
SigAttack: New High-level SAT-based Attack on Logic
Encryptions

Yuanqi Shen, You Li, Shuyu Kong, Amin Rezaei, and Hai Zhou
Northwestern University

{yuanqishen2020, you.li, shuyukong2020}@u.northwestern.edu,
me@aminrezaei.com, haizhou@northwestern.edu

ABSTRACT
Logic encryption is a powerful hardware protection tech-
nique that uses extra key inputs to lock a circuit from piracy
or unauthorized use. The recent discovery of the SAT-based
attack with Distinguishing Input Pattern (DIP) generation
has rendered all traditional logic encryptions vulnerable, and
thus the creation of new encryption methods. However, a
critical question for any new encryption method is whether
security against the DIP-generation attack means security
against all other attacks. In this paper, a new high-level SAT-
based attack called SigAttack has been discovered and thor-
oughly investigated. It is based on extracting a key-revealing
signature in the encryption. A majority of all known SAT-
resilient encryptions are shown to be vulnerable to SigAt-
tack. By formulating the condition under which SigAttack
is effective, the paper also provides guidance for the future
logic encryption design.

1. INTRODUCTION
Globalization of the integrated circuit (IC) design industry

leads to severe issues in the field of hardware security such
as overproduction, piracy, reverse engineering and counter-
feiting [4, 5]. As a countermeasure, logic encryption is pro-
posed to add extra key inputs into the design such that even
though attackers can know the netlist, the circuit is functional
only when the key inputs are set correctly [1]. Diverse logic
encryption techniques have been proposed [1–4,6,14]. How-
ever, they are all vulnerable to a newly discovered SAT-based
attack [13].

With the discovery of the SAT-based attack, many new en-
cryption and decryption techniques are proposed [7, 9, 11].
such as SARLock [17] and Anti-SAT [15] are proposed to en-
sure that an exponential number of iterations are necessary in
the SAT-based attack. However, since error rate of SARlock
and Anti-SAT is exponentially low, approximate attacks such
as Double DIP [12] and AppSAT [8] are proposed to find a
key with extremely low error rate. To accurately measure the
performance of approximate attacks, Error-Controllable En-
cryption [10] is proposed so that error rate of a key value can
be exactly calculated. On the other hand, bypass attack [16]
can explicitly fix a few errors under an approximate key to
get the correct circuit.

With the drawbacks of SARLock and Anti-SAT in mind,
Zhou [18] investigated the design space of general logic en-
cryption, and proposed logic encryptions with the best trade-
off between error rate and attack complexity. After proving
that the product of an error number, which is defined as the
number of mismatches on all inputs for a given key, and at-
tack complexity for any logic encryption can be at most 2n ,
he demonstrated a design that can achieve an arbitrary er-

ror number M with the attack complexity of 2n/M . There-
fore, the measure of attack complexity is by the SAT-based
attack, specifically, by the number of DIPs (Distinguishing
Input Patterns) needed to exclude all wrong keys.

It naturally draws us to this critical question: is the SAT-
based attack with DIP generation [13] the most powerful at-
tack, and is its measure of attack complexity reliable?

Our answer is no. In this paper, we first define a key-
revealing signature in any logic encryption, and show that if
attackers know such a signature, they can easily find the cor-
rect key. Then we introduce SigAttack, a new high-level SAT-
based attack, and show how SigAttack extracts such signa-
tures from some well known encryption schemes, especially
the designs proposed by Zhou [18]. The general condition
under which such a signature can be extracted will also be
discussed thus providing advice for future logic encryption
designers.

2. RELATED WORKS

2.1 SAT-based Attack
There are various traditional logic encryption techniques.

However, these encryption techniques fall into the same sit-
uation: a large number of wrong keys can lead to the same
wrong input-output pair. Therefore, to find the correct key
value, a strategy is to prune out all wrong keys based on
the observation of some input-output pairs. To achieve this
goal, an attack based on the SAT (satisfiability) solver is de-
veloped. As Algorithm 1 shows, a DIP X i is found in each
iteration, and the CNF (Conjunctive Normal Form) of a cor-
rect input-output pair C (X i ,K ,Y i) is added to constrain
the keys. The algorithm continues until the remaining keys
cannot produce new DIPs. Then solving the constraints re-
veals the correct key.

Algorithm 1 SAT-based Attack
Input: Encrypted circuit C (X ,K ,Y ), and activated circuit

eval .
Output: Correct key K ∗.
1: i = 1
2: F 1 = C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2)
3: while SAT [Fi ∧ (Y1 6= Y2)] do
4: X i = SAT (F i ∧ (Y 1 6= Y 2))
5: Y i = eval(X i)
6: F i+1 = F i ∧ C (X i ,K 1,Y i) ∧ C (X i ,K 2,Y i)
7: i = i + 1
8: end while
9: K ∗ = SAT (F i)



XOR

XOR

AND

F(X)

XOR

k0…kn-1

x0
k0

x1
k1

xn-2
kn-2

xn-1
kn-1

XOR

XOR

XOR

XOR

≠ K*?

H(V)

Figure 1: A logic encryption design with both high error
number for a wrong key and high attack complexity.

2.2 General Framework for Logic Encryption
Recently, Zhou [18] has proposed a theory on logic en-

cryption, which provides a deep understanding on the de-
sign space and the trade-off between error rate and attack
complexity. It can be proved that in any given encryption
C (X ,K ,Y ) for any function F (X ), if the minimal error
number of a wrong key is M, the minimal attack complexity
is N, then MN ≤ 2n , where n is the length of the input [18].
Therefore, one ideal encryption shown in Figure 1 is to set
both the minimal attack complexity and the minimal error
number for a wrong key to 2n/2, and Zhou has proved that
such a design C (X ,K ,Y ) exists for any given F (X ).

To generalize the design, Figure 2 is proposed, and
Zhou [18] has shown that every logic encryption is function-
ally equivalent to this general scheme. In this design, X and
K are primary inputs and key inputs, respectively, and K ∗ is
the correct key value. If K is equal to K ∗, the flipping signal
is disabled. Otherwise, the value of the flipping signal only
depends on the output of the function H (X ,K ), and it may
output one under different combination of X and K .

3. SIGATTACK: HIGH-LEVEL
SAT-BASED ATTACK

AND

F(X)

XOR

H(X,K)
X
K

n

n
flipping signal

original circuit

≠ K*?

Figure 2: The general scheme that every possible logic en-
cryption is equivalent to.

As shown in Figure 2, the function H (X ,K ) gives the pat-
tern how the output of the encrypted circuit is different from

XOR

XOR

AND

F(X)

XOR

k0…kn-1

x0
k0

xn-1
kn-1

NOR

H(X, K)H(V)

≠ K*?

Figure 3: Model SARLock in the general framework and
Zhou’s encryption.

AND

F(X)

XOR

H(X,K1)
X

K1
n

n

AND

F(X)

XOR

H(X,K2)
X

K2
n

n

1

1

XOR 1

Y1

Y2

0

0

1

1

≠ K*?

≠ K*?

Figure 4: The circuit that reveals the correct key by one SAT
query.

the original circuit F (X ), and the comparison between K
and K ∗ is used to mask off the flipping. It can be checked
that all encryption techniques conform to this scheme. For
example, H (X ,K ) is combination of XOR gates and a NOR
gate in SARLock, as shown in Figure 3.

The basic idea of all SAT-attack resilient logic encryptions
is to make sure that the minimal number of primary inputs
to generate at least one H (X ,K ) = 1 for each wrong key is
exponential. For example, in SARLock, this is done by mak-
ing sure that there is only one X for each wrong key such
that H (X ,K ) = 1.

In this section, we propose a new high-level SAT-based at-
tack called SigAttack, which extracts a key-revealing signa-
ture of a design. Section 3.1 formally defines the signature
in logic encryption, and proves that if attackers can extract
the signature of an encrypted circuit, the correct key can be
revealed. Section 3.2 to Section 3.4 demonstrate that SigAt-
tack can successfully decrypt many existing encryption tech-
niques.

3.1 Signature Definition
To develop a logic decryption technique against the gen-

eralized model in Figure 2, we first conduct the structural
analysis. We follow the same assumption in [18] that the
outputs of functions H (X ,K ) and F (X ) have only one bit.
We noticed that if the output of the function H (X ,K ) can
be fixed to one, the value of the flipping signal only de-
pends on the correctness of the key. Therefore, if we require
different outputs of two copies of the encrypted circuit as



XOR

XOR

AND

F(X)

XOR

k0…kn-1

x0
k0

xn-1
kn-1

H(V) flipping signal

original circuit

≠ K*?

Figure 5: Zhou’s encryption.

shown in Figure 4, one of the keys must be equal to K ∗. In
other words, the correct key can be revealed by a SAT query
C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2) ∧ (Y 1 6= Y 2) ∧ H (X ,K 1) ∧
H (X ,K 2). However, designers can further obfuscate the en-
crypted circuit so that the netlist of H (X ,K ) is hard to be
extracted. Is an attacker able to fix the output of H (X ,K ) to
be one without knowing the netlist of H ?

The answer is positive. Intuitively, a signature of an en-
cryption in Figure 2 is a function Sig(X ,K ) that implies
H (X ,K ). We formally define the key-revealing signature of
an encrypted circuit, Sig(X ,K ), as follows:

Definition 3.1. For any given encryption circuit C (X ,K ,Y ),
a signature Sig(X ,K ) is defined as any Boolean expression such
that:

1. ∀X ,K ,K 6= K ∗ : Sig(X ,K ) ⇒ C (X ,K ,Y ) ∧ (Y 6=
F (X ));

2. ∃X ,K ,K 6= K ∗ : Sig(X ,K ∗) ∧ Sig(X ,K ).

Intuitively, condition 1 ensures that Sig(X ,K ) captures a
subset of (X ,K ) pairs that will always produce wrong out-
puts when K 6= K ∗ in C (X ,K ,Y ). In the general encryp-
tion shown in Figure 2, it means that Sig(X ,K ) must be an
implicant of H (X ,K ). However, any (X ,K ) combination
giving a wrong output can form such an implicant. There-
fore, condition 2 requests that Sig(X ,K ) must contain at
least two pairs (X ,K ∗) and (X ,K ). It excludes any simple
instance (X ,K ) as Sig(X ,K ).

The vulnerability of a logic encryption with known
Sig(X ,K ) is shown in the following theorem.

Theorem 3.1. If attackers can extract the Sig(X ,K ) for a given
encryption circuit C (X ,K ,Y ), the correct key value K ∗ can
be revealed by a SAT query C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2) ∧
Sig(X ,K 1) ∧ Sig(X ,K 2) ∧ (Y 1 6= Y 2).

PROOF. We want to prove that at least one of two keys,
K 1 and K 2, is assigned to K ∗ when the SAT solver handles
the proposed query.

Let us assume both K 1 and K 2 are not equal to K ∗. As a
result, condition 1 in Definition 3.1 indicates that Y 1 6= F (X )
and Y 2 6= F (X ), which leads to Y 1 = Y 2 and contradicts
the SAT query, and therefore, contradicts condition 2 that
ensures a SAT solver can always find such an assignment.
Thus, we proved either K 1 or K 2 is the correct key, which can
be located by comparing Y 1 and Y 2 with the correct output
under X .

3.2 SigAttack on Zhou’s Encryption

Based on the design in Figure 2, a general encryption
scheme in Figure 5 has been proposed by Zhou [18], which is
to achieve linear-size encryption by using XOR gates to pair
bits between primary inputs X and key inputs K . We called
it Zhou’s encryption in this paper. It is easy to check Figure 1
and 3 conform to Zhou’s encryption.

Could we attack Zhou’s encryption without knowing the
specific design pattern of the function H (V )? Similar to the
discussion in Section 3.1, if the output of H (V ) equals one,
the flipping signal only depends on the correctness of K ,
thus K ∗ can be revealed by the SAT solver.

Therefore, the question further becomes how we could fix
the output of H (V ). It turns out that we do not need to fix
any value of X and K ; since each bit of X and K is XORed
first, fixing the equivalent relation of each bit between X and
K is enough to provide the same input V to H (V ). However,
we should assume that attackers do not know how bits are
paired between X and K . In other words, we should explore
that for each bit x in X , which key bit k in K is connected to
the same XOR gate. If we know the connection for all bits of
X and K , we can add clause either (x i = k i) or (x i 6= k i) for
each bit of X and K to a SAT solver so that V is determined.

To find the bits pairing, we propose the following SAT-
based technique: for each bit k in K , we query the SAT for-
mula

C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2) ∧ (Y 1 6= Y 2)∧
(k1 6= k2) ∧ ((K 1\k1) = (K 2\k2)),

which indicates if exists two key values K 1 and K 2 with
hamming distance equal to one, such that H (V ) = 1 for one
circuit and H (V ) = 0 for the other. As a result, their outputs
are different since one of them is flipped. Here we assume
that both K 1 and K 2 are unlikely to be assigned to the correct
key K ∗ by a SAT solver. Otherwise, K ∗ is already revealed.

If the output is not flipped because H (V ) = 0, we know
that after flipping the corresponding primary input bit x that
connects to the same XOR gate with k , H (V ) is equal to one
again, so the flipping signal is enabled for both circuits. Thus,
to find such x corresponding to k , we flip each bit of X and
observe if the output Y is flipped again.

What could go wrong here? Since we do not know the
function of H (V ), we cannot guarantee that Y is flipped
only when we flip the corresponding primary input bit x .
Flipping other primary input bits can produce a different V ,
which may also lead to H (V ) = 1. Thus, we may not find
the correct pairing.

Inspired by this discovery, we can conclude that Zhou’s
encryption is vulnerable if it has the following property:

Property 1. ∃ at most one V ′ such that H (V ′) = 1 if H (V ) = 0
and hamming distance(V ,V ′) = 1.

However, what if such V ′ does not even exist? In other
words, the SAT solver is not able to find an assignment of
the proposed query for some key input bits. As a result, we
miss pairings for some bits in X and K , and the doubt is if
these missing pairings lead to the result that H (V ) = 1 for
two copies is not guaranteed. Fortunately, we can prove the
Theorem 3.2.

Theorem 3.2. For the key bits that cannot satisfy the proposed
SAT query, the value of these key bits cannot affect the output of
the function H(V).



PROOF. Assume we split key bits of K into two sets,
where KA contains key bits that the SAT query can be sat-
isfied, and KB contains the remaining key bits that the SAT
query cannot be satisfied. Correspondingly, we can split bits
of V for H (V ) into two sets, V A and V B , respectively.

Assume among n bits in V , there are p bits in V B , which
are v0...vp−1. We want to prove that the outputs of H (V )
only depend on bits in V A, which are vp ...vn−1. Therefore,
the output of H (V ) only depend on kp ...kn−1 and x p ...xn−1,
and key bits in KB will not affect the output of H (V ).

Our algorithm goes through each key bit. For v0, since the
SAT query cannot be satisfied, it indicates that the H (V ) only
depends on v1...vp ...vn−1, and if v1...vp ...vn−1 are fixed, the
output of H (V ) is determined. Similarly, from the analysis
of v1, H (V ) only depends on v0v2...vp ...vn−1. Thus, we can
conclude that if v2...vp ...vn−1 are fixed, the output of H (V )
is determined.

The reason is as follows. Assume outputs of H (V )
with v0v1 = 00, 01, 10, 11 are Y A,Y B ,Y C ,Y D respectively.
From the v0 analysis, Y A = Y C , Y B = Y D no matter
what the assignments of v2...vn−1 are. Similarly, the v1

analysis shows that Y A = Y B , Y C = Y D . Therefore,
Y A = Y B = Y C = Y D , and we have a conclusion that
the output of H (V ) is determined if v2...vn−1 are fixed.

Hence, from the analysis from v0 to vp−1, we can conclude
that the output of H (V ) only depends on bits vp ...vn−1.

Theorem 3.2 guarantees that if the SAT query cannot be
satisfied for a key bit, we can simply skip it and check the
next bit. If Property 1 holds, after iterating all key bits, we
are able to collect all constraints of the relation between X
and K to guarantee H (V ) = 1. Therefore, the SAT solver
can be utilized to directly find K ∗.

However, the algorithm is still not perfect. There may be
a case that the SAT query is satisfied for all key bits, and
it leads to the SAT solver returns UNSAT (unsatisfiability)
while finding the K ∗. The reason is that the SAT solver finds
the same primary inputs for both copies of circuits, and if
H (V ) = 1 requires all key bits to be constrained, K 1 and
K 2 have to be assigned the same value. As a result, the
SAT solver cannot find an assignment to satisfy the clause
(Y 1 6= Y 2) in the SAT query. However, if there is at least one
key bit that leads the proposed SAT query cannot be satisfied,
the SAT solver has the flexibility to assign different values to
that bit, so H (V ) = 1 for both circuits can be satisfied, and
either K 1 or K 2 equals K ∗.

To overcome this issue, the SAT solver is asked to find two
distinct assignment V 1, V 2 such that H (V 1) = H (V 2) = 1,
which allows us to add constraints between X and K 1 based
on V 1, and X and K 2 based on V 2. Therefore, the SAT
solver has the flexibility to find different assignments to K 1

and K 2. If the SAT solver cannot find the second assignment,
it simply indicates that there is only one possible V such that
H (V ) = 1, and any wrong key has exponential low error
rate. Hence, we could simply consider a random key to be
correct and fix a wrong output by bypass attack [16].

The algorithm of SigAttack on Zhou’s encryption is shown
in Algorithm 2. From line 1 to line 8, the pairing between
each bit of X and K is found. From line 9 to line 16, we
add constraints to a SAT solver to guarantee that outputs of
H (V ) for both circuits are one. V 1 and V 2 in line 9 can be
found by SAT queries and comparing SAT assignments of
bits in each found pair. If the second assignment V 2 cannot
be found, we conduct bypass attack. Line 5 indicates that

Algorithm 2 SigAttack on Zhou’s Encryption
Input: Encrypted circuit C (X ,K ,Y ), and activated circuit

eval .
Output: Correct key K ∗.
1: for each key input bit k ∈ K do
2: X̂ , K̂ 1, K̂ 2, Ŷ 1, Ŷ 2 = SAT (C (X ,K 1,Y 1) ∧

C (X ,K 2,Y 2)∧ (Y 1 6= Y 2)∧ (k1 6= k2)∧ ((K 1\k1) =
(K 2\k2)))

3: for each not paired input bit x ∈ X do
4: X ′ = X̂ with x flipped
5: if ((Ŷ 1 = eval(X̂ )) ∧ C (X ′, K̂ 1,Y

′
1) ∧ (Ŷ 2 =

Y ′1)) ∨ ((Ŷ 2 = eval(X̂ )) ∧ C (X ′, K̂ 2,Y
′
2) ∧ (Ŷ 1 =

Y ′2)) then
6: Pair.add(x , k )
7: end for
8: end for
9: Use SAT queries to find V 1,V 2 s.t. (V 1 6= V 2)∧H (V 1)∧

H (V 2)
10: F = C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2) ∧ (Y 1 6= Y 2)
11: for each pair (xi , ki) ∈ Pair do
12: if v1

i (v
2
i ) in V 1(V 2) = 0 then

13: F = F ∧ (x1
i (x

2
i ) = k1

i (k
2
i ))

14: if v1
i (v

2
i ) in V 1(V 2) = 1 then

15: F = F ∧ (x1
i (x

2
i ) 6= k1

i (k
2
i ))

16: end for
17: K ∗ = SAT (F )
18: if @V 2 then
19: K ∗ = bypass attack(C (X ,K ,Y ), eval )

either Ŷ 1 or Ŷ 2 can be assigned to the correct value since
they are symmetric, and the bracket from line 12 to line 15
indicates that we should constrain both C (X ,K 1,Y 1) and
C (X ,K 2,Y 2) based on V 1 and V 2, respectively. v j

i , x
j
i and

k j
i denote the i th bit of V , X and K in the j th copy of the

circuit C . As a result, we can prove the following theorem:

Theorem 3.3. Zhou’s encryption shown in Figure 5 can be at-
tacked by Algorithm 2 if Property 1 holds.

3.3 SigAttack on SARLock
The analysis from Section 3.2 indicates that Algorithm 2

can be used to attack SARLock [17]. We have developed
Figure 3, which is equivalent to SARLock. H (V ) is simply
a NOR gate; if primary input X and key input K have the
same value, the flipping signal is enabled as long as K is not
equal to the correct key K ∗.

Let us run Algorithm 2 on this design. From line 1 to line 8,
we can pair each bit x i and k i for i from 0 to n−1. However,
in Line 9, we can not find two different inputs V 1 and V 2

such that H (V 1) = H (V 2) = 1; the output of NOR gate can
be one only if its inputs are all zeros. It is reasonable since
there is only one wrong input-output pair for the SARLock
design when the key value is incorrect. Since we cannot find
the second assignment of V , we immediately know that any
wrong key has exponentially low error rate. Therefore, we
select a random key and fix a wrong input-output pair by
bypass attack [16].

3.4 SigAttack on Anti-SAT
We model an Anti-SAT design [15] to Zhou’s encryption as

shown in Figure 6, and H (V ) is the original Anti-SAT blocks.



XOR

AND

F(X)

XOR

k0…k2n-1

x0k0
AND

XOR
xn-1kn-1

XOR
x0kn

XOR
xn-1k2n-1

NAND

AND

H(V)

k0…kn-1 ≠ kn…k2n-1?

Sig

Figure 6: Model Anti-SAT in Zhou’s encryption.

The design is similar to Zhou’s encryption, but with a lit-
tle modification: The original Anti-SAT design does not fix
a correct key value; instead, the key value is correct as long
as k0k1...kn−1 are equal to knkn+1...k2n−1. Therefore, there
are 2n correct key values. Meanwhile, the primary input X
is compared twice, with k0k1...kn−1 and knkn+1...k2n−1.

Since Figure 6 is not exactly fit for the model of Zhou’s en-
cryption, could we still attack it by SigAttack? The answer is
yes. Following the Algorithm 2, the first step is to find pair-
ings between each bit of primary inputs X and key inputs
K . If the key input bit k i that we flipped is in k0k1...kn−1,
we can only flip the corresponding primary input bit x i to re-
store the output of H (V ) from zero to one. Therefore, we are
able to find pairings between x i and k i when 0 ≤ i ≤ n − 1.

However, when n ≤ i ≤ 2n − 1, flipping any x i can re-
store the output of H (V ) from zero to one, since the output
of NAND gate is zero if and only if its inputs are all one. As
a result, we may not find the correct pairing between x i and
k i when n ≤ i ≤ 2n − 1. Fortunately, SigAttack can find the
correct key without knowing these pairings. After we add
constraints between x i and k i for 0 ≤ i ≤ n − 1, we can di-
rectly find a correct key by the SAT query in line 17 of Algo-
rithm 2. It is because if the output of the NAND gate is zero,
x i 6= kn+i for all 0 ≤ i ≤ n − 1. Since the output of the AND
gate (indicated as Sig in Figure 6) is fixed to be one, x i 6= k i

for all 0 ≤ i ≤ n − 1. Thus, k0k1...kn−1 = knkn+1...k2n−1,
which indicates the key is correct. Since Y 1 6= Y 2, either K 1

or K 2 is the correct key, which can be easily identified by
comparing Y 1 and Y 2 with the correct output.

4. EXPERIMENTAL RESULTS
We evaluate SigAttack on Zhou’s encryption, SARLock

and Anti-SAT. Our experiment is conducted on a machine
with Intel core i5 clocked at 2.4 GHz and memory 5.8 GB. The
original benchmarks are from the ISCAS’85 and the Micro-
electronics Center of North Carolina. We build benchmarks
of Zhou’s encryption shown in Figure 1, and various input
lengths are tested to comprehensively show the effectiveness
of SigAttack. We also build Zhou’s version of SARLock and
Anti-SAT shown in Figure 3 and Figure 6, respectively. For
comparison, we choose the SAT-based attack [13] and Dou-
ble DIP [12] as the representative of exact and approximate
attacks, and compare the correctness and accuracy.

We perform SigAttack, the SAT-based attack, and Dou-
ble DIP on the design of Zhou’s encryption shown in Fig-
ure 1. The experimental result indicates that the correct key K ∗ of
all benchmarks can be successfully decrypted by SigAttack within
a few seconds. Since Double DIP is an approximate attack,

0.01

0.1

1

10

100

1000

10000

100000

12 14 16 18 20 22 24 26 30 40

Execution	  Time	  (s)	  vs.	  Input	  Length

SigAttack SAT

Figure 7: Execution time of performing SigAttack on
Zhou’s Encryption compared with the SAT-based attack.

0.01

0.1

1

10

100

1000

10000

100000

12 14 16 18 20 22 24 26 30 40

Execution	  Time	  (s)	  vs.	  Input	  Length

SigAttack Double	  DIP

Figure 8: Execution time of performing SigAttack on
Zhou’s Encryption compared with Double DIP.

out of 9 benchmarks that Double DIP can finish within our
time limit (5 hours), only 5 benchmarks are decrypted with
the correct key. Figure 7 and 8 demonstrate the relation be-
tween the execution time and the input length. We can see
that SigAttack takes much less execution time while keeping
the accuracy compared with the SAT-based attack and Dou-
ble DIP. With the increasing of the input length, the execu-
tion time of the SAT-based attack and Double DIP dramati-
cally increases, and most of benchmarks cannot be decrypted
within 5 hours.

We perform sigAttack on SARLock and Anti-SAT shown
in Figure 3 and Figure 6. As we analyzed in Section 3.3, for
SARLock, SigAttack reports it cannot find two different in-
puts V 1 and V 2 to H (V ) such that H (V 1) = H (V 2) =
1. Therefore, bypass attack is conducted, and [16] already
shows that bypass attack can efficiently decrypt SARLock.
However, the SAT-based attack cannot finish most of bench-
marks within our time limit (5 hours), and even though Dou-
ble DIP can finish running quickly, the solved keys for all of
benchmarks are incorrect. On the other hand, Figure 9 indicates
SigAttack can successfully decrypt all benchmarks encrypted with
Anti-SAT within at most a few minutes. In contrast, SAT-based
attack and Double DIP cannot decrypt most of benchmarks
within 5 hours. For benchmarks apex4, ex1010 and ex5 that
Double DIP can finish on time, correct keys are found.



1

10

100

1000

10000

100000

Execution	  Time	  (s)	  vs.	  Benchmarks

SigAttack SAT Double	  DIP

Figure 9: Execution time of performing SigAttack on Anti-
SAT compared with the SAT-based attack and Double DIP.

5. DISCUSSION
The development of SigAttack raises such a question: to

decrypt an encryption, do we need to know its exact design
pattern? As we have shown, SigAttack does not depend on
knowledge of functions H (X ,K ) in Figure 2 and H (V ) in
Figure 5. Therefore, from the perspective of attackers, in-
stead of exploring the exact design pattern, it is more im-
portant to extract the signature Sig(X ,K ) of an encryption
circuit C (X ,K ,Y ). Section 3 provides examples of extract-
ing signatures of different encryption techniques.

Another discovery is that we may reconsider the robust-
ness and reliability of XOR encryption in digital designs.
From Section 3.2 to Section 3.4, XOR operations between pri-
mary inputs X and key inputs K become a vulnerability ex-
plored by SigAttack, since it provides the flexibility for a SAT
solver to assign specific values while maintaining desired
outputs. Designers should carefully analyze if their encryp-
tion can be modeled to the vulnerable model, Zhou’s encryp-
tion, by resynthesis. If yes, Property 1 should be avoided.

6. CONCLUSION
In this paper, we have developed a new high-level SAT-

based attack called SigAttack. SigAttack extracts the signa-
ture of an encryption design and explores the vulnerability.
It successfully decrypts many existing encryption schemes
such as Zhou’s encryption, SARLock and Anti-SAT. We have
compared the performance of SigAttack with exact and ap-
proximate attacks to demonstrate its efficiency and accuracy.

The development of SigAttack inspires us to find counter-
measures so that the signature is hard to be extracted for the
future logic encryption design. One advice is that to propa-
gate the correctness of the key to the output of an encrypted
circuit, a part of key bits have to be fixed. Therefore, the SAT
solver loses the flexibility to assign correct values to the key.

Acknowledgment
This work is partially supported by NSF under CNS-1441695,
CCF-1533656, and CNS-1651695.

7. REFERENCES
[1] Yousra Alkabani and Farinaz Koushanfar. Active

hardware metering for intellectual property protection
and security. In USENIX, pages 20:1–20:16, 2007.

[2] Alex Baumgarten, Akhilesh Tyagi, and Joseph
Zambreno. Preventing ic piracy using reconfigurable
logic barriers. IEEE Design and Test, 27(1), 2010.

[3] Sophie Dupuis, Papa-Sidi Ba, Giorgio Di Natale,
Marie-Lise Flottes, and Bruno Rouzeyre. A novel
hardware logic encryption technique for thwarting
illegal overproduction and hardware trojans. In IOLTS,
pages 49–54, 2014.

[4] Jeyavijayan Rajendran, Youngok Pino, Ozgur
Sinanoglu, and Ramesh Karri. Security analysis of logic
obfuscation. In DAC, pages 83–89, 2012.

[5] Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu,
and Ramesh Karri. Security analysis of integrated
circuit camouflaging. In CCS, 2013.

[6] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang,
Garrett S. Rose, Youngok Pino, Ozgur Sinanoglu, and
Ramesh Karri. Fault analysis-based logic encryption.
IEEE Transactions on Computers, 64(2), 2015.

[7] Amin Rezaei, Yuanqi Shen, Shuyu Kong, Jie Gu, and
Hai Zhou. Cyclic locking and memristor-based
obfuscation against cycsat and inside foundry attacks.
In DATE, pages 85–90. IEEE, 2018.

[8] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao,
David Z. Pan, and Yier Jin. AppSAT: Approximately
deobfuscating integrated circuits. In HOST, pages
95–100, 2017.

[9] Yuanqi Shen, You Li, Amin Rezaei, Shuyu Kong, David
Dlott, and Hai Zhou. Besat: Behavioral sat-based attack
on cyclic logic encryption. In ASP-DAC, 2019.

[10] Yuanqi Shen, Amin Rezaei, and Hai Zhou. A
comparative investigation of approximate attacks on
logic encryptions. In ASP-DAC, 2018.

[11] Yuanqi Shen, Amin Rezaei, and Hai Zhou. Sat-based
bit-flipping attack on logic encryptions. In DATE, pages
629–632. IEEE, 2018.

[12] Yuanqi Shen and Hai Zhou. Double dip: Re-evaluating
security of logic encryption algorithms. In GLSVLSI,
pages 179–184, 2017.

[13] Pramod Subramanyan, Sayak Ray, and Sharad Malik.
Evaluating the security of logic encryption algorithms.
In HOST, pages 137–143, 2015.

[14] James B Wendt and Miodrag Potkonjak. Hardware
obfuscation using puf-based logic. In ICCAD, pages
270–277. IEEE Press, 2014.

[15] Yang Xie and Ankur Srivastava. Mitigating SAT attack
on logic locking. In CHES, pages 127–146, 2016.

[16] Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and
Domenic Forte. Novel bypass attack and bdd-based
tradeoff analysis against all known logic locking
attacks. In CHES, 2017.

[17] Muhammad Yasin, Bodhisatwa Mazumdar,
Jeyavijayan J V Rajendran, and Ozgur Sinanoglu.
SARLock: SAT attack resistant logic locking. In HOST,
pages 236–241, 2016.

[18] Hai Zhou. A humble theory and application for logic
encryption. In Cryptology ePrint Archive, Report
2017/998, 2017.


