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Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a client to securely execute RAM programs over data that is stored
in an untrusted server. Distributed Oblivious RAM is a variant of ORAM,
where the data is stored in m > 1 servers. Extensive research over the
last few decades have succeeded to reduce the bandwidth overhead of
ORAM schemes, both in the single-server and the multi-server setting,
from O(

√
N) to O(1). However, all known protocols that achieve a sub-

logarithmic overhead either require heavy server-side computation (e.g.
homomorphic encryption), or a large block size of at least Ω(log3N).

In this paper, we present a family of distributed ORAM constructions
that follow the hierarchical approach of Goldreich and Ostrovsky [17].
We enhance known techniques, and develop new ones, to take better ad-
vantage of the existence of multiple servers. By plugging efficient known
hashing schemes in our constructions, we get the following results:

1. For any number m ≥ 2 of servers, we show an m-server ORAM
scheme with O(logN/ log logN) overhead, and block size Ω(log2N).
This scheme is private even against an (m− 1)-server collusion.

2. A three-server ORAM construction with O(ω(1) · logN/ log logN)
overhead and a block size almost logarithmic, i.e. Ω(log1+εN).

We also investigate a model where the servers are allowed to perform a
linear amount of light local computations, and show that constant over-
head is achievable in this model, through a simple four-server ORAM
protocol. From theoretical viewpoint, this is the first ORAM scheme with
asymptotic constant overhead, and polylogarithmic block size, that does
not use homomorphic encryption. Practically speaking, although we do
not provide an implementation of the suggested construction, evidence
from related work (e.g. [12]) confirms that despite the linear computa-
tional overhead, our construction is practical, in particular when applied
to secure computation.

Keywords: Oblivious RAM, Multi-Server Setting, Secure Computa-
tion, Private Storage.

? A full version is available on arXiv.org e-Print archive as arXiv:1802.05145 [cs.CR].
Research supported by ISF grant 1709/14, BSF grant 2012378, NSF-BSF grant
2015782, and a grant from the Ministry of Science and Technology, Israel, and the
Dept. of Science and Technology, Government of India.



1 Introduction

Since it was first introduced by Goldreich and Ostrovsky [17], the Oblivious RAM
problem has attracted a lot of attention (see, e.g. [22, 33, 35]). Throughout the
past three decades, efficient ORAM protocols were constructed (e.g. [18, 34]),
their various applications, such as secure storage [4, 28], secure processors [32],
and secure multi-party computation [20,25], were studied, and their limits were
considered [1, 17,24].

Standard Model. The standard ORAM model considers a setting where a client
outsources his data to an untrusted server that supports read and write opera-
tions only. The goal of an ORAM simulation is to simulate any RAM program
that the client executes over the remote data, so that the same computation is
performed, but the view of the server during the interaction would provide no
information about the client’s private input and the program executed, except
their length. Clearly, encryption can be employed to hide the content of the
data, but the sequence of reads and write locations itself might leak information
as well. Thus, the focus of ORAM protocols is to hide the access pattern made
to the server. The main metric considered in ORAM research is the bandwidth
overhead of an ORAM scheme (shortly referred to as “overhead”), which is the
multiplicative increase in the amount of communication incurred by an oblivious
simulation relative to a regular run of the simulated program. In this standard
model, researchers have been able to improve the overhead from O(log3N) [17]
to O(logN) [5,34,35], where N is the number of data blocks in storage, and thus
reaching the optimal overhead in that model due to the matching impossibility
results of Goldreich and Ostrovsky [17] and Larsen and Nielsen [24].

In an attempt to achieve sub-logarithmic overhead, research has deviated
from the standard model (e.g. [4, 19, 25]). For instance, by allowing the server
to perform some local computation, multiple works [4, 11, 14] could achieve a
constant overhead. However, this improvement comes at a cost: the server per-
forms heavy homomorphic encryption computation which practically becomes
the actual bottleneck of such schemes.

Distributed Oblivious RAM. Another interesting line of work, often referred to
as Distributed Oblivious RAM [1, 19, 38, etc.], was initiated by Ostrovsky and
Shoup [28] and later refined by Lu and Ostrovsky [25], and considers the multi-
server setting. We denote by (m, t)-ORAM an ORAM scheme that involves
m > 1 servers, out of which t < m servers might collude. In the two-server
setting, Zhang et al. [38] and Abraham et al. [1] construct (2, 1)-ORAMs with
sub-logarithmic overhead. In order to achieve O(logdN) overhead (for any d ∈ N)
using their construction, Abraham et al. require that the size of a memory block,
i.e. the data unit retrieved in a single query to the RAM, is Ω(d log2N) (with
larger blocks the asymptotic overhead increases). For example, for an overhead
of O(logN/ log logN), one has to work with blocks of relatively large size of
Ω(log3N), which may be undesired in many applications. Zhang et al. require
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a polynomial block size of Ω(N ε) for a constant bandwidth blowup. Other at-
tempts to achieve low overhead in the multi-server setting [26] were shown to
be vulnerable to concrete attacks [1]. These recent developments in distributed
ORAM raise the following question, which we address in this paper:

Can we construct a sub-logarithmic distributed ORAM with a small block size?

Known sub-logarithmic ORAMs [1, 38] belong to the family of tree-based
ORAMs [33]. One of the key components in tree-based ORAMs is a position
map that is maintained through a recursive ORAM. Such a recursion imposes
the requirement for a large polylogarithmic block size1. Thus, it seems that a
positive answer to the question above will come, if at all, from constructions of
the other well-studied type of ORAMs, those based on the hierarchical solution
of [17]. By applying the hierarchical approach to the distributed setting, Lu and
Ostrovsky [25] obtained the first logarithmic hierarchical ORAM scheme. In this
paper, we show how to take a further advantage of the multiple servers in order
to beat the logarithmic barrier, and still use a relatively small block size, with
constructions in both the two-server and three-server settings. In addition, we
consider the case where t > 1, and show how to generalize our two-server solution
to an (m,m− 1)-ORAM, with the same asymptotic complexity, for any m > 2.

ORAM for Secure Computation. An interesting application of ORAM is its in-
tegration in multi-party computation (MPC) protocols for RAM programs on
large data. The possibility of using ORAM for MPC was first pointed out by
Ostrovsky and Shoup [28], and was revisited by more recent works [20, 25] due
to the increasing interest in applied secure computation. Despite the extensive
improvements in the practicality of secure circuit evaluation protocols, the theo-
retical framework for MPC protocols for RAM evaluation, given in [20,25,28] and
other works, encountered major obstacles toward achieving practical efficiency.

A new line of work [12, 19, 36, 37] studies the practicality of (distributed)
ORAM in MPC, and observes that the traditional ORAM approaches were de-
signed for the client-server model, and that in the MPC context, a focus on
a different set of efficiency measures and optimizations is required in order to
achieve better performance. For instance, constructions where the client com-
plexity is optimized, even in exchange for server-side work that is linear in N
per read/write, perform better than classic schemes, where server work is usually
limited. In this context, the new cryptographic primitive of function secret shar-
ing (FSS), introduced by Boyle et al. [7], was shown to be useful for constructing
schemes that are practically efficient [12], or that have low interaction [19]. How-
ever, despite their practical efficiency, none of the mentioned schemes achieve
sub-logarithmic overhead, thus leaving us with the following question:

Can we achieve sub-logarithmic ORAM that is “optimized for MPC”?

1 To the best of our knowledge, the only tree-based ORAM that bypasses recursion,
due to Wang et al. [19], works in a different model where linear server work is allowed
(see preceding discussion).
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Scheme m t Overhead Block size Server Work

Goldreich-Ostrovsky [17] 1 - O(log3N) Ω(logN) -

Kushilevitz et al. [22] 1 - O( log2 N
log logN

) Ω(logN) -

Wang et al. [35] 1 - O(logN · ω(1)) Ω(log2N) -

Asharov et al. [5] 1 - O(logN) Ω(logN) -

Lu-Ostrovsky [25] 2 1 O(logN) Ω(logN) polylog

Chan et al. [9] 3 1 O(log2N) Ω(logN) -

Zhang et al. [38] 2 1 O(1) Ω(N ε) polylog

Abraham et al. [1] 2 1 O(logdN) ω(d log2N) polylog

Doerner-Shelat [12] 2 1 O(
√
N) Ω(logN) linear

Gordon et al. [19] 2 1 O(logN) Ω(logN) linear

our 4-server construction

Instantiation 1 4 1 O(1) Ω(λ logN) linear

our 3-server construction

Instantiation 2 3 1 O(logdN · ω(1)) Ω(d logN) polylog

d = logεN O( logN
log logN

· ω(1)) Ω(log1+εN)

Instantiation 3 3 1 O(logdN) Ω(d log1.5N) polylog

d = logεN O( logN
log logN

) Ω(log1.5+εN)

our m-server construction

Instantiation 4 m ≥ 2 m− 1 O( logN
log logN

) Ω(log2N) polylog

Table 1: Comparison of ORAM schemes.

We show that by allowing the servers to perform linear computations per
RAM step, we can achieve a four-server ORAM scheme with a small constant
overhead. Our constructions strictly improve over the two-server ORAM schemes
from [12,19], which were shown to perform well in practical implementations, in
terms of overhead and computation, both asymptotically and concretely.

1.1 Our Contribution and Technical Overview

Sub-logarithmic Distributed ORAM Constructions. Our main contri-
bution is a family of distributed hierarchical ORAM constructions with any
number of servers. Our constructions make a black-box use of hashing schemes.
Instantiating our constructions with hashing schemes that were previously used
in ORAM [8,18,25], yields state-of-the-art results (see Table 1). We elaborate.

A Three-Server ORAM Protocol. By using techniques from [25] over the bal-
anced hierarchy from [22], and using two-server PIR [10] as a black box, we
are able to construct an efficient (3, 1)-ORAM scheme. Instantiating the scheme
with cuckoo hash tables (similarly to [18,22,25]) achieves an overhead of O(ω(1)·
logdN) with a block size of B = Ω(d logN). Thus, for any ε > 0, we achieve
O(ω(1) · logN/ log logN) overhead with B = Ω(log1+εN).

In the classic hierarchical solution from [17], the data is stored in logN lev-
els, and the protocol consists of two components: queries, in which target virtual
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blocks are retrieved, and reshuffles, which are performed to properly maintain
the data structure. Roughly speaking, in a query, a single block is downloaded
from every level, resulting in logN overhead per query. The reshuffles cost logN
overhead per level, and log2N overall. Kushilevitz et al. [22] suggest to balance
the hierarchy by reducing the number of levels to logN/ log logN . In the bal-
anced hierarchy, however, one has to download logN blocks from a level in every
query. Thus, balancing the hierarchy ”balances”, in some sense, the asymptotic
costs of the queries and reshuffles, as they both become log2N/ log logN .

At a high level, we carefully apply two-server techniques to reduce the over-
head, both of the queries and the reshuffles, from the single-server ORAM of [22].
More specifically, to reduce the queries cost, we use two-server PIR to allow the
client to efficiently read the target block from the logN positions, it had oth-
erwise have to download, from every level. By requiring the right (relatively
small) block size, the cost of PIRs can be made constant per level and, there-
fore, logN/ log logN in total. To reduce the reshuffles cost, we replace the single-
server reshuffles with cheaper two-server reshuffles, that were first used by Lu
and Ostrovsky [25], and that incur only a constant overhead per level.

So far, it sounds like we are already able to achieve logN/ log logN over-
head using two servers only. However, combining two-server PIR and two-server
reshuffles is tricky: each assumes a different distribution of the data. In stan-
dard two-server PIR, the data is assumed to be identically replicated among the
two servers. On the other hand, it is essential for the security of the two-server
reshuffles from [25] that every level in the hierarchy is held only by one of the
two servers, so that the other server, which is used to reshuffle the data, does not
see the access pattern to the level. We solve this problem by combining the two
settings using three servers: every level is held only by two of the three servers
in a way that preserves the security of the two-server reshuffles and, at the same
time, provides the required setting for two-server PIR.

An (m,m − 1)-ORAM Protocol. We take further advantage of the existence
of multiple servers and construct, for any integer m ≥ 2, an m-server ORAM
scheme that is private against a collusion of up to m−1 servers. Using oblivious
two-tier hashing [8], our scheme achieves an overhead of O(logN/ log logN), for
which it requires B = Ω(log2N) (see Theorem 4 and Instantiation 4).

We begin by describing a (2, 1)-ORAM scheme, then briefly explain how to
extend it to any number of servers m > 2. Let us take a look back at our three-
server construction. We were able to use both two-server PIR and two-server
reshuffles using only a three-server setting. Now that we restrict ourselves to
using two servers, we opt for the setting where the two servers store identical
replicates of the entire data structure. Performing PIR is clearly still possible,
but now that the queries in all levels are made to the same two servers, we
cannot perform Lu and Ostrovsky’s [25] two-server reshuffles securely. Instead,
we use oblivious sort (or, more generally, oblivious hashing) to reshuffle the
levels. Oblivious sort is a sorting protocol in the client-server setting, where the
server involved learns nothing about the obtained order of blocks. Oblivious sort
is used in many single-server hierarchical ORAMs (e.g. [17,22]), where it incurs
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logN overhead per level. Since we aim for a sub-logarithmic overhead, we avoid
this undesired blowup by performing oblivious sort over the tags of the blocks
only (i.e. their identities) which are much shorter, rather than over the blocks
themselves. We require a block size large enough such that the gap between the
size of the tags and the size of the blocks cancels out the multiplicative overhead
of performing oblivious sort. Once the tags are shuffled into a level, it remains
to match them with the blocks with the data. That is where the second server is
used. We apply a secure two-server “matching procedure” which, at a high level,
lets the second server to randomly permute the data blocks and send them to
the server holding the shuffled tags. The latter can then match the data to the
tags in an oblivious manner. Of course, the data exchange during the matching
has to involve a subtle cryptographic treatment to preserve security.

The above scheme can be generalized to an (m,m−1)-ORAM, for any m > 2.
The data is replicated in all servers involved, and m-server PIR is used. The
matching procedure is extended to an m-server procedure, where all the servers
participate in randomly permuting the data.

ORAM with Constant Overhead for Secure Computation. We also in-
vestigate “ORAM for practical MPC”, where we allow linear server-side work
and focus on client efficiency, and show that constant overhead is achievable in
this model (see Table 1). The proposed scheme, described below, applies function
secret sharing over secret-shared data, thus avoiding the need for encrypting the
data using symmetric encryption (unlike existing schemes, e.g. [12, 19]).

A Simple Four-Server ORAM Protocol. Inspired by an idea first suggested
in [28], we combine private information retrieval (PIR) [10], and PIR-write [28],
to obtain a four-server ORAM. To implement the PIR and PIR-write protocols
efficiently, we make a black-box use of distributed point functions (DPFs) [7,16],
i.e. function secret sharing schemes for the class of point functions. Efficient
DPFs can be used to construct (i) a (computational) two-server PIR protocol if
the data is replicated among the two servers, or (ii) a two-server PIR-write pro-
tocol for when the data is additively secret-shared among the two servers. These
two applications of DPFs are combined as follows: we create two additive shares
of the data, and replicate each share twice. We send each of the four shares (two
pairs of identical shares) to one of the four servers. A read is simulated with two
instances of PIR, each invoked with a different pair of servers holding the same
share. A write is simulated with two instance of PIR-write, each invoked with a
different pair of servers holding different shares.

We stress that the client in all of our constructions can be described using a
simple small circuit, and therefore, our schemes can be used to obtain efficient
secure multi-party protocols, following [25].

1.2 Related Work

Classic Hierarchical Solution. The first hierarchical ORAM scheme appeared in
the work of Ostrovsky [27] and later in [17]. In this solution, the server holds
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the data in a hierarchy of levels, growing geometrically in size, where the ith

level is a standard hash table with 2i buckets of logarithmic size, and a hash
function hi(·), which is used to determine the location of blocks in the hash
table: block of address v may be found in level i (if at all) in bucket hi(v). The
scheme is initiated when all blocks are in the lowest level. An access to a block
with a virtual address v is simulated by downloading bucket hi(v) from every
level i. Once the block is found, it is written back to the appropriate bucket
in the smallest level (i = 0). As a level fills up, it is merged down with the
subsequent (larger) level i+1, which is reshuffled with a new hash function hi+1

using oblivious sorting. Thus, a block is never accessed twice in the same level
with the same hash function, hence the obliviousness of the scheme. Using AKS
sorting network [3] for the oblivious sort achieves an O(log3N) overhead.

Balanced Hierarchy. Up until recently, the best known single-server ORAM
scheme for general block size, with constant client memory, was obtained by
Kushilevitz et al. [22], using an elegant ”balancing technique”, that reduces the
number of levels in the hierarchy of [17], in exchange for larger levels. Their
scheme achieves an overhead of O(log2 / log logN), using oblivious cuckoo hash-
ing (first applied to ORAM in [18, 31]). An alternative construction, recently
proposed by Chan et al. [8], follows the same idea, but replaces the relatively
complex cuckoo hashing with a simpler oblivious hashing that is based on a
variant of the two-tier hashing scheme from [2].

Tree-Based ORAM. Another well-studied family of ORAM schemes is tree-based
ORAMs (e.g. [33,35]), where, as the name suggests, the data is stored in a tree
structure. The first ORAMs with a logarithmic overhead, in the single-server
model, were tree-based [34, 35]. However, tree-based ORAMs usually require a
large block size of at least B = Ω(log2N).

Optimal ORAM with General Block Size. The recent work of Asharov et al. [5],
which improves upon the work of Patel et al. [30], succeeds to achieve optimal log-
arithmic overhead with general block size (due to known lower bounds [17,24]).
Both results are based on the solution from [17] and use non-trivial properties
of the data in the hierarchy to optimize the overhead.

Distributed ORAM Constructions. Ostrovsky and Shoup [28] were the first to
construct a distributed private-access storage scheme (that is not read-only).
Their solution is based on the hierarchical ORAM from [17]. However, their
model is a bit different than ours: they were interested in the amount of commu-
nication required for a single query (rather than a sequence of queries), and they
did not limit the work done by the servers. Lu and Ostrovsky [25] considered
the more general ORAM model, defined in Section 2.1. They presented the first
two-server oblivious RAM scheme, and achieved a logarithmic overhead with
a logarithmic block size by bypassing oblivious sort, and replacing it with an
efficient reshuffling procedure that uses the two servers.
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The tree approach was also studied in the multi-server model. Contrary to
the hierarchical schemes, known distributed tree-based ORAMs [1, 38] beat the
logarithmic barrier. The improvement in overhead could be achieved by using
k-ary tree data structures, for some parameter k = ω(1). However, these con-
structions suffer from a few drawbacks, most importantly, they require a large
polylogarithmic (sometimes polynomial) block size.

ORAM Constructions for MPC with Linear Computational Overhead. The work
of Ostrovsky and Shoup [28], as well as some recent works [12, 19] have consid-
ered the model where the servers are allowed to perform a linear amount of light
computations. Both the works of Doerner and Shelat [12] and Wang et al. [19]
elegantly implement techniques from the standard model (square-root construc-
tion, and tree structure, respectively), and use the efficient PIR protocol from [7],
to construct practically efficient two-server ORAM schemes with linear server-
side computation per access and bandwidth overhead matching their analogues
in the single-server setting (see Table 1).

1.3 Paper Organization

Section 2 contains formal definitions and introduces cryptographic tools that we
use. In Section 3, we present our four-server ORAM. In Section 4, we provide an
overview of the hierarchical ORAM framework, on which our main distributed
ORAM constructions are based. In Sections 5 and 6, we present these construc-
tions. Due to space limit, de-amortization of our constructions, and a discussion
of their application to secure computation, are left to the full version.

2 Preliminaries

2.1 Model and Problem Definition

The RAM Model. We work in the RAM model, where a RAM machine consists
of a CPU that interacts with a (supposedly remote) RAM storage. The CPU has
a small number of registers, therefore it uses the RAM storage for computations
over large data, by performing reads and writes to memory locations in the RAM.
A sequence of ` queries is a list of ` tuples (op1, v1, x1), . . . , (op`, v`, x`), where opi
is either Read or Write, vi is the location of the memory cell to be read or written
to, and xi is the data to be written to vi in case of a Write. For simplicity of
notation, we unify both types of operations into an operation known as an access,
namely “Read then Write”. Hence, the access pattern of the RAM machine is the
sequence of the memory locations and the data (v1, x1), . . . , (v`, x`).

Oblivious RAM Simulation. A (single-server) oblivious RAM simulation, shortly
ORAM simulation, is a simulation of a RAM machine, held by a client as a CPU,
and a server as RAM storage. The client communicates with the server, and
thus can query its memory. The server is untrusted but is assumed to be semi-
honest, i.e. it follows the protocol but attempts to learn as much information
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as possible from its view about the client’s input and program. We also assume
that the server is not just a memory machine with I/O functionality, but that
it can perform basic local computations over its storage (e.g. shuffle arrays,
compute simple hash functions, etc.). We refer to the access pattern of the RAM
machine that is simulated as the virtual access pattern. The access pattern that
is produced by the oblivious simulation is called the actual access pattern. The
goal of ORAM is to simulate the RAM machine correctly, in a way that the
distribution of the view of the server, i.e. the actual access pattern, would look
independent of the virtual access pattern.

Definition 1 (ORAM, informal). Let RAM be a RAM machine. We say that
a (probabilistic) RAM machine ORAM is an oblivious RAM simulation of RAM,
if (i) (correctness) for any virtual access pattern y := ((v1, x1), . . . , (v`, x`)), the
output of RAM and ORAM at the end of the client-server interaction is equal with
probability ≥ 1− negl(`), and (ii) (security) for any two virtual access patterns,
y, z, of length `, the corresponding distribution of the actual access patterns
produced by ORAM, denoted ỹ and z̃, are computationally indistinguishable.

An alternative interpretation of the security requirement is as follows: the
view of the server, during an ORAM simulation, can be simulated in a way that
is indistinguishable from the actual view of the server, given only `.

Distributed Oblivious RAM. A distributed oblivious RAM simulation is the ana-
logue of ORAM simulation in the multi-server setting. To simulate a RAM ma-
chine, the client now communicates with m semi-honest servers. With the in-
volvement of more servers, we can hope to achieve schemes that are more efficient
as well as schemes that protect against collusions of t servers.

Definition 2 (Distributed ORAM, informal). An (m, t)-ORAM simula-
tion (0 < t < m) is an oblivious RAM simulation of a RAM machine, that
is invoked by a CPU client and m remote storage servers, and that is private
against a collusion of t corrupt servers. Namely, for any two actual access pat-
terns y, z of length `, the corresponding combined view of any t servers during
the ORAM simulation (that consists of the actual access queries made to the t
servers) are computationally indistinguishable.

Parameters and Complexity Measures. The main complexity measure in which
ORAM schemes compete is the bandwidth overhead (or, shortly, overhead).
When the ORAM protocol operates in the “balls and bins” manner [17], where
the only type of data exchanged between the client and servers is actual memory
blocks, it is convenient to define the overhead as the amount of actual memory
blocks that are queried in the ORAM simulation to simulate a virtual query to
a single block. However, in general, overhead is defined as the blowup in the
number of information bits exchanged between the parties, relative to a non-
oblivious execution of the program. Following the more general definition, the
overhead is sometimes a function of the block size B. Clearly, we aim to achieve
a small asymptotic overhead with block size as small as possible.
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Other metrics include the size of the server storage and the client’s local
memory (in blocks), and the amount and type of the computations performed by
the servers (e.g. simple arithmetics vs. heavy cryptography). We note that all of
these notions are best defined in terms of overhead, compared to a non-oblivious
execution of the program, e.g. storage overhead, computational overhead, etc..

2.2 Private Information Retrieval

Private information retrieval (PIR) [10] is a cryptographic primitive that allows
a client to query a database stored in a remote server, without revealing the iden-
tity of the queried data block. Specifically, an array of n blocks X = (x1, . . . , xn)
is stored in a server. The client, with input i ∈ [n], wishes to retrieve xi, while
keeping i private. PIR protocols allow the client to do that while minimizing the
number of bits exchanged between the client and server. PIR is studied in two
main settings: single-server PIR, where the database is stored in a single server,
and the multi-server setting, where the database is replicated and stored in all
servers, with which the client communicates simultaneously. More specifically,
an (m, t)-PIR is a PIR protocol that involves m > 1 servers and that is secure
against any collusion of t < m servers. It was shown in [10] that non-trivial
single-server PIRs cannot achieve information-theoretic security. Such schemes
are possible with two servers (or more). Moreover, many known two-server PIRs
(both information theoretic and computational, e.g. [6, 7, 10,13]) do not involve
heavy server-side computation, like homomorphic encryption or number theo-
retic computations, as opposed to known single-server protocols (e.g. [15, 23]).

3 A Simple Four-Server ORAM with Constant Overhead

We present our four-server ORAM protocol with constant bandwidth overhead
and linear server-side computation per access. The protocol bypasses the need
for symmetric encryption as it secret-shares the data among the servers. We use
distributed point functions [16] (see Section 3.1 below) as a building block.

Theorem 1 (Four-server ORAM). Assume the existence of a two-party DPF
scheme for point functions {0, 1}n → {0, 1}m with share length Λ(n,m) bits.
Then, there exists a (4, 1)-ORAM scheme with linear2 server-side computation
per access and bandwidth overhead of O(Λ(logN,B)/B) for a block size of B =
Ω(Λ(logN, 1)).

Instantiating our scheme with the DPF from [7] obtains the following.

Instantiation 1 Assume the existence of one-way functions. Then, there ex-
ists a (4, 1)-ORAM scheme with linear server-side computation per access and
constant bandwidth overhead for a block size of B = Ω(λ logN), where λ is a
security parameter.

2 Up to polylogarithmic factors.
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3.1 Building Block: Distributed Point Functions

Distributed Point Functions (DPF), introduced by Gilboa and Ishai [16], are a
special case of the broader cryptographic primitive called Function Secret Shar-
ing (FSS) [7]. Analogous to standard secret sharing, an FSS allows a dealer to
secret-share a function f among two (or more) participants. Each participant
is given a share that does not reveal any information about f . Using his share,
each participant pi, for i ∈ {0, 1}, can compute a value fi(x) on any input x in
f ’s domain. The value f(x) can be computed by combining f0(x) and f1(x). In
fact, f(x) = f0(x) + f1(x). Distributed point function is an FSS for the class of
point functions, i.e., all functions Pa,b : {0, 1}n → {0, 1}m that are defined by
Pa,b(a) = b and Pa,b(a

′) = 0m for all a′ 6= a. Boyle et al. [7] construct a DPF
scheme where the shares given to the parties are of size O(λn+m), where λ is a
security parameter, that is the length of a PRG seed. We are mainly interested
in the application of DPFs to PIR and PIR-write [7, 16].

3.2 Overview

Similarly to the schemes of [12, 19], we apply DPF-based PIR [7] to allow the
client to efficiently read records from a replicated data. If we allow linear server-
side computation per access, the task of oblivious reads becomes trivial by using
DPFs. The remaining challenge is how to efficiently perform oblivious writes to
the data.

The core idea behind the scheme is to apply DPFs not only for PIR, but also
for a variant of PIR-write. PIR-write (a variant of which was first investigated
in [28]) is the write-only analog of PIR. We use DPFs to construct a simple
two-server PIR-write where every server holds an additive share of the data.
Our PIR-write protocol is limited in the sense that the client can only modify
an existing record by some difference of his specification (rather than specifying
the new value to be written). If the client has the ability to read the record in a
private manner, then this limitation becomes irrelevant.

We combine the read-only PIR and the write-only PIR-write primitives to
obtain a four-server ORAM scheme that enables both private reads and writes.
In the setup, the client generates two additive shares of the initial data, X0, X1

s.t. X = X0 ⊕ X1, and replicates each of the shares. Each of the four shares
obtained is given to one of the servers. For a private read, the client retrieves
each of the shares X0, X1, using the DPF-based PIR protocol, with the two
servers that hold the share. For a private write, the proposed PIR-write protocol
is invoked with pairs of servers holding different shares of the data.

We remark that our method to combine PIR and PIR-write for ORAM is
inspired by the 8-server ORAM scheme presented in [28], in which an elementary
4-server PIR-write protocol was integrated with the PIR from [10].

3.3 Oblivious Read-Only and Write-Only Schemes

Basic PIR and PIR-Write. Recall the classic two-server PIR protocol, proposed
in [10]. To securely retrieve a data block xi from an array X = (x1, . . . , xN ) that
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is stored in two non-colluding servers S0 and S1, the client generates two random
N -bit vectors, e0i and e1i such that e0i ⊕ e1i = ei, where ei is the ith unit vector,
and sends ebi to Sb. In other words, the client secret-shares the vector ei among
the two servers. Then, each server, computes the inner product xbi := X · ebi and
sends it to the client. It is easy to see that xi = x0i ⊕ x1i .

The same approach can be used for two-server PIR-write. However, now we
require that the data is shared, rather than replicated, among the two servers.
Namely, server Sb holds a share of the data Xb, such that X0⊕X1 = X. In order
to write a new value x̂i to the ith block in the array, the client secret-shares the
vector (x̂i ⊕ xi)ei to the two servers. Each of the servers adds his share to Xb,
and obtains a new array X̂b. After this update, the servers have additive shares
of X with the updated value of xi. Notice that we assume that the client already
read and knows xi; this is not standard in the PIR-write model.

Efficient PIR and PIR-Write via DPFs. In the heart of the PIR and PIR-write
protocols described above is the secret sharing of vectors of size N . Applying
standard additive secret sharing yields protocols with linear communication cost.
Since we share a very specific type of vectors, specifically, unit vectors and their
multiples, standard secret sharing is an overkill. Instead, we use DPFs. The
values of a point function Pi,x : [N ] → {0, 1}m (that evaluates x at i, and
zero elsewhere) can be represented by a multiple of a unit vector vi,x := xei.
Hence, one can view distributed point functions as a means to ”compress” shares
of unit vectors and their multiples. We can use DPFs to share such a vector
among two participants p0 and p1, as follows. We secret-share the function Pi,x
using a DPF scheme, and generate two shares P 0

i,x and P 1
i,x. For b ∈ {0, 1},

share P bi,x is sent to participant pb. The participants can compute their shares
of the vector vi,x by evaluating their DPF share on every input in [N ]. Namely,
pb computes his share vbi,x := (P bi,x(1), . . . , P bi,x(n)). From the correctness of

the underlying DPF scheme, it holds that v0i,x ⊕ v1i,x = vi,x. Further, from the
security of the DPF, the participants do not learn anything about the vector vi,x
except the fact that it is a multiple of a unit vector. Using the DPF construction
from [7], we have a secret sharing scheme for unit vectors and their multiples,
with communication complexity O(λ logN + m), assuming the existence of a
PRG G : {0, 1}λ → {0, 1}m.

3.4 Construction of Four-Server ORAM

Initial Server Storage. Let S00 ,S01 ,S10 and S11 be the four servers involved in
the protocol. Let X = (x1, . . . , xN ) be the data consisting of N blocks, each of
size B = Ω(Λ(logN, 1)) bits. In initialization, the client generates two additive
shares of the data, X0 = (x01, . . . , x

0
N ) and X1 = (x11, . . . , x

1
N ). That is, X0 and

X1 are two random vectors of N blocks, satisfying X0⊕X1 = X. For b ∈ {0, 1},
the client sends Xb to both Sb0 and Sb1. Throughout the ORAM simulation, we
maintain the following invariant: for b ∈ {0, 1}, Sb0 and Sb1 have an identical array
Xb, such that X0 and X1 are random additive shares of X.
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Query Protocol. To obliviously simulate a read/write query to the ith block in
the data, the client first reads the value xi via two PIR queries: a two-server PIR
with S00 and S01 to retrieve x0i , and a two-server PIR with S10 and S11 to retrieve
x1i . The client then computes xi using the two shares. Second, to write a new
value x̂i to the data (which can possibly be equal to xi), the client performs two
identical invocations of two-server PIR-write, each with servers S0b and S1b for
b ∈ {0, 1}. It is important that Sb0,Sb1 (for b ∈ {0, 1}) receive an identical PIR-
write query, since otherwise, they will no longer have two identical replicates.

3.5 Analysis

The security of the scheme follows directly from the security of the underlying
DPF protocol from [7]. It remains to analyze the bandwidth cost. To simulate
a query, the client sends each of the servers two DPF shares: one for reading of
length Λ(logN, 1) bits, and another for writing of length Λ(logN,B). With a
block size of B = Ω(Λ(logN, 1)) this translates to O(Λ(logN,B)/B) bandwidth
overhead. Each of the servers, in return, answers by sending two blocks.

4 The Balanced Hierarchical ORAM Framework

In this section, we lay the groundwork for our constructions in the standard
distributed ORAM model, that are presented later in Sections 5 and 6.

4.1 Main Building Block: Hashing

Hashing, or more accurately, oblivious hashing, has been a main building block of
hierarchical ORAM schemes since their first appearance in [27]. Various types of
hashing schemes, each with different parameters and properties, were plugged in
ORAM constructions in an attempt to achieve efficient protocols (e.g. [8,17,18]).
Hashing stands at the heart of our constructions as well. However, since we make
a generic black-box use of hashing, we do not limit ourselves to a specific scheme,
but rather take a modular approach.

We consider an (n,m, s)-hashing scheme3, H, to be defined by three proce-
dures: Gen for key generation, Build for constructing a hash table T of size m
that contains n given data elements, using the generated key, and Lookup for
querying T for a target value. The scheme may also use a stash to store at most
s elements that could not be inserted into T . In a context where a collection of
hashing schemes operate simultaneously (e.g. ORAMs), a shared stash may be
used by all hash tables. We denote by CBuild(H) and CLookup(H), the build-up
complexity and the query complexity of H (resp.) in terms of communication
(in the client-server setting).

An oblivious hashing scheme is a scheme whose Build and Lookup procedures
are oblivious of the stored data and the queried elements (respectively). In the
full version, we provide formal definitions and notation for the above, and survey
a few of the schemes that were used in prior ORAM works.

3 Implicitly stated parameters may be omitted for brevity.
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4.2 Starting Point: Single-Server ORAM of Kushilevitz et al. [22]

Overview. The starting point of our distributed ORAM constructions in Sec-
tions 5 and 6 is the single-server scheme from [22]. In standard hierarchical
ORAMs, the server stores the data in logN levels, where every level is a hash
table, larger by a factor of 2 than the preceding level. Kushilevitz et al. changed
this by having L = logdN levels, where the size of the ith level is proportional
to (d− 1) · di−1. Having less levels eventually leads to the efficiency in overhead,
however, since level i + 1 is larger by a factor of d (no longer constant) than
level i, merging level i with level i+ 1 becomes costly (shuffling an array of size
(d−1) ·di every (d−1) ·di−1 queries). To solve this problem, every level is stored
in d − 1 separate hash tables of equal size in a way that allows us to reshuffle
every level into a single hash table in the subsequent level.

Theorem 2 ([8, 22]). Let d be a parameter, and define L = logdN . Assume
the existence of one-way functions, and a collection {Hi}Li=1, where Hi is an
oblivious (di−1k, ·, ·)-hashing scheme, with a shared stash of size s. Then there
exists a single-server ORAM scheme that achieves the following overhead for
block size B = Ω(logN).

O

(
k + s+

L∑
i=1

d · CLookup(Hi) +

L∑
i=1

CBuild(Hi)

di−1k

)

A special variant of the theorem was proven by Kushilevitz et al. [22]. In
their work, they use a well-specified collection of hashing schemes (consist-
ing of both standard and cuckoo hashing [29]), and obtain an overhead of
O(log2N/ log logN). The modular approach to hierarchical ORAM was taken
by Chan et al. [8], in light of their observations regarding the conceptual com-
plexity of cuckoo hashing, and their construction of a simpler oblivious hashing
scheme that achieves a similar result. Our results in the distributed setting fit
perfectly in this generic framework, as they are independent of the underlying
hashing schemes. Below, we elaborate the details of the construction from [22],
as a preparation towards the following sections.

Data Structure. The top level, indexed i = 0, is stored as a plain array of size
k. As for the rest of the hierarchy, the ith level (i = 1 . . . L) is stored in d − 1
hash tables, generated by an oblivious (di−1k, ·, ·)-hashing scheme Hi. For every
i = 1, . . . , L and j = 1, . . . , d− 1, let T ji be the jth table in the ith level, and let

κji be its corresponding key. All hashing schemes in the hierarchy share a stash

S4. The keys κji can be encrypted and stored remotely in the server. Also, the
client stores and maintains a counter t that starts at zero, and increments by
one after every virtual access is simulated. The ORAM simulation starts with
the initial data stored entirely in the lowest level.

4 In the scheme of [22], the shared stash is ’virtualized’, and is re-inserted into the
hierarchy. We roll-back this optimization in preparation to our constructions.
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Blocks Positioning Invariant. Throughout the ORAM simulation, every data
block in the virtual memory resides either in the top level, or in one of the hash
tables in the hierarchy, or in the shared stash. The blocks are hashed according to
their virtual addresses. The data structure does not contain duplicated records.

Blocks Flow and Reshuffles. Once a block is queried, it is inserted into the top
level, therefore the level fills up after k queries. Reshuffles are used to push blocks
down the hierarchy and prevent overflows in the data structure. Basically, every
time we try to insert blocks to a full level, we clear the level by reshuffling its
blocks to a lower level. For instance, the top level is reshuffled every k queries.

In every reshuffle, blocks are inserted into the first empty hash table in the
highest level possible, using the corresponding Build procedure, with a freshly
generated key. Thus, the first time the top level is reshuffled (after round k), its
blocks are inserted to the first table in the next level, i.e. T 1

1 , which becomes
full. The top level fills up again after k queries. This time, the reshuffle is made
to T 2

1 , as T 1
1 is not empty anymore. After d − 1 such reshuffles, the entire first

level becomes full, therefore, after d ·k queries, we need to reshuffle both the top
level and the first level. This time, we insert all blocks in these levels into T 1

2 .

Observe that this mechanism is analogous to counting in base d: every level
represents a digit, whose value is the number of full hash tables in the level. An
increment of a digit with value d − 1, equivalently - insertion to a full level, is
done by resetting the digit to zero, and incrementing the next digit by 1, that is,
reshuffling the level to a hash table in the next level (see Figure 1). We formalize
the process as follows: in every round t = t′ · k, levels 0, . . . , i are reshuffled
down to hash table T ji+1, where i is the maximal integer for which di | t′, and
j = (t′ mod di+1)/di. Notice that level i is reshuffled every k · di queries.

Fig. 1: a demonstration of the flow of blocks during an ORAM simulation with
d = 6. A gray cell indicates a full hash table, a white one is an empty table.

Query. In order to retrieve a data block with virtual address v, the client searches
for the block in the top level and the stash first. Then, for every level i, the client
scans hash tables T ji using Hi.Lookup procedure, in reverse order, starting with
the table that was last reshuffled into. Once the target block was found, the scan
continues with dummy queries. This is important for security (see Claim 4).
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5 A Three-Server ORAM Scheme

Below, we formally state our first result in the standard distributed ORAM
model: an efficient three-server ORAM scheme.

Theorem 3 (Three-server ORAM using regular hashing). Let d be a
parameter, and define L = logdN . Assume the existence of one-way functions,
and a collection {Hi}Li=1, where Hi is a (di−1(k + s),mi, s)-hashing scheme.
Then, there exists a (3, 1)-ORAM scheme that achieves an overhead of

O

(
k + L+

L∑
i=1

mi

di−1k

)
for block size B = Ω(αd logN + s log d), where α := maxi CLookup(Hi).

We propose two different instantiations of our construction, each with a different
collection of hashing schemes that was used in prior ORAM works [8, 18, 22].
Both instantiations yield sub-logarithmic overhead, and their parameters are
very close. However, Instantiation 3 may be conceptually simpler (due to [8]).
More details about the used hashing schemes can be found in the full version.

First, we plug in the collection of hashing schemes used by Goodrich and
Mitzenmacher [18], and later by Kushilevitz et al. [22]. The collection mainly
consists of cuckoo hashing schemes, however, since stashed cuckoo hashing was
shown to have a negligible failure probability only when the size of the hash
table is polylogarithmic in N (specifically, Ω(log7N)) [18], standard hashing
with bucket size logN/ log logN is used in the first Θ(logd logN) levels. We point
out that in both mentioned works [18, 22], the stash size for cuckoo hashing is
logarithmic. In our instantiation, we use a stash of size Θ(ω(1) · logN/ log logN).
Although [18] proved that failure probability is negligible in N when the stash
is of size s = Θ(logN) and the size of the table is m = Ω(log7N) (by extending
the proof for constant stash size from [21]), their proof works whenever the
value m−Θ(s) is negligible in N , and in particular, when we choose s = Θ(ω(1) ·
logN/ log logN).

Instantiation 2 (Three-server ORAM using cuckoo hashing) Assume the
existence of one-way functions. Let d be a parameter at most polylogarithmic in
N . Then, there exists a three-server ORAM scheme that achieves overhead of
O(logdN · ω(1)) for B = Ω(d logN).

When d = logεN for a constant ε ∈ (0, 1), we achieve an overhead of O(ω(1) ·
logN/ log logN) with B = O(log1+εN).

Alternatively, we can use the simple two-tier hashing scheme from [2], with
buckets of size log0.5+εN , to achieve the following parameters.

Instantiation 3 (Three-server ORAM using two-tier hashing) Assume the
existence of one-way functions. Let d be a parameter at most polylogarithmic in
N . Then, there exists a three-server ORAM scheme that achieves overhead of
O(logdN) for block size B = Ω(d log1.5+εN).

For d = logεN , we obtain an overhead ofO(logN/ log logN) withB = O(log1.5+2εN).
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5.1 Overview

Our three-server scheme is based on the single-server balanced hierarchical struc-
ture of Kushilevitz et al. [22] (described in Section 4). We take advantage of the
existence of multiple servers and reduce the overhead as follows.

Reduce Query Cost using PIR. One of the consequences of balancing the hierar-
chy is having multiple hash tables in a level, in any of which a target block can re-
side. More specifically, if T 1

i , . . . , T
d−1
i are the hash tables at level i, then a block

with address v can possibly reside in any of the positions in T ji [Hi.Lookup(v, κji )]
for j = 1, · · · , d − 1. To retrieve such a block, we could basically download all
blocks in these positions, i.e.

∑L
i=1(d − 1)CLookup(Hi) blocks in total. This al-

ready exceeds the promised overhead. Instead, we use PIR to extract the block
efficiently without compromising the security of the scheme. For every level i,
starting from the top, we invoke a PIR protocol over the array that consists of
the (d− 1)CLookup(Hi) possible positions for v in the level.

Performing PIR queries requires that the client knows the exact position
of the target block in the queried array, namely, in which bucket, out of the
d− 1 possibilities, block v resides, if at all. Therefore, the client first downloads
the addresses of all blocks in the array, and only then performs the PIR query.
Although some PIR protocols in the literature (e.g. [7]) do not impose this
requirement, we still need to download the addresses since it is essential for the
security of the protocol that the client re-writes the address of the queried block.

An address of a block can be represented using logN bits. Thus, down-
loading the addresses of all possible positions in all levels costs us

∑L
i=1(d −

1)CLookup(Hi) logN bits of communication. If we choose B = Ω(αd logN) for
α = maxi CLookup(Hi), this cost translates to the desirable O(L) overhead. Two-
server PIRs work in the model where the data is replicated and stored in two
non-colluding servers. Thus, every level in the hierarchy, except the top level,
will be stored, accessed, and modified simultaneously in two of the three servers.

Reduce Reshuffles Cost by Bypassing Oblivious Hashing. We use a variant of the
reshuffle procedure suggested by Lu and Ostrovsky [25]. Their protocol works in
a model with two non-colluding servers, where one server stores the odd levels,
and the other stores the even levels. Before reshuffling a level, the servers gather
all blocks to be reshuffled, permute them randomly, and exchange them through
the client, who re-encrypts them and tags them with pseudorandom tags. The
level is then reshuffled by one server using some regular hashing scheme (not
necessarily oblivious), and is sent to the other server, record by record, through
the client. The security of their scheme follows from the following observations:
(i) the blocks are re-encrypted and permuted randomly before the reshuffle,

eliminating any dependency on prior events,
(ii) the blocks are hashed according to pseudorandom tags, hence their order is

(computationally) independent of their identities,
(iii) the server that holds a level cannot distinguish between dummy queries and

real ones since he was not involved in the reshuffle, and
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(iv) the server that reshuffles the level (and can tell a dummy query) does not
see the accesses to the level at all.

Applying this method naively when each of the servers holds the entire hier-
archy might reveal information about the access pattern since (iii) and (iv) no
longer hold. Therefore, we should adapt their method wisely, while having two
replicates of every level, to allow performing PIR queries. A straight forward
implementation would require four servers: two holding replicates of the odd
levels, and two holding replicates of the even levels. However, this can be done
using three servers only by having every pair of servers (out of the three possible
pairs) hold every third level.

5.2 Full Construction

Data Structure. The data is virtually viewed as an array of N blocks, each of
size Ω(αd logN) bits. Every block therefore has a virtual address in [N ].

Distributed Server Storage. The data structure is identical to that from [22],
however, our scheme uses three servers, S0,S1, and S2, to store the data. The
top level is stored in all servers. Every other level is held by two servers only:
for j = 0, . . . , bL3 c, S0 and S1 share replicates of levels i = 3j, S1 and S2 share
replicates of levels 3j + 1, and S2 and S0 both hold all levels i = 3j + 2.

Dummy Blocks. Dummy blocks are blocks that are not ”real” (not part of the
virtual memory), but are treated as such, and assigned dummy virtual addresses.
From the point of view of the ’reshuffler’ server, a dummy block, unlike an empty
block, cannot be distinguished from a real block. We use two types of dummy
blocks, both essential for the security of the scheme.
(i) Dummy Hash Blocks. Dummy hash blocks replace real blocks once they are

read and written to the top level. The security of our scheme relies on the
fact that all blocks in the hierarchy are of distinct addresses, hence the
importance of this replacement.

(ii) Dummy Stash Blocks. Dummy stash blocks are created by the client to fill
in empty entries in the hierarchy. Since our scheme uses a stash to handle
overflows, the number of blocks in the stash and in each of the hash tables
is not deterministic and is dependent on the access pattern. To hide this
information from the server that performs the reshuffling of a level, we fill
all empty entries in the stash, and some of the empty entries in the hash
tables, with dummy stash blocks.

Block Headers. To properly manage the data, the client needs to know the
identity of every block it downloads (i.e. its virtual address). Therefore, every
entry in the server storage contains, besides the data of the block, a header that
consists of the virtual address of the block, which can be either an address in
[N ], a numbered dummy address, such as ’dummyHash◦t’ or ’dummyStash◦r’,
or just ’empty’. The length of the header is O(logN) bits, thus does not affect
the asymptotic block size. Unless explicitly stated otherwise, the headers are
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downloaded, uploaded and re-encrypted together with the data. An entry with
a block of virtual address v and data x is denoted by the tuple (v, x).

Tags. Since we use the servers for reshuffling the levels, we wish to hide the
virtual addresses of the blocks to be reshuffled. We use pseudorandom tags to
replace these addresses, as first suggested in [25]. The tags are computed using
a keyed PRF, Fs, that is known to the client only. When generating a new hash
table, the server hashes the blocks according to their tags (rather than their
virtual addresses). Furthermore, to eliminate any dependency between tags that
are seen in different reshuffles, the client keeps an epoch eji for every hash table

T ji in the hierarchy. The epoch of a table is updated prior to every reshuffle, and
is used, together with i and j, to compute fresh tags for blocks in the table. The
epochs can be stored remotely in the servers to avoid large client storage.

Protocol. We refer to the balanced hierarchy of [22] as our starting point.

Query. We replace the reads performed by the client with PIR protocols that
are executed over arrays in the data. Specifically, the first PIR is performed over
the stash to retrieve the target block if it is found there. The top level can be
downloaded entirely since it has to be re-written anyway. The search continues
to the other levels in the hierarchy in the order specified in Section 4. The target
block can possibly reside in any of the d − 1 hash tables in a level, therefore,
the client invokes a PIR protocol to extract the target block out of the many
possible positions. Every PIR in the procedure is preceded by downloading the
headers in the queried array, using which the client knows the position of the
target block. A technical detailed description is provided in Algorithm 1.

Reshuffles. Let Sa and Sb be the two servers holding level i + 1, and let Sc be
the other server. Reshuffling levels 0, . . . , i into hash table T ji+1 is performed as
follows. As a first step, we send all non-empty blocks that should be reshuffled
(including stash) to Sc, by having the servers exchange the blocks they hold in
levels 0, . . . , i and the stash, through the client, one block at a time, in a random
order. Besides forwarding the blocks to Sc, the client also re-encrypts every block
and re-tags it with a fresh tag (using epochs, as already mentioned). Once Sc has
all tagged blocks, he can create a new hash table and stash using the appropriate
Build procedure. He then sends the hash table and stash, one record at a time,
to the client. The client re-encrypts all records, and forwards them to the other
two servers, who store the hash table in T ji+1, and the stash to its place. The
client uses dummy stash blocks to replace as many empty blocks as needed to
get a full hash table, and a full stash. This is important since we do not want
to reveal the load of the stash to the server that does the next reshuffle. The
reshuffle procedure is described in full details in Algorithm 2.

5.3 Analysis

Complexity. We begin with analyzing the complexity of the described scheme.
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Algorithm 1 Three-Server Construction: Query

1: Allocate a local register of the size of a single record.
2: Initialize a flag found← 0.
3: Download the top level, one record at a time. If v is found at some entry (v, x)

then store x in the local register, and mark found← 1.

4: Download all headers from S. If v was found among these headers, let p be its
position, and mark found← 1. Otherwise, let p be a position of a random entry in
the stash. Invoke PIR(S, p) to fetch (v, x) with any two of the three servers, and
store x in the register.

5: for every level i = 1 . . . L do
6: t′ ← bt/kc
7: r ← b(t′ mod di)/di−1c
8: headers← ∅
9: for every hash table j = r . . . 1 do

10: If found = false, compute the corresponding tag of v, τ ← Fs(i, j, e
j
i , v).

Otherwise, assign τ ← Fs(i, j, e
j
i , dummy ◦ t).

11: Qji ← Hi.Lookup(τ, κji )

12: Download all headers of entries in T ji [Qji ], and append them to headers. If
one of the headers says v, mark found← true.

13: end for
14: Let p be the position of v in headers if it was found there, or a random value

in {1, . . . , |headers|} otherwise.

15: Let A be the array of entries corresponding to headers in headers.
16: Invoke PIR(A, p) to fetch (v, x) with the two servers holding level i, and store

x in the register (if v was not found in headers this would be a dummy PIR).

17: Re-encrypt headers, and upload it back to the two servers, while changing v to
dummyHash ◦ t.

18: end for
19: If the query is a write query, overwrite x in the register.
20: Read each entry of the entire top level from both servers one at a time, re-encrypt

it, then write it back, with the following exception: if the entry (v, x) was first
found at the top level, then overwrite x with the (possibly) new value from the
register, otherwise, write (v, x) in the first empty spot of the form (empty, ·).

21: Increment the counter t, and reshuffle the appropriate levels.

Storage Complexity. The combined server storage contains a stash of size s, a
top level of size k, and two duplicates of every other level i, consisting of d− 1

hash tables of size mi each. In total, we have O
(
s+ k +

∑L
i=1 dmi

)
.

The client uses constant working memory as he only receives and forwards
records, one at a time. The client does not need to keep the headers he downloads
prior to PIR queries, as it is sufficient to keep the position of the target block.

Overhead. We now analyze the cost of performing a single query. First, consider
the communication cost of downloading the headers for the PIRs. The PIRs are
performed over the stash and each of the levels i = 1, . . . , L. The number of
headers downloaded amounts to s +

∑L
i=1(d − 1)CLookup(Hi) ≤ s + αL(d − 1),
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Algorithm 2 Three-Server Construction: Reshuffle

Reshuffling into table T ji+1

Let Sa and Sb be the servers holding level i+ 1, and let Sc be the other server.
1: Every server of the three allocates a temporary array. For every level ` between

levels 1 and i, let S` be the server with the smallest id that holds level `. For every
such `, S` inserts all records in level ` to its temporary array. In addition, one of
the servers, say S0, inserts all stash records into its temporary array.

2: Sc applies a random permutation on its temporary array, and sends the records
one by one to the client. The client re-encrypts each record and sends it to Sb.
Sb inserts all records it receives to its array. Sb permutes its array randomly, and
forwards it to Sa through the client (who re-encrypts them). Sa, in his turn, also
inserts all received records, applies a random permutation, and sends them one by
one to the client.

3: The client re-encrypts every non-empty record (v, x) and sends it to Sc, together

with a tag, which is the output of the PRF Fs(i+1, j, eji+1, v), where ei+1 is the new

epoch of T ji+1. Note that v may be a virtual memory address, or a dummy value.
In this step, dummy records are treated as real records and only empty records are
discarded.

4: Sc receives di(k+ s) tagged records, which are all records that should be reshuffled

into T ji+1. It generates a new key κji ← Hi.Gen(N), and constructs a hash table and

a stash (T ji , S) ← Hi.Build(κji , Y ), where Y is the set of tagged records received
from the client. If the insertion fails, a new key is generated (this happens with a
negligible probability). Sc then informs the client about the number of elements
inside the stash, σ, and the key κji , then sends both the hash table T ji and the
stash one record at a time to the client.

5: As the client receives entries from Sc one at a time, it re-encrypts each record and
sends it to both Sa and Sb without modifying the contents except:
(a) The first σ empty records in the table the client receives from Sc are encrypted

as (dummyStash ◦ r, ·), incrementing r each time.
(b) Subsequent empty records from the table are encrypted as (empty, ·).
(c) Every empty record in the stash is re-encrypted as (dummyStash ◦ r, ·), incre-

menting r each time.
6: Sa and Sb store the table records in level i + 1 in the order in which they were

received, and store the stash records at the top level.

which is equivalent to O(L) blocks of the required minimum size. Overall, L+ 1
PIR queries are invoked. For levels i = 1, . . . , L, the PIR queries are performed
over arrays of size at most (d − 1)CLookup(Hi). By using the classic two-server
PIR from [10], this costs (d − 1)CLookup(Hi) < αd bits and a single block per
level. The stash adds s bits and a block. All of this sums up to no more than
O(L) data blocks. The client also downloads O(k) blocks from the top level.

Next, consider the reshuffles. Blocks are reshuffled down to some hash table
in the ith level if i is the smallest integer for which (t/k) mod di 6= 0. This occurs
whenever t/k is a multiple of di−1, but not of di, i.e., at most once every k · di−1
queries. During the reshuffle of a hash table T ji , the number of blocks transmitted
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is asymptotically bounded by the size of T ji and the size of the stash, which is

O(mi). Hence, the amortized overhead of the reshuffles is O(
∑L
i=1

mi

di−1k ).

Security. Next, we present the security proof for our construction. We prove
that the access pattern to any of the servers is oblivious and independent on the
input. We describe a simulator Sima (for a ∈ {0, 1, 2}), that produces an output
that is indistinguishable from the view of server Sa during the execution of the
protocol, upon any sequence of virtual queries, given only its length.

Lemma 1 (Security of the three-server ORAM). Let Viewa(y) be the view
of server Sa during the execution of the three-server ORAM protocol, described
in Algorithms 1 and 2, over a virtual access pattern y = ((v1, x1), . . . , (v`, x`)).
For a ∈ {0, 1, 2}, there exists a simulator Sima, such that for every y of length
`, the distributions Sima(`) and Viewa(y) are computationally indistinguishable.

Proof Sketch. As in all previous works, we assume that the client uses one-way
functions to encrypt and authenticate the data held in the servers, and therefore,
encrypted data is indistinguishable by content (notice that the client re-encrypts
every piece of data before sending it). We replace the keyed tagging functions,
that are modeled as PRFs, with random functions. These steps can be formalized
using proper standard hybrid arguments, which we avoid for brevity.

We begin by inspecting the view of the servers during the reshuffles. The
procedure starts with the servers exchanging all blocks stored in levels 1, . . . , i
and in the stash, and sending them to Sc. It is essential for security that the
number of these blocks is independent of the input, as argued in Claims 1 and 2.
We refer the reader to the full version for full proofs for these two claims, and
all claims to follow.

Claim 1. Throughout the ORAM simulation, the stash is always full.

Claim 2. Let t be a multiple of k, and denote t′ = t/k. For every 1 ≤ i ≤ L,
define rti := b(t′ mod di)/di−1c. Then,

(i) the top level is full prior to the reshuffle at round t, and is empty afterwards.
(ii) for every other level 1 ≤ i ≤ L, once the reshuffle is completed, the first rti

tables in level i (i.e., T 1
i , . . . , T

rti
i ) are full (contain di(k + s) records each),

and all other tables in level i are empty.

Claim 1 follows immediately from Step 5 of Algorithm 2. For Claim 2 follows
from the analogy of the reshuffles to counting in base d (see Section 4) (notice
that rti can be also defined as the ith digit in the base d representation of t′).

Having shown that the amount of data exchanged during the first steps of
the reshuffling procedure depends only on t, we can simulate the view of any of
the servers by a sequence of arbitrary encrypted data of the appropriate length.
Next, Sc receives (k + s) · di tagged encrypted records (Claim 2). Since dummy
records are numbered uniquely, and virtual records are never duplicated, these
records always have unique addresses. We formalize this in Claim 3 below.
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Claim 3. At all times during the execution, any non-empty record of the form
(v, ·) will appear at most once in all hash tables in the hierarchy.

Since the addresses of the records are unique, their tags will be unique as
well (with overwhelming probability). This implies the following.

Corollary 1 The tagging function Fs(·) will not be computed twice on the same
input throughout the executions of Algorithm 2 during the ORAM simulation.

Hence, by assuming Fs is a random function, the view of Sc can be simulated
as a sequence of (k + s) · di arbitrary encrypted records with random distinct
tags. Once Sc successfully creates the hash table, it sends it to Sa and Sb via
the client. The size of the hash table is fixed. The entries of the hash tables are
encrypted, and can be simulated as an arbitrary sequence of encrypted records.

To summarize, to simulate the view of the servers during the reshuffling
phase, Sima(`) and Simb(`) output a sequence of encrypted arbitrary records of
the appropriate length (which is fixed due to Claims 1 and 2), whereas Simc(`)
outputs a sequence of encrypted arbitrary records that are tagged using distinct
uniform values (a, b, c alternate between 0,1,2 throughout the phases). From
Corollary 1 and the security of the underlying symmetric encryption and PRFs,
these outputs are indistinguishable from the views of the servers at the reshuffles.

We proceed to simulating the access pattern during queries. A query for a
block v begins, independently of v, with downloading all blocks in the top level,
and all headers in the stash. Next, a PIR is invoked over the stash. From the se-
curity of the underlying PIR, there exist two simulators SimPIR

0 (m),SimPIR
1 (m),

that simulate the individual views of the two servers (resp.) involved in the pro-
tocol, given only the size of the queried array, m. We use these simulators to
simulate the view of the servers involved in the this and all following PIRs.

It remains to show that the identity of the blocks over which the PIRs are
called, i.e. the values Qji that a server Sa sees during the execution of Algo-
rithm 1, can be simulated as well. Recall that, at every execution of the al-
gorithm, Qji is computed, for every i, j, as Hi.Lookup(τ, κji ), where τ is a tag

computed using Fs, and κji is the used hash key. We denote by 〈Qji 〉a the se-

quence of Qji values seen by Sa at all executions of Algorithm 1 during the
ORAM simulation (these values correspond to levels i that are stored in Sa).
We also denote by 〈τ〉a and 〈κji 〉a the values used to compute 〈Qji 〉a.

Claim 4. The same v will not be queried upon twice at the same hash table (in
Algorithm 1) between two reshuffles of the table during the ORAM execution.

Dummy queries are numbered uniquely. The order in which we traverse the
hierarchy, and the fact that no real queries are made after the block is found,
ensure that Claim 4 is true for real queries as well. Hence, the following holds.

Corollary 2 The tagging function Fs will not be computed twice on the same
input throughout the executions of Algorithm 1 during the ORAM simulation.

From Corollary 2, and since Sa is not involved in the hashing of 〈τ〉a, we get:
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Claim 5. The sequence 〈τ〉a, defined above, is comp. indistinguishable from a
uniform sequence of unique tags, given the view of Sa during the reshuffles.

Claim 6. The sequence 〈κji 〉a, defined above, is comp. indistinguishable from a
uniform sequence of hash keys, given the view of Sa during the reshuffles.

In Claims 5 and 6, we show that 〈τ〉a and 〈κji 〉a are indistinguishable from
sequences of uniformly chosen values, given the view of Sa. Therefore, to simulate
the values 〈Qji 〉a, the simulator Sima(`) computes the output of Hi.Lookup for
uniformly random tags and hash keys. This completes the proof of Lemma 1.

6 A Family of Multi-Server ORAM Schemes

We present our following last result.

Theorem 4 ((m,m − 1)-ORAM using oblivious hashing). Let d be a pa-
rameter, and define L = logdN . Assume the existence of one-way functions,
and a collection {Hi}Li=1, where Hi is an oblivious (di−1(k + s),mi, s)-hashing
scheme. Then, for any m ≥ 2, there exists an (m,m − 1)-ORAM scheme that
achieves the following overhead for block size B = Ω(β logN + αd logN)

O

(
k + L+

L∑
i=1

mi

di−1k

)

where α := maxi CLookup(Hi) and β := maxi
CBuild(Hi)
di−1k .

Here, oblivious two-tier hashing [8] performs slightly better than other can-
didates (e.g. oblivious cuckoo hashing [18]).

Instantiation 4 ((m,m− 1)-ORAM using two-tier hashing) Assuming the
existence of one-way functions, there exists, for any m ≥ 2, a (m,m−1)-ORAM
scheme with overhead of O(logN/ log logN) for block size of B = Ω(log2N).

We first present the special case of our construction in the two-server setting,
and then generalize it the case where m > 2..

6.1 Two-Server ORAM: Overview

We base our two-server construction on the the (3, 1)-ORAM from Section 5.

Back to oblivious hashing. Now that we limit ourselves to using two servers only,
each of which has to hold a replicate of the data for the PIR queries, we lose the
ability to perform the reshuffles through a ”third-party”. Hence, we require now
that the underlying hashing schemes are oblivious, and the build-up of the hash
table is done using the oblivious Build procedures, where the client is the CPU,
and one of the servers takes the role of the RAM.
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Recall that the tags were essential for the security of the three-server scheme
since the reshuffles were made by one of the servers, to which we did not want
to reveal the identity of the blocks being reshuffled. Now that the reshuffling is
done using oblivious hashing that hides any information about the records that
are being hashed, or the hash keys used to hash them, using tags is not necessary
anymore. Instead, the blocks are hashed, and accessed, by their headers.

Optimizing the Reshuffles. Naively creating a hash table at level i using Hi.Build,
incurs an overhead of CBuild(Hi). We observe that in any hashing scheme, the
only input relevant for the build-up of a hash table is the tags or, in our case, the
headers of the blocks being reshuffled. Thus, we suggest the following solution.
The reshuffles are modified so that the build-up of the hash tables is given, as
input, the set of headers, rather than the blocks themselves. Since the headers are

smaller than the blocks by a factor of at least β := maxi
CBuild(Hi)
di−1k , the overhead

incurred by the build-ups is cut by β, making it linear in di−1k.

Matching Data to Headers. As the headers are hashed, we still have to move the
data to the new hash table. We securely match the data elements to the headers,
by tagging them, and letting the servers to permute them randomly.

6.2 Two-Server ORAM: Full Construction

Data Structure. We start with the scheme from Section 5. The server storage
remains as is, except the entire data structure is now replicated in the two servers.
This is guaranteed to be the case at the end of every round in the protocol.

Query. Every virtual access is simulated as described in Algorithm 1, with the
exception that the target block is queried upon in the hash tables by its virtual
address, rather than its tag: Hi.Lookup(v, κji ) rather than Hi.Lookup(τ, κji ). Also,
all reads and writes, as well as the PIR queries, are made now to S0 and S1.

Reshuffles. The reshuffles are still performed in the same frequency. However, the
roles of the servers change, as only two servers participate in the protocol. First,
S0 prepares all headers of blocks that have to be reshuffled into the destination
hash table, and, together with the client, invokes the appropriate oblivious Build
procedure to hash the blocks into a new hash table.

We now match the data to the headers using our matching procedure. We
begin by tagging the headers. S0 sends the shuffled headers, one by one to the
client, who decrypts every header and tags it using a new epoch, then sends it
back to S0. The headers corresponding to empty slots are tagged using numbered
values, e.g. ’empty ◦ 1’. Notice that the number of empty slots in the hash table
and stash, combined, is fixed and independent of the input. Next, S1 sends the
records (headers and data) that correspond to the shuffled headers, one by one,
in a random order. Among the actual records, S1 also sends as many (numbered)
empty records as required to match the number of empty slots in the hash table.
The client tags every record he receives from S1, and forwards it S0 together
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with its tag. S0 now matches every record he receives to a header in the hash
table or stash, according to the tags. He then sends the new hash table and stash
to S1, through the client. See Algorithm 3 for full details.

Algorithm 3 Two-Server Construction: Reshuffle

Reshuffling headers into table T ji+1

1: S0 sends all records in levels 1, . . . , i and the stash, one by one, to the client. The
client re-encrypts every record he receives and forwards it to S1, while eliminating
all empty records. S1 inserts every record he receives to a temporary array Y .
Server S1 now sends every header in Y back to S0, through the client.

2: Let Ŷ be the array of encrypted headers received by S0. The client generates

a fresh hashing key κji ← Hi.Gen(N), and, together with S0, invokes (T̂ , Ŝ) ←
Hi.Build(κji , Ŷ ) to obliviously hash the headers into a hash table and stash.

Matching data to headers.
3: S0 sends (T̂ , Ŝ), record by record, to the client. The client decrypts every header

v he receives, and computes a tag τ ← Fs(i+ 1, j, eji+1, v). If the header is empty,

then τ ← Fs(i+ 1, j, eji+1, empty ◦ z), where z is a counter that starts at 1 and and
increments after every empty header. Notice that the number of empty headers,
denoted by Z, depends only on i. The client sends the tag back to S0.

4: S1 inserts Z empty records (empty◦1, ·), . . . , (empty◦Z, ·) to Y . Server S1 permutes
Y randomly, and sends it, one record at a time, to the client.

5: The client re-encrypts every record (v, x) it receives, and sends it to S0 with a tag
τ , that is the output of Fs on v with the appropriate epoch.

6: S0 matches every tagged record it receives to one of the tags it received in Step 3,

and inserts the corresponding record to its appropriate slot (either in T̂ or Ŝ).

7: At this point, S0 holds the newly reshuffled hash table and stash, headers and data.
The tags are discarded. S0 sends both the table and the stash to S1, via the client.
Both servers replace the old stash and T ji+1 with the new data.

6.3 Two-Server ORAM: Analysis

Complexity. The query complexity is identical to that of the three-server con-
struction, and is equal to O(k+L). To obliviously construct a hash table and a
stash for a level i, the client and the servers exchange CBuild(Hi) = O(βdi−1k)

records (recall β := maxi
CBuild(Hi)
di−1k ). However, since the build-up is done over tags

of size logN bits, rather than whole blocks of size Ω(β logN), this translates to
O(di−1k) overhead in blocks. The matching procedure has a linear cost in the
size of the level, that is O(mi). This amortizes to O(1 +mi/d

i−1k) overhead per

level, and O(L+
∑L
i=1

mi

di−1k ) overall.

Security. Following Definition 2, it suffices to prove the following Lemma.
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Lemma 2 (Security of the two-server ORAM). Let Viewa(y) be the view
of server Sa during the execution of the two-server ORAM protocol, described in
Section 6, over a virtual access pattern y = ((v1, x1), . . . , (v`, x`)). There exist
simulators Sim0,Sim1, such that for every y of length `, and every a ∈ {0, 1} the
distributions Sima(`) and Viewa(y) are computationally indistinguishable.

Proof Sketch. Again, we assume that encryption is secure and tagging functions
are random. Consider the view of the servers at the reshuffles. Claims 1 and 2
hold true here as well, therefore, the amount of encrypted data exchanged in Step
1 of Algorithm 3 is oblivious. From the obliviousness of the hashing scheme, the
view seen in Step 2 can be simulated with an access pattern for an arbitrary
execution of the oblivious Hi.Build procedure. As for the matching procedure,
the view of S1 consists of the new hash table and stash, both encrypted and of
fixed size. S0 receives a sequence of tags computed using Fs for a sequence of
headers. We claim that these headers are unique. A proof of the claim is also
provided in the full version.

Claim 7. The tagging function Fs(·) will not be computed twice on the same
input in Step 3 of Algorithm 3 throughout the executions of the algorithms during
the ORAM simulation.

Hence, the tags seen by S0 are indistinguishable from uniform distinct values,
and Sim0 simulates them as such. Lastly, S0 receives a sequence of tagged records.
The records are encrypted and can be simulated. The tags were obtained by
tagging the same set of unique headers, however, in an order that is uniformly
and independently chosen by S1 and that is not known to S0. Therefore, we let
Sim0 to output the tags he has previously generated, permuted randomly.

To simulate the access pattern for the queries we rely on the obliviousness of
the Lookup procedure: the sequence of Hi.Lookup(v, κji ) values is indistinguish-
able from a sequence generated for an arbitrary sequence of addresses v using
random hash keys. Thus, SimA just generates random keys using Gen, and com-
putes Lookup for arbitrary inputs. The transcripts of the PIRs can be simulated
from the definition of two-server PIR.

6.4 From Two Servers to m Servers

Lastly, we briefly show how to transform our two-server ORAM to an (m,m−1)-
ORAM for m > 2. Please refer to the full version for a detailed analysis.

Query using Multi-server PIR. To obliviously simulate a query to a block, the
client follows the protocol used in the two-server construction (Algorithm 1).
However, now that we want to achieve privacy against any colluding subset of
corrupt servers, we use an m-server PIR protocol which guarantees such a pri-
vacy. That is, instead of invoking two-server PIRs to query blocks from the stash
and hierarchy levels, the client now uses an (m,m − 1)-PIR protocol involving
all m servers, where the joint view of any m − 1 servers is (computationally)
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independent of the target index. In particular, we can use the straight-forward
m-server generalization of the basic PIR protocol from [10]. Since this protocol,
as well as many known m-server PIRs, follow the standard PIR setting where
the data is assumed to be replicated in all of the servers, the servers during the
ORAM execution will hold identical replicates of the same data structure.

Extending the Matching Procedure. Reshuffles of levels are done in the same
frequency, and in a very similar manner as in the two-server protocol. We only
change the matching procedure. To match the content to the tags, we cannot
rely only on two servers, since they might be both corrupt. Instead, all servers
participate. The reshuffling procedure from Algorithm 3 is followed up to Step 5.
After the client receives the permuted records from S1, he re-encrypts them and
forwards them to S2. S2, in its turn, randomly permutes the records it receives,
and forwards them to S3 (if it exists), through the client. This continues until
all servers, except S0, have received the records and permuted them. Once they
all had, the client tags the records and sends them to S0, who matches them to
the shuffled headers. Lastly, the final hash table and stash are sent to all servers.

Acknowledgments. We thank Yuval Ishai, Rafail Ostrovsky and Benny Pinkas
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