
Multi-Protocol UC and its Use
for Building Modular and Efficient Protocols

Jan Camenisch
DFINITY

jan@dfinity.org

Manu Drijvers
DFINITY

manu@dfinity.org

Björn Tackmann∗
IBM Research – Zurich
bta@zurich.ibm.com

January 19, 2019

Abstract

We want to design and analyze protocols in a modular way by combining idealized components that
we realize individually. While this is in principle possible using security frameworks that provide generic
composition theorems, we notice that actually applying this methodology in practical protocols is far
from trivial and, worse, is sometimes not even possible. As an example, we use a natural combination of
zero-knowledge proofs with signature and commitment schemes, where the goal to have a party prove in
zero-knowledge that it knows a signature on a committed message, i.e., prove knowledge of a witness to a
statement involving algorithms of the signature and commitment scheme. We notice that, unfortunately,
the composition theorem of the widely used UC framework does allow one to modularly prove the security
of this example protocol.

We then describe a new variant of the UC framework, multi-protocol UC, and show a composition
theorem that generalizes the one from the standard framework. We use this new framework to provide
a modular analysis of a practical protocol that follows the above structure and is based on discrete-
logarithm-based primitives. Besides the individual security proofs of the protocol components, we also
describe a new methodology for idealizing them as components that can then be composed.

1 Introduction

1.1 Motivation
Complex cryptographic protocols such as anonymous credentials, e-cash, or voting are usually built by
suitably combining simpler building block protocols and schemes. Designing and proving the security of such
protocols is a challenging and difficult task. Initiated by the works of Pfitzmann and Waidner [PW01] and
Canetti [Can01], a series of definitional frameworks has emerged that aim to modularize such constructions
and, in particular, their security proofs via the use of general composition theorems. The core idea here is to
first prove the security of all component schemes and protocols individually, and to analyze the security of the
combined protocol relative to a simplified, idealized modeling of all components. The composition theorem
implies the intended reduction statement and thereby establishes the security of the combined protocol. Soon
after these models were published, a series of works started that modeled different types of cryptographic
schemes and protocols such as commitment schemes [CF01], multi-party computation [CLOS02], digital
signatures [Can04], and many more.

Today, universally composable (UC) security [Can01]) has been widely accepted as a desirable security
goal as it allows for the use of a protocol as a building block in other protocols. In spite of this, the security
proofs of complex protocols rarely invokes the composition theorem, even though they are typically built in a

∗Björn has been supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement
No. 780477 PRIViLEDGE.

1

modular way from multiple sub-protocols such as commitment, signature, and encryption schemes. Instead,
their security is typically inferred via a reduction proof from the various security properties of the individual
building blocks. Developing such a reduction proof for a complex protocol, however, is a manual process that
is tedious and error-prone. Moreover, the resulting proofs are typically very long and complex and therefore
hard and tedious to verify and thus often do not get sufficiently scrutinized.

The fact that authors do not make use of the modularity offered by the UC or other frameworks to simplify
their security proofs seems paradoxical and surprising. A closer look, however, shows that this is, at least in
many cases, due to the fact how the zero-knowledge proof functionality is modelled in UC, as it does not allow
a party to prove to another party that it has correctly applied a cryptographic scheme to a hidden input. For
the sake of concreteness, consider he following natural protocol which is used in variations in the construction
of protocols such as for instance anonymous credential systems, voting, or e-cash. This prototypical protocols
consist of a zero-knowledge proof protocol πzk, a signature scheme πsig with signature algorithm sign(·, ·) and
verification algorithm ver(·, ·, ·), and a commitment scheme πcom with commitment algorithm commit(·, ·)
and opening algorithm open(·, ·, ·). (Both commit and open take as first input a common reference string
crs, as commitment without setup is impossible in UC [CF01].) One party, the issuer I, owns a signature
key pair (sk , pk) where the public key pk is known to all participants. I issues a “credential” m to a party P
by creating a signature s←$ sign(sk ,m), and producing a commitment c← commit(crs,m, o). Party P can
then present its “credential” to a verifier V by proving, in zero knowledge, that it knows m, s, and o such
that s is a valid signature on m relative to pk and c is a commitment on m with opening o – more formally
described by the relation {((crs, c, pk), (m, s, o)) : ver(pk ,m, s) = 1 ∧ open(crs, c, o) = m}. We will use this
simple protocol as a running example throughout the paper.

Now assume that zero-knowledge protocol πzk realizes Fzk (as specified in, e.g., [Can05]), signature scheme
πsig realizes Fsig (as specified in, e.g., [Can04]), and that commitment πcom realizes Fcom (as specified in,
e.g., [CF01]). We think that it would be desirable to prove the security of the overall protocol sketched
above by idealizing all protocols πzk, πsig, and πcom individually as Fzk, Fsig, and Fcom and then analyzing
the security of the combined protocol by analyzing its security relative to these ideal functionalities. We
also think that such a methodology would be in the true spirit of a composable security framework, at least
more so than writing one monolithic “credential” functionality and proving the protocol via game hops and
reductions from game-based security notions. We have noticed, however, that a proof with this methodology
does not work in the UC framework of Canetti [Can18], and also not in its generalized version GUC of
Canetti et al. [CDPW07]. We explain in the next section the obstacles that we hit in the course of our
proof attempts, and gradually explain how they can be overcome. In a nutshell, we had to modify the
functionalities realized by the sub-protocols, we had to prove a more general composition theorem, and we
had to develop a new methodology for gradually idealizing the protocol components.

1.2 Towards modular proofs
The zero-knowledge functionality Fzk described by Canetti [Can05] is parametrized by a relation R that
specifies the language for which membership is to be proved, along with the witnesses. The prover inputs a
pair (y, w) of statement y and witness w, and if (y, w) ∈ R, then Fzk outputs to the verifier the element y. In
our example protocol, this relation R will be {((crs, c, pk), (m, s, o)) : ver(pk ,m, s) = 1 ∧ open(crs, c, o) = m}
as specified above; we will realize the functionality FRzk for this relation R. The first obstacle is that, while
the zero-knowledge functionality FRzk depends on the algorithms ver(·, ·, ·) and open(·, ·, ·), both Fsig and
Fcom abstract away the algorithms used in the protocols πsig and πcom. It is unclear how such a proof via
Fzk can be meaningfully related to Fsig and Fcom, in concluding the security of the overall protocol.

Towards resolving the above issue, assume that one abstracts a little less, say by parametrizing the
functionalities Fsig and Fcom with their algorithms, as F (sign,ver)

sig and F (commit,open)
com , instead of having the

algorithms be determined by the simulator. This, however, still does not suffice. In the Fsig-hybrid world,
the validity of a signature s for a message m relative to public key pk is determined by asking Fsig for
verification. Fsig determines this not (only) based on the output of ver(pk ,m, s), but instead uses a process
that guarantees ideal unforgeability, whereas Fzk with the above relation uses ver(·, ·, ·). Of course, the

2

results of ver(·, ·, ·) and Fsig will deviate only with negligible probability as otherwise πsig would not even
realize Fsig, but this still means that the proof of the protocol composing Fzk and Fsig would need to bound
the probability of the deviation and therefore reduce to the unforgeability of πsig, which is exactly what we
wanted to prevent in a modular proof.

The above deviation can be prevented by having Fzk, when verifying the relation (y, w) ∈ R, query the
functionality Fsig instead of evaluating ver(·, ·, ·) internally, and Fcom instead of open(·, ·, ·) analogously. To
achieve this, one needs to modify how Fzk works, but that can be done; it is in fact one part of our solution
and we explain it more in the next section. More formally, Fzk calls Fsig and Fcom via their respective
dummy protocols φsig and φcom, so this method will then lead to a structure as depicted in Figure 1. Fsig
and Fcom become subroutines of Fzk.

Fzk

φsig Fsig

φcom Fcom

Figure 1: Functionalities Fzk, Fsig, and Fcom interacting.

In such a setup, one also needs to change Fcom because the standard formulation of [CF01] does not
explicitly model non-interactive commitment and expose the open(·, ·, ·) algorithm; we use a variant of the
non-interactive commitment functionality Fncom proposed by Camenisch et al. [CDR16] instead. But even
that does not suffice. Since Fsig and Fncom are queried from Fzk, they become subroutines of Fzk, which is
formally invoked by the dummy protocol φzk. When realizing Fsig by πsig and Fncom by πncom, then invoking
the UC composition theorem would lead to the use of the protocol φφsig→πsig,φncom→πncom

zk . By virtue of the
UC composition operation ρφ→π as defined in [Can18], however, the invocations are only replaced within
the protocol φzk, not within its subroutine Fzk. We resolve this by introducing a recursive composition
operation ρφ�π which replaces such invocations within all sub-protocols. This also requires re-proving the
composition theorem.

While the above route, with many details filled in, would in principle work, it leads to a security statement
that is much weaker than intended and effectively useless in applications. As Fzk now uses the functionalities
Fsig and Fcom to verify the relation, Fsig and Fcom become subroutines of Fzk. The UC composition
theorem [Can18] (and also the GUC one [CDPW07], although in a different sense) require that a protocol
be subroutine respecting, which essentially means that subroutines of Fzk (which includes Fsig and Fncom)
must not communicate with any protocol that is not a sub-protocol of Fzk. The only viable solution here is
to have all outside protocols communicate with Fsig and Fncom via Fzk, but this results in one monolithic
functionality that models all three protocols. While technically feasible, it is something that we wanted to
prevent because it leads to encoding the complete complexity of the protocol in one monolithic functionality.

Our solution to this is to generalize the UC experiment such that it allows the environment to instantiate
multiple different protocols. This has already been done in the GUC framework [CDPW07], but as already
explained above this framework also does not resolve the problem since the composition theorem therein
requires protocols to be subroutine respecting in a sense that is too narrow for our case. We define a new
version of this definition, which we call jointly subroutine respecting, and prove a composition theorem that
generalizes the one in [Can18].

1.3 Our proof methodology
As already mentioned above, our approach is to idealize the protocols πnizk, πsig, and πcom individually.
We already discussed some core ideas in the previous section, namely that we parametrize Fnizk, Fsig, and

3

Fncom by the concrete algorithms to make them compatible. We further explain in this section how we had
to adapt several formal components to make this approach work.

Non-interactive zero-knowledge. We first use a non-interactive zero-knowledge protocol πnizk to instan-
tiate a non-interactive zero-knowledge functionality Fnizk, which is adapted from the respective functionality
of Groth et al. [GOS12] and the version of Fzk of Canetti [Can05] and Camenisch at al [CKS11]. The func-
tionality is, in particular, parametrized by a relation R that describes the statements and witnesses. This
step follows as usual by the security of the non-interactive zero-knowledge protocol.

Re-writing the zero-knowledge functionality. The first step of our proof is simple and actually just
a reformulation of the above functionality Fnizk. Instead of parametrizing Fnizk by a relation R defined as
((crs, c, pk), (m, s, o)) : ver(pk ,m, s) = 1 ∧ open(crs, c, o) = m, we write Fnizk as directly evaluating the
protocols πsig and πcom within the functionality in order to check whether the instance input by the prover
is correct. As the commitment formalization in the work of Canetti and Fischlin [CF01] does not model
non-interactive commitments and in particular does not allow to evaluate the algorithm open(·, ·, ·) via the
protocol πcom, we use a variant of the non-interactive commitment formalization Fncom of Camenisch et
al. [CDR16].

Externalizing the algorithms. The second step of our proof is another reformulation of the zero-
knowledge functionality Fnizk. Instead of emulating πsig and πncom within Fnizk, the functionality creates
Turing machine instances of πsig and πncom that are external to Fnizk. It then verifies the relation using those
external instances. This modification, which is depicted in Figure 2 on the left, works almost as expected,
except for two subtleties: First, due to the UC intricacies, the adversary could have created Turing machine
instances with the same identities but different code before. This will make the proof process in Fnizk abort.
Second, to provide the same meaningful guarantees as the previous functionality, the instances of πsig and
πncom must be uncorruptible, just like Fnizk itself. We explain in Section 4 how these issues are resolved
technically.

Fnizk

πsig

πncom

Fnizk

Fsig

Fncom

Figure 2: Functionalities Fnizk using as subroutines πsig and πncom (on the left) respectively Fsig and Fncom
interacting (on the right). In the right hand figure, we omit the dummy protocols φsig and φncom that
technically appear as forwarding messages between Fnizk and the other functionalities.

Security of signatures and composition. We then finally use the security proofs of πsig and πncom
along with the (modified) composition theorem to actually obtain the situation in Figure 2 on the right,
where Fnizk uses Fsig and Fncom as subroutines. This is the result on which higher-level protocols, such as
credential schemes, can then be proved secure.

1.4 Related work
The initial papers of Pfitzmann and Waidner [PW01] and Canetti [Can01] have spawned a line of research
work on composable security definitions. The original UC composition theorem (and later variants, such as

4

GNUC [HS15]) are restricted to protocols that do not share state with any other instance of any protocol.
Canetti and Rabin [CR03] then showed how state can be shared between multiple sessions of a protocol;
however, this requires that the protocols use the shared state in a predetermined and “nice” way. Roughly,
the joint-state theorem proven there allows to convert a single instance of a scheme into multiple instances,
such as via domain separation for an instance of a signature scheme. The composition theorem proved in
the later GUC model of Canetti et al. [CDPW07] allows protocols to share state via one explicit global
functionality, such as a PKI. None of these composition theorems apply to the type of modular protocol we
analyze in this work, because the notions of subroutine respecting used there do not apply.

Other composable security frameworks with general composition theorems exist, which are based on
different formal models. Notable examples include the Rective-Systems model of Backes, Pfitzmann, and
Waidner [BPW04] and the IITMmodel of Küsters, Tuengerthal, and Rausch [KTR18], as well as the Abstract
Cryptography framework of Maurer and Renner [MR11]. What all of these models have in common (also
with [HS15]) is that the topology of the systems is (at least to some level) fixed in the security statement,
whereas arbitrary topologies of machines can be adaptively generated in the models based on [Can01]. On
the flip side, the composition theorems in those frameworks do not constrain (cf. [CDPW07]) the environment
to only interact with one session of one challenge protocol, so these frameworks do not require an analogous
version of the MUC theorem we prove in this work. The remaining contributions of this paper, however,
also apply to those frameworks.

1.5 Our contributions
Our contributions in this work are three-fold.

Contributions to the UC model. The first contributions are specific to the UC-line of security mod-
els [Can01, CDPW07]. We point out that a modular protocol design in the sense described in the introduction
is not possible in those models, as (1) the notions of subroutine respecting are too restrictive and (2) the
composition operation does not allow to replace subroutines of an ideal functionality. We propose a new
notion of jointly subroutine respecting that covers these protocols along with a new recursive composition
operation and prove a new composition theorem that applies to these new definitions.

Modular proof methodology. We develop a methodology to modularly prove cryptographic protocols
that involve zero-knowledge proofs for statements that involve other schemes used in the same protocol. The
methodology is generic; we show its application to signatures and non-interactive commitment, but it can be
used for other non-interactive schemes as well if their UC-protocol version allows to evaluate the algorithm
directly via the input interface. (This may require a change of how the UC functionality for such schemes is
written.) Beyond zero-knowledge proofs, we expect that the same methodology will be applicable to other
cases where a scheme is evaluated within another protocol, which also appears in multi-party computation.

Efficient instantiation. We then provide a set of efficient protocols that realize our functionalities: Fsig
is realized via a signature scheme by Abe et al [AGOT14], Fncom is realized via a scheme that is essentially an
ElGamal encryption with an opening via Groth-Sahai proofs [GS08] and Fnizk is realized based on Schnorr
proofs and in the global random-oracle model.

2 Preliminaries
This section describes formal material that we need for the remainder of the paper. We start in Section 2.1 by
summarizing the basic workings and notation of the UC and GUC models from [Can01, CDPW07, Can18].
We then describe ideal functionalities for non-interactive zero knowledge in Section 2.3, for digital signatures
in Section 2.4, and for non-interactive commitment in Section 2.5. All of these functionalities are slight
adaptations of the versions found in the literature.

5

2.1 UC framework basics
Simulation-based security and protocol composition. Most general security frameworks are based
on the real-world/ideal-world paradigm: In the real world, the parties execute the protocol using channels
as defined by the model. In the ideal world, the parties securely access an ideal functionality F that obtains
inputs from the parties, runs the program that specifies the task to be achieved by the protocol, and returns
the resulting outputs to the parties. Intuitively, a protocol securely realizes the functionality F if, for any
real-world adversary A attacking the protocol execution, there is an ideal-world adversary S, also called
the simulator, that emulates A’s attack. The simulation is good if no distinguisher Z—often called the
environment—which interacts, in a well defined manner, with the parties and the adversary/simulator, can
distinguish between the two worlds.

The advantage of such security definitions is that they satisfy strong composability properties. Let π1
be a protocol that securely realizes a functionality F1. If a protocol π2, using the functionality F1 as a
subroutine, securely realizes a functionality F2, then the protocol πF1→π1

2 , where the calls to F1 are replaced
by invocations of π1, securely realizes F2 (without calls to F1). Therefore, it suffices to analyze the security of
the simpler protocol π2 in the F1-hybrid model, where the parties run π2 with access to the ideal functionality
F1. A detailed treatment of protocol composition appears in, e.g., [BPW04, Can00, Can01, DM00, MR11].

The UC framework. We use the formal model of the UC framework [Can01, Can18]. The definitions
are based on the simulation paradigm, and the entities taking part in the execution (protocol machines,
functionalities, adversary, and environment) are described as interactive Turing machines (ITMs). The
execution is an interaction of ITM instances (ITIs) and is initiated by the environment that provides input
to and obtains output from the protocol machines, and also communicates with the adversary. The adversary
has access to the ideal functionalities in the hybrid models, in some models it also serves as a network among
the protocol machines. During the execution, the ITIs are activated one-by-one, where the exact order of
the activations depends on the considered model.

Each ITI has an identity that consists of a party identifier pid and a session identifier sid . (The environ-
ment and adversary have specific, constant identifiers.) The understanding here is that all ITIs that share
the same code and the same sid are considered a session of a protocol. It is natural but not required to use
the same pid for all ITIs that are considered as the same party.

ITIs can be created adaptively during the protocol execution, with their code determined during the
invocation. In order to use protocol composition, some additional restrictions are necessary. In a protocol
composition ρφ→π , both the ideal sub-protocol φ and the real sub-protocol π must be subroutine respecting.
This means, in a nutshell, that those protocols may have further subroutines, but inputs and outputs from
subroutines of φ or π must only be given and obtained through via φ or π, never by directly interacting with
their subroutines. (This requirement is natural, since a higher-level protocol should never directly access the
internal structure of φ or π; this would obviously hurt composition.) Also, protocol ρ must be compliant.
This roughly means that ρ should not be invoking instances of π with the same sid as instances of φ, as
otherwise these instances of π would interact with the ones obtained by the operation ρφ→π . (This is again
natural, as ρ should generally not invoke different subroutines with the same sid .)

Notation and conventions. A protocol execution involves the following types of ITIs: the environment Z,
the adversary A, instances of the protocol machines π, and (possibly) further ITIs invoked by A or any
instance of π (or their subroutines). The contents of the environment’s output tape after the execution is
denoted by the random variable execπ,A,Z(k, z), where k ∈ N is the security parameter and z ∈ {0, 1}∗ is
the input to the environment Z. The formal details of the execution are specified in [Can18]. We say that
a protocol π UC-realizes a functionality F if

∀A ∃S ∀Z : execπ,A,Z ≈ execφ,S,Z ,

where “≈” denotes indistinguishability of the respective distribution ensembles, and φ is the dummy protocol
that simply relays all inputs to and outputs from the functionality F. We also use global functionalities akin

6

to the EUC model in [CDPW07]. There, one additionally allows all protocols to access a global functionality
Ḡ that is available both in the real and in the ideal model, and that models global setup that is available to
multiple protocols. The EUC execution is then described by a random variable gexec that is additionally
parametrized by the global functionality Ḡ, and a protocol π realizes a functionality F with respect to Ḡ if

∀A ∃S ∀Z : gexecḠπ,A,Z ≈ gexecḠφ,S,Z ,

where again φ is the dummy protocol for F. The “g” in gexec references the global nature of Ḡ.
In the UC framework [Can01], the potential dishonesty of parties is modeled by the fact that the adversary

A may corrupt protocol machines (adaptively) during the execution by sending them a special corrupt
message. We only consider Byzantine party-corruption, which means that the party sends its entire current
local state to A and, in all future activations, follows A’s instructions. We do allow our protocols to securely
delete state, which means the adversary does not inherently learn the complete execution history of a party
upon corruption. In the formalism of [Can18], this means we are using standard f -revealing corruption for a
function f that leaks only the current state of the protocol, not the complete history.1 All our functionalities
F use a corruption that is similar to standard (adaptive) PID-wise corruption as defined in [Can18], but
adapted to the setting where parties can remove state: At any point in time, F will accept messages of the
type (corrupt, pid) for some party identifier pid from the adversary A, in which case F marks the party with
identifier pid as corrupted. In contrast to [Can18] we do not enforce that all functionalities leak the complete
history of inputs and outputs of party pid upon this operation. The exact information that is leaked and
influence that the adversary has on a functionality depends on the concrete case, but generally the adversary
will learn all information and control all actions in F that correspond to party pid after corruption. Also,
all functionalities allow a specific report upon which they respond with the list of corrupted pids. For more
details on party corruption, see [Can18, Section 6.1].

2.2 Strict global random oracle
The schemes we use for instantiating the NIZK and the non-interactive commitment scheme are proved
secure in the random oracle model. We model the random oracle as a global shared functionality that can be
used by any protocol, in more detail we use the strict global random oracle from Camenisch et al. [CDG+18].
The functionality is specified in detail in Figure 3.

Global Functionality ḠsRO

Functionality ḠsRO is parametrized by the output size `(λ) and keeps internally an initially empty list
ListH of queries and responses.

• Upon input (HashQuery,m) from a party (P, sid), proceed as follows.

– Find h such that (m,h) ∈ ListH. If no such h exists, let h←$ {0, 1}`(λ) and store (m,h) in
ListH.

– Output (HashConfirm, h) to (P, sid).

Figure 3: The strict global random oracle functionality ḠsRO that does not give any extra power to any
party.

In a nutshell, functionality ḠsRO provides access to the same random oracle to all parties, including the
adversary. This means, in particular, that ḠsRO does not provide any additional power to the adversary,
such as programming outputs for queries made in the protocols.

1The instantiations we provide do not achieve security if all prior states are leaked.

7

2.3 Non-interactive zero-knowledge functionality
The non-interactive zero-knowledge functionality Fnizk depicted in Figure 4 is based on the functionality
described by Groth et al. [GOS12], but the style of our description is more in line with the interactive
zero-knowledge functionalities of Canetti [Can05] and Camenisch et al. [CKS11]. Fnizk is parametrized by a
relation R ⊆ {0, 1}∗ × {0, 1}∗ where (y, w) ∈ R has the meaning that w is a witness for y being in a certain
language. We implicitly assume that the relation R is efficiently checkable.

Functionality FRnizk

Fnizk is parametrized by a relation R for which we can efficiently check membership. It keeps an
initially empty list L of proven statements.

1. On input (prove, y, w) from a party P , such that (y, w) ∈ R,a send (prove, y) to A.

2. Upon receiving a message (done, ψ) from A, with ψ ∈ {0, 1}∗, record (y, ψ) in L and send
(done, ψ) to P .

3. Upon receiving (verify, y, ψ) from some party P ′, check whether (y, ψ) ∈ L. If not, output
(verify, y, ψ) to A and upon receiving answer witness, w. Check (y, w) ∈ R and if so, store
(y, ψ) in L. If (y, ψ) has been stored, then output 1 to P ′, else output 0.

aInputs that do not satisfy the respective relation are ignored.

Figure 4: Non-interactive zero-knowledge functionality based on the one described by Groth et al. [GOS12]

Functionality Fnizk manages a list L of statements that have been proved, this is to guarantee consistent
responses is repeated verification queries. The functionality accepts an input (prove, y, w) from prover P
with statement y and witness w. If (y, w) ∈ R then the functionality sends (prove, y) to A, otherwise it
stops and outputs nothing. As a next step, functionality Fnizk then expects an input (done, ψ) from A,
where ψ ∈ {0, 1}∗ is the non-interactive proof for statement y, stores (y, ψ) in the list L and outputs the
proof ψ to prover P . Any party can call (verify, y, ψ) with statement y and proof ψ. If (y, ψ) ∈ L, then
immediately output 1 to the verifier. Otherwise, output (verify, y, ψ) to A in order to allow for an input
of a valid witness w. If A indeed allows with a valid witness, then store (y, ψ) in L and output 1, otherwise
(i.e., if there is no valid witness) the proof is considered incorrect and Fnizk outputs 0 to the verifier.

As both proof generation and proof verification are local computations by the prover and the verifier in a
NIZK scheme, respectively, but use interaction with the adversary in functionality Fnizk, the processes in the
ideal Fnizk are interruptible whereas those in any real protocol are not. One can use responsive environments
as specified by Camenisch et al. [CEK+16] to overcome this difference and obtain an ideal model without
this artificial weakness.

2.4 Signature scheme and functionality
A signature scheme is a triplet of algorithms (kgen, sign, ver). Key generation (sk , pk)←$ kgen(λ) takes
as input the security parameter λ and outputs a pair or private (or secret) key sk and public key pk .
Signing algorithm s←$ sign(sk ,m) takes as input private key sk and message m, and produces a signature
s. Verification algorithm b ← ver(pk ,m, s) takes as input public key pk , message m, and signature s, and
outputs a bit b that signifies whether s is a valid signature onm relative to public key pk . Algorithms kgen and
sign may be probabilistic, whereas ver is deterministic. The standard definition of signature scheme security,
existential unforgeability under chosen-message attack, has been introduced by Goldwasser et al. [GMR88]
and states that the probability for an efficient adversary, given an oracle for producing valid signatures, to
output a valid signature on a message that has not been queried to the oracle must be negligible.

8

We specify the signature functionality Fsig that we use in this work in Figure 5. Several different
formalizations of signature scheme security in composable frameworks have been described in the litera-
ture [PW01, Can04, KT13, BMT18]. Our functionality follows most closely the version of Küsters and
Tuengerthal [KT13] but is parametrized by fixed signature algorithms instead of allowing them to be de-
termined adaptively. (Our functionality also runs the key generation inside the functionality, and that
algorithms and keys are output, instead of input, at the adversary interface.) We furthermore change the
functionality in the following way: Instead of allowing all parties access to the signing operation, we allow this
only to one specified signer S. This is more in line with the functionality described by Canetti [Can04] and
is required for properly handling corruptions in our setting, where we need to deal with corrupted receivers.
(The functionality of [KT13] provides no guarantees in that case.)

Functionality F (kgen,sign,ver)
sig

Functionality Fsig has sender S specified in sid . Set C, initially empty, specifies the set of currently
corrupted parties. The functionality keeps a set L of properly signed messages.

0. Upon the first activation from S, run (sk , pk)←$ kgen(λ), where λ is obtained from the security
parameter tape, and store (sk , pk).

1. Upon input pubkey from party S, output (pubkey, pk) to S.

2. Upon input (sign,m) from party S with m ∈ {0, 1}∗, compute s←$ sign(sk ,m). Set L ←
L ∪ {m} and output s to S.

3. Upon input (verify, pk ′,m′, s′) from party P , compute b ← ver(pk ′,m′, s′). If S /∈ C ∧ pk =
pk ′ ∧ b ∧m′ /∈ L then output (result, 0) to P . Else output (result, b) to P .

4. Upon input (corrupt, P) from the adversary, set C ← C ∪ {P}. If P = S, then additionally
output sk to A.

Figure 5: Signature functionality

In more details, Fsig allows for one specific sender S which is specified in its session identifier sid . Upon
first activation from S, functionality Fsig runs kgen to generate a new key pair (sk , pk) for S. Functionality
Fsig then allows sender S to obtain its own public key via the pubkey operation and to sign a message m via
the (sign,m) operation. Verifiers can invoke (verify, pk ′,m′, s′) in order to verify signature s′ for message
m′ relative to public key pk ′. The functionality guarantees that, as long as the sender is honest, signatures
can never be forged: If pk ′ is the public key pk generated in the functionality and message m′ has never be
signed before, then s′ is deemed invalid, independent of the algorithm ver. In any other case, meaning for
corrupted S, or for a different pk ′, the actual verification algorithm is used to determine the result. Upon
corruption of any party, adversary A from then on controls the interface of that party. If the sender is
corrupted, then A also learns the secret key sk .

Generating the key pair (pk , sk) inside functionality Fsig may first seem to provide unnaturally strong
guarantees: corrupted parties cannot be forced to actually generate their keys with algorithm kgen. Yet,
functionality Fsig does not require a corrupt sender to ever use Fsig: As verify can be called with any public
key pk ′, the corrupted party can generate this key pk ′ and produce signatures s′ in arbitrary ways. The
only guarantee that Fsig provides in this setting is that honest verifiers actually use the correct algorithm
for verification.

9

2.5 Non-interactive commitment scheme and functionality
A non-interactive commitment scheme in the CRS model specifies three algorithms, crsgen, commit, and
open. CRS generator crs ←$ crsgen(λ) gets as input the security parameter λ and produces a common
reference string crs. Commitment algorithm (c, o)←$ commit(crs, x) gets as input the CRS crs and a
message x. It produces as output the commitment c and opening information o. Opening algorithm b ←
open(crs, c, x, o) gets as input the CRS crs, commitment c, message x, and opening information o, and
outputs a bit b. Value b = 1 signifies that message x is contained in c, given that crs and o are correct.
Value b = 0 signifies that commitment c does not open to x relative to crs and o. Algorithms crsgen and
commit are probabilistic, whereas open is deterministic.

To instantiate our functionality Fncom, we use extractable trapdoor commitments. That is, we addi-
tionally require trapdoor algorithms tdcom and tdopen and extraction algorithm extract, where trapdoor
commitment algorithm (c̃, info)←$ tdcom(crs, td) takes as input the CRS crs and a trapdoor td and outputs
a commitment c and additional information info. Trapdoor opening algorithm õ←$ tdopen(x, info) takes
as input a message x and the value info, and produces an opening information õ that allows to open the
commitment c to the value x. Extraction algorithm x′ ← extract(par , td , c) that the value x′ contained in
commitment c, using the trapdoor td .

The non-interactive commitment functionality Fncom depicted in Figure 6 follows the version of [CDR16],
but is simplified for a single session. Furthermore, the functionality is parametrized by the algorithms,
including the trapdoor ones. The functionality is slightly changed from the version in [CDR16], the reason is
that we want/need to keep the interfaces more along the lines of the actual algorithms, since we want to use
them in the ZK proof. In particular, the functionality allows to call commit and open even with incorrect
values for the CRS, it simply does not provide any guarantees in that case. This will be instrumental in our
modular proof.

In more detail, functionality Fncom is initialized through a message (setup, par , td) by A. This message
allows the adversary to specify an arbitrary string as the CRS used by the algorithms. Parties can validate
the CRS by means of calling (validate, par ′) in the functionality, which responds whether par ?= par ′.
Parties can generate a commitment on a message x by calling (commit, par ′, x). For honest parties that
use the correct CRS, the commitment c and the opening open are generated via the trapdoor algorithms
tdcom and tdopen, and stored in a table within functionality. This guarantees hiding, since c is generated
independently of the message x. For dishonest parties or parties that use an incorrect CRS, the adversary
is asked to provide a commitment and opening.

The opening via (open, par ′, c, x, open) behaves analogously. If called by an honest party and with a
correct CRS, functionality Fncom checks whether c was generated in the functionality. In that case, the
commitment provides ideal guarantees, meaning that the result is 1 if and only if all parameters are the
same as during commitment generation. If commitment c was not generated in the functionality, the extract
algorithm is used to obtain the message contained in the commitment. Finally, if the party calling open is
corrupt or the CRS is incorrect, then A is called to determine the output to that party.

The use of extraction may at first seem unnecessary, since we already obtained the purported value x
in the open call and would simply need to verify the correctness of the opening. This, however, does not
provide the expected semantics in terms of binding : The functionality in this case guarantees that a corrupt
party only ever open a commitment to one particular value x′, it does not, however, guarantee that this
value is already determined at the time of commitment (which for dishonest parties may happen outside
of the functionality). Such a formulation would not prevent a dishonest party from generating two pairs
(x, o) and (x′, o′) of value and opening, and then at the time of open present one of the two to the honest
party. Camenisch et al. [CDR16] prove that any protocol πncom that realizes such a weaker form of Fncom
still provides binding in the expected sense; however, this is a property of πncom, not Fncom. We therefore
decide to use a stronger definition of Fncom based on extraction, where the fact that extract deterministically
outputs the valid value x guarantees that every commitment c can only contain one particular value.

10

Functionality F (M,open,tdcom,tdopen,extract)
ncom – ḠsRO hybrid

Set C, initially empty, specifies the set of currently corrupted parties. Keep a table of commitment
information, containing triplets of commitment, value, and opening information. Allow algorithms
open, tdcom, tdopen, extract to query ḠsRO, and require extract to be deterministic.

1. Upon (setup, par , td) from A, store par and td , output ok to A.

2. Upon (validate, par ′) from P , check par ?= par ′ and report the result to P .

3. Upon (commit, par ′, x) with x ∈M from P , proceed as follows.

(a) If par ′ 6= par or P ∈ C, then output (commit, P, par ′, x) to the adversary. Receive a response
(c̃, x̃, õpen) from the adversary, record it in the commitment table, and output (c̃, õpen) to
P .

(b) Else, in case par ′ = par , compute (c, info)←$ tdcom(par , td), abort if c has been recorded
for a message x′ 6= x, compute open←$ tdopen(x, info), abort if open(par , c, x, open) 6= 1,
record the commitment (c, x, open) in the table, and return (c, open) to P .

4. Upon (open, par ′, c, x, open) from some P :

(a) If par ′ 6= par or P ∈ C, then output (open, P, par ′, c, x, open) to the adversary. Obtain a
response b and set f ← b.

(b) Else, meaning that par ′ = par , set f ← open(par , c, x, open) = 1.

i. If c was generated inside this functionality, look up record (c, x̃, ˜open) for some x̃, ˜open.
If x 6= x̃, set f ← 0.

ii. If c was not generated inside this functionality and x 6= extract(par , td , c) set f ← 0.

Output f to P .

Figure 6: Non-interactive commitment functionality

3 Multi-protocol UC
In this section, we describe the modifications that must be done to the UC framework in order to provide
modular proofs in the spirit described in the introduction. The standard UC experiment allows the envi-
ronment to create only a single session of a single protocol; it is shown that this setting is sufficient if the
challenge protocol is subroutine respecting, in the sense that it implies security also in a setting where the
environment can invoke multiple sessions of arbitrary protocols in addition to the challenge protocol. The
notion of subroutine respecting also enforces a tree structure on protocols with modular proofs, where differ-
ent sub-protocols are fully isolated, which is more explicit in the GNUC model [HS15]. Such a tree structure,
however, does not capture the situation we’re interested in, with multiple functionalities that interact with
each other. The same restriction as in UC also applies to the EUC experiment that is the technical core
of the composition theorem in the GUC paper [CDPW07], where in addition the environment can access a
global functionality. We first introduce in Section 3.1 a new recursive UC operation, before we describe in
Section 3.2 the Multi-protocol UC (MUC) experiment, a new definition of subroutine respecting, and our
new composition theorem with proof.

11

3.1 Recursive universal composition
Universal composition of protocols is defined via an operation ρφ→π that replaces, in the protocol ρ, all
external-write instructions targeted at ITIs that run code φ by ITIs that run code π [Can18]. The composition
theorem then shows that for a compliant protocol ρ and subroutine respecting protocols φ and π such that
π UC-emulates φ, protocol ρφ→π UC-emulates protocol ρ. This composition operation works in a setting
where the subroutine-respecting protocols π and φ will receive input from and provide subroutine output
only to ρ, not from or to any other subroutine of ρ.2 Therefore, all invocations to the protocol session in
question occur in ρ.

In the setting we consider in this paper, the same restriction is not true. We want to explicitly allow for
sub-protocols that are used in different levels of the hierarchy: the zero-knowledge functionality Fzk uses Fsig
and Fncom as subroutines, but also other, higher-level protocols (which may also invoke Fzk) need to invoke
Fsig to, in this case, create the necessary signatures and commitments. Therefore, we define a recursive
composition operation that applies to a protocol together with all of its sub-protocols.

Recursive universal composition operation. We define the new composition operator uc∗() as follows.
Like the operator uc() defined by Canetti [Can18], given a protocol φ, a protocol ρ, and a protocol π (that
presumably uc∗() emulates φ), the composed protocol ρφ�π = uc∗(ρ, π, φ) that is identical to protocol ρ,
with the following modifications:

1. Wherever ρ contains an instruction to pass input x to an ITI running φ with identity (sid , pid), then
ρφ�π contains instead an instruction to pass input x to an ITI running π with identity (sid , pid).

2. Whenever ρφ�π receives an output passed from π(sid,pid′) (i.e., from an ITI running π with identity
(sid , pid ′)), it proceeds as ρ proceeds when it receives an output passed from φ(sid,pid′).

3. Whenever ρ contains an instruction to pass input x to an ITI running ψ 6= φ with identity (sid , pid),
then ρφ�π contains instead an instruction to pass input x to an ITI running ψφ�π = uc∗(ψ, φ, π)
with identity (sid , pid).

4. Whenever ρφ�π receives an output passed from ψφ�π
(sid,pid′) (i.e., from an ITI running ψφ�π with identity

(sid , pid ′)), it proceeds as ρ proceeds when it receives an output passed from ψ(sid,pid′).

Overall, the difference with the composition operation from the original framework [Can18] is that protocol
replacement also applies to sub-protocols. We remark that a bit more care is needed with this operator: UC
composition theorems do not work for protocols ρ that create sub-protocols of both φ and π with the same
session identifier—this is simply not captured by the main UC experiment.3 The latest release of the UC
framework resolves this issue by explicitly forbidding such a situation for the protocol ρ by the notion of
compliant [Can18]. The situation is a bit more subtle here, where a similar property has to hold for a set of
protocols with all sub-protocols.

3.2 The multi-protocol UC experiment and composition theorem
The standard UC experiment allows the environment to create a single session of a single protocol, which is
usually called π in the real experiment and φ in the ideal experiment. In more detail, the control function
specifies that the first ITI created by the environment be the adversary, and every subsequently created ITI
have the code of either π or φ, depending on the considered experiment. The plain UC experiment therefore
does not model a situation where multiple protocols are executed together and call each other in different
ways, and where the environment (or higher-level protocols) can use multiple ones simultaneously. The GUC
model in [CDPW07] allows this generality; however, GUC security is hard to prove for general protocols and

2The proof of the UC composition theorem in [Can18] also applies more generally, but the composition operation is defined
in the way described here.

3The formal model in [CDPW07] does not exclude this case, which then leaves the composition theorem flawed.

12

therefore the authors in [CDPW07] resort to the notion of EUC, which again has a single challenge protocol.
We therefore develop a new multi-protocol UC (MUC) experiment and definition that has the necessary
generality.

In a nutshell, this new experiment can be understood as a UC experiment which (1) specifies a vector of
challenge protocols and where (2) the environment is allowed to instantiate arbitrarily many sessions of each
of the challenge protocols, which (3) can also access a global functionality Ḡ as in GUC. How Z addresses
the individual challenge protocols actually does not matter, but for the sake of concreteness we assume
that Z uses the code field of the external-write instruction (which is otherwise ignored anyway) to specify
this information. The remaining description of the UC experiment carries over from [Can18] and the EUC
experiment in [CDPW07], respectively, and we write the random variable that describes the environment’s
output in the MUC experiment with environment Z, adversary A, protocol vector (π1, . . . , πn), and shared
global functionality Ḡ as mexecḠ(π1,...,πn),A,Z . We simply write mexec(π1,...,πn),A,Z if the protocols do not
access a global shared functionality. Also in accordance with standard UC and EUC, the notion of MUC
emulation is then defined as follows.

Definition 1. The vector ~π = (π1, . . . , πn) of protocols MUC-emulates the vector ~φ = (φ1, . . . , φn) of
protocols with respect to a global functionality Ḡ if there exists a simulator S such that

mexecḠ~π,A,Z ≈ mexecḠ~φ,S,Z ,

for all environments Z. We simply say that the vector ~π MUC-emulates the vector ~φ if they do not
use a global functionality (i.e., if the protocols are subroutine respecting in the sense of [Can18]), and
mexec~π,A,Z ≈ mexec~φ,S,Z for all Z.

The following lemma formalizes the intuition that a protocol that is subroutine respecting in the sense of
[Can18] and UC-emulates another subroutine-respecting protocol φ if and only if it MUC-emulates φ. As the
MUC experiment provides the environment with strictly more flexibility, it is obvious that MUC-emulation
implies UC-emulation. On the flip side, the only additional restriction of the UC-experiment is that it only
allows a single session of the protocol, but this difference is merely quantitative. The analogous statement
holds for EUC security.

Lemma 2. Let π, φ be protocols that are both subroutine respecting in the sense of [Can18]. Then π
UC-emulates φ if and only if π MUC-emulates φ. Let Ḡ be a global functionality and π2, φ2 be protocols
that are both Ḡ-subroutine respecting in the sense of [CDPW07]. Then π EUC-emulates φ if and only if π
MUC-emulates φ with respect to Ḡ.

The following definition formalizes the version of subroutine respecting for MUC. In a nutshell, it is the
same as for UC and EUC, but generalized to the setting of multiple protocols. That is the multiple protocols
can share state and interact arbitrarily, but all communication with the outside world has to be performed
via the any main party of any protocol.

Definition 3. Let ~π = (π1, . . . , πn) be a vector of protocols. Then ~π is jointly subroutine respecting if all
inputs and outputs of any subsidiary of any protocol in ~π happen through an instance of some party or a
protocol in the vector ~π. Let Ḡ be a global shared functionality. Then ~π is Ḡ-jointly subroutine respecting if
it is jointly subroutine respecting except that it also accesses the global shared functionality Ḡ.

The definition is considerably more lenient than the subroutine respecting definitions in [Can18, CDPW07].
Not only does it allow the communication between functionalities as needed, it even allows for communication
between all possible sessions of those protocols! The reason we use this definition is that it is a lot simpler
to write, that any restriction to a particular number of sessions sharing state would be arbitrary, and that
our composition theorem does not require this restriction, as in contrast to [Can18] we do not reduce to a
single session of the challenge protocol(s). Furthermore, for “reasonable” protocols this should not introduce
excessive complexity in the proof beyond the inherent additional complexity of handling multiple parallel
sessions.

13

The above definition then allows us to specify and prove the multi-protocol version of the composition
theorem. We need to impose some restrictions which are necessary for the reduction proof to work, but
which are anyway natural for practical protocols. We say that protocol vectors ~π and ~φ are compatible if no
execution of ~π creates a sub-protocol with code listed in ~φ but not listed in ~π, and vice versa.

Theorem 4 (Multi-protocol UC composition, recursive). Let Ḡ be a global shared functionality, let ~π and ~φ
be vectors of compatible PPT protocols with |~π| = |~φ|, such that ~π MUC-emulates ~φ with respect to Ḡ, and
both ~φ and ~π are Ḡ-jointly subroutine respecting. Let ρ be a PPT protocol such that in no execution a party
of ρ creates a sub-routine with code listed in ~π but not in ~φ.4 Consider sub-vectors

~
π and

~
φ that are obtained

from ~π and ~φ by selecting elements in the same positions. Then protocols ρφ�π |
~
π MUC-emulate protocols

ρ|
~
φ with respect to Ḡ.

Proof. This proof is quite similar to the composition proof for GUC [CDPW07]. In particular, we also first
observe (in the spirit of the original UC proof) that security against a dummy adversary is equivalent to
security against all adversaries. Unlike UC, we also do not need a hybrid argument in the proof, since MUC
security, like GUC, already models multiple sessions of the challenge protocols.

The universality of the dummy adversary follows exactly as in [Can18, CDPW07]. As ~π MUC-emulates
~φ with respect to Ḡ, there is an adversary Sπ such that

mexecḠ~π,D,Zπ ≈ mexecḠ~φ,Sπ ,Zπ

for any environment Zπ . We will use Sπ to construct the simulator Sρ for the protocol ρ|
~
π, which works

as follows: Sρ emulates a copy of Sπ internally, forwarding all messages sent by the environment Z and
addressed to instances of ~π (which includes all subroutines of those protocols) to this copy of Sπ , and
analogously forwarding all messages sent by Sπ to Z. Additionally, Sρ forwards all communication between
its internal copy of Sπ and the actual instances of the protocols ~φ in its execution.

We prove the claimed equation mexecρ~φ�~π |
~
π,D,Z ≈ mexecρ|

~
φ,Sρ,Z by contradiction. Assume that there

is an environment Z such that the equation does not hold. We construct an environment Zπ from Z as
follows. Environment Zπ internally emulates a copy of Z and follows its instructions. Whenever Z provides
input to ρ, then Zπ emulates the execution of the corresponding ITI executing ρ as well. When any of
these instances of ρ or Z provide input to any other protocol of ~φ (or

~
φ, respectively, for Z), then Zπ

provides the corresponding input to the respective instance in its own experiment. Inputs from Z to Ḡ and
outputs from Ḡ to Z are simply forwarded. As the protocols ~π and ~φ are Ḡ-jointly subroutine respecting,
all the input/output communication with external protocols in the experiment of Z is performed either via
the main parties of ~π or directly with Ḡ, which ensures that Zπ can proceed as described. In terms of
network communications, Zπ forwards the messages between Z and the emulated instances of ρ. Network
communication from Z to ~π (or sub-parties thereof) is forwarded to the adversary in the experiment of Zπ ;
likewise, outputs from that adversary are forwarded to the emulated Z.

We observe that
mexecḠ~π,D,Zπ = mexecḠ

ρ~φ�~π |
~
π,D,Z

,

as Zπ emulates the ITIs for ρ and their interactions with other ITIs faithfully. We analogously observe that

mexecḠ~φ,Sπ ,Zπ
= mexecḠρ|

~
φ,Sρ,Z ,

as again Zπ emulates the protocol ρ and simulator Sρ does the same as Sπ and delivers messages to parties
of ρ in the same way as Zπ does in the other experiment. Additionally, as ρ is restricted to not create
subroutines in ~π except for those that already appear in ~φ, we make sure that ρ does not create sub-routines
that could possibly interact with instances of ~φ but cannot be emulated in the experiment mexecḠ~φ,Sπ ,Zπ

.

4This is a somewhat analogous but stricter version of a condition in the definition of compliant in [Can18].

14

By our assumption, the environment Z succeeds in distinguishing, more formally

mexecḠ
ρ~φ�~π |

~
π,D,Z

6≈ mexecḠρ|
~
φ,Sρ,Z .

By the above equalities this is equivalent to

mexecḠ~π,D,Zπ 6≈ mexecḠ~φ,Sπ ,Zπ
,

which contradicts the assumption that ~π MUC-emulates ~φ with respect to Ḡ. This concludes the proof.

As a remark, we point out two specific types of statements that are in particular implied by this compo-
sition theorem and relate the framework to standard UC.

• Any (Ḡ-subroutine respecting) protocol proven secure in EUC is also secure in multi-protocol UC;
this is stated in Lemma 2, along with the corresponding statement for plain UC. In particular, EUC-
secure of UC secure protocols that are in particular subroutine respecting (of the respective type) can
immediately be used as subroutines in MUC-secure protocols.

• Let ~π and ~φ be Ḡ-jointly subroutine respecting such that ~π emulates ~φ. Let ρ be a ~φ-hybrid protocol
that is in particular subroutine respecting, meaning that its subroutines ~φ are not exposed to the
outside. Then ρ~φ�~π EUC-emulates ρ with respect to Ḡ.

4 Modular proof of a protocol
The goal of this section is to exemplify how the modular proof approach described in the introduction
applies to the example protocol consisting of a non-interactive zero-knowledge proof πnizk, a non-interactive
commitment scheme πncom, and a signature scheme πsig. As described there, we idealize these protocols as
functionalities Fnizk, Fncom, and Fsig, respectively, but in a manner that these functionalities interact with
each other and can all be accessed by other, higher-level protocols. We remark that the proof methodology
showed in this section also applies to frameworks such as those of Backes, Pfitzmann, and Waidner [BPW04];
Küsters, Tuengerthal, and Rausch [KTR18]; and Maurer and Renner [MR11]. Of course the details of run-
time and corruption handling must be adapted, and in those frameworks no additional modification of the
composition theorem is required.5

But how do we realize functionalities in a way that they interact with each other? We begin by realizing
functionality Fnizk—the one that depends on the code of the protocols πncom and πsig via the relation R
that parametrizes it. More concretely, for the relation R described in the introduction in terms of open(·, ·, ·)
and ver(·, ·, ·), we let the protocol πRnizk realize the functionality FRnizk. (A concrete instantiation is given in
Section 5.3.) We then go on to re-write Fnizk in a different way, namely using the protocols πncom and πsig
instead of the relation R, in Section 4.1. Except for technical details such as run-time, this formulation is
obviously equivalent to the standard FRnizk. In Section 4.2, we then re-write the functionality to evaluate
open(·, ·, ·) and ver(·, ·, ·) by creating external instances of πncom and πsig. We explain that some care needs
to be taken here with respect to corruptions and modeling details, but the issues can be overcome.

In the previous step, we did already provide the groundwork for having functionalities interact: Function-
ality Fnizk invokes protocols πncom and πsig. We can then use concrete instantiations of those protocols that,
as shown in Sections 5.1 and 5.2, instantiate Fncom and Fsig. We discuss in Section 4.3 that the common
security proofs for such schemes have to be adapted slightly in terms of corruption modeling. Using our
variant of the UC theorem, we show in Section 4.4 how the results in the previous sections are put together.

5The methodology does not work in the framework of Hofheinz and Shoup [HS15], which inherently enforces a strict hierarchy
on sub-protocols.

15

4.1 Writing the NIZK functionality with internal protocols
The next step is to rewrite the functionality Fnizk into another functionality Fnizk2. In a nutshell, we
specialize the relation R to ((pk , crs, c), (m, s, open)) : ver(pk ,m, s) = 1 ∧ open(crs, c, open) = 1; in other
words, the goal is to prove knowledge of a message m, a signature s, and an opening information open, such
that the commitment c, relative to the CRS crs, opens to the message m for which the prover knows the
signature s relative to the public key pk . Needless to say, for this to work, the set of relations R supported
by the zero-knowledge protocol πnizk must be compatible with the computations required by ver and open.

Functionality F (πncom,πsig)
nizk2

Fnizk is parametrized by algorithms πncom and πsig used for verifying statements. It keeps an initially
empty list L of proven statements.

1. Wait for an input (prove, y, w) from P such that y = (pid , sids, sidc, pk , c) and w = (m, s, o).
Emulate ITMs πncom, with identity (pid , sidc), and πsig, with session identifier (pid , sids). Input
(verify, pk ,m, s) to πsig and store the returned bit as bver. Input (open, c,m, o) to πncom and
store the returned bit as bopen. Send (prove, y) to A.

2. Upon receiving a message (done, ψ) from A, with ψ ∈ {0, 1}∗, record (y, ψ) in L and send
(done, ψ) to P .

3. Upon receiving (verify, y, ψ) from some party P ′, check whether (y, ψ) ∈ L. If not, output
(verify, y, ψ) to A and upon receiving answer (witness, w). Check the validity of (y, w) as in
step 1. If the pair is valid, store (y, ψ) in L. If (y, ψ) has been stored, then output 1 to P ′, else
output 0.

Figure 7: Non-interactive zero-knowledge functionality, written with emulated protocols πncom and πsig
instead of relation R.

By inspection, the functionality F (πncom,πsig)
nizk2 as specified in Figure 7 has the same input/output behavior

as the functionality FRnizk for the appropriate relation R specified above. The only difference is in run-time,
where the verification of (y, w) ∈ R in Fnizk may be implemented differently from the explicit verification
via the protocols πncom and πsig in Fnizk2. This is a minor difference that can easily be dealt with in Fnizk2
(at the cost of a higher run-time bound), which means that we obtain the following corollary to the results
of Section 5.3.

Corollary 5. Let πsig be a signature scheme and πncom a non-interactive commitment, and let R be the
relation as specified above. Let πnizk be a zero-knowledge protocol as specified in Section 2.3 which realizes
the functionality FRnizk. Then πRnizk UC-realizes the functionality F (πncom,πsig)

nizk2 .

4.2 Writing the NIZK functionality with external protocols
In the next step, we again re-write the zero-knowledge functionality to obtain a functionality Fnizk3 that,
instead of emulating the protocols πncom and πsig internally, invokes corresponding ITIs external to Fnizk3
and uses them for the verification. Looking ahead, our goal is to replace those protocol instances by ideal
functionalities, such that Fnizk3 communicates with idealized versions Fsig and Fncom.

There are two main obstacles we have to overcome before this approach can actually work out:

• The (prove, y, w) operation in Fnizk2, emulating instances of πsig and πncom, always succeeds (if the
run-time requirements are satisfied). In an execution with Fnizk3, in contrast, A can create ITIs with
identities (pid , sids) or (pid , sidc) that run code that is different from πsig or πncom, respectively. In
this case, the operation (prove, y, w) in Fnizk3 necessarily fails, since the invocation of the external

16

Functionality F (πncom,πsig)
nizk3

Fnizk is parametrized by algorithms πncom and πsig used for verifying statements. It keeps an initially
empty list L of proven statements.

1. Wait for an input (prove, y, w) from P such that y = (pid , sids, sidc, pk , c) and w = (m, s, o).
Check that pid is specified as uncorruptible in both sids and sidc. Input (verify, pk ,m, s) to
a possibly new ITM πsig with identity (pid , sids), obtain a return bit and store it as bver. Input
(open, c,m, o) to a possibly new ITM πncom with identity (pid , sidc), obtain a return bit and
store it as bopen. If both operations return successful and bver ∧ bopen, then continue, else stop.
Send (prove, y) to A.

2. Upon receiving a message (done, ψ) from A, with ψ ∈ {0, 1}∗, record (y, ψ) in L and send
(done, ψ) to P .

3. Upon receiving (verify, y, ψ) from some party P ′, check whether (y, ψ) ∈ L. If not, output
(verify, y, ψ) to A and upon receiving answer (witness, w). Check the validity of (y, w) as in
step 1. If the pair is valid, store (y, ψ) in L. If (y, ψ) has been stored, then output 1 to P ′, else
output 0.

Figure 8: Non-interactive zero-knowledge functionality, calling out to external instances of πncom and πsig.

ITIs does not yield the expected result (but instead fails). This can be checked by the simulator, which
simply prevents Fnizk3 from continuing if this case occurs, and is described in Theorem 6.

• The instances of the ITMs πsig and πncom that we create must be incorruptible, otherwise the function-
ality Fnizk3 is significantly weaker than its counterpart Fnizk2. On the other hand, other instances of
the same ITMs must still be corruptible, as otherwise the overall security statement is not particularly
interesting. This will be achieved by encoding in sid the pid of the ITI that is to be incorruptible.

Incorruptible protocols. The UC framework provides great flexibility in handling corruptions. Corrup-
tion is modeled via specific messages sent by the adversary to the targeted ITI, which then behaves according
to its own instructions. This may, such as for the case of Byzantine corruption, mean that the ITI sends its
entire state to the adversary and subsequently follows the adversary’s instructions. Yet, other mechanisms
of handling corruptions are also possible.

We use this flexibility of the UC framework to model the case where one participant cannot be corrupted.
We specify variants π′sig and π′ncom of the protocols πsig and πncom, in which the session identifier sid is a
pair (pid , sid ′) such that pid specifies the identity of the uncorruptible participant and sid ′ is used as the
session identifier of πsig or πncom, respectively. The protocols π′sig and π′ncom behave exactly as πsig and
πncom, respectively, except for their behavior in the case of corruption: the participant identifier pid ′ of the
ITI is compared to the value pid obtained from sid ; if they are equal, the corruption request is ignored,
otherwise the ITI proceeds as before.

For ease of notation, and where there is no risk for confusion, we denote denote π′sig and π′ncom by the
symbols πsig and πncom from here onwards.

Theorem 6. Let φnizk2 be the dummy protocol for F (πncom,πsig)
nizk2 and φnizk3 be the dummy protocol for

F (πncom,πsig)
nizk3 . Protocol φnizk2 UC-emulates φnizk3.

Proof. The simulator S behaves transparently unless A instructs it to create an ITI with identity (pid , sid)
that corresponds to one used by Fnizk3, but with code that differs from the expected one for either πncom or
πsig. In that case, S does not instruct Fnizk3 to output the proof, even if A instructs the expected instance
of Fnizk2 accordingly.

17

It is easy to see that the simulation is perfect when no such ITI is created. If such an ITI is created, in
both cases the functionality does makes no progress. This concludes the proof.

We immediately obtain the analog of Corollary 5, namely that every protocol that UC-realizes Fnizk and
supports the relations obtained through πncom and πsig also UC-realizes Fnizk3.

4.3 Realizing the functionalities Fsig and Fncom

Functionality F (πncom,πsig)
nizk3 calls out to protocols πncom and πsig with specific party and session identifiers. The

idea of this modeling is that other parties can also instantiate πncom and πsig for the corresponding session:
signatures and openings verified by Fnizk3 via its instances of πncom and πsig must have been generated
somewhere. The next step in our proof is then to idealize the guarantees of πncom and πsig via functionalities
Fncom and Fsig.

The functionality F (πncom,πsig)
nizk3 invokes variants of the protocols πncom and πsig whose UC formalization

is modified in a way as to make the instances generated by Fnizk3 incorruptible. Of course, this modeling
only makes sense if we later idealize their guarantees in a way that the respective party in Fncom and Fsig
is incorruptible as well. Luckily, this is easy to do and analogous to the modeling for the protocols in
Section 4.2: Before accepting a corruption request by the adversary, the functionalities check whether the
intended pid is specified as incorruptible in the sid . A bit more precisely, in queries of the type (corrupt, P),
Fsig checks whether the party identifier of P matches the value of pid specified in the sid of Fsig. If the
values match, then the request is ignored. Otherwise the functionality proceeds as specified.

We write the following simple corollary to our security statements in Sections 5.1 and 5.2. The proof of
the corollary is obvious and omitted.

Corollary 7. The variants π′sig and π′ncom of the protocols in which a party can be specified as incorruptible
in the sid (E)UC-realize the variants F ′sig and F ′ncom of the functionalities in which the respective party is
incorruptible.

In the following, we simply write Fsig and Fncom instead of F ′sig and F ′ncom wherever it is clear from the
context that we mean the variants with incorruptible parties.

4.4 Using MUC composition to combine the results
In the previous sub-sections, we showed how the zero-knowledge functionality FRnizk realized as described
in Section 5.3 can be rewritten to verify the relation by calling out to external protocols via Corollary 5
and Theorem 6. We also showed in Corollary 7 a modification of the results in Sections 5.1 and 5.2 that
adapts the standard corruption handling to the one used in Theorem 6. The obvious missing step is to use the
composition theorem in order to show that F (πncom,πsig)

nizk3 realizes F (φncom,φsig)
nizk3 , or rather that protocol φ(πncom,πsig)

nizk3

realizes protocol φ(φncom,φsig)
nizk3 . This is a priori not the case, since literally the universal composition operation

ρφ→π specified in [Can18] only affects the outermost protocol, which in the case of an ideal functionality is
the dummy protocol, but we invoke the sub-protocols from the functionality, which is a subroutine of the
dummy protocol! This is why we need the recursive composition operation defined in Section 3.1.

By the obvious adaptation of the UC composition theorem to recursive composition, which we stated
as Theorem 15 in Appendix A, we can then conclude the result stated above, namely that φ(πncom,πsig)

nizk3 UC-
realizes φ(φncom,φsig)

nizk3 . This statement, however, turns out to be almost useless for the practical use of φnizk3:
In order to use φnizk3 as a sub-protocol, it needs to be subroutine respecting! For φnizk3 to be subroutine
respecting means that the input/output interfaces of its subroutines, in particular Fsig and Fncom, must not
be usable by any protocol other than φnizk3. This renders the triplet of functionalities (Fnizk,Fncom,Fsig)
almost useless, since no signatures or commitments can be created.

To resolve the above conundrum, we turn to the MUC model and Theorem 4, its composition theorem.
We first use Lemma 2 to adapt the security statements made in Theorem 6 and Corollary 7 for the protocols
πnizk, πsig, and πncom from the UC model to the MUC model. We then finally invoke Theorem 4 to conclude

18

that the protocol vector (φnizk, πsig, πncom) MUC-realizes the protocol vector (φnizk, φsig, φncom). This implies
our final result, which is formalized in the following theorem.

Theorem 8. Let πsig, πncom, and πnizk be the protocols described in Section 5 and the relation R as described
above. Then the protocol vector (πRnizk, πsig, πncom) MUC-realizes the protocol vector (φ

(φncom,φsig)
nizk3 , φsig, φncom)

with respect to ḠsRO. The vector of dummy protocols can also be viewed as the vector (F (φsig,φncom)
nizk3 ,Fsig,Fncom)

of functionalities.

We emphasize that the strength of our result, in comparison with a formalization in the standard UC
framework [Can18], is that protocols such as the one described here can be developed using a set of ideal
functionalities that abstract the underlying schemes and interact with each other, while still being usable
by higher-level protocols in the expected way. This simplifies protocol development, since one can actually
work with idealized components that abstract from the intricacies of the component schemes, and it allows
to specify intermediate protocols as a combination of (few) simple and standard components instead of as a
monolithic, tailored, and complex intermediate functionality.

5 Concrete Protocols
Section 4 showed how realizations of signatures, commitments, and zero-knowledge proofs can securely
be combined. In this section we will propose concrete instantiations that are compatible and efficient,
meaning that the zero-knowledge protocol can prove statements about signature verifications and com-
mitment openings. To this end, we will fix a single family of bilinear groups bilinearGroups, such that
bilinearGroups(λ) = (q,G, G̃,Gt, e, g, g̃), with G = 〈g〉, G̃ = 〈g̃〉, and Gt of prime order q, with bilinear map
e, of a security level matching λ. All our algorithms will implicitly be parametrized by bilinearGroups and
obtain the correct groups for the security parameter.

5.1 Signatures
Before we present our concrete realization of Fsig, we show that any signature scheme secure in the property-
based sense (i.e., EUF-CMA as defined in [GMR88]). Similar generic realizations of Fsig have been shown for
slightly different formulations of Fsig [Can04, BMT18]. Then, we use this result to show that the structure-
preserving signature scheme by Abe et al. [AGOT14] is a secure realization of Fsig.

5.1.1 Generic realization of F (kgen,sign,ver)
sig from EUF-CMA

Let algorithms kgen, sign, ver be an EUF-CMA signature scheme. We now describe the following generic
“wrapper” algorithm π

(kgen,sign,ver)
sig that realizes F (kgen,sign,ver)

sig .

Protocol π(kgen,sign,ver)
sig

Upon a pubkey or sign query, if (sk , pk) not yet defined, then run (sk , pk)←$ kgen(λ), where λ is
obtained from the security parameter tape, and store (sk , pk).

1. Upon input pubkey from party P , output (pubkey, pk) to P .

2. Upon input (sign,m) from party P with m ∈ {0, 1}∗, compute s←$ sign(sk ,m). If s = ⊥ ∨
¬(ver(pk ,m, s) ∨ S ∈ C then output ⊥ to P . Else set L ← L ∪ {m} and output s to P .

3. Upon input (verify, pk ′,m′, s′) from party P , compute b ← ver(pk ′,m′, s′). If S /∈ C ∧ pk =
pk ′ ∧ b ∧m′ /∈ L then output (result,⊥) to P . Else output (result, b) to P .

We will assume that π(kgen,sign,ver)
sig uses secure erasures, meaning that any state of protocol participants

that is not explicitly persisted will be securely deleted. This means that if a party later becomes corrupted,

19

the adversary will not be able to see protocol state other than the explicitly persisted values. For our
signature protocol, the only persisted state consists of the signer’s key pair.

Theorem 9. Protocol π(kgen,sign,ver)
sig UC emulates F (kgen,sign,ver)

sig if (kgen, sign, ver) is existentially unforge-
able against an adaptive chosen message attack, and assuming secure erasures.

Proof. Let simulator S internally simulate A. As F (kgen,sign,ver)
sig handles signing and verification queries, S

only comes into action when it is notified by F (kgen,sign,ver)
sig of a party P becoming corrupted, and S must

present a convicing state for simulated party “P ”. If P is a verifier (i.e., not the signer S), then the simulator
does not need to prepare any state, as verifiers do not maintain any state. If P is the signer, then the state
should consist of the key pair, which S can simulate as the key is obtained from F (kgen,sign,ver)

sig .
Observe that the simulation is almost perfect: Both the real and ideal world use algorithms kgen, sign,

and ver to generate keys, sign messages, and verify signatures, respectively, and adaptively corrupted parties
can be simulated perfectly. The only difference are the additional checks that F (kgen,sign,ver)

sig performs. When
signing, it only outputs signatures that are valid w.r.t. the verification algorithm. By completeness of the
signature algorithms, this can only occur with negligible probability. When verifying, the F (kgen,sign,ver)

sig will
reject forgeries, i.e., signatures on messages that were never signed by the honest signer. An environment
that causes this case to apply with non-negligible probability directly translates to a EUF-CMA forger with
non-negligible advantage, contradicting the assumption that (kgen, sign, ver) is EUF-CMA.

5.1.2 AGOT structure-preserving signature

We recall the AGOT structure-preserving signature scheme (kgenagot, signagot, veragot) as introduced by Abe
et al [AGOT14].

kgenagot() : Choose a random v←$ Zq , x←$ G, compute y ← g̃v, and set (sk , pk)← (v, (y, x)).

signagot(par , sk ,m) : Compute

u←$ Z∗q , r ← g̃u, s← (mv · x)1/u, t← (sv · g)1/u

and output σ ← (r, s, t).

veragot(par , pk ,m, σ) : Parse σ = (r, s, t), and pk = (y, x) and output 1 if m, s, t ∈ G, r ∈ G̃, r 6= 1G̃,
e(s, r) = e(m, y) · e(x, g̃), and e(t, r) = e(s, y) · e(g, g̃). Output 0 otherwise.

Assumption 10. Define the AGOT-advantage of an adversary as follows.

Advagot(A) = Pr
[
(q,G, G̃,Gt, e, g, g̃)← bilinearGroups(λ), v←$ Zq, x←$ G, y ← g̃v,

(m, r, s, t)← AO
v(·)(q,G, G̃,Gt, e, g, g̃, x, y) : (m, s, t) ∈ G3 ∧ r ∈ G̃ ∧m 6∈ Q∧

e(s, r) = e(m, y) · e(x, g̃) ∧ e(t, r) = e(s, y) · e(g, g̃)
]
,

where Ov on input m ∈ G takes u←$ Zq, r ← g̃u, s ← (mv · x)1/u, t ← (sv · g)1/u, adds m to initially
empty set Q and returns (r, s, t). The AGOT assumption states that no PPT adversary A has non-negligible
Advagot(A).

Abe et al. [AGOT14] prove that this assumption holds in the generic group model.

Theorem 11. Signature scheme (kgenagot, signagot, veragot) is EUF-CMA secure under Assumption 10.

Proof. As Assumption 10 is effectively equivalent to the EUF-CMA game for the AGOT signature scheme,
this theorem follows immediately.

From Theorem 9 and Theorem 11 the following corollary follows.

Corollary 12. Protocol π
(kgenagot,signagot,veragot)
sig UC emulates F (kgenagot,signagot,veragot)

sig under Assumption 10 and
assuming secure erasures.

20

Protocol π(M,commit,open)
ncom – Fcrsgen

crs , ḠsRO hybrid

Algorithms commit and open may use strict global random oracle ḠsRO.

1. Upon input (validate, par ′) from P , get par from Fcrs, check par
?
= par ′, and report to P .

2. Upon (commit, par ′, x) with x ∈ M from P , compute (c, open)←$ commit(par ′, x), and return
(c, open) to P .

3. Upon (open, par ′, c, open) from some P , compute x′ ← open(par ′, c, open) and output x′ to P .

Figure 9: Commitment protocol wrapper π(M,commit,open)
ncom .

5.2 Commitments
We build a new non-interactive extractable commitment scheme. On a high level, a commitment to m is
an Elgamal ciphertext to a public key from the CRS, which makes commitments extractable. However,
as we will require a hiding property of honestly generated commitments while simultaneously extracting
from adversarially created commitments, we need a CCA property of the encryption scheme. We therefore
encrypt to two CRS public keys and perform a Schnorr-proof proving both ciphertexts encrypt the same
value, following the Naor-Yung paradigm [NY90]. The Schnorr-proof works a strict global random oracle
ḠsRO, as defined by Camenisch et al. [CDG+18].
Fncom further requires that commitments are equivocable, so the simulator must be able to open a

commitment to any value decided later. To achieve this property, we do not open a commitment to message
m by simply revealing the randomness used to encrypt, but insteqd the opening consists of a zero-knowledge
proof that proves the ciphertext indeed encrypts m. Simplified Groth-Sahai proofs [GS08, CCS09] are used
for this purpose.

We now describe commitment algorithms (commitgs, opengs) that are parametrized by a fixed fam-
ily of bilinear groups bilinearGroups, and every algorithm uses the groups of the desired security level
bilinearGroups(λ) = (q,G, G̃,Gt, e, g, g̃). The commitment scheme will use message setM = G.

crsgengs() : Take (y1, y2, g̃1, g̃2, g̃3, g̃4)←$ G2 · G̃4
.

commitgs(par , x) : Parse par as (y1, y2, g̃1, g̃2, g̃3, g̃4) ∈ G2 · G̃4
. Choose (ω, ρ, γ)←$ Z3

q and compute c =

(c1, c2, c3, c4, c5) = (gω,myω1 ,my
ω
2 , ḠsRO(par , c1, c2, c3, g

ρ, (c2/c3)ρ), ρ+c4·ω (mod q)). Compute open =
(õ1, õ2, o3, o4) = (g̃ω1 g̃

γ
2 , g̃

ω
3 g̃

γ
4 , g

γ , yγ1). Return (c, open).

opengs(par , c, õ,m) : Parse par as (y1, y2, g̃1, g̃2, g̃3, g̃4) ∈ G2 · G̃4
, parse c as (c1, c2, c3, c4, c5), parse õ as

(õ1, õ2, o3, o4) ∈ G̃
2 · G2, and check m ∈ G. Check c4 = ḠsRO(par , c1, c2, c3, g

c5 · c−c41 , (y1/y
c5
2 ·

(c2/c3))−c4) and check

e(g, õ1) = e(c1, g̃1)e(o3, g̃2), e(g, õ2) = e(c1, g̃3)e(o3, g̃4),

e(y1, õ1) = e(c2/m, g̃1)e(o4, g̃2), e(y1, õ2) = e(c2/m, g̃3)e(o4, g̃4).

Output 1 if all checks hold and output 0 otherwise.

Commitment protocol wrapper πncom, as defined in Figure 9, wraps the commitment algorithms into
a UC protocol. Next, we introduce algorithms tdcom, tdopen, extractgs, again parametrized by family of
bilinear groups bilinearGroups, such that π(commitgs,opengs)

ncom will realize F (M,opengs,tdcomgs,tdopengs)
ncom .

tdcom(par , td) : Parse par as (y1, y2, g̃1, g̃2, g̃3, g̃4) ∈ G2·G̃4
and td as (x1, a) ∈ Z2

q. Take ω←$ Zq andm←$ G
and compute c = (c1, c2, c3, c4, c5) = (gω,myω1 ,my

ω
2 , ḠsRO(par , c1, c2, c3, g

ρ, (c2/c3)ρ), ρ + c4 · ω). Let
info ← (c, td) and output (c, info).

21

tdopen(par , x, info) : Parse par as (y1, y2, g̃1, g̃2, g̃3, g̃4) ∈ G2 · G̃4
and info as ((c1, c2, c3, c4, c5), a), such that

g̃1 = g̃a2 and g̃3 = g̃a4 . Compute open = (õ1, õ2, o3, o4) = (g̃γ2 , g̃
γ
4 , c
−a
1 · gγ , (c2/m)−a · yγ1).

extractgs(par , td , c) : Parse par as (y1, y2, g̃1, g̃2, g̃3, g̃4) ∈ G2 · G̃4
and td as (x1, a) ∈ Z2

q such that y1 = gx1 .
Parse c as (c1, c2, c3, c4, c5) and output c2 · c−x1

1 .

Theorem 13. Protocol π(M,commitgs,opengs)
ncom EUC emulates F (M,opengs,tdcomgs,tdopengs,extractgs)

ncom in the Fcrsgengs
crs ,

ḠsRO-hybrid model under the SXDH assumption.

Proof. We will use a sequence of games to show the indistinguishability of the real and ideal world. Let
Fncom denote F (M,opengs,tdcomgs,tdopengs,extractgs)

ncom .

Game 1: This is the real world.

Game 2: We now run a functionality F that handles setup, validate, corrupt-status and corrupt
queries like Fncom. It further accepts commit inputs like Fncom, except case 3b. In this case, F computes
(c, info)←$ commitgs(par , x). Similarly, F accepts open inputs like Fncom, except case 4b, where it skips the
extra checks 4(b)i and 4(b)ii. We run F with simulator S that honestly simulates Fcrs and internally runs
A. Upon first activation, it obtains par from “Fcrsgengs

crs ”, sets td ← ⊥ and gives F input (setup, par , td).
Observe that this game hop only restructures Game 1, the same inputs are accepted and the outputs

are generated using the same algorithms, so we have Game 2 = Game 1.

Game 3: We now change F’s behavior when handling open inputs and add the check 4(b)i from Fncom.
Commitments are generated inside F using commitgs, and the resulting commitment c = (c1, c2, c3, c4, c5) is
such that (c1, c2) forms an Elgamal ciphertext under public key y1 from the crs, so clearly, a unique message
is contained in (c1, c2). The opening is a simplified GS proof [GS08, CCS09] that proves there exists some γ
such that c1 = gγ and c2/m = yγ1 . With overwhelming probability, we have GS parameters that guarantee
perfectly sound proofs, so honestly generated commitments can only be opened to the correct message m
and this check does not change the view of the environment, Game 3 ≈ Game 2.

Game 4: The simulator in this game behaves as in the previous game, except that when simulating
Fcrsgengs

crs , it computes y1 by taking x1←$ Zq and setting y1 = gx1 . It now sets td ← (x1,⊥) as the trapdoor
given to F with the setup input. Since y1 is distributed as before and F does not use x1, we have Game 4
= Game 3.

Game 5: We now change F’s behavior when handling open inputs and add the check 4(b)ii from Fncom.
Note that before this check, F already checked the opening, i.e., it checked the simplified GS proof proving
that (c1, c2) encrypts message m under y1. By the soundness of the simplified GS proofs, (c1, c2) indeed
encrypts m, so decrypting (c1, c2) will indeed yield m and this check will not alter the output, and therefore
Game 5 ≈ Game 4.

Game 6: The simulator now simulates Fcrsgengs
crs differently, and instead of taking (g̃1, g̃2, g̃3, g̃4)←$ G̃, it

takes (g̃2, g̃4)←$ G̃ and a←$ Zq, and computes g̃1 = g̃a2 and g̃3 = g̃a4 . It now sets td ← (x1, a) as the
trapdoor given to F with the setup input (where x1 is computed as before). While (g̃1, g̃2, g̃3, g̃4) as now
slightly differently distributed, distinguishing these is exactly XDH problem, so under the XDH assumption
in G̃, we have Game 6 ≈ Game 5.

Game 7: When F creates honest commitments, it now simulates the simplified GS proof using simulation
trapdoor a. More precisely, it computes open = (õ1, õ2, o3, o4, o5) as in algorithm tdopengs. As the simulation
is perfect, we have Game 7 = Game 6.

Game 8: F now creates honest commitments (case 3b) as Fncom, i.e., it uses algorithms tdcomgs and
tdopengs. The difference is that when an honest party commits to message m, the generated commitments
no longer encrypts m but a random message instead, and the simplified GS proof (which is simulated since
Game 7) now proves the false statement that it does encrypt m.

We make this change gradually.

22

• Let Game 8.i.0 denote the game in which the first honestly generated commitments are generated
using tdcomgs and tdopengs, and the remaining ones are generated as in Game 7.

• Consider Game 8.i.1, in which F simulates Schnorr proof (c4, c5) of the i + 1-th honest commitment
by taking h←$ {0, 1}`(λ), c4←$ h (mod q), c5←$ Zq, and programming ḠsRO on (par , c1, c2, c3, g

c5 ·
c−c41 , (y1/y

c5
2 · (c2/c3))−c4).6

As this simulation is perfect, we have Game 8.i.1 = Game 8.i.0.

• Next, consider Game 8.i.2, in which F encrypts the correct message under y1 but not under y2 when
creating the i+ 1-th commitment. More precisely, it takes a random message m′←$ G, and computes
c1 ← gω, c2 ← myω1 , c3 ← m′yω2 .

Distinguishing Game 8.i.2 from Game 8.i.1 is equivalent to solving XDH in G: The reduction in-
terprets the XDH instance as (i1, i2, i3) and sets c1 ← i1, y2 ← i2, c2 ← cx1

1 · m, and c3 ← i3 · m.
Observe that if we have logg(i1) = logi2(i3) this is distributed equally to Game 8.i.1 and otherwise it
is distributed equally to Game 8.i.2, so Game 8.i.2 ≈ Game 8.i.1 under the XDH assumption.

• Next, consider Game 8.i.3, in which F runs a modified extractgs algorithm. The trapdoor now contains
x2, the discrete logarithm of y2, and the algorithm extracts from (c1, c3) instead of (c1, c2). By the
soundness of the Schnorr proof (c4, c5), (c1, c2) decrypts to the same value as (c1, c3), so Game 8.i.3
≈ Game 8.i.2.

• Next, consider Game 8.i.4, in which F encrypts random message m′′ y1 and random message m′ under
y2 when creating the i+1-th commitment. More precisely, it takes a random messages (m′,m′′)←$ G2,
and computes c1 ← gω, c2 ← m′′yω1 , c3 ← m′yω2 .

Distinguishing Game 8.i.4 from Game 8.i.3 is equivalent to solving XDH in G: The reduction in-
terprets the XDH instance as (i1, i2, i3) and sets c1 ← i1, y1 ← i2, c2 ← i3 · m, and c3 ← cx2

1 · m′.
Observe that if we have logg(i1) = logi2(i3) this is distributed equally to Game 8.i.3 and otherwise it
is distributed equally to Game 8.i.4, so Game 8.i.4 ≈ Game 8.i.3 under the XDH assumption.

• Next, consider Game 8.i.5, in which F encrypts the same random message m′ under both y1 and y2

when creating the i + 1-th commitment. More precisely, it takes a random messages m′←$ G, and
computes c1 ← gω, c2 ← m′yω1 , c3 ← m′yω2 .

Distinguishing Game 8.i.5 from Game 8.i.4 is equivalent to solving XDH in G: The reduction in-
terprets the XDH instance as (i1, i2, i3) and sets c1 ← i1, y1 ← i2, c2 ← i3 ·m′, and c3 ← cx2

1 ·m′.
Observe that if we have logg(i1) = logi2(i3) this is distributed equally to Game 8.i.5 and otherwise it
is distributed equally to Game 8.i.4, so Game 8.i.5 ≈ Game 8.i.4 under the XDH assumption.

• Next, Game 8.i.6 switched back to the standard extractgs algorithm, meaning that the simulator
passess trapdoor x1 = logg(y1) and F uses (c1, c2) to extract. Again by the simulation soundness of
Schnorr proof (c4, c5), we have Game 8.i.6 ≈ Game 8.i.5.

Observe that in Game 8.i.6, the Schnorr proof proves a true statement, and the only difference between
Game 8.i.6 and Game 8.(i + 1).0 is that this proof is simulated rather than honestly computed. As this
simulation is perfect, Game 8.i.6 = Game 8.(i+ 1).0

As Game 8.0 = Game 7, there are at most polynomially many commit queries, and Game 8.i is
indistinguishable from Game 8.(i+ 1), we have Game 8 ≈ Game 7.

6Note that we are programming the random oracle here while the strict global random oracle ḠsRO does not allow for this.
This is acceptable as it is only used to show that no distinguishing environment can exist, only in the final game we need to
have the strict separation between the simulator, functionality, and ḠsRO. In later steps we remove this programming.

23

5.3 Zero-knowledge proofs
To complete the instantiation of our modular construction, we need a NIZK protocol compatible with
our commitment protocol π(M,commitgs,opengs)

ncom and our signature protocol π(kgenagot,signagot,veragot)
sig . That is,

we want to realize FRnizk, where R is the relation {((pk , crs, c), (m,σ, open)) : veragot(pk ,m, σ) = 1 ∧
opengs(crs, c, open) = 1}. As our signature scheme is structure-preserving, the verification equation is a
pairing equation, and the opening algorithm of our commitment scheme consists of verifying a simplified GS
proof, wich again is a pairing equation. Furthermore, the witness consists only of group elements. We can
therefore instantiate the NIZKs by encrypting the witness to public keys defined in the CRS using Elgamal,
and using a Schnorr proof to prove that the encrypted values satisfy the pairing equations. The proof will
be online extractable as the simulator can decrypt the witness using its power over the CRS. The simulator
could simulate the Schnorr proofs by programming the random oracle, but this would not be compatible
with the strict (non-programmable) global random oracle ḠsRO. Instead, we add a value ḡsim to the CRS,
and prove a disjunction that either proves knowledge of a signature on the committed message, or knowledge
of the discrete logarithm of ḡsim . By the witness indistinguishability of the Schnorr proof, the simulator can
now simulate without programming the random oracle by using its knowledge of logg(ḡsim).

We now define πRnizk, a F
crsgennizk
crs , ḠsRO-hybrid protocol, where crsgennizk takes (ḡs, ḡt, ḡm, ḡo1 , ḡo2 , ḡo3 ,

ḡo4 , ḡsim)←$ G3 × G̃
2 ×G3.

• On input (prove, (pk , crs, c), (m,σ, open)), such that ((pk , crs, c), (m, s, open)) ∈ R:

– Obtain (ḡs, ḡt, ḡm, ḡo1 , ḡo2 , ḡo3 , ḡo4 , ḡsim) from Fcrsgennizk
crs .

– Parse σ = (r, s, t), pk = (y, x), par = (y1, y2, g̃1, g̃2, g̃3, g̃4), c = (c1, c2, c3, c4, c5), open =
(õ1, õ2, o3, o4).

– Take u′←$ Z∗q and set r′ ← ru
′
.

– Take z1, z2←$ Zq and set f1 = gz1 , f2 ← g̃z2 , s′ ← ḡz1s s
1/u′

, t′ ← ḡz1t t
1/u′

,m′ ← ḡz1mm, õ′1 ← ḡz2o1 õ1,
õ′2 ← ḡz2o2 õ2, o′3 ← ḡz1o3o3, o′4 ← ḡz1o4o4.

– Create the following generalized Schnorr proof (as formally defined by Camenisch, Kiayias, and
Yung [CKY09]), using knowledge of a witness for the first expression of the disjunction.

π ← SPK(z1, z2){f1 = gz1 ∧ f2 = g̃z2 ∧
e(s′, r′)/(e(m′, y)e(x, g̃)) = (e(ḡ1, r

′)/e(ḡ3, y))z1 ∧
e(t′, r′)/(e(s′, y)e(g, g̃)) = (e(ḡ2, r

′)/e(ḡ2, y))z1 ∧
e(g, õ′1)/(e(c1, g̃1)e(o′3, g̃2)) = e(g, ḡo1)z2 · e(ḡo3 , g̃2)z1 ∧
e(g, õ′2)/(e(c1, g̃3)e(o′3, g̃4)) = e(g, ḡo1)z2 · e(ḡo3 , g̃4)z1 ∧

e(y1, õ
′
1)/(e(c2/m

′, g̃1)e(o′4, g̃2)) = e(y1, ḡo1)z2 · (e(ḡm, g̃1)/e(ḡo4 , g̃2))z1 ∧
e(y1, õ

′
2)/(e(c2/m

′, g̃3)e(o′4, g̃4)) = e(y1, ḡo2)z2 · (e(ḡm, g̃3)/e(ḡo4 , g̃4))z1

∨
ḡsim = gz1}

Output (done, (f1, f2, r
′, s′, t′,m′, õ1, õ

′
2, o
′
3, o
′
4, π))

• On input (verify, (pk , par , c), ψ):

– Obtain (ḡs, ḡt, ḡm, ḡo1 , ḡo2 , ḡo3 , ḡo4 , ḡsim) from Fcrsgennizk
crs .

– Parse pk = (y, x), par = (y1, y2, g̃1, g̃2, g̃3, g̃4), c = (c1, c2, c3, c4, c5), ψ = (f1, f2, r
′, s′, t′,m′, õ1, õ

′
2,

o′3, o
′
4, π).

– Check that r′ 6= 1G̃, check c4 = ḠsRO(par , c1, c2, c3, g
c5 · c−c41 , (y1/y

c5
2 · (c2/c3))−c4), and verify π.

– Output 1 if all checks pass and 0 otherwise.

24

Theorem 14. Protocol πnizk EUC emulates FRnizk in the Fcrsgennizk
crs , ḠsRO-hybrid model under the SXDH

assumption.

Proof. Consider simulator S, that simulates Fcrsgennizk
crs by taking (tds, td t, tdm, tdo1 , tdo2 , tdo3 , tdo4 , td sim)←$ Zq

and computing (ḡs ← gtds , ḡt ← gtdt , ḡm ← gtdm , ḡo1 ← g̃tdo1 , ḡo2 ← g̃tdo2 , ḡo3 ← gtdo3 , ḡo4 ← gtdo4 ,
ḡsim ← gtdsim . It handles queries from Fnizk as follows.

• Upon receiving (prove, (pk , par , c)) from Fnizk:

– Parse pk = (y, x), par = (y1, y2, g̃1, g̃2, g̃3, g̃4), c = (c1, c2, c3, c4, c5).

– Take r′←$ G̃
∗
, (f1, s

′, t′,m′, o′3, o
′
4)←$ G6, (f2, õ1, õ2)←$ G̃

3
.

– Construct proof π using knowledge of witness td sim for the second expression of the disjunction.

– Send (done, (f1, f2, r
′, s′, t′,m′, õ′1, õ

′
2, o
′
3, o
′
4, π)) to Fnizk.

• Upon receiving (verify, (pk , par , c), (f1, f2, r
′, s′, t′,m′, õ1, õ

′
2, o
′
3, o
′
4, π)) from Fnizk:

– Let s ← s′/f tds1 , t ← t′/f tdt1 , m ← m′/f tdm1 , õ1 ← õ′1/f
tdo1
2 , õ2 ← õ′2/f

tdo2
2 , o3 ← o′3/f

tdo3
1 ,

o4 ← o′4/f
tdo4
1 .

– Send (witness, (m, (r′, s, t), (õ1, õ2, o3, o4)) to Fnizk.

To show that no environment can distinguish the real and ideal world, we must argue that proofs gen-
erated by S are indistinguishable from real proofs and that S extracts a valid witness from any valid proof.
When S creates a proof, it takes random values instead of creating valid Elgamal ciphertexts, which is in-
distinguishable under the SXDH assumption. It further constructs π using a witness satisfying the second
expression of the disjunction, but as the generalized Schnorr proof is perfectly witness indistinguishable, this
change is not noticable. When S extracts from a valid proof, by the simulation soundness of the generalized
Schnorr proof, we know that a satisfying witness for the statement exists. As the proof is a disjunction, it
may either satisfy the first or the second expression. If the witness satisfies the first expression, S decrypts
a valid signature (as guaranteed by the first two pairing equations of the proof), and a valid commitment
opening (as guaranteed by the last four pairing equations of the proof). What remains to show is that the
probability that the witness satisifies the second equation of the disjunction instead is negligible. Suppose
there exists an environment that can cause this to happen with non-negligible probability, we can solve the
DL problem in G (which is implied by SXDH). It embeds the problem instance as ḡsim and simulates π
by programming ḠsRO. Whenever S extracts values from a proof that do not form a valid signature and
opening, it extracts from the proof by rewinding, yielding the DL solution.

6 Discussion, conclusion, and open problems
Our paper presents a new methodology for proving the security of combined protocols in a modular way.
The strength of this methodology is that it applies to protocols where one scheme depends on the code of
another scheme, which often occurs in protocols that employ zero-knowledge proofs, a case that has not
been solved with modular proofs in the literature on composable security so far. We then provide efficient
instantiations for the schemes that we consider, with discrete-logarithm-based primitives.

The efficiency of our protocol is practical, while apparently not yet optimal. One reason for this is the
non-interactive commitment functionality Fncom: The version Fnic described by Camenisch et al. [CDR16]
does not in itself guarantee binding ; it guarantees that the adversary opens any commitment to only one
value, but it does not guarantee that this value is fixed at the time of commitment. Camenisch et al. prove
that all schemes πnic that realize Fnic guarantee binding in the expected, meaningful way, but this property
then remains one of πnic and not of Fnic, which is contrary to a fully modular approach in which proofs
using Fnic should not need to refer back to its realization πnic. We instead use the concept of extraction,
formalized as Fenic in [CDR16], to ensure that each commitment open only to a single value. While this

25

formalizes binding in the definition of Fncom, it has the disadvantage that must we now be actually able to
extract from the commitment, which further complicates our protocol. Finding a meaningful definition of
Fncom that formalizes binding without the necessity of extraction is an open question.

Furthermore, while we describe the proof of only a single protocol in this paper, we believe that the
methodology will be useful in many other protocols in which the code of one scheme is used in another,
whether these are based on zero-knowledge proofs, multi-party computation, verifiable computation, or
other related primitives.

References
[AGOT14] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Unified, minimal and se-

lectively randomizable structure-preserving signatures. In Yehuda Lindell, editor, Theory of
Cryptography, volume 8349 of LNCS, pages 688–712. Springer, 2014.

[BMT18] Christian Badertscher, Ueli Maurer, and Björn Tackmann. On composable security for digital
signatures. In Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryptography, volume
10769 of LNCS, pages 494–523. Springer, 2018.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition theorem for
secure reactive systems. In Moni Naor, editor, Theory of Cryptography, volume 2951 of LNCS,
pages 336–354. Springer, 2004.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13:143–202, April 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Foundations of Computer Science, 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In 17th IEEE
Computer Security Foundations Workshop, 2004.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Report 2000/067, December 2005.

[Can18] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Report 2000/067, December 2018.

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In Antoine
Joux, editor, Advances in Cryptology — EUROCRYPT, volume 5479 of LNCS, pages 351–368.
Springer, 2009.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven. The
wonderful world of global random oracles. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology — EUROCRYPT, volume 10820 of LNCS, pages 280–312. Springer,
2018.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security
with global setup. In Salil P. Vadhan, editor, Theory of Cryptography, volume 4392 of LNCS,
pages 61–85. Springer, 2007.

[CDR16] Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial. UC commitments for modular protocol
design and applications to revocation and attribute tokens. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology — CRYPTO, volume 9816 of LNCS, pages 208–239.
Springer, 2016.

26

[CEK+16] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel Rausch. Univer-
sal composition with responsive environments. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology – ASIACRYPT, volume 10032 of LNCS, pages 807–840. Springer, 2016.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
Advances in Cryptology — CRYPTO, volume 2139 of LNCS, pages 19–40. Springer, 2001.

[CKS11] Jan Camenisch, Stefan Krenn, and Victor Shoup. A framework for practical universally com-
posable zero-knowledge protocols. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT, volume 7073 of LNCS, pages 449–467. Springer, 2011.

[CKY09] Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the portability of generalized schnorr
proofs. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science,
pages 425–442. Springer, 2009.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In Symposium on the Theory of Computer Science,
2002.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor,
Advances in Cryptology — CRYPTO, volume 2729 of LNCS, pages 265–281. Springer, 2003.

[DM00] Yevgeniy Dodis and Silvio Micali. Parallel reducibility for information-theoretically secure com-
putation. In Mihir Bellare, editor, Advances in Cryptology — CRYPTO, volume 1880 of LNCS,
pages 74–92. Springer, 2000.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ron Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. Siam Journal of Computing, 17(2):281–308, April 1988.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-
knowledge. Journal of the ACM, 59(3), June 2012.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel
Smart, editor, Advances in Cryptology — EUROCRYPT, volume 4965 of LNCS, pages 415–432.
Springer, 2008.

[HS15] Dennis Hofheinz and Victor Shoup. GNUC: a new universal composability framework. Journal
of Cryptology, 28(3):423–508, July 2015.

[KT13] Ralf Küsters and Max Tuengerthal. Joint state composition theorems for public-key encryption
and digital signature functionalities with local computation. Cryptology ePrint Report 2008/006,
August 2013.

[KTR18] Ralf Küsters, Max Tuengerthal, and Daniel Rausch. The IITM model: a simple and expressive
model for universal composability. Cryptology ePrint Report 2013/025, December 2018.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In Innovations in Computer Science,
2011.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 427–437. ACM, 1990.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In IEEE Symposium on Security and Privacy, pages
184–200, 2001.

27

A Recursive composition for UC and GUC
We state here recursive composition theorems for UC. We remark that the composition theorem using the
composition operation uc(·, ·, ·) as specified in [Can18] only applies to protocols ρ which call its sub-protocol
φ that is to be instantiated by π only from the main parties of ρ, but not from any of its subsidiaries.
Consider the following example: Let ρ be a protocol that uses φ as a subroutine, and that also has another
subroutine ψ using the same instance of φ as a subroutine. (This is a priori allowed in UC, since such a
protocol φ can still be subroutine respecting and ρ can still be compliant.) Now applying the composition
operation uc(ρ, φ, π) replaces the calls to φ in ρ by calls to π. It does, however, not apply to ψ. As a result,
protocol ρφ→π uses subroutine π, whereas its subroutine ψ invokes its subroutine φ with the same identity
that π uses! This will obviously fail.

We therefore state the following version of the UC composition theorem with recursive composition, which
applies to all protocols ρ that are compliant in the sense of [Can18], even if they share the same instances of
subroutines with code φ with any other of their subroutines.

Theorem 15. Let ρ, π, φ be PPT protocols such that π UC-emulates φ and both φ and π are subroutine
respecting, and ρ is compliant. Then protocol ρφ�π UC-emulates protocol ρ.

There is actually no need to modify the proof of the composition theorem in [Can18], with the recursive
type of composition, the proof also applies to general protocols (still due to the restrictions stated in that
paper). We initially planned to also provide such a theorem for the GUC framework in [CDPW07], however,
as the model definition is ambiguous and the formal notion of GUC-realization is uninstantiable for non-
trivial protocols, we refrained from making a formal statement. We conjecture that for a formally consistent
version of the GUC framework, recursive composition would also apply.

28

	Introduction
	Motivation
	Towards modular proofs
	Our proof methodology
	Related work
	Our contributions

	Preliminaries
	UC framework basics
	Strict global random oracle
	Non-interactive zero-knowledge functionality
	Signature scheme and functionality
	Non-interactive commitment scheme and functionality

	Multi-protocol UC
	Recursive universal composition
	The multi-protocol UC experiment and composition theorem

	Modular proof of a protocol
	Writing the NIZK functionality with internal protocols
	Writing the NIZK functionality with external protocols
	Realizing the functionalities [sig]and [ncom]
	Using MUC composition to combine the results

	Concrete Protocols
	Signatures
	Generic realization of [sig](kgen,sign,ver) from EUF-CMA
	AGOT structure-preserving signature

	Commitments
	Zero-knowledge proofs

	Discussion, conclusion, and open problems
	Recursive composition for UC and GUC

