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Abstract. In this article we discuss the modular pentavariate and hex-
avariate linear equations and its usefulness for asymmetric cryptography.
Construction of our key encapsulation mechanism dwells on such mod-
ular linear equations whose unknown roots can be interpreted as long
vectors within a lattice which surpasses the Gaussian heuristic; hence
unable to be identified by the LLL lattice reduction algorithm. By uti-
lizing our specially constructed public key when computing the modular
hexavariate linear ciphertext equation, the decapsulation mechanism can
correctly output the shared secret parameter. The scheme has short key
length, no decapsulation failure issues, plaintext-to-ciphertext expansion
of one-to-one as well as uses “simple” mathematics in order to achieve
maximum simplicity in design, such that even practitioners with limited
mathematical background will be able to understand the arithmetic. Due
to inexistence of efficient algorithms running upon a quantum computer
to obtain the roots of our modular pentavariate and hexavariate linear
equation and also to retrieve the private key from the public key, our
key encapsulation mechanism can be a probable candidate for seamless
post quantum drop-in replacement for current traditional asymmetric
schemes.

Keywords: Post quantum cryptosystem, LLL algorithm, modular pentavariate
linear equation root problem, modular hexavariate linear equation root problem

1 Introduction

Upon the discovery of Shor’s algorithm in 1994 ([16]) which could solve the in-
teger factorization problem as well as discrete logarithm based problems upon
a quantum computer in polynomial time, cryptographers scrambled to find new



hard mathematical problems which could resist Shor’s algorithm and at the
same time is able to provide asymmetric security (i.e. to be able to be used to
design asymmetric cryptosystems that are quantum resistant). A compendium
of potential hard problems was developed. Pioneering work can be traced to
the code based cryptosystem by McEliece in 1978 ([13]). Lattice based cryp-
tosystems which employs either the short vector problem or the closest vector
problem were also popular to be utilized. Among them the NTRU cryptosys-
tem in 1995 ([9]) and LWE cryptosystem in 2005 ([15]). Since then we have
had (not limited to) schemes based on multivariate quadratic equations such as
the Rainbow cryptosystem in 2005 ([5]) and the UOV cryptosystem in 2010 ([4]).

The ciphertext equation in this work which is based on the modular hexavariate
linear equation, is motivated by Herrmann and May’s results in 2008 ([8]) on
the modular multivariate linear equation that states when the product of the
upper bounds of the unknown roots of the equation is approximately equivalent
(in bit size) or larger than the modulus, one cannot reduce the exponential time
strategy to obtain the unknown roots. That is, under this scenario, to obtain
the unknown roots one is only left with exponential running time strategies.
The design of the ciphertext equation was also motivated by the fact that the
LLL algorithm is unable to retrieve the vector V0 within a lattice when ||V0|| is
much larger than the Gaussian heuristic and the upper bound of vectors able to
be output by the LLL algorithm. As for the key equation, we are motivated by
two strategies. Firstly, we are motivated by brute force complexity to derive the
private key from the public key by way of ensuring the root of our univariate,
monic polynomial of degree 1 is larger than the required bound for Coppersmith’s
method to obtain it. Secondly, we are motivated by the modular pentavariate
linear equation when constructing the set of five public key parameters needed
for the scheme. The modular pentavariate linear equation that we utilize also
has the same characteristics as described above for the hexavariate case.

1.1 Organisation of the Paper

The remainder of this paper is organized as follows. In Section 2, we discuss
preliminary content surrounding the Minkowski theorem. In Section 3, we dis-
cuss the modular pentavariate linear equation root problem (MPLERP) and the
modular hexavariate linear equation root problem (MHLERP). Then in Sec-
tion 4, we put forward the KAZ key encapsulation mechanism. In Section 5,
we observe the KAZ key problem through Coppersmith, Blackburn and lattice
methodologies. One-wayness of KAZ (i.e. KAZ problem) is presented in Section
6. We conclude in Section 7.

2 Preliminary

Throughout this article, an n-bit integer a will be denoted as a ≈ 2n unless
mentioned otherwise. We also denote when two integers a and b are of the same
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bit length as a ≈ b unless mentioned otherwise. We also utilize the notation [x]
for x ∈ R as the nearest integer to x.

2.1 Minkowski’s Theorem

The Minkowski Theorem which relates the length of the shortest vector in a
lattice to the determinant (see [10]) provides initial information to formulate
our scheme. It is as follows.

Theorem 1. In an ω-dimensional lattice L, there exists a non-zero vector V
with

‖ V ‖≤
√
ω det(L)

1
ω .

We note here that in lattices with fixed small dimension we can efficiently find
the shortest vector, but for arbitrary dimensions, the problem of computing the
shortest vector is known to be NP-hard under randomized reductions (see [1]).
In order to find an approximation of the shortest vector, the LLL algorithm is
able to compute in polynomial time such approximations up to a multiplicative
factor of 2ω, and this is sufficient for many applications. We use information from
Theorem 1, to ensure that our vector V cannot be found by the LLL algorithm.

We will now observe the following remark.

Remark 1. The Gaussian heuristic says that a non-zero vector Vshort will satisfy
||Vshort|| ≈ σ(L) where σ(L) =

√
ω

2πedet(ML)
1
ω and ML is the corresponding

matrix of the lattice L. This is preeminently if ||Vshort|| < σ(L) of a particular
lattice L, then the lattice reduction algorithm LLL is likely easy to find the
shortest vector when the dimension of the lattice is small.

3 Multivariate Linear Equation Root Problems

3.1 Uniqueness of Modular Multivariate Linear Equation Solutions

The following two remarks are related to the work of Herrmann and May on the
modular linear equation f(x1, x2, ..., xk) =

∑k
i=1 aixi ≡ 0 (mod N) (see [8]).

Remark 2. Let f(x1, x2, ..., xk) = a1x1+a2x2+...+akxk be a multivariate linear
polynomial. One can hope to solve the modular linear equation f(x1, x2, ..., xk) ≡
0 (mod N), that is to be able to find the set of solutions (y1, y2, ..., yk) ∈ ZkN ,
when the product of the unknowns are smaller than the modulus. More precisely,
let Xi be upper bounds such that |yi| ≤ Xi for i = 1, ..., k. Then one can roughly
expect a unique solution whenever the condition

∏
iXi ≤ N holds (see [8]). It

is common knowledge that under the same condition
∏
iXi ≤ N the unique

solution (y1, y2, ..., yk) can heuristically be recovered by computing the shortest
vector in an k-dimensional lattice by the LLL algorithm. In fact, this approach
lies at the heart of many cryptanalytic results (see [3],[6] and [14]).
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Remark 3. If in turn we have
∏
iXi ≥ N1+ε then the modular linear equation

given by f(x1, x2, ..., xk) =
∑k
i=1 aixi ≡ 0 (mod N) usually has N ε many solu-

tions, which is exponential in the bit-size of N . As a result, there is no hope to
find efficient algorithms that in general improve on this bound, since one is not
able to output all roots in polynomial time.

3.2 Modular Pentavariate Linear Equation Root Problem

We now proceed to define the modular pentavariate linear equation root problem
(MPLERP). Let n be an integer where we agree that 2n is exponentially large.
Let a1, a2, a3, a4 and a5 be integers of n bit-size. Let c be an integer. Suppose we
have the equation c = a1v+a2w+a3x+a4y+a5z. The MPLERP is when given
c′ = a1v0 + a2w0 + a3x0 + a4y0 + a5z0 where v0, w0, x0, y0 and z0 ≈ 2n, one has
to identify the private parameters (v0, w0, x0, y0, z0) when (a1, a2, a3, a4, a5, c

′) is
given. We note that, the equation can be viewed as a1v0 + a2w0 + a3x0 + a4y0 +
a5z0 ≡ 0 (mod c′). Since c ≈ 22n, we have v0, w0, x0, y0, z0 ≈ c0.5.

The MPLERP Assumption The advantage of any probabilistic polynomial
time adversary running in time poly(n) in attempting to solve MPLERP is as
stated in Remark 3.

This MPLERP Assumption is a direct inference from Remark 3, since v0w0x0y0z0 ≈
25n > c′ ≈ 22n.

3.3 Herrmann and May Remarks and MPLERP

Let the bounds be v0 < V ≈ 2n, w0 < W ≈ 2n, x0 < X ≈ 2n, y0 < Y ≈
2n and z0 < Z ≈ 2n. For the MPLERP, we can see that VWXY Z ≈ 25n.
Since c′ ≈ 22n, Remark 3 can be observed within MPLERP via the equation
a1v0 + a2w0 + a3x0 + a4y0 + a5z0 ≡ 0 (mod c′).

3.4 Lattice based analysis upon MPLERP

To further analyse the intractability of MPLERP, the conventional way to solve
multivariate equations is to employ lattices as well as the LLL algorithm. We
will focus on the equation

a1v + a2w + a3x+ a4y + a5z ≡ 0 (mod c) (1)

Consider the lattice L1K with the matrix

ML1K =


1 0 0 0 0 a1K
0 1 0 0 0 a2K
0 0 1 0 0 a3K
0 0 0 1 0 a4K
0 0 0 0 1 a5K
0 0 0 0 0 −cK


4



Case 1 (K = 1) Let V0 be a vector of L11. Then there exists the 6-tuple
(u1, u2, u3, u4, u5, u6) ∈ Z6 such that

V0 = (u1, u2, u3, u4, u5, u6)ML11

= (u1, u2, u3, u4, u5, a1u1 + a2u2 + a3u3 + a4u4 + a5u5 − cu6)

is on the lattice L11. More precisely the lattice contains the vector solution
V0 = (v0, w0, x0, y0, z0, 0).

Observe

||V0|| =
√

(v0)2 + (w0)2 + (x0)2 + (y0)2 + (z0)2

≈ 2n

We know that the LLL algorithm outputs a reduced basis where the norm of the
shortest vector is less than

2
ω−1

4 det(L11)
1
ω = 2

5
4 det(L11)

1
6 = 2

5
4 (c)

1
6 ≈ 20.3n

where ω = dim(L11) = 6 (see [10]). Obviously 2n > 20.3n. Then referring to
Remark 1, the use of the LLL algorithm is insignificant. LLL experiments on
corresponding lattice of equation (2) outputs vectors V where ||V|| � ||V0||.

Case 2 (K > 1) Let K > 1 be an integer to be determined later. We have

2
5
4 det(L1K)

1
6 = 2

5
4 (cK)

1
6 . We set ||V0|| < 2

5
4 (cK)

1
6 and hope that LLL will

output V0 as the shortest vector. This will give us K ≥ 24n

27.5 . LLL experiments
on corresponding lattice of equation (2) with such values of K outputs vectors
V where ||V|| � ||V0||.

3.5 Modular Hexavariate Linear Equation Root Problem

We now proceed to define the Modular Hexavariate Linear Equation Root Prob-
lem (MHLERP). Let n be an integer where we agree that 2[

3n
20 ] is exponentially

large. Let p, a1, a2, a3, a4 and a5 be integers of n bit-size. Let c be an integer.
Suppose we have the equation c ≡ u+a1v+a2w+a3x+a4y+a5z (mod p). The
MHLERP is when given c′ ≡ u0+a1v0+a2w0+a3x0+a4y0+a5z0 (mod p) where

u0 ≈ p
3
20 and v0, w0, x0, y0, z0 ≈ p

1
5 , one has to identify the private parameters

(u0, v0, w0, x0, y0, z0) when (a1, a2, a3, a4, a5, p, c
′) is given.

The MHLERP Assumption The advantage of any probabilistic polynomial
time adversary running in time poly(n) in attempting to solve MHLERP is at

least O(p−
3
20 ) = O(2−

3n
20 ).

This is the complexity to obtain u0. From c′ − u0 ≡ a1v0 + a2w0 + a3x0 +
a4y0+a5z0 (mod p) and since v0w0x0y0z0 < p, the LLL algorithm might output
(v0, w0, x0, y0, z0) in polynomial time [11]. See Remark 2 and Section 3.6 for
discussions.
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3.6 Herrmann and May Remarks and MHLERP

Let the bounds be u0 < U ≈ p
3
20 , v0 < V ≈ p

1
5 , w0 < W ≈ p

1
5 , x0 < X ≈

p
1
5 , y0 < Y ≈ p

1
5 and z0 < Z ≈ p

1
5 . For the MHLERP, we can see that

UVWXY Z ≈ p1.15. Hence, Remark 3 can be observed within MHLERP. From
the defined MHLERP assumption, upon obtaining u0, finding small roots via
LLL from c′ − u0 ≡ a1v0 + a2w0 + a3x0 + a4y0 + a5z0 (mod p) is feasible since
VWXY Z < p.

3.7 Lattice based analysis upon MHLERP

To further analyse the intractability of MHLERP, the conventional way to solve
multivariate equations is to employ lattices as well as the LLL algorithm. We
will focus on the equation

c− u− a1v − a2w − a3x− a4y − a5z ≡ 0 (mod p) (2)

Analysis - 1 Consider the lattice L1K with the matrix

ML1K =



[20.05n] 0 0 0 0 0 0 −K
0 1 0 0 0 0 0 −a1K
0 0 1 0 0 0 0 −a2K
0 0 0 1 0 0 0 −a3K
0 0 0 0 1 0 0 −a4K
0 0 0 0 0 1 0 −a5K
0 0 0 0 0 0 [20.2n] cK
0 0 0 0 0 0 0 pK



Case 1 (K = 1) Let V0 be a vector of L11. Then there exists the 8-tuple
(u1, u2, u3, u4, u5, u6, u7, u8) ∈ Z8 such that

V0 = (u1, u2, u3, u4, u5, u6, u7, u8)ML11

= ([20.05n]u1, u2, u3, u4, u5, u6, [2
0.2n]u7, U

∗)

where U∗ = −u1−a1u2−a2u3−a3u4−a4u5−a5u6+cu7+pu8 is on the lattice L11.
More precisely the lattice contains the vector solution V0 = ([20.05n]u0, v0, w0, x0,
y0, z0, [2

0.2n], 0). Observe

||V0|| =
√

(20.05nu0)2 + (v0)2 + (w0)2 + (x0)2 + (y0)2 + (z0)2 + (20.2n)2

≈ p 1
5

We know that the LLL algorithm outputs a reduced basis where the norm of the
shortest vector is less than

2
ω−1

4 det(L11)
1
ω = 2

7
4 det(L11)

1
8 = 2

7
4 (20.25np)

1
8 ≈ p0.125
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where ω = dim(L11) = 8 (see [10]). Obviously p0.2 > p0.125. Then referring to
Remark 1, the use of the LLL algorithm is insignificant. The LLL algorithm
experiments on corresponding lattice of equation (2) outputs vectors V where
||V|| � ||V0||.

Case 2 (K > 1) Let K > 1 be an integer to be determined later. We have

2
7
4 det(L1K)

1
8 = 2

7
4 (20.25npK)

1
8 . We set ||V0|| < 2

7
4 (20.25npK)

1
8 and hope that

the LLL algorithm will output V0 as the shortest vector. This will give us K ≥
p0.62−0.25n

214 . The LLL algorithm experiments on corresponding lattice of equation
(2) with such values of K outputs vectors V where ||V|| � ||V0||. The following
is an example.

Example for 3.7 : Analysis - 1 This is an illustration of executing the LLL
algorithm upon MHLERP for the case of Analysis-1 where K > 1. Let n = 32.
We will use the parameters:

1. u0 = 21
2. v0 = 95
3. w0 = 103
4. x0 = 87
5. y0 = 74
6. z0 = 86
7. a1 = 3193415427
8. a2 = 2205633754
9. a3 = 3080513063

10. a4 = 2991853793
11. a5 = 3225880586
12. p = 3239617301
13. c = 1535369407
14. K = p10

Consider the lattice L1K with the matrix ML1K as discussed in Analysis-1 with
the above parameters. Executing the LLL algorithm upon ML1K produces:

ML1K,2 =



24 −6 10 −3 −26 7 0 0
12 17 12 −33 8 −15 0 0
18 −7 −28 1 1 −21 0 0
−33 0 0 13 −34 −9 0 0

6 32 −7 34 −10 −30 0 0
21 56 −36 −16 −8 21 0 0
3 4 −2 −21 15 −2 84 0
3 0 0 0 0 0 0 −ρ



where ρ = 127331863864861663664206078030934820791581314721177559249722
998678759388452427633569090104223001. We have
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ML1K,2(j,1)
[20.05n] +a1ML1K,2(j, 2)+a2ML1K,2(j, 3)+a3ML1K,2(j, 4)+a4ML1K,2(j, 5)+

a5ML1K,2(j, 6)− cML1K,2(j,7)[20.2n] ≡ 0 (mod p)

for j = 1, 2, 3, 4, 5, 6, 7. Let

1. V0 = (u0.v0, w0, x0, y0, z0, 0)

2. Vj = (
ML1K,2(j,1)

[20.05n] ,ML1K,2(j, 2),ML1K,2(j, 3),ML1K,2(j, 4),ML1K,2(j, 5),

ML1K,2(j, 6),
ML1K,2(j,7)

[20.2n] ) for j = 1, 2, 3, 4, 5, 6, 7.

We can see that ||V0|| ≈ 201, ||V1|| ≈ 31, ||V2|| ≈ 43, ||V3|| ≈ 36,||V4|| ≈
39,||V5|| ≈ 57,||V6|| ≈ 72 and ||V6|| ≈ 26. That is, the LLL algorithm produces
much shorter vectors than V0. Our experiments produce such observation.

Analysis - 2

We will interpret equation (2) as c = u+ a1v + a2w + a3x+ a4y + a5z + pt for
some t ∈ Z, which implies as u+ a1v+ a2w+ a3x+ a4y+ a5z+ pt ≡ 0 (mod c).

Then we can have the relations u = cu1−a1u2−a2u3−a3u4−a4u5−a5u6+pu8 for
some integers (u1, u2, u3, u4, u5, u6, u8) and u+a1v+a2w+a3x+a4y+a5z−cu1 ≡
0 (mod p). Continuing, we have cu1− a1u2− a2u3− a3u4− a4u5− a5u6 + pu8 +
a1v + a2w + a3x + a4y + a5z − cu1 ≡ 0 (mod p). That is, a1(v − u2) + a2(w −
u3)+a3(x−u4)+a4(y−u5)+a5(z−u6) ≡ 0 (mod p). If gcd(a1, p) = 1, we have
the equation v = u2 − η1(w − u3)− η2(x− u4)− η3(y − u5)− η4(z − u6) + pu7
for some integer u7 and η1 = a2a

−1
1 (mod p), η2 = a3a

−1
1 (mod p), η3 = a4a

−1
1

(mod p) and η4 = a5a
−1
1 (mod p). Now consider the lattice L2 with the matrix

ML2 given by:

ML2 =



0 c p
1 −a1 0
−η1 a2 0
−η2 a3 0
−η3 a4 0
−η4 a5 0
p 0 0
0 p 0


Observe

(u1, u2, w−u3, x−u4, y−u5, z−u6, u7, u8)ML2 = (v, u+a2w+a3x+a4y+a5z, pu1).

We need u1 = 1 in order to get the relation u+a1v+a2w+a3x+a4y+a5z+pt = c.
The dimension of ML2 is 8 and rank is 3. Its determinant is given by the relation
det(L2) =

√
det(M t

L2 ·ML2). Specifically,
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det(L2) =

(
det

 1 + η21 + η22 + η23 + η24 + p2 −a1 − η1a2 − η2a3 − η3a4 − η4a5 0
−a1 − η1a2 − η2a3 − η3a4 − η4a5 a21 + a22 + a23 + a24 + a25 + p2 + c2 pc

0 pc p2

) 1
2

Let A= det(L2). We know that the LLL algorithm outputs a reduced basis where

the norm of the shortest vector is less than 2
ω−1

4 det(L2)
1
ω = 2

7
4 det(L2)

1
8 =

2
7
4A

1
8 where ω = dim(L2) = 8. Let V0 = (v0, u0 +a2w0 +a3x0 +a4y0 +a5z0, p).

We now analyse whether ||V0|| < 2
7
4A

1
8 . Observe 2

7
4A

1
8 ≈ 2

7
4 (p6)

1
8 = 2

7
4 p

3
4

because a1, a2, a3, a4, a5, η1, η2, η3, η4 ≈ p. We also have the approximation as
follows:

||V0|| =
√
v20 + (u0 + a2w0 + a3x0 + a4y0 + a5z0)2 + p2 ≈ p 6

5 .

Obviously p
6
5 > p

3
4 . As a result V0 will not be among the short vectors output by

the LLL algorithm. The LLL algorithm outputs vectors V where ||V|| � ||V0||.
Our experiments confirm this observation. The following is an example.

Example for 3.7 : Analysis - 2 This is an illustration of executing the LLL
algorithm upon MHLERP for the case of Analysis-2. Let n = 32. We will use
the parameters:

1. u0 = 21

2. v0 = 95

3. w0 = 103

4. x0 = 87

5. y0 = 74

6. z0 = 86

7. a1 = 3193415427

8. a2 = 2205633754

9. a3 = 3080513063

10. a4 = 2991853793

11. a5 = 3225880586

12. p = 3239617301

13. c = 1535369407

14. η1 = 1716845720

15. η2 = 2660591034

16. η3 = 1267372013

17. η4 = 447448661

Consider the lattice L2 with the matrix ML2 as discussed in Analysis-2 with the
above parameters. Executing the LLL upon ML2 produces:
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ML2 =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

11219 56246 0
−60232 −13209 0
−4030 3344 3239617301



We have c−ML2(8, 2)− a1ML2(8, 1) ≡ 0 (mod p).

Let V0 = (v0, u0+a2w0+a3x0+a4y0+a5z0, p) and V1 = (ML2(7, 1),ML2(7, 2), p).
We can see that ||V0|| ≈ 994013103422 while ||V1|| ≈ 3239617301. That is, LLL
produces a much shorter vector than V0. Our experiments produce such obser-
vation.

4 The KAZ Key Encapsulation Mechanism (KAZ KEM)

We now put forward our scheme, the KAZ Cryptosystem (KAZ). KAZ is a novel
design where its ciphertext is a direct implementation of MHLERP, while the
underlying difficulty of the KAZ key equation will be discussed in Sections 5.1,
5.2 and 5.4. Let `(·) be a function that outputs length of binary string of input.
From the given security parameter, κ determine k (see Section 5.2 and table 1).

Next generate a list of k primes, P = {pi}ki=1. Then compute N1 =
∏k
i=1 pi and

n1 =
⌊
`(N1)

2

⌋
. The KAZ system parameters are (P, N1, n1, k).

4.1 The KAZ Key Generation Algorithm

The following describes the key generation procedure for KAZ.
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Algorithm 1 : KAZ.Key Gen algorithm

Input: System parameters, (P, N1, k) .
Output: Public keys (e1, e2, e3, e4, e5), private keys (p,N2) and public parameter n2.
1: Generate integer N2 =

∏k
i=1 p

ai
i where ai is chosen randomly from {0, 1}. Ensure

β ∈ (0.505, 0.51) where N2 ≈ Nβ
1 . Else, repeat this step.

2: Compute n2 = `(N2).
3: Generate a random prime p ≈ 20.3n2 .
4: Generate random primes q, r, s, t, u ≈ 20.3n2−2.
5: Generate random integers t1, t2, t3, t4, t5 ≈ 22n1 .
6: Calculate e1 = pq +N2t1 (mod N1).
7: Calculate e2 = pr +N2t2 (mod N1).
8: Calculate e3 = ps+N2t3 (mod N1).
9: Calculate e4 = pt+N2t4 (mod N1).

10: Calculate e5 = pu+N2t5 (mod N1).
11: Output public keys (e1, e2, e3, e4, e5), private keys (p,N2) and public parameter n2.

4.2 KAZ Encapsulation and Decapsulation Algorithms

The following algorithm encapsulates the secret parameter given by the relation
sk = x30(e1x1 + e2x2 + e3x3 + e4x4 + e5x5) (mod N1).

Algorithm 2 : KAZ.Encaps algorithm

Input: System parameters N1, public keys (e1, e2, e3, e4, e5).
Output: The ciphertext, c.
1: Generate a random x0 ≈ 20.3n2−2.
2: Generate a random x1 ≈ 20.4n2−3.
3: Generate a random x2 ≈ 20.4n2−3.
4: Generate a random x3 ≈ 20.4n2−3.
5: Generate a random x4 ≈ 20.4n2−3.
6: Generate a random x5 ≈ 20.4n2−3.
7: Compute ciphertext c ≡ x0 + e1x1 + e2x2 + e3x3 + e4x4 + e5x5 (mod N1).
8: Output ciphertext c.

The following algorithm decapsulates from the ciphertext c the secret parameter
sk ≡ x30(e1x1 + e2x2 + e3x3 + e4x4 + e5x5) (mod N1) .

Algorithm 3 : KAZ.Decaps algorithm

Input: Ciphertext c, private keys (p,N2).
Output: sk ≡ x30(e1x1 + e2x2 + e3x3 + e4x4 + e5x5) (mod N1).
1: Compute Y0 ≡ c (mod N2). Note here that Y0 ≡ x0 + x1pq+ x2pr+ x3ps+ x4pt+
x5pu ∈ Z.

2: Compute Y1 ≡ Y0 (mod p). Note here that Y1 = x0 ∈ Z.
3: Compute Y2 ≡ x30(c− Y1) (mod N1).
4: Output sk = Y2.

11



Proposition 1. KAZ.Decaps decapsulates correctly and without failure.

Proof. From parameter selection we have Y0 = x0 +x1pq+x2pr+x3ps+x4pt+
x5pu ≈ 2n2−5. Hence, Y0 < N2 ≈ 2n2 . Since x0 < p we can compute Y1 = x0 ∈ Z
without modular reduction. Finally, we obtain sk ≡ Y 3

1 (c − Y1) ≡ x30(e1x1 +
e2x2 + e3x3 + e4x4 + e5x5) (mod N1) without failure.

5 KAZ Key Problem

This section discusses total break attempts upon the KAZ key equation as pro-
vided in Algorithm 1. That is, one has to identify the secret parameters, namely
the pair (p,N2) or any other candidate (p′, N ′2) that decapsulates correctly.

5.1 Coppersmith methodology and the KAZ Key Problem

We will observe the following theorem from May [12].

Theorem 2. Let N be an integer of unknown factorization, which has a divisor
b ≥ Nβ. Let fb(x) be an univariate, monic polynomial of degree δ. Furthermore,
let cN be a function that is upper-bounded by a polynomial in logN . Then, we

can find all solutions x0 for the equation fb(x) = 0 (mod b) with |x0| ≤ cNN
β2

δ

in time polynomial in (logN, δ).

We note that we have the integer N1 which has an unknown factor N2 ≈ N0.5
1 .

The univariate, monic polynomial to be solved is fN2(x) = ei−xi = 0 (mod N2)
where i = 1, 2, 3, 4, 5. Thus, we have β = 0.5 and δ = 1. We now have the
following fact, N0.25

1 ≈ N0.5
2 . Since for each i we have the roots x0,i ≈ N0.6

2 , it is
clear that x0,i > N0.25

1 . This renders Coppersmith’s method to obtain the roots
from KAZ key equations impractical.

5.2 Blackburn’s Combinatorial Approach Solving the KAZ Key
Problem

The following methodology is due to a strategy proposed by Blackburn [2]. The
strategy focuses on reducing the complexity of finding N2. It is currently the
best strategy available to solve the KAZ key problem.

We begin with the observation of N2 =
∏k
i=1 p

ai
i where ai ∈ {0, 1} is randomly

chosen. We mention here again that the distinct prime factors of r with exponent
value 0 (θ1 elements) is 50% of the primes in the list P and the distinct prime
factors of N2 with exponent value 1 (θ2 elements) is also 50%. The process is
executed upon a pair of keys, such as upon e1 and e2. The process is as follows:

Step 1: We choose I ⊆ {1, 2, ..., k} so that NI =
∏
i∈I pi is a number at least

0.6n2 + 1 bits and hope that NI divides N2.

12



Step 2: Compute e1 ≡ (pq)′ (mod NI). Check if (pq)′ ≈ 20.6n2 . Otherwise
return to Step 1.

Step 3: Define I ′ ⊆ {1, 2, ..., k} by i ∈ I ′ if and only if e − (pq)′ ≡ 0 (mod pi)
Note that I ′ ⊆ I.

Step 4: Return any n2 bit integer M =
∏
i∈I′ pi if M is big enough to have NI

as a divisor. Otherwise return to Step 1.

Step 5: Compute gcd ((pq)′, e2 (mod M)) = p′, since e2 ≡ (pr)′ (mod M).
Check if p′ ≈ 20.3n2 . Otherwise return to Step 1.

Proof of Correctness

To see why this approach works, first note that our condition for membership
of I ′ implies that e1 ≡ (pq)′ (mod M) and e2 ≡ (pr)′ (mod M) where (pq)′ and
(pr)′ is within the prescribed interval as mentioned in Algorithm 1. So if the
algorithm returns a value, it is a solution to the KAZ key problem. �

Complexity

Let µ be the average length of primes in the list P. We know that from the size
of N1, we have the approximation 2n1 ≈ kµ. The number of distinct primes that

construct N2 is given by θ2 ≈
[
n2

µ

]
=
[
kn2

2n1

]
. Since n1 ≈ n2, we have θ2 ≈

[
k
2

]
.

The number of distinct primes that construct NI is given by θI ≈
[
0.6n1

µ

]
. This

in turn means θI ≈
[
0.6k
2

]
. The combination probability problem statement now

would be: Given a set P that contains θ2 elements that constructs N2 and k−θ2
elements that does not construct N2, what is the probability of selecting

[
0.6k
2

]
elements that constructs NI? Let C1 =

( θ2
[ 0.6k

2 ]

)
and C2 =

(
k

[ 0.6k
2 ]
)
. The final

complexity is O
(
C1

C2

)
. So our guess for I will be correct with probability ap-

proximately C1

C2
. Thus this approach will take about O

(
C2

C1

)
guesses to respond

correctly to the problem. Since each guess requires about k arithmetical opera-

tions, the expected complexity of the algorithm is about kO
(
C2

C1

)
.�

We now can have an entropy table as below, where κ =
[
log2

C1

C2

]
.

k κ

128 50
256 100
325 128
650 256

Table 1. KAZ.Key Gen κ-bit entropy (i.e. 2κ)
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From Table 1, one can deduce that, we need to utilize 325 primes within the list
P to obtain 128-bits security. If the first 325 primes greater than 2 are used, the
public key N1 will be of length 3052 bits and the private key N2 length would be
approximately 1500 bits. The following an example of Blackburn’s methodology.

5.3 Example for Blackburn’s Methodology

This is an example of Blackburn’s combinatorial approach to solve the KAZ Key
Problem.

We will use the first k = 48 primes larger than 2 which provides the following
parameters:

1. N1 = 416556045624021725187814231899405191205673355204301573273089
88874038646320816395228667555

2. N2 = 1004040945641498462345649482330325172068931013
3. p = 28840769840864645629039
4. q = 6823
5. PQ = pq = 196780572624219477126933097
6. t1 = 2984177312257233569040117088874821045126211759388109600358106

1012151933308821257042528648
7. e1 = 7756820039196894655688659264674513029706188973996532464229591

064252233090652727654347351

Assume we are able to obtain NI =(7)(13)(17)(19)(31)(47)(61)(67)(71)(83)(97)(
101)(103)(109)(113)(131) where NI |N2. We have e1 ≡ (PQ)′ = 19678057262421
9477126933097 (mod NI). Since (PQ)′ is in the prescribed interval, we proceed
to identify the other primes, as illustrated in the table below.

Primes, {pi} e− (PQ)′ ≡ 0 (mod pi)

137,149,151,157,163,173,193,227 YES

3,5,11,23,29,37,41,43,53,59,73,79,89,107, NO
127,149,167,179,181,191,197,199,211,223

The process is then continued by computing gcd((PQ)′, e2 (mod N2)) = p, since
e2 ≡ pr (mod N2).

5.4 Lattice Analysis on KAZ Keys {ei}5
i=1

Consider the lattice L = {x ∈ Z5|e1x1+e2x2+e3x3+e4x4+e5x5 = 0 (mod N1)}.
We have the Gaussian heuristic σ(L) ≈ N

1
6
1 ≈ 20.3n2 . Executing the LLL algo-

rithm on L will produce 3 basis, where the norm is less than 20.3n2 . Next, we
can observe the following:

x1pq + x2pr + x3ps+ x4pt+ x5pu = 0
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which can be interpreted as

x1q + x2r + x3s+ x4t+ x5u = 0 (3)

We can also observe the following:

x1N2t1 + x2N2t2 + x3N2t3 + x4N2t4 + x5N2t5 ≡ 0 (mod N1)

which can be interpreted as

x1t1 + x2t2 + x3t3 + x4t4 + x5t5 ≡ 0 (mod
N1

N2
) (4)

Equation 3 will refer to the lattice L1, while equation 4 witll refer to the lattice
L2. From L1 we have the Gaussian heuristic σ(L1) ≈ u

1
5 ≈ 20.06n2 . While from

L2 we have the Gaussian heuristic σ(L2) ≈ (N1

N2
)

1
6 ≈ 20.16n2 .

Observe that the desirable vector from L2 - VL2
, has its norm ||VL2

|| = (t1, t2, t3, t4, t5) ≈
22n2 . This is much larger than σ(L2) ≈ 20.16n2 . Hence, referring to Remark 1,
the use of the LLL algorithm is insignificant.

As such, we will analyse L1. Furthermore, upon identifying (q, r, s, t, u), one can
proceed to identify N2 with ease.

Now consider the lattice L12 with the matrix ML12
given by:

ML12 =


1 0 0 0 x1
0 1 0 0 x2
0 0 1 0 x3
0 0 0 1 x4
0 0 0 0 x5


The Gaussian heuristic is σ(L12) ≈ x

1
5
5 ≈ 20.06n2 . That is we take the largest

possible interpretation for x5 since x5 is derived via the LLL algorithm over
the lattice L, and the Gaussian heuristic is σ(L) ≈ 20.3n2 . Let V0 be a vec-
tor of L12. Then there exists the 5-tuple (y1, y2, y3, y4, y5) ∈ Z5 such that
V0 = (y1, y2, y3, y4, y5)ML12

= (y1, y2, y3, y4, x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
is on the lattice L12. More precisely the lattice contains the vector solution
V0 = (q, r, s, t, 0).

Observe from KAZ Cryptosystem parameter selection we have

||V0|| =
√
q2 + r2 + s2 + t2

≈ 20.3n2

Obviously 20.3n2 > 20.06n2 . Then referring to Remark 1, the use of the LLL algo-
rithm is insignificant. On the other hand, if one chooses (q, r, s, t, u) ≈ 2εn2 where
ε < 0.06 (or maybe ε ≈ 0.06), the LLL algorithm will output the values (q, r, s, t)
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and continuing one will obtain u. Upon obtaining the values (q, r, s, t, u), the pri-
vate key p and N2 will be easily extracted.

An in-depth view upon equation 3 given by the relation f(q, r, s, t, u) = c =
x1q+x2r+x3s+x4t+x5u = 0 will give information that since q, r, s, t, u ≈ 20.3n2

and x1, x2, x3, x4, x5 ≈ 20.3n2 , we have c ≈ 20.6n2 . This implies q, r, s, t, u ≈ c0.5.
Hence, we have the following proposition.

Proposition 2. The problem to solve KAZ Key Problem via equation 3 reduces
to the MPLERP.

Proof. Upon solving the MPLERP the parameters (q, r, s, t, u) are obtained.
Thus, KAZ Key Problem via 3 reduces to the MPLERP.�

Remark 4. The converse of proposition 2 is still unknown.

5.5 The KAZ Key Equation and Grover’s Algorithm

Grover’s algorithm is a quantum algorithm that finds with high probability the
unique input to a black box function that produces a particular output value, us-
ing just O(

√
N) evaluations of the function, where N is the size of the function’s

domain ([7]). Thus, in order to achieve 128-bit post quantum security against
Grover’s algorithm, a total of 650 primes must be used from the list P. If P
is the list of the first 650 primes larger than 2, then N1 will be approximately
6865 bits and N2 will be approximately 3400 bits. Since both KAZ encapsula-
tion and decapsulation procedures has low computational complexity (at most
multiplication), KAZ still operates at a desirable speed.

6 The KAZ Problem : One-Wayness of KAZ

We now formally define the KAZ Problem. Upon given the KAZ public param-
eters (e1, e2, e3, e4, e5, N1) and KAZ ciphertext c ∈ ZN1 , one needs to output u,
where the unknown variable size is as specified in Algorithm 2. Upon obtaining
u, one can obtain sk ≡ u3(c− u) (mod N1).

6.1 KAZ Problem reduces to KAZ Key Problem

Proposition 3. The KAZ Problem reduces to the KAZ Key Problem.

Proof. Upon solving the KAZ Key Problem, the secret parameters (p,N2) are
obtained. Then the ciphertext can be decapsulated. Thus, KAZ Problem is re-
duced to the KAZ Key Problem.
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6.2 KAZ Problem reduces to MHLERP

Observe the in-depth view upon the KAZ ciphertext c given by the relation
f(u, v, w, x, y, z) = u + e1v + e2w + e3x + e4y + e5z (mod N1). We know that
from Algorithm 1, e1, e2, e3, e4, e5 ≈ N1. We also know that from Algorithm 2,

we have u ≈ N0.3
2 ≈ N

3
20
1 and v, w, x, y, z ≈ N0.4

2 ≈ N
1
5
1 . Thus, we have the

following proposition.

Proposition 4. The KAZ Problem reduces to the MHLERP.

Proof. Upon solving the MHLERP the parameters (u, v, w, x, y, z) are obtained.
Then compute sk = u3(c− u) (mod N1). Thus, KAZ Problem is reduced to the
MHLERP.

Remark 5. The converse of propositions 3 and 4 is still unknown.

6.3 KAZ Ciphertext Equation and Grover’s Algorithm

The best case scenario is to conduct exhaustive search from the ciphertext c the
secret parameter u to solve the KAZ Problem. It takes at most 20.3n2 searches.
With Grover’s algorithm the complexity is reduced to ≈ 20.15n2 ([7]). For 256-bit
security (i.e. KAZ Key Problem is 128-bit secure against Grover’s algorithm) we
have n2 ≈ 3400. Thus, the complexity is ≈ 2510.

7 Conclusion

In this work we have utilized the modular hexavariate linear equation root prob-
lem to design a key encapsulation mechanism. It is proven analytically that all
current strategies to either extract the private key from the public key or the
secret information from the ciphertext will incur exponential running time com-
plexity. We also show that the KAZ KEM can achieve 128-bit security with
each public key length of approximately 3052 bits. We also can observe that
the plaintext-to-ciphertext expansion is 1-to-1, since one ciphertext c ∈ ZN1 is
needed to send sk ∈ ZN1 . That is, the ciphertext is the same size of the in-
formation being relayed. Furthermore, we have proven there is no decryption
failure. With complexity running time O(n2) (where n is the length of the in-
put) for both encryption and decryption, the KAZ KEM has desirable speed
for any practical application. It can be seen that KAZ KEM utilizes “simple”
mathematics in order to achieve maximum simplicity in design, such that even
practitioners with limited mathematical background will be able to understand
the arithmetic. Indeed, the KAZ KEM can be a seamless post quantum drop-in
replacement for traditional asymmetric cryptosystems.
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