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Abstract. There only exists one deterministic identity-based encryp-
tion (DIBE) scheme which is adaptively secure in the auxiliary-input
setting, under the learning with errors (LWE) assumption. However, the
master public key consists of O(λ) basic matrices. In this paper, we con-
sider to construct adaptively secure DIBE schemes with more compact
public parameters from the LWE problem.
• On the one hand, we gave a generic DIBE construction from lattice-

based programmable hash functions with high min-entropy.
• On the other hand, when instantiating our generic DIBE construc-

tion with four LPHFs with high min-entropy, we can get four adap-
tively secure DIBE schemes with more compact public parameters.
In one of our DIBE schemes, the master public key only consists of
ω(log λ) basic matrices.

Keywords: deterministic identity-based encryption, adaptively secure,
auxiliary-input, compact public parameters, the learning with errors,
lattice-based programmable hash functions with high min-entropy.

1 Introduction

A DIBE scheme is an identity-based encryption (IBE) scheme [17] whose encryp-
tion algorithm is deterministic. This primitive was proposed by Bellare et al. [5]
via extending the security definition under high min-entropy into the identity-
based setting. In order to construct DIBE schemes, Bellare et al. [5] first defined
a notion of identity-based lossy trapdoor functions (IB-LTDFs). And they ob-
tained a DIBE scheme by constructing an IB-LTDF with a universal property,
based on the DLIN assumption. However, due to the inherent limitation of IB-
LTDFs, their scheme can only achieve a selective security, i.e., the adversary
must commit an challenge identity before getting the master public key from
the challenger.
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In SCN12, Xie et al. [18] gave a more efficient secure DIBE scheme in the
auxiliary-input setting, based on the hardness of the LWE problem. In their
scheme, there exists only 3 matrices in the master public key. However, the
scheme only satisfies a selective security as same as the scheme in [5]. The more
significant contribution of Xie et al. [18] is that they proposed the first DIBE
scheme with a much more realistic adaptive security (or equivalently, full secu-
rity) in the auxiliary-input setting, based on the same assumption. To our best
knowledge, their scheme is the only DIBE scheme that achieves an adaptive se-
curity. However, their scheme requires `+ 2 basic matrices in the master public
key so that it is less efficient than their selectively secure scheme, where ` is the
bit length of the identity and ` = Θ(λ).

Fig. 1. Comparison of Adaptively Secure DIBE Schemes in the Auxiliary-Input Setting.

Schemes
# of Rounding Message Sample Reduction

Zn×mq matrix Parameter Space Width Cost
|mpk| p t σ

XXZ12 [18] O(λ) Õ(n4.5+3η) Õ(n3.5+2η) Õ(n2.5+η) O( ε
`Q

)

Ours:

DIBEMAH ω(log2 λ) Õ(n6.5+5.5η) Õ(n6+5η) Õ(n5+4η) O( ε
ϕ+1

Qϕ
)†

DIBEAFF ω(log λ) poly(n) poly(n) poly(n) O( ε2

`2Q
)

DIBEYam16

√
λ Õ(nc+3.5+2.5η) Õ(nc+3+2η) Õ(nc+2+η)§ O( ε3

`Q2 )

DIBEZCZ16 O(logQ) Õ(nc+4+3η) Õ(nc+3.5+2.5η) Õ(nc+2.5+1.5η)‡ O( ε
`Q2 )

|mpk| shows the size of the master public key. Q and ε denote the number of key
extraction queries and the advantage of the adversary, respectively. poly(n) represents
a fixed but large polynomial that does not depend Q and ε. To measure the reduction
cost, we show the advantage of the LWE algorithm constructed from the adversary
against the corresponding DIBE scheme.

†, ϕ > 1 is the constant satisfying s = 1−2
− 1
ϕ , where s ∈ {0, 1} is the relative distance

of the underlying error correcting code. We can take ϕ as close to 1 as one wants.
§, c = c1 + c2 and c1, c2 are the smallest integers satisfying that nc1

2
≥ Q + 1 and

n−c2 ≤ ε.
‡, c is the smallest integer satisfying that nc ≥ Q+ 1.

Our Contributions. In this paper, we consider to construct adaptively secure
DIBE schemes with more compact public parameters from the LWE problem.

• We gave a generic DIBE construction from lattice-based programmable hash
functions (LPHFs) with high min-entropy [22]. Note that the adaptively
secure DIBE in [18] is in our framework.

• We present more instantiations of LPHFs with high min-entropy. In fact,
most of these instantiations are already implicit in recent works. Following
the works of Zhang et al. [22] who proved that the IBE schemes in [1, 15,
22] implies instantiations of LPHFs with high min-entropy, we show that
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LPHFs with high min-entropy can be constructed from partitioning func-
tions with compatible algorithms [20]. And we show that the IBE schemes
in [19, 14, 4] naturally imply instantiations of LPHFs with high min-entropy.
Combining with the result of Zhang et al., we conclude that the adaptively
secure and anonymous IBE schemes in [1, 15, 22, 4, 19, 14, 20] naturally imply
instantiations of LPHFs with high min-entropy 1.

• When instantiating our generic DIBE construction with four LPHFs with
high min-entropy in [20, 19, 22], we can get four adaptively secure DIBE
schemes with more compact public parameters. In our DIBE schemes, the
master public key respectively consists of ω(log2 λ), ω(log λ),

√
λ,O(logQ)

number of basic matrices, where Q denotes the number of key extraction
queries. Please see more details in Figure 1.

Related Works. In [5], Bellare et al. extended the notion of lossy trapdoor
function (LDTF) to identity-setting and introduced the notion of identity-based
LTDF (IB-LTDF). And they used IB-LTDF to construct DIBE scheme with a
selective security from pairings. Soon afterwards, Escala et al. [10] extended the
notion of IB-LTDF [5] and introduced the notion of hierarchical identity-based
trapdoor functions (HIB-TDFs). With HIB-TDFs, they could construct deter-
ministic hierarchical identity-based schemes (DHIBE). They instantiated HIB-
TDFs from pairings so that they constructed a pairing-based DHIBE scheme.
Fang et al. [11] constructed a DHIBE scheme with a selective security based on
the hardness of the learning with rounding problem over small modulus [6]. In
fact, a DHIBE with a selective security implies a selectively secure DIBE. In SC-
N12, Xie et al. [18] gave a more efficient DIBE scheme with a security security.
Additionally, they also proposed the first and the only DIBE scheme with an
adaptive security in the auxiliary-input setting.
Remarks. This work is very relevant to [21] in which we constructed the DIBE
schemes DIBEMAH , DIBEAFF and DIBEYam16 directly from the works of Yamada
[19, 20]. As our growing understanding, we find that all adaptively secure DIBE
schemes in [18, 21] can be explained by using LPHFs with high min-entropy 2.
So, in this paper, we present a generic DIBE construction from LPHFs with high
min-entropy.

2 Preliminaries

Notations. Let λ be the security parameter, and all other quantities are im-
plicitly dependent on λ. Let negl(λ) denote a negligible function and poly(λ)
denote an unspecified function f(λ) = O(λc) for some constant c. A function f

is ε-hard-to-invert with respect to the distribution D, if given h(x) with x
$← D,

1 Note that Boyen and Li [7] constructed an adaptively secure and anonymous IBE
scheme with tight security. However, their construction does not imply a LPHF and
is not in our framework.

2 Note that the adaptively secure DIBE scheme in [18] is constructed from the LPHF
with high min-entropy in [1, 15].
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there exists no PPT algorithm can find x with probability better than ε. For
n ∈ N, we use [n] to denote a set {1, · · · , n}. And for integer q ≥ 2, Zq denotes
the quotient ring of integer modulo q. We use bold capital letters to denote ma-
trices, such as A,B, and bold lowercase letters to denote column vectors, such
as x,y. The notations A> and [A|B] denote the transpose of the matrix A and
the matrix of concatenating A and B, respectively.

For n ∈ N, we use [n] to denote a set {1, · · · , n}. For integer q ≥ 2, Zq
denotes the quotient ring of integer modulo q. For integers q ≥ p ≥ 2 and
x ∈ Zq, a rounding function b·ep : Zq → Zp is defined by bxep = b(p/q) · xe
mod p.

2.1 Deterministic Identity-Based Encryption and Its Security

A deterministic identity-based encryption scheme DIBE with the identity space
ID can be defined by a tuple of PPT algorithms DIBE.Setup,DIBE.KGen,DIBE.Enc,
DIBE.Dec. The DIBE.Setup algorithm takes a security parameter 1λ as input
and outputs a master secret key mpk and a master secret key msk ∈ M. The
DIBE.KGen algorithm takesmpk,msk, id ∈ ID as input and outputs a private key
skid. The deterministic algorithm DIBE.Enc takes mpk, id ∈ ID and a message
msg, outputs a ciphertext c. The deterministic algorithm DIBE.Dec decrypts ci-
phertexts using the private key skid. We require that for all λ, all id ∈ ID, and
all msg ∈ M, Pr [DIBE.Dec(mpk, skid, id,DIBE.Enc(mpk, id,msg)) = msg] =
1− negl(λ).

Definition 1 ([18]). We say that a DIBE scheme DIBE is PRIV1-ID-INDr-
secure with respect to ε-hard-to-invert auxiliary inputs if for any PPT algorithm
A, for any efficiently sampled distribution M̂, and any efficiently computable
Hhard = {h} that is ε-hard-to-invert with respect to M̂, such that the advantage
of A in the following game is negligible.

Setup. At the outset of the game, the challenger runs DIBE.Setup(1λ) which
outputs a pair (mpk,msk) and gives mpk to A.

Phase 1. When A adaptively makes key-extraction queries to the challenger, the
challenger returns skid ← DIBE.KGen(mpk,msk, id), for all id in the key-
extraction queries.

Challenge Phase. At some point, A outputs an identity id∗, on which it wishes

to be challenged. Then, the challenger picks a random coin coin
$← {0, 1}, a

message msg
$← M̂, a random ciphertext c∗1 from the ciphertext space C and

a function h
$← Hhard. If coin = 0, it runs DIBE.Enc(mpk, id∗,msg) → c∗0

and gives the challenge ciphertext (c∗0, h(msg)) to A. If coin = 1, it gives
(c∗1, h(msg)) to A.

Phase 2. A can also adaptively make key-extraction queries to the challenger,
with the restriction id 6= id∗.

Gauss. Finally, A makes a guess coin′ for coin.

The advantage of A is defined as Pr
[
coin′ = coin

]
− 1

2 .



DIBE from LPHFs with High Min-Entropy 5

2.2 LPHFs with High Min-Entropy [22]

Let `,m,m, n, q, v be some polynomials in the security parameter λ. By In we
denote the set of invertible matrices in Zn×nq . A hash function H : ID → Zn×mq

consists of two algorithms (H.Gen,H.Eval). Given the security parameter λ, the
probabilistic polynomial time (PPT) key generation algorithm H.Gen(1λ) out-
puts a key K, i.e., K ← H.Gen(1λ). For any input id ∈ ID = {0, 1}`, the ef-
ficiently deterministic evaluation algorithm H.Eval(K, id) outputs a hash value
Z ∈ Zn×mq , i.e., Z = H.Eval(K, id).

Definition 2 (LPHFs). A hash function H : ID → Zn×mq is a (1, v, β, γ, δ)-
LPHF if there exist a PPT trapdoor key generation algorithm H.TrapGen and a
PPT deterministic trapdoor evaluation algorithm H.TrapEval such that given a
uniformly random matrix A ∈ Zn×mq and a (public) trapdoor matrix B ∈ Zn×mq

the following properties hold:
Syntax : The PPT algorithm (K ′, td) ← H.TrapGen(1λ,A,B) outputs a key K ′

together with a trapdoor td. Moreover, for any input id ∈ ID, the determin-
istic algorithm (R′id,S

′
id) = H.TrapEval(td,K ′, id) returns R′id ∈ Zm×mq and

S′id ∈ Zn×nq such that s1(R′id) ≤ β and S′id ∈ In∪{0} hold with overwhelming
probability over the trapdoor td that is produced along with K ′.

Correctness : For all possible (K ′, td) ← H.TrapGen(1λ,A,B), all id ∈ ID and
its corresponding (R′id,S

′
id) = H.TrapEval(td,K ′, id), we have

H.Eval(K ′, id) = AR′id + S′idB.

Statistically close trapdoor keys : For all (K ′, td) ← H.TrapGen(1λ,A,B), and
K ← H.Gen(1λ), the statistical distance between (A,K ′) and (A,K) is at
most γ.

Well-distributed hidden matrices : For all (K ′, td) ← H.TrapGen(1λ,A,B), any
inputs id∗, id1, · · · , idv such that id∗ 6= idj for any j ∈ [v], we have that

Pr[S′id∗ = 0 ∧ S′id1 , · · · ,S
′
idv ∈ In] ≥ δ,

where (R′id∗ ,S
′
id∗) = H.TrapEval(td,K ′, id∗) and (R′idj ,S

′
idj

) = H.TrapEval(td,K ′, idj).

Definition 3 (LPHFs with High Min-Entropy). Let H : ID → Zn×mq be
a (1, v, β, γ, δ)-LPHF with γ = negl(λ) and noticeable δ > 0. Let K be the key
space of H, and let H.TrapGen and H.TrapEval be a pair of trapdoor generation
and trapdoor evaluation algorithms for H. We say that H is a LPHF with high
min-entropy if for uniformly random matrix A ∈ Zn×mq and a (public) trapdoor
matrix B ∈ Zn×mq , the following condition holds

◦ Property 1. For any (K ′, td) ← H.TrapGen(1λ,A,B), any id ∈ ID and it-
s corresponding (R′id,S

′
id) = H.TrapEval(td,K ′, id), the statistical distance

between (A,K ′,v,u) and (A,K ′,v, (R′id)
>v) is negligible in λ, where u

$←
Zmq ,v

$← Zmq . ut
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Remark 1. Note that this definition of LPHFs with min high-entropy is much
weaker that Zhang et al’s definition of LPHFs with min high-entropy which in-
cludes another one requirement. In [14], Katsumata and Yamada found that
this requirement is not necessary, i.e., we can define this weaker version of
LPHFs with min high-entropy while keeping their functionality–constructing
IBE schemes.

3 Generic DIBE Construction

Here, we construct an adaptively secure DIBE scheme in the auxiliary-input
setting by using a (1, v, β, γ, δ) LPHF H with high min-entropy from {0, 1}`
to Zn×mq , where γ is negligible and δ > 0 is noticeable. Let H.TrapGen and
H.TrapEval be a pair of trapdoor generation and trapdoor evaluation algorith-
m of H that satisfies the condition in Definition 3, where integers n,m, q, v, β
are polynomials in the security parameter λ. Additionally, let integers m =
O(n log q),m′ = m + m. We assume ID = {0, 1}` and M = Znt , where ID is
the user identity space and M is the message space. Our generic DIBE scheme
DIBE = (DIBE.Setup,DIBE.KGen,DIBE.Enc,DIBE.Dec) is defined as follows.

• Setup. Algorithm DIBE.Setup takes 1λ as input, and generates a pair (A,TA)
$←

TrapGen(1n, 1m, q), where A ∈ Zn×mq and TA ∈ Zm×mq . Then, it obtains

K ← H.Gen(1λ). Finally, it outputs

mpk = (A,K) and msk = TA.

• Key Generation. Algorithm DIBE.KGen takes mpk and id ∈ ID as in-
puts. It first computes Fid = [A|H.Eval(K, id)] ∈ Zn×m′q . Then generates

TFid ∈ Zm′×m′ by running SampleBasisLeft(A,H.Eval(K, id),TA, σ). It fi-
nally outputs skid = TFid .

• Encryption. Algorithm DIBE.Enc takes mpk, id ∈ ID,m ∈ M as inputs.
It first computers Fid = [A|H.Eval(K, id)] ∈ Zn×m′q . Then, it outputs the

ciphertext c = bF>idmep.
• Decryption. To decrypt a ciphertext c with a private key skid = TFid , the

algorithm DIBE.Dec computers m
$← Invert(c,Fid, skid). Then, if m ∈ Znt it

outputs m, and otherwise it outputs ⊥.

3.1 Correctness and Parameter Selection

In order to make sure the correctness of the DIBE scheme and make the security
proof follow through, we need the following to satisfy.

• TrapGen in Lemma 4 (Item 1) can work (m ≥ 6ndlog qe), and it returns TA

satisfying ‖T̃A‖ ≥ O(
√
n log q).

• SampleBasisLeft in Lemma 4 (Item 2) can operate (σ ≥ ‖T̃A‖·ω(
√

log(m+m)) =

O(
√
n log q) · ω(

√
log(m+m))).
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• SampleBasisRight in Lemma 4 (Item 3) can operate (σ ≥ s1(Rid)·ω(
√

logm) ≥
β · ω(

√
logm)).

• In order to keep the correctness of the DIBE scheme, i.e., Invert in Lemma
4 (Item 4) can work (‖TFid‖ < p/(2

√
m)), where ‖TFid‖ ≤ O(σ ·m) given

by both SampleBasisLeft and SampleBasisRight.
• ReRand (Lemma 5) in the security proof can operate (θ > ω(

√
logm), and

θ′q/(2θq) > s1([Im|R′id∗ ]>), where s1([Im|R′id∗ ]>) ≤ (β + 1).
• Lemma 3 holds (q is super-polynomial and α/θ = negl(λ)).
• Pr[Bad7] ≤ 2m(2B + 1)p/q = negl(n) = n−ω(1), where B = θ′q

√
n.

To satisfy the above requirements, we set the parameters in Figure 2. The pri-
vate key size, ciphertext size and ciphertext expansion factor in our scheme are
O(n2+3η), O(n1+η log(mβ)) and O(nη log(mβ)/ log t) respectively. To optimize
the ciphertext expansion factor, we can choose t = mβ, which makes the cipher-
text expansion factor to be O(nη).

Fig. 2. Parameter Selection of Generic DIBE Construction
Parameters Description Setting

λ security parameter
n PK-lattice row dimension n = λ
` the length of identity ` = n
m PK-matrix column number O(n log q)
m matrix column number m = m
σ SampleBasisLeft,SampleBasisRight width max{β,

√
m} · ω(

√
logn)

p rounding parameter O(σ ·m
3
2 )

t message space mβ

q modulus the prime nearest to 2n
η

, 0 < η < 1

θ error width ω(
√

logn)
θ′ error width β · ω(

√
logn)

3.2 Security of DIBE

Theorem 1. If H = (H.Gen,H.Eval) is a (1, v, β, γ, δ) LPHF with high min-
entropy from {0, 1}` to Zn×mq , where γ is negligible, δ > 0 is noticeable and
independent of the modulus q, and large enough v = poly(n). Then, the above
DIBE scheme DIBE is PRIV1-ID-INDr-secure with respect to 2−k log t-hard-to-
invert auxiliary inputs, assuming DLWEq,n,m,θ,Hhard

is hard.

According to Lemma 3, it is easy for us to get the following corollary.

Corollary 1. If H = (H.Gen,H.Eval) is a (1, v, β, γ, δ)-LPHF with high min-
entropy from {0, 1}` to Zn×mq , where γ is negligible, δ > 0 is noticeable and inde-
pendent of the modulus q, and large enough v = poly(n). Then, the above DIBE
scheme DIBE is PRIV1-ID-INDr-secure with respect to 2−k log t-hard-to-invert

auxiliary inputs, assuming DLWEq,z,m,α is hard, where z
4
= k log(t)−ω(log(λ))

log(q) .
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Proof of Theorem 1. Let A be a PPT adversary that breaks the PRIV1-ID-
INDr-security with auxiliary inputs of the DIBE scheme. Moreover, let ε = ε(λ)
and Q = Q(λ) ≤ v be its advantage and the upper bound of the number of
DIBE.KGen(mpk,msk, ·) queries, respectively. And let I∗ = {id∗, {idj}j∈[Q]}
denotes the challenge ID along with the queried IDs. For any distribution M̂
over Znt , let Hhard = {h} be a set of z−k log(t)-hard-to-invert functions with

respect to M̂.
In order to prove the security of this DIBE scheme, we define a sequence of

games. In each game, the challenger selects a uniform bit coin
$← {0, 1}, while

the adversary A finally returns a guess bit coin′ to the challenger. The challenger
sets ĉoin = coin′ in the orginal game, these values might be different in the latter
games. In the following, we define Xi as the event that ĉoin = coin.

Game0: This game is the original PRIV1-ID-INDr game with auxiliary inputs.
By definition, we have

|Pr[X0]− 1

2
| = |Pr[ĉoin = coin]− 1

2
| = |Pr[coin′ = coin]− 1

2
| = ε.

Game1: This game is identical to Game0 except that the challenger changes
the setup and challenge phase as below.

Setup. It first generates a pair (A,TA)
$← TrapGen(1n, 1m, q), where A ∈ Zn×mq

and TA ∈ Zm×mq . Then, it computes (K ′, td) ← H.TrapGen(A,G). Finally,
it outputs mpk = (A,K ′) and keeps the trapdoor td private.

Challenge Phase. The challenger directly uses (K ′, td) to generate the challenge
ciphertext.

According to the property of statistically close trapdoor keys, we have |Pr[X1]−
Pr[X0]| < negl(λ).
Game2: This game is identical to Game1 except that the challenger performs
the following additional step at the end of the game. The challenger first defines

τ(t̂d, K̂, I∗) =

{
0 if Ŝid∗ = 0 and Ŝidj is invertible for all j ∈ [Q]

1 otherwise,

where (R̂id∗ , Ŝid∗) = H.TrapEval(t̂d, K̂, id∗) and (R̂idj , Ŝidj ) = H.TrapEval(t̂d, K̂, idj).
Then, the challenger proceeds the following steps:
Abort Check : For (K ′, td) generated in the setup phase, if τ(td,K ′, I∗) = 1, the

challenger aborts the game and sets ĉoin
$← {0, 1} ignoring the output of A.

Otherwise, the following equation holds:

H.TrapEval(td,K ′, id) =

{
AR′id∗ if id = id∗

AR′id + S′idG otherwise.

Artificial Abort : Fix I∗, let p be the probability p = Pr[τ(t̂d, K̂, I∗) = 0] over the

random choice of (t̂d, K̂). The challenger samplesO(ε−2 log(ε−1)δ−1 log(δ−1))
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times the probability p by independently running (K̂, t̂d)← H.TrapGen(A,G)

and evaluating τ(t̂d, K̂, I∗) to compute an estimate p′. Then if p′ ≥ δ, the

challenger will abort with probability p′−δ
p′ and sets ĉoin

$← {0, 1} ignoring

the output of A. Otherwise, when receiving coin′ from A, the challenger sets
ĉoin = coin′.
For i ∈ {2, 3, 4, 5, 6, 7}, let p̃i be the probability that the challenger does not

abort in the abort check stage in Gamei, and let pi be the probability in the
artificial abort stage of Gamei defined by pi = Pr[τ(t̂d, K̂, I∗) = 0]. Since the
adversary might obtain some information of td from the challenge ciphertext,
the probability p̃i might not be equal to the probability pi. Formally, let Γi be
the absolute difference between p̃i and pi (i.e., Γi = |p̃i − pi|). As we show in
Lemma 2, we have ∣∣∣∣Pr[X2]− 1

2

∣∣∣∣ ≥ 1

2
ε(δ − Γ2). (1)

So as not to interrupt the proof of Theorem 1, we intentionally skip the proof
for the time being.
Game3: This game is identical to Game2 except that the challenger changes
setup, phase 1 and 2, and challenge phase as below.

Setup. It first selects a random matrix A
$← Zn×mq . Then, it computes (K ′, td)←

H.TrapGen(A,G). Finally, it outputs mpk = (A,K ′) and keeps the trapdoor
td private.

Phase 1. When receiving the private key query with identity id, the challenger
first computes (R′id,S

′
id) = H.TrapEval(td,K ′, id). If S′id is not invertible, the

challenger aborts the game and sets ĉoin
$← {0, 1}. Otherwise, it computes

skid = SampleBasisRight(A,G,R′id,S
′
id,TG, σ) and sends skid to A.

Challenge Phase. The challenger computes (R′id∗ ,S
′
id∗) = H.TrapEval(td,K ′, id∗).

If Sid∗ 6= 0, the challenger aborts the game and sets ĉoin
$← {0, 1}. Other-

wise, for m
$← M̂, the challenger computes

ĉ = F>id∗m =

[
A>m

(R′id∗)
>A>m

]
∈ Zm

′

q .

Then, the challenger sets c∗0 = bĉep. Finally, the challenger returns (c∗coin, h(m))
to the adversary A.

Phase 2. The challenger responds as in Phase 1, when receiving the private key
query with identity id 6= id∗.

It is easy to see that

Pr[X3] = Pr[X2] and Pr[Γ3] = Pr[Γ2]. (2)

Game4: In this game, the challenger changes the way that the challenge cipher-
text is created when coin = 0.
Challenge Phase. The challenger computes (R′id∗ ,S

′
id∗) = H.TrapEval(td,K ′, id∗).

If Sid∗ 6= 0, the challenger aborts the game and sets ĉoin
$← {0, 1}. Other-

wise, for m
$← M̂, the challenger chooses e1

$← DZm,θ′q, e2
$← DZm,θ′q and
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computes

ĉ = ĉ1 + ĉ2 =

[
A>m

(R′id∗)
>A>m

]
+

[
e1

e2

]
=

[
A>m + e1

(R′id∗)
>A>m + e2

]
.

Then, the challenger computes c∗0 = bĉep. Finally, the challenger returns
(c∗coin, h(m)) to the adversary A.

Before analyzing the difference between Game3 and Game4, we first define a

“bad event” as follows: Bad4
4
= bĉ1 + [−B,B]m

′ep 6= bĉ1ep, where B = θ′q
√
n.

For i ∈ {5, 6, 7}, similar event Badi can also be defined in Gamei. If Bad4 does
not occur for some ĉ1, then we have

bĉep =

[ ⌊
A>m + e1

⌉
p⌊

(R′id∗)
>A>m + e2

⌉
p

]
=

[ ⌊
A>m

⌉
p⌊

(R′id∗)
>A>m

⌉
p

]
= bF>id∗mep.

It immediately follows that for any adversary A

|Pr[X4]− Pr[X3]| ≤ Pr[Bad4] and |Pr[Γ4]− Pr[Γ3]| ≤ Pr[Bad4]. (3)

Game5: In this game, the challenger changes the way that the challenge cipher-
text is created when coin = 0.
Challenge Phase. The challenger computes (R′id∗ ,S

′
id∗) = H.TrapEval(td,K ′, id∗).

If S′id∗ 6= 0, the challenger aborts the game and sets ĉoin
$← {0, 1}. Other-

wise, when coin = 0, the challenger first picks m
$← M̂ and e

$← DZm,θq, and
computes b = A>m + e. It runs the algorithm ReRand to get ĉ, i.e.,

ĉ = ReRand

([
Im

(R′id∗)
>

]
,b, θq,

θ′q

2θq

)
, where Im is the unit matrix of size m×m. Then, the challenger computes
c∗0 = bĉep. Finally, the challenger returns (c∗coin, h(m)) to the adversary A.
According to the property of the algorithm ReRand in the Lemma 5, we have

Pr[X5] = Pr[X4] and Pr[Γ5] = Pr[Γ4] and Pr[Bad5] = Pr[Bad4]. (4)

Game6: In this game, the challenger changes the way that the challenge cipher-
text is created when coin = 0.
Challenge Phase. The challenger computes (R′id∗ ,S

′
id∗) = H.TrapEval(td,K ′, id∗).

If S′id∗ 6= 0, the challenger aborts the game and sets ĉoin
$← {0, 1}. Other-

wise, when coin = 0, the challenger first picks v
$← Zmq , e

$← DZm,θq and sets
b = v + e. Then, it computes

ĉ = ReRand

([
Im

(R′id∗)
>

]
,b, θq,

θ′q

2θq

)
∈ Zm

′

q .

Then, the challenger computes c∗0 = bĉep. Finally, the challenger returns
(c∗coin, h(m)) to the adversary A.
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We construct an algorithm B against the problem DLWEq,n,m,θ,Hhard
as follows.

Given the problem instance of LWE (A,b = v + e) ∈ Zn×mq × Zmq , where

e
$← DZm,θq. The task of B is to distinguish whether v = A>m for m

$← Znt or

v
$← Zmq . This subtle change from the standard DLWEq,n,m,θ,H is done only for

convenience of the proof. B can simulate the security game for the adversary A.

If v = A>m, the view of A corresponds to Game5; otherwise, for v
$← Zmq , the

view of A corresponds to Game6. As a result, we get that

|Pr[X6]− Pr[X5]| ≤ DLWEq,n,m,θ,Hhard
,

|Pr[Γ6]− Pr[Γ5]| ≤ DLWEq,n,m,θ,Hhard
,

|Pr[Bad6]− Pr[Bad5]| ≤ DLWEq,n,m,θ,Hhard
.

(5)

Game7: In this game, the challenger changes the way that the challenge cipher-
text is created when coin = 0.
Challenge Phase. The challenger computes (R′id∗ ,S

′
id∗) = H.TrapEval(td,K ′, id∗).

If S′id∗ 6= 0, the challenger aborts the game and sets ĉoin
$← {0, 1}. Other-

wise, when coin = 0, the challenger computes

ĉ = ĉ1 + ĉ2 =

[
v

(R′id∗)
>v

]
+

[
e1

e2

]
=

[
v + e1

(R′id∗)
>v + e2

]
,

instead of running the algorithm ReRand, where e1
$← DZm,θ′q, e2

$← DZm,θ′q,

v
$← Zmq . Then, the challenger computes c∗0 = bĉep. Finally, the challenger

returns (c∗coin, h(m)) to the adversary A.
According to the property of the algorithm ReRand, we have

Pr[X7] = Pr[X6] and Pr[Γ7] = Pr[Γ6] and Pr[Bad7] = Pr[Bad6]. (6)

Because for id∗ ∈ ID the statistical distance between (A,K ′,v, (R′id∗)
>v) and

(A,K ′,v,u) is negligible in λ, where u
$← Zmq , ĉ1 is statistically close to uniform

distribution over Zm′q , therefore for uniform ĉ1,

Pr[Bad7] ≤ 2m(2B + 1)p/q = negl(λ), (7)

by assumption on q and θ′. In the meantime, because ĉ is statistically close to
uniform distribution over Zm′q , we can get that

Pr[X7] =
1

2
and Pr[Γ7] = 0. (8)

Summing up equations (1)-(8), we can get

DLWEq,n,m,θ,Hhard
≥ εδ

6
− negl(λ).

ut
In order to prove Theorem 1, we should prove that equation (1) holds. We

will use Lemma 28 in the full version of the work [1], which is described as
follows.
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Lemma 1 ([1]). Let I∗ be a (Q + 1)-ID tuple {id∗, {idj}j∈[Q]} denoted the
challenge ID along with the queried ID’s, and η(I∗) define the probability that an
abort does not happen in Game2. Let ηmax = max η(I∗) and ηmin = min η(I∗).

For i = 1, 2, we set Xi be the event that ĉoin = coin at the end of Gamei. Then,∣∣∣∣Pr[X2]− 1

2

∣∣∣∣ ≥ ηmin ∣∣∣∣Pr[X1]− 1

2

∣∣∣∣− 1

2
(ηmax − ηmin).

Lemma 2. If H is a (1, v, β, γ, δ)-LPHF with high min-entropy and Q ≤ v, then∣∣Pr[X2]− 1
2

∣∣ ≥ 1
2ε(δ − Γ2).

Proof. According to Lemma 1, we only need to compute ηmax, ηmin and ηmax−
ηmin. By the definition of p̃2 and p2 in Game2, we have η(I∗) = p̃2

δ
p′ , where p′ is

an estimate of p2. Since the challenger always samplesO(ε−2 log(ε−1)δ−1 log(δ−1))
times the probability p2 to compute p′, according to the Chernoff bounds, we
have Pr[p′ > p2(1 + ε

8 )] < δ ε8 and Pr[p′ < p2(1 − ε
8 )] < δ ε8 . As a result, the

following equations hold

ηmax ≤ (1− δ ε
8

)p̃2
δ

p2(1− ε
8 )
,

ηmin ≥ (1− δ ε
8

)p̃2
δ

p2(1 + ε
8 )
≥ 7δp̃2

9p2
,

ηmax − ηmin ≤ (1− δ ε
8

)
εδp̃2

4(1− ε2

64 )p2
≤ 16εδp̃2

63p2
.

Finally, we have
∣∣Pr[X2]− 1

2

∣∣ ≥ 7δp̃2
9p2
· ε− 1

2 ·
16εδp̃2
63p2

≥ εδ(p2−Γ2)
2p2

≥ 1
2ε(δ− Γ2).utut

4 Constructions of LPHFs with High Min-Entropy

In [22], Zhang et al. proved that the IBE schemes in [1, 15, 22] implies instantia-
tions of LPHFs with high min-entropy. In fact, the IBE scheme in [4] also imply
an instantiation of LPHF with high min-entropy.

In this section, we show that LPHFs with high min-entropy can be con-
structed from partitioning functions with compatible algorithms [20]. Moreover,
we prove that the adaptively secure and anonymous IBE schemes in [19, 14]
naturally imply instantiations of LPHFs with high min-entropy. In a word, the
adaptively secure and anonymous IBE schemes in [1, 15, 22, 4, 19, 14, 20] natural-
ly imply instantiations of LPHFs with high min-entropy.

4.1 From Partitioning Functions with Compatible Algorithms [20]

Let FPF : KPF × ID → {0, 1} be a partitioning function with associating δPF-
compatible algorithms (Encode,PubEval,TrapEval) (See Appendix A). We as-
sume ID = {0, 1}`. Now, we show how to construct a (1, v, β, γ, δ)-LPHF with
high min-entropy from the partitioning function FPF : KPF × ID→ {0, 1}.

A hash function H : ID→ Zn×mq consists of two algorithms (H.Gen,H.Eval)
which are defined as follows:
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– H.Gen(1λ) → Klphf : It randomly chooses matrices B1, · · · ,Bu
$← Zn×mq ,

B0
$← Zn×mq , and returns these u+1 matrices, i.e.,Klphf := {B1, · · · ,Bu,B0}.

– H.Eval(Klphf , id ∈ ID) → Z ∈ Zn×mq : For id ∈ ID, it first gets Bid by
running the algorithm PubEval(id ∈ ID, {Bi ∈ Zn×mq }i∈[u]). Then, it returns
Z = B0 + Bid.

The associating algorithms H.TrapGen and H.TrapEval are defined as follows.

– H.TrapGen(1λ,A,G)→ (K ′lphf , td) : It first computesKPF
$← PrtSmp(1λ, Q, ε).

Then, it gets k ∈ {0, 1}u by operating the algorithm Encode(KPF). Finally,

it randomly chooses matrices R1, · · · ,Ru,R0
$← {−1, 1}m×m, and returns

K ′lphf := {AR1+k1G, · · · ,ARu+kuG,AR0} and td = {KPF,R1, · · · ,Ru,R0}.
– H.TrapEval(td,K ′lphf , id ∈ ID) → (R′id ∈ Zm×mq ,S′id ∈ Zn×nq ) : For id ∈ ID,

it defines R′id = R0+TrapEval(KPF, id,A, {Ri}i∈[u]) and S′id = FPF(KPF, id)·
In, where In denotes the identity matrix of n × n. In this case, s1(R′id) ≤√
m ·
√

2m · ‖R + TrapEval(KPF, id,A, {Ri}i∈[u])‖∞ ≤
√

2m · (1 + δPF).

Now, we show that this construction satisfies the following properties:

◦ Correctness: H.Eval(K ′lphf , id) = B0 + PubEval(id, {ARi + kiG}i∈[u]) =
AR0+(A·TrapEval(K, id,A, {Ri}i∈[u])+FPF(KPF, id)·G) = AR′id+S′idG.
◦ Statistically close trapdoor keys: According to the Leftover Hash Lemma,

the statistical distance between the distributions {A,B1, · · · ,Bu,B0} and
{A,AR1 + k1G, · · · ,ARu + kuG,AR0} is negligible. As a result, the sta-
tistical distance between {A,Klphf} and {A,K ′lphf} is negligible, i.e., γ =
negl(λ).
◦ Well-distributed hidden matrices: For all (K ′LPHF, td)← H.TrapGen(1λ,A,G),

any inputs id∗, id1, · · · , idv such that id∗ 6= idj for any j ∈ [v]. Then,

Pr[S′id∗ = 0 ∧ S′id1 , · · · ,S
′
idv ∈ In]

= Pr[FPF(KPF, id
∗) = 0 ∧ FPF(KPF, id1) = · · · = FPF(KPF, idv) = 1]

≥γmin(λ).

In a word, this construction is a (1, v,
√

2m · (1 + δPF), negl(λ), γmin(λ))-LPHF.
Finally, we show that this LPHF possesses the property 1, i.e., with high min-
entropy.

◦ For any (K ′lphf , td)← H.TrapGen(1λ,A,G), any id ∈ ID and its correspond-
ing (R′id,S

′
id) = H.TrapEval(td,K ′lphf , id), the following distributions are s-

tatistically close:

(A,K ′lphf ,v, (R
′
id)
>v)

=(A,AR0, {ARi + kiG},v, (R + TrapEval(K, id,A, {Ri}i∈[u]))>v)

≈(A,B0, {ARi + kiG},v,u)

≈(A,K ′lphf ,v,u),
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where B0
$← Zn×mq ,u

$← Zmq ,v
$← Zmq . It can been seen that the second and

the third distributions are negl(λ)-close, by applying Leftover Hash Lemma

for [A|v>] ∈ Z(n+1)×m
q and R. ut

4.2 From Yam16 [19] and KY16 [14]

In [19], Yamada proposed an adaptively secure and anonymous IBE with asymp-
totically short parameters. In particular, the master public key consists ofO(`1/2)
basic matrices. In this part, we show that their construction implies a LPHF with
high min-entropy. For simplicity, we denotes it by HYam16 : ID → Z ∈ Zn×mq ,

where ID = {0, 1}`. In their construction, there exists an efficiently computable
injective map S that maps an element id ∈ ID to a subset S(id) of [1, t]2, where
t = d

√
`e. The algorithms (HYam16.Gen,HYam16.Eval) are defined as below.

– HYam16.Gen(1λ)→ K : It picks random matrices B0
$← Zn×mq ,Bi,j

$← Zn×mq

for (i, j) ∈ [2]× [t] and returns K = (B0, {Bi,j}(i,j)∈[2]×[t]).
– HYam16.Eval(K, id)→ Z ∈ Zn×mq : For all id ∈ ID, the algorithmHYam16.Eval

is defined as follows,

HYam16.Eval(K, id) = B0 +
∑

(j1,j2)∈S(id)

B1,j1 ·G−1(B2,j2) ∈ Zn×mq .

The associating algorithms HYam16.TrapGen and HYam16.TrapEval are defined as

– HYam16.TrapGen(1λ,A,G)→ (K ′, td) : It first selects random elements y0
$←

[−4(`+1)n2c+1, 0] and yi,j
$← [1, 2nc], where c = c1+c2 and c1, c2 satisfy that

nc1

2 ≥ Q+ 1 and n−c2 ≤ ε. Then, it randomly chooses matrices R0,Ri,j
$←

{−1, 1}m×m. Finally, it computes B0 = AR0+y0G and Bi,j = ARi,j+yi,jG
returns K ′ = {B0,Bi,j} and td = {y0, yi,j ,R0,Ri,j}.

– HYam16.TrapEval(td,K ′, id)→ (R′id ∈ Zm×mq ,S′id ∈ Zn×nq ) : For id ∈ ID,

R′id = R0 +
∑

(j1,j2)∈S(id)

(
R1,j1G

−1(B2,j2) + y1,j1R2,j2

)
,

S′id = (y0 +
∑

(j1,j2)∈S(id)

y1,j1 · y1,j2) · In.

In this case, s1(R′id) ≤ m(1 + 4`nc).

Now, we show that this construction satisfies the following properties:

◦ Correctness: It is easy to verify that H.Eval(K ′, id) = AR′id + S′idG.
◦ Statistically close trapdoor keys: According to the Leftover Hash Lemma,

the statistical distance between the distributions (A,B0, {Bi,j}(i,j)∈[2]×[t])
and (A,AR0 + y0G, {ARi,j + yi,jG}(i,j)∈[2]×[t]) is negligible.
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◦ Well-distributed hidden matrices: For all (K ′, td) ← H.TrapGen(1λ,A,G),
any inputs id∗, id1, · · · , idv such that id∗ 6= idj for any j ∈ [v]. Then,

Pr[S′id∗ = 0 ∧ S′id1 , · · · ,S
′
idv ∈ In]

= Pr[Fy(id∗) = 0 ∧ Fy(id1) 6= 0 · · · = Fy(idv) 6= 0] ≥ ε2

32(`+ 1)Q2
,

where Fy(id) = y0 +
∑

(j1,j2)∈S(id) y1,j1 · y1,j2 .

In a word, this construction is a (1, v,m(1 + 4`nc), negl(λ), ε2

32(`+1)Q2 )-LPHF.

Then, we show that HYam16 is a LPHF which possess the properties 1, i.e., with
high min-entropy.

◦ Property 1. For any (K ′, td) ← HYam16.TrapGen(1λ,A,G), any id ∈ ID
and its corresponding (R′id,S

′
id) = HYam16.TrapEval(td,K ′, id), the following

distributions are statistically close:

(A,K ′,v, (R′id)
>v) = (A,AR0 + y0G, {ARi,j + yi,jG},v, (R0 + R′)>v)

≈ (A,B0, {ARi,j + yi,jG},v,u)

= (A,K ′,v,u),

where R′ =
∑

(j1,j2)∈S(id)
(
R1,j1G

−1(B2,j2) + y1,j1R2,j2

)
, u

$← Zmq ,v
$←

Zmq . The second and the third distributions are negl(λ)-close, by applying

the Leftover Hash Lemma for [A>|v] ∈ Z(n+1)×m
q and R0. ut

Remark 2. The subsequent work by Katsumata and Yamada [14] showed that for
the ring version of Yamada’s scheme [19], it is possible to reduce the magnitude
of s1(R′id) (which inluences the selection of modulus q). We do not see any
obstacle preventing us from constructing a programmable hash function with
high min entropy from ideal lattices, according to the IBE scheme of [14].

5 Instantiations of Generic DIBE construction

As mentioned in section 4, there are many LPHFs with high min-entropy in [1, 15,
22, 4, 20, 19, 14]. However, except the LPHF with high min-entropy [1] used by X-
ie et al. [18] to construct DIBE scheme, there only exist another four (1, v, β, γ, δ)
LPHFs with high min-entropy which satisfy the requirement that δ is indepen-
dent of the modulus q, under the LWE assumption. These four LPHFs with high
min-entropy are briefly described in the following.

Zhang et al. [22] constructed one LPHF with high min-entropy, and using this
LPHF with high min-entropy they presented an adaptively secure IBE scheme
with more compact public parameters.

(1) HZCZ16 in ZCZ16 [22]: a (1, v, µv`m1.5 · ω(
√

logm), negl(λ), 1
N ) LPHF with

high min-entropy, where N ≤ 16v2` and µ = dlogNe. Additionally, the key
of HZCZ16 only consists of µ = dlogNe matrices.
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In [20], Yamada elaborately constructed two partitioning functions with com-
patible algorithms FMAH based on modified admissible hash function [13] and
FAFF based on affine function. Using our generic construction in section 4.1, we
can get two LPHFs with high min-entropy from both FMAH and FAFF, which
are denoted by HMAH and HAFF respectively.

(2) HMAH: a (1, v,m4u(` + 1), negl(λ),O( ε
ϕ

Qϕ )) LPHF with high min-entropy,

where u = ω(log2 λ), v is an arbitrary polynomial in λ and ϕ > 1 is the

constant satisfying s = 1 − 2−
1
ϕ , where s ∈ {0, 1} is the relative distance

of the underlying error correcting code. We can take ϕ as close to 1 as one
wants. In addition, the key of HMAH only consists of u = ω(log2 λ) matrices.

(3) HAFF: a (1, v, poly(λ), negl(λ),O( ε
`2Q )) LPHF with high min-entropy, where

v is an arbitrary polynomial in λ. Furthermore, the key ofHAFF only consists
of ω(log λ) matrices.

As mentioned in section 4.2, the full secure IBE scheme in [19] implies an
instantiation of LPHF with high min-entropy.

(4) HYam16 in Yam16 [19]: a (1, v,m(1 + 4`nc), negl(λ), ε2

32(`+1)Q2 ) LPHF with

high min-entropy, where v is an arbitrary polynomial in λ, c = c1 + c2 and
c1, c2 satisfy that nc1

2 ≥ Q + 1 and n−c2 ≤ ε. Moreover, the key of HYam16

only consists of
√
λ matrices.

Embedding these four LPHFs with high min-entropy into our generic DIBE
construction, we can obtain four PRIV1-ID-INDr-secure DIBE schemes (Figure
3) in the auxiliary-input setting, under the lWE assumption.

Fig. 3. Four Adaptively Secure DIBE Schemes in the Auxiliary-Input Setting.

Schemes
# of Rounding Message Sample Reduction

Zn×mq matrix Parameter Space Width Cost
|mpk| p t σ

DIBEMAH ω(log2 λ) Õ(n6.5+5.5η) Õ(n6+5η) Õ(n5+4η) O( ε
ϕ+1

Qϕ
)†

DIBEAFF ω(log λ) poly(n) poly(n) poly(n) O( ε2

`2Q
)

DIBEZCZ16 O(logQ) Õ(nc+4+3η) Õ(nc+3.5+2.5η) Õ(nc+2.5+1.5η)‡ O( ε
`Q2 )

DIBEYam16

√
λ Õ(nc+3.5+2.5η) Õ(nc+3+2η) Õ(nc+2+η)§ O( ε3

`Q2 )

|mpk|, |ct| show the size of the master public keys and ciphertexts, respectively.
Q and ε denote the number of key extraction queries and the advantage, respectively.
poly(n) represents a fixed but large polynomial that does not depend Q and ε. To
measure the reduction cost, we show the advantage of the LWE algorithm constructed
from the adversary against the corresponding DIBE scheme.

† ϕ > 1 is the constant satisfying s = 1− 2
− 1
ϕ , where s ∈ {0, 1} is the relative distance

of the underlying error correcting code. We can take ϕ as close to 1 as one wants.
‡ c is the smallest integer satisfying that nc ≥ Q+ 1.
§ c = c1 + c2 and c1, c2 are the smallest integers satisfying that nc1

2
≥ Q + 1 and

n−c2 ≤ ε.
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A Preliminaries

Lattice Background. For positive integers q, n,m, and a matrix A ∈ Zn×mq ,
the m-dimensional integer lattices are defined as:

Λq(A) = {y : y = A>s for some s ∈ Zn} and Λ⊥q (A) = {y : Ay = 0 mod q}.

Let S be a set of vectors S = {s1, · · · , sn} in Rm. We use S̃ = {s̃1, · · · , s̃n}
to denote the Gram-Schmidt orthogonalization of the vectors s1, · · · , sn in that
order, and ‖S‖ to denote the length of the longest vector in S. For a real-valued
matrix R, let s1(R) = max‖u‖=1 ‖Ru‖ (respectively, ‖R‖∞ = max ‖ri‖∞) de-
note the operator norm (respectively, infinity norm) of R.

For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Zm centered at
c ∈ Rm with parameter s > 0 as ρs,c(x) = exp(−π||x− c||/s2). Let ρs,c(Λ) =∑

x∈Λ ρs,c(x), and define the discrete Gaussian distribution over Λ asDΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

, where x ∈ Λ. For simplicity, ρs,0 and DΛ,s,0 are abbreviated as ρs and

DΛ,s, respectively.
Learning with Errors Assumption. The learning with errors (LWE) prob-
lem, denoted by LWEq,n,m,α, was first proposed by Regev [16]. For integer
n,m = m(n), a prime integer q > 2, an error rate α ∈ (0, 1), the LWE problem
LWEq,n,m,α is to distinguish the following pairs of distributions: {A,A>s + e}
and {A,u}, where A

$← Zn×mq , s
$← Znq ,u

$← Zmq and e
$← DZm,αq. Regev

[16] showed that solving decisional LWEq,n,m,α (denoted by DLWEq,n,m,α) for
αq > 2

√
2n is (quantumly) as hard as approximating the SIVP and GapSVP

problems to within Õ(n/α) factors in the worst case.

Lemma 3 ([12], Theorem 5; [18], Lemma 7). Let k log t > log q+ω(log(λ)), t =

poly(λ). Let M̂ be any distribution over Znt and Hhard be the class of all func-
tions h : Znt → {0, 1}∗ that are 2−k log(t) hard to invert with respect to the

distribution M̂. For any super-polynomial q = q(λ), any m = poly(n), and
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any α, θ ∈ (0, 1) such that α/θ = negl(λ), then the following pairs of dis-
tributions:

(
A,A>s + e, h(s)

)
and (A,u, h(s)) are hard to distinguish, where

A
$← Zn×mq , s

$← M̂ ⊆ Znt ,u
$← Zmq and e

$← DZm,θq. Assuming the (standard)

LWEq,z,m,α assumption, where z
4
= k log(t)−ω(log(λ))

log(q) .

For simplicity, we use DLWEq,n,m,β,Hhard
to denote the problem of distinguishing

the above two distributions:
(
A,A>s + e, h(s)

)
and (A,u, h(s)). According to

Lemma 3, assuming the DLWEq,z,m,α, then the DLWEq,n,m,β,Hhard
problem is

also intractable, where z
4
= k log(t)−ω(log(λ))

log(q) . In the following, we describe some

useful facts that will be used in our generic DIBE construction.

Gadget Matrix. As mentioned by [15], for m > ndlog qe, there exists a full-
rank matrix G ∈ Zn×mq such that the lattice Λ⊥q (G) has a public known basis

TG ∈ Zm×mq with ‖T̃A‖ ≤
√

5. Moreover, there exists a deterministic PPT
algorithm G−1 which takes the input U ∈ Zn×mq and outputs V = G−1(U)
such that V ∈ {0, 1}m×m and GV = U.

Lemma 4. Let p, q, n,m be positive integers with q ≥ p ≥ 2 and q prime. There
exists PPT algorithms such that

• ([2, 3]): TrapGen(1n, 1m, q) a randomized algorithm that, when m ≥ 6ndlog qe,
outputs a pair (A,TA) ∈ Zn×mq ×Zm×m such that A is statistically close to

uniform in Zn×mq and TA is a basis of Λ⊥q (A), satisfying ‖T̃A‖ ≤ O(
√
n log q)

with overwhelming probability.

• ([8]): SampleBasisLeft(A,B,TA, σ) a randomized algorithm that, given a full
rank matrix A ∈ Zn×mq , a matrix B ∈ Zn×mq , a basis TA of Λ⊥q (A), a

parameter σ ≥ ‖T̃A‖ · ω(
√

log(m+m)), then outputs a basis TF of Λ⊥q (F)
for F = [A|B] with ‖TF‖ ≤ O(σ ·m).

• ([1]): SampleBasisRight(A,G,R,S,u,TG, σ) a randomized algorithm that,
given a full rank matrix A ∈ Zn×mq , a matrix R ∈ Zm×mq , an invertible

matrix S ∈ Zn×nq , a vector u ∈ Znq and σ ≥ ‖T̃G‖ · s1(R) · ω(
√

logm), then

it outputs a basis TF of Λ⊥q (F) for F = [A|AR+SG] with ‖TF‖ ≤ O(σ ·m).

• ([11]): Invert(c,A,TA) that, given a full rank matrix A ∈ Zn×mq , a basis

TA of Λ⊥q (A) with ‖TA‖ < p/(2
√
m), and c = bA>mep outputs m, where

m ∈ Znt with t ≤ q.
• (Generalized Leftover Hash Lemma [1, 9]): For m > (n+ 1) log q + ω(log n)

and prime q > 2, let R
$← {−1, 1}m×k and A

$← Zn×mq ,B
$← Zn×kq be

uniformly random matrices. Then the distribution (A,AR,R>w) is negl(n)-
close to the distribution (A,B,R>w) for all vector w ∈ Zmq . When w is
always 0, this lemma is called Leftover Hash Lemma.

In [14], Katsuamta and Yamada introduced the “Noise Rerandomization” lemma
which plays an important role in the security proof because of creating a well
distributed challenge ciphertext.
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Lemma 5 (Noise Rerandomization [14]). Let q, w,m be positive integers
and r a positive real number with r > max{ω(

√
logm), ω(

√
logw)}. For arbitrary

column vector b ∈ Zmq , vector e chosen from DZm,r, any matrix V ∈ Zw×m and
positive real number σ > s1(V), there exists a PPT algorithm ReRand(V,b +
e, r, σ) that outputs b′ = Vb + e′ ∈ Zw where e′ is distributed statistically close
to DZw,2rσ.

Partitioning Functions with Compatible Algorithms. In [20], Yamada
defined the notion of partitioning functions by slightly generalizing the bal-
anced admissible hash function [13] and used this notion to construct compact
adaptively secure lattice IBE schemes. Furthermore, in order to construct IBE
from lattices, the underlying partitioning function should be compatible with
the structure of lattices.

Definition 4 ([20]). Let F = {Fλ : Kλ × IDλ → {0, 1}} be an ensemble of
function families. We say that F is a partitioning function, if there exists an
efficient algorithm PrtSmp(1λ, Q, ε), which takes as input polynomially bounded
Q = Q(λ) ∈ N and noticeable ε = ε(λ) ∈ (0, 1/2] and outputs K such that:

1. There exists λ0 ∈ N such that Pr
[
K ∈ Kλ : K

$← PrtSmp(1λ, Q, ε)
]

= 1 for

all λ > λ0. Here, λ0 may depend on functions Q(λ) and ε(λ).
2. For λ > λ0, there exists γmax(λ) and γmin(λ) that depend on Q(λ) and ε(λ)

such that for all id1, · · · , idQ, id∗ with id∗ /∈ {id1, · · · , idQ}, the following
holds

γmax(λ) ≥ Pr[F(K, id1) = · · · F(K, idQ) = 1 ∧ F(K, id∗) = 0] ≥ γmin(λ).

And the function τ(λ) defined as τ(λ) = γmin(λ)ε(λ)−(γmax(λ)−γmin(λ))/2

is noticeable. The probability is taken over the choice of K
$← PrtSmp(1λ, Q, ε).

The deterministic algorithms (Encode,PubEval,TrapEval) are called δPF-compatible
with a function family {Fλ : K × ID → {0, 1}} if they are efficient and satisfy
the following properties:

• Encode(K ∈ K)→ k ∈ {0, 1}u.
• PubEval(id ∈ ID, {Bi ∈ Zn×mq }i∈[u])→ Bid ∈ Zn×mq .
• TrapEval(K ∈ K, id ∈ ID,A ∈ Zn×mq , {Ri ∈ Zm×mq }i∈[u]) → Rid ∈ Zm×mq .

We require that the following holds:

PubEval(id, {ARi + kiG}i∈[u]) = ARid + F(K, id) ·G,

where ki is the i-th bit of k = Encode(K ∈ K) ∈ {0, 1}u. Furthermore, if
Ri ∈ {−1, 0, 1}m×m for all i ∈ [u], we have ‖Rid‖∞ ≤ δPF.


