorithm 4 The CCA2 attack against ss-ntru-pke

Input: A number (say 264) of public keys.
Output: The secret polynomials (f ,g) of one public key.
1) Collect messages/ciphertexts with special form for all public keys;
2) Submit them for decryption and determine a weak public key h;
1’) Prepare messages/ciphertexts with special form for this weak key h;
2’) Submit them for decryption and collect the decryption results;
3) Use statistical analysis to have a guess (f̂ , ĝ) close to the corresponding
secret key (f ,g);
4) Use lattice reduction algorithms to recover the secret key (f ,g);

We then send the ciphertexts corresponding to the noise vectors in S to the
decryption algorithm. If the targeted secret key f is also equivalent to a polyno-
mial that has the first l (e.g., l = 2) positions with the same sign and each with
size larger than cs · σ, where cs is another constant, then the decoding errors
can be detectable. We expect to collect several errors and their store their corre-
sponding error vectors (r, e). The probability to have two consecutive positions
with the same sign and entries larger than csσ is ps = N ∗ (1− erf(cs/

√
2))2/2.

If we set ps to be 2−64, then cs can be as large as 6.802.
If we run 2120 precomputation steps for each stored vector with the desired

properties, then the overall complexity is 2248 since ps = 2−64. Let C1 denote
2·cscσ2. We can then have a coefficient in r∗g+e∗f whose absolute contribution
from these two big entries is at least C1 = 225.97. We consider the probabilistic
behavior of the remaining (2N − 2) positions. As the coefficients of r,g, e, f
are all sampled from a Gaussian distribution with mean 0 and stand deviation
σ = 724, the expected norm of the rest vector in f ,g with 2N−2 entries is about√
2N − 2 ·σ. Given a public key, f ,g is fixed. Thus, this coefficient of r∗g+e∗ f

can be approximated as C1+Φ0, where Φ0 is Gaussian distribution with mean 0
and standard deviation

√
2N − 2 ·σ2. As the error appears when this coefficient

is larger than q/4, the error probability3 can be approximated as

Pe =

(
1− erf(

q/4− C1√
2(2N − 2)σ2

)

)
· 1
2
.

We obtain a decoding error probability of 2−57.3 for this example. Thus we can
obtain about 26.7 errors from the 264 decryption trails.

An adaptive CCA attack. If we keep the previous setting, i.e., a CCA1
attack, the cost is larger than 2248. However, we can adopt a much more pow-
erful attack model, namely an adaptive CCA (CCA2) attack, consisting of two

3 The error can occur in both directions. We omit the term
(
1− erf( q/4+C1√

2(2N−2)σ2
)

)
· 1
2

as it is negligible compared with
(
1− erf( q/4−C1√

2(2N−2)σ2
)

)
· 1
2
for C1 a very big positive

integer.
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phases. In the first phase, the attacker spend half of his computational power
to determine a weak key; in the later phase, he would put all his remaining
resources into attacking this weak key.

To be more specific, we first to prepare 263 messages/ciphertexts for each of
the 264 public keys. Then we expect two errors corresponding to one key, which
can be claimed as a weak key.

We can also reduce the precomputation work for each key to 289, if there
are 264 public keys. We have c = 7.956 and the error probability is 2−62.0, so
we expect to have two errors in the testing stage. We then spend 2216 work on
another precomputation to have 263 messages with c to be 10.351, done only for
this weak key. The error probability in the second phase is estimated as 2−53.0,
so we can have 210 errors. The overall complexity is 2217.

Attack step 3 – statistical analysis.
In this step we will try to recover the secret f . Let us first assume that f has

its two big entries in the first two positions of the vector. Then the position in
e ∗ f where the error occurs, denoted i0, is the position when the two significant
coefficients in e and those in f coincide. We now transform each e in such a way
that its two big entries are also to be found in the first two positions. This is
done by replacing e with the corresponding equivalent vector where the two big
entries are in the first two positions. Assuming M decryption errors, this now
gives us the following knowledge from the received decryption errors:

N−1∑
i=2

e
(j)
i fi +N

(j)
i > q/4− 2 · cscσ2,

for j = 1..M and where N (j) denotes the remaining contribution to the noise.
Finally we note that assuming that f has its two big entries in the first two
positions is not a restriction, as such an f vector will just be an equivalent
vector of the true f . So we need only to recover f and then check all equivalent
vectors.

We next show how to derive more knowledge of f ,g with statistical tools.
A heuristic approach. As we have assumed that the two big entries in

(f ,g) (or (e, r)) are the first two entries, we use K (or Vi for 1 ≤ i ≤ M) to
denote a vector consisting of the remaining 2N − 2 entries. Thus, the size of K
(or Vi) can be estimated as

√
(2N − 2)σ.

We adopt the heuristic assumptions from [12] that all the errors are very
close to the folding bound q/4, meaning that all the messages leading to an
error belong to a hyperplane

Vi ·K =
q

4
− C1,

where C1 is the contribution from the two significant entries.
Thus, the mean vector V̂ of Vi should be close to a scaled vector of K, i.e.,

V̂ =

∑M
i=1 Vi

M
≈ q/4− C1

‖K‖2
K.
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We can have an estimation K̂ = (2N−2)σ2

q/4−C1
V̂. If we round the entries of K to the

nearest integer in Zq, we obtain an estimation (f̂ , ĝ) of the secret vector (f ,g).
The remaining question is how good this estimation can be? We heuristically

answer this question using the central limit theorem.
Each observation Vi with approximated norm

√
2N − 2σ can be viewed as

the summation of the signal point

q/4− C1

‖K‖2
K,

and a noise vector with squared norm

(2N − 2)σ2 − (q/4− C1)
2

(2N − 2)σ2
.

By the central limit theorem, if we have M observations, then the squared
norm (variance) of the noise can be reduced by a factor of M . Hence, the error
norm should be √

1

M
·
(
(2N − 2)σ2 − (q/4− C1)2

(2N − 2)σ2

)
.

As we consider K̂ instead of V̂, the true error norm should be resized as

(2N − 2)σ2

q/4− C1
·

√
1

M
·
(
(2N − 2)σ2 − (q/4− C1)2

(2N − 2)σ2

)
. (2)

Using this formula, we can have a candidate with error norm 0.169
√
2N − 2σ,

assuming that 1024 errors have been collected.

Attack step 4 – lattice reduction.
If (∆f , ∆g) = (f ,g)− (f̂ , ĝ) is small, we can recover it using lattice reduction

algorithms efficiently. Thus, we obtain the correct value of (f ,g).
If we have the error size to be only 0.169

√
2N − 2σ, as assumed in the pre-

vious step, using the LWE estimator from Albrecht et al. [2], it takes about 2181
time and 2128 memory if one uses sieving to implement the SVP oracle in BKZ.
Though the authors of [24] discussed about memory constraint for applying siev-
ing in lattice-based cryptanalysis, we believe it is reasonable to assume for 2128
memory when considering a scheme targeting the classic 256-bit security level.
Another possibility is to implement the SVP oracle using tuple sieving, further
reducing the memory complexity to 2117. The time complexity then increases to
2223, but still far from achieving the claimed 256-security level.

4.3 Experimental Results

We have implemented some of the parts of the attack to check performance
against theory. We have chosen exactly the same parameters in ss-ntru-pke as
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q error rate
-estimated- -simulated-

q = 229 2−9.05 2−9.19

q = 229 + 226 2−12.64 2−12.96

q = 229 + 227 2−16.91 2−17.09

q = 229 + 227 + 226 + 225 2−24.62 2−24.57

Table 2. The simulated error rates v.s. the estimated error rates.

well as in the attack, except for the q value, which in the experiment was set to
the values shown in Table 2. The reason being that is we wanted to lower the
decryption error rate so that simulation was possible.

We put two consecutive entries in f each of size 6.2 ·σ and we generated error
vectors with two large positive entries each of size 9.2 · σ. For such choice, we
first verified the decryption error probabilities, as seen in Table 2. These match
the theoretical results well.

q error norm /(
√
2N − 2σ)

-estimated- -simulated-

q = 229 0.487 0.472
q = 229 + 226 0.391 0.360
q = 229 + 227 0.326 0.302

q = 229 + 227 + 226 + 225 0.261 0.250

Table 3. The simulated error norm v.s. the estimated error norm. (M = 1024)

M error norm /(
√
2N − 2σ)

-estimated- -simulated-

M = 256 0.522 0.490
M = 512 0.369 0.348
M = 1024 0.261 0.250
M = 1536 0.213 0.212

Table 4. The simulated error norm v.s. the estimated error norm. (q = 229 +
227 + 226 + 225)
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For each choice of q we then collected up toM = 210+29 = 1536 error vectors
and processsed them in a statistical analysis step, to get a good approximation
of (f ,g). As the heuristic approach described, we first created an approximation

of (f ,g), say denoted by (f̂ , ĝ), by simply computing f̂i = E ·
∑M−1

j=0 e
(j)
i

M as the
value in the ith position. Here E is a constant that makes the norm of the vector
to be as the expected norm of f . Clearly, this is a very simple way of exploring
the dependence between fi and ei, but still it seems to be sufficient.

We have plotted the simulated error norms for various q and M in Figure 1.
Furthermore, we show the comparison between the simulated error norms and
the estimated error norms according to the central limit theorem, i.e., Equa-
tion (2), in Table 3 and Table 4.

In the prior table, M is fixed to 1024 and q varies, while in the latter table,
q is fixed to 229 + 227 + 226 + 225 and M varies. We see that in all the cases,
the simulated data match the estimated data well, though the simulation seems
always slghtly better than the estimation, i.e., with smaller error norms. Another
observation from Table 4 is that the estimation using the central limit theorem
becomes more accurate when M becomes larger, which is also very reasonable.

4.4 Summarizing the Attack

The best attack is a CCA2 type attack where we in precomputation work use
289+63 = 2152 operations to derive 263 special ciphertexts that are submitted
for decryption. With probability 2−64 the secret f has the desired property of
two consecutive big entries. If so, we will most likely see several decoding errors
and such a weak key has been detected. When the weak key has been detected,
we perform yet another precomputation that uses 2216 operations to derive 263

additional special ciphertexts again submitted for decryption. We receive in ex-
pectation 1024 decryption errors and the knowledge from the error vectors will
allow us to reconstruct f without too much trouble using lattice reduction al-
gorithms, as experimental results strongly indicated. The overall complexity is
thus approximately 2217 if the SVP oracle in BKZ is implemented via lattice
sieving. Actually, the cost of the lattice reduction algorithms in the final stage
is not the bottleneck, as we have many other powerful statistical tools in Step 3,
e.g., the Maximum Likelihood Test approach, to make this cost negligible.

5 Conclusions and Future Works

We have proposed a generic reaction attack model against lattice-based schemes
and applied this model to attacking ss-ntru-pke, a version in the NTRUEncrypt
submission to the NIST post-quantum project. Specifically, we have presented an
adaptive CCA attack on the claimed 256-bit (classic) security level of ss-ntru-pke.
This attacking idea can be treated as extension of reaction attacks [13,9] that
already jeopardize the CCA security of MDPC and LDPC based crypto-systems.
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