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Abstract. In order to study the resistance of a block cipher against boomerang attacks, a tool
called the Boomerang Connectivity Table (BCT) for S-boxes was recently introduced. Very little
is known today about the properties of this table especially for bijective S-boxes defined for n
variables with n≡ 0 mod 4. In this work we study the boomerang uniformity of some popular
constructions used for building large S-boxes, e.g. for 8 variables, from smaller ones. We show
that the BCTs of all the studied constructions have abnormally high values in some positions.
This remark permits us in some cases to link the boomerang properties of an S-box with other
well-known cryptanalytic techniques on such constructions while in other cases it leads to the
discovery of new ones. A surprising outcome concerns notably the Feistel and MISTY networks.
While these two structures are very similar, their boomerang uniformity can be very different. In
a second time, we investigate the boomerang uniformity under EA-equivalence for Gold and
the inverse function (as used respectively in MPC-friendly ciphers and the AES) and we prove
that the boomerang uniformity is EA-invariant in these cases. Finally, we present an algorithm
for inverting a given BCT and provide experimental results on the size of the BCT-equivalence
classes for some 4 and 8-bit S-boxes.
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1 Introduction

To evaluate the security level of a block cipher, cryptanalysts have designed multiple techniques
that aim at searching for undesirable patterns. One such technique is the so-called differential
cryptanalysis [3] which looks for pairs (a,b) of input and output differences such that Ek(x⊕a)⊕
Ek(x) = b, where Ek is (a round-reduced version of) the studied block cipher.

Block ciphers—but also other symmetric primitives such as hash functions for example—are
often built using the so-called S-boxes as the source of their non-linearity. These are small functions
mapping n bits to m, specified by their lookup tables. Typical values of n and m would be n = m = 8
and n = m = 4. In order to study the resilience of a block cipher against differential attacks, we first
study the differential properties of its S-boxes. To this end, a key tool is the so-called Difference
Distribution Table (DDT). The DDT is a table defined for any function S : Fn

2→ Fm
2 , of size 2n×2m

and such that
δS(a,b) = #{x ∈ Fn

2,S(x⊕a)⊕S(x) = b}
for all a 6= 0. The maximal coefficient in the DDT of a function is called its differential uniformity
and is denoted by δS. If the S-boxes of a block cipher have a low differential uniformity, we can
expect—and, depending on the properties of its diffusion layer, prove—that it does not have any high
probability differential pattern.

Since its inception, many variants of the differential cryptanalysis have been designed. In particular,
the boomerang attack [25] considers both the encryption and the decryption functions at the same
time by looking for pairs (a,b) such that{

Ek(x) = y
Ek(x⊕a) = y′

and

{
E−1

k (y⊕b) = z
E−1

k (y′⊕b) = z⊕a ,



where Ek is the block cipher under consideration. In order to estimate the probability of such an event
in an S-box-based block cipher, we need to use the DDT of its S-box. However, in order to properly
take into account the coupling between the different encryptions, we also need to look at another table
called the Boomerang Connectivity Table (BCT) introduced in [11]. For a permutation S : Fn

2→ Fn
2, it

is a 2n×2n table of integers βS(a,b) defined as

βS(a,b) = #
{

x ∈ Fn
2,S
−1(S(x)⊕b

)
⊕S−1(S(x⊕a)⊕b

)
= a
}
.

The BCT coefficients are always equal to 2n (the maximum) when a = 0 or b = 0. Thus, we define
the boomerang uniformity of S, denoted βS, to be the maximum value of βS(a,b) for a 6= 0 and b 6= 0.
As with the differential uniformity, the lower the boomerang uniformity the better. Before going any
further, we also recall some basic properties of the BCT which were established in [8, 11].

Proposition 1. Let S : Fn
2→ Fn

2 be a permutation. Then S has the same boomerang uniformity as
S−1 and B ◦ S ◦A, where A and B are affine permutations, and βS ≥ δS. Furthermore, if we let
Sb : x 7→ S−1 (S(x)+b) be a permutation, then

βS(a,b) = #{x ∈ Fn
2,Sb(x)⊕Sb(x⊕a) = a} . (1)

Finally, it holds that βS−1(a,b) = βS(b,a) for all a,b in Fn
2.

Unlike the DDT, little is known about the BCT of even the most common cryptographic com-
ponents. It is easy for example to prove (see e.g. [11]) that for permutations S providing an opti-
mal resistance to differential cryptanalysis, called Almost Perfect Nonlinear (APN) permutations,
βS = δS = 2. Then, Boura and Canteaut studied in [8] the boomerang properties of the inverse
mapping and quadratic power permutations of F2n . They showed that both families have an optimal
boomerang uniformity when n ≡ 2 mod 4, where optimal means that the boomerang uniformity
equals the differential uniformity and is 4 in both cases. Since these first results, permutations with
boomerang uniformity 4 were further investigated and some new families of permutations with
optimal boomerang uniformity were presented [18, 22]. However, besides these first advances, de-
termining the boomerang uniformity of other cryptographically relevant families of permutations or
constructions remains an open problem.

In order to ease the implementation of their ciphers on constrained platforms, cryptographers often
use specific block-cipher-like structures for their S-boxes. This technique permits the construction
of large S-boxes from smaller, much cheaper ones. In this paper, we investigate the BCT of several
such lightweight S-box structures, notably the 3-round Feistel, Lai-Massey and (unbalanced) MISTY
structures. These three classical constructions are depicted in Figures 1a, 1b and 1c respectively. We
then look at two 1-round structures: the 1-round SPN and the specific structure used in the FLY block
cipher [17].
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FIG. 1: The structures investigated in this paper.



For each of those structures, we derive a lower bound on the boomerang uniformity of S-boxes
built using it. Table 1 presents the differential and boomerang uniformity of several S-boxes from the
literature. It also contains the lower bounds derived in this paper.

Rounds S-box Struct. Cipher Ref. δS βS Lower bound

3
Feistel Scream [10, 16] 8 256 256

MISTY-like Fantomas [15] 16 160 64 (∗)
Lai-Massey Fox [24] 16 256 256

1
SPN Midori [2] 64 256 256

Lai-Massey-like FLY [17] 16 256 256 (∗)
TABLE 1: The boomerang and differential uniformity of various 8-bit S-boxes. (∗) The bound depends on the
inner components of these constructions.

For building S-boxes for symmetric-key primitives, apart from the block-cipher-like structure, the
most popular S-box structure is the finite field monomial. In particular, the AES S-box is based on
the multiplicative inverse (x 7→ x2n−2), but other monomials are also used, such as Gold functions
(x 7→ x2i+1). The latter class has the lowest possible non-linear algebraic degree and this makes
them ideal for use cases where such a low degree is a requirement i.e. for building Multi-Party
Computation-friendly block ciphers like MiMC [1].

Furthermore, the study of such functions could help us answer the following more general question:
Are there 8-bit S-boxes with boomerang uniformity equal to 4? In the absence of APN permutations
for n = 8, such S-boxes would have the lowest possible boomerang uniformity in this dimension.
However, finding such permutations in Fn

2 with n≡ 0 mod 4 is considered as an open problem. On
the other hand, when n≡ 2 mod 4 the situation is much simpler and it was shown in [8] that both
the inverse mapping x 7→ x2n−2 and the Gold power permutations x 7→ x2i+1 with gcd(i,n) = 2 over
F2n , have a boomerang uniformity equal to 4. One strategy then for finding permutations S of Fn

2 with
n≡ 0 mod 4 for which βS = 4 would be to search inside the extended-affine (EA) classes of the Gold
family of functions. Indeed, almost all boomerang 4-uniformed permutations that are known today
are, in fact, EA-equivalent to the Gold function (see notably the examples given in [18] and [22]). We
study this problem and provide results about the EA-equivalence class of Gold functions for n≡ 0
mod 4. Then, we analyze the EA-equivalence class of the inverse permutation and show that even if
in general the boomerang uniformity is not preserved inside an EA-equivalence class, this is so for
the inverse function.

Finally, we investigate a third problem concerning BCTs. Notably, we are interested in the
problem of finding all permutations sharing a given BCT and provide an algorithm for doing such
a computation. This is a similar problem to the one studied in [9] for DDTs. We are in particular
interested in the number of permutations that can share a same BCT and analyse different S-boxes
from the literature with respect to this notion.

The rest of the paper is organized all follows. In Section 2 we provide our results about the
boomerang uniformity of 3-round Feistel and Lai-Massey constructions. In Sections 3 and 4 we do
the same for 3-round MISTY constructions and some non-iterative S-boxes respectively. In Section 5,
we formally analyze the significance of the properties discovered in the previous sections. Section 6
is dedicated to the analysis of the boomerang uniformity of functions that are EA-equivalent to Gold
and the inverse function. Finally, in Section 7 we present an algorithm for inverting a given BCT.

2 3-round Feistel and Lai-Massey Networks

We study in this section the properties of the BCT of 3-round Feistel and Lai-Massey constructions
and show that the boomerang uniformity of both is the worst one possible. In both cases, the results



we derive are an inherent property of the structures used: even if the subcomponents are chosen so as
to have excellent properties, the boomerang uniformity will be the worst possible.

2.1 The Feistel Case

A popular way to construct large S-boxes from smaller ones is by using the Feistel construction. This
scheme was used for constructing the 8-bit S-boxes of multiple ciphers including ZUC [14], and
Scream [16]. All use 3 rounds. This number of rounds is the smallest allowing the overall structure to
have good properties. In particular, if only 2 rounds are used, a part of the output depends linearly on
a part of the input.

A 3-round Feistel network has the worst possible boomerang uniformity, no matter the choice of
the inner functions. Proposition 2 formalizes this statement.

Proposition 2. Let S : Fn
2×Fm

2 → Fn
2×Fm

2 be a 3-round Feistel network and let F1,F2 and F3 be
its inner functions as depicted in Fig. 1a, with F1,F3 : Fm

2 → Fn
2 and F2 : Fn

2 → Fm
2 . Then, for any

b ∈ Fn
2×Fm

2 ,
βS(b,b) = βS = 2n+m.

Proof. For any b ∈ Fn
2×Fm

2 define

Sb :

{
Fn

2×Fm
2 → Fn

2×Fm
2

(x,y) 7→ S−1(S(x,y)+b) .

Consider now a constant b of the form b = (b1,0) ∈ Fn
2×Fm

2 . In this case, the function Sb, depicted
in the upper part of Fig. 2, reduces to the structure depicted to the lower part of Fig. 2.
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FIG. 2: The function Sb(x,y) = S−1(S(x,y)+b), for (x,y) ∈ Fn
2×Fm

2 and b of the form (b1,0), for S a 3-round
Feistel structure.

The central observation here is that for any b1 ∈ Fn
2

Sb(x,y)+Sb((x,y)+(b1,0)) = (b1,0), for all (x,y) ∈ Fn
2×Fm

2 . (2)

The statement of Eq. (2) can be verified by simply developing Sb and performing the necessary
computation:

Sb(x,y) = (b1 + x+F1(x)+F1(y+F2(x+F1(y))+F2(b1 + x+F1(y))),

y+F2(x+F1(y))+F2(b1 + x+F1(y))).



By rewriting Eq. (2) as

S−1(S(x,y)+b)+S−1(S(x+b,y)+b) = (b1,0) ,

we get that βS(b,b) = 2n+m. This proves that βS = 2n+m. ut

The property corresponding to Proposition 2 was known before. In fact, this property was recently
used by Biryukov et al. for performing guess and determine attacks against Feistel networks [4]. We
deduce that the knowledge of the BCT can help the cryptanalyst in contexts different from boomerang
attacks.

2.2 The Lai-Massey Case

We consider a variant of the structure depicted in Fig. 1b where the last application of the linear
orthomorphism σ is removed for two reasons. First, the S-box of the cipher Fox is built in this way.
Second, this version yields a simpler proof but, since σ is linear and since the boomerang uniformity
is constant in an affine-equivalence class, the result still holds if the last σ is present.

Proposition 3. Let S : (Fn
2)

2→ (Fn
2)

2 be a 3-round Lai-Massey structure. Let F1,F2,F3 : Fn
2→ Fn

2 be
its inner functions and let σ be a linear permutation. For any nonzero a ∈ Fn

2, consider a1 = (a,a)
and b = (σ(a),σ(a)) ∈ (Fn

2)
2. Then,

βS(a1,b) = βS = 22n.
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FIG. 3: The function Sb(x) = S−1(S(x,y)+b), where S is a 3-round Lai-Massey construction for which the last
application of σ is omitted.

Proof. Let b ∈ (Fn
2)

2 be of the form b = (σ(a),σ(a)) ∈ (Fn
2)

2 where a is nonzero. Furthermore, let
Sb be as defined in Eq. (1) (see Fig. 3). Our aim is to prove that

Sb(x,y)+Sb((x,y)+(a,a)) = (a,a), for all (x,y) ∈ (Fn
2)

2. (3)

The remainder of the proof consists in checking Eq. (3) by developing the expression of Sb.
Begin with the input (`0,r0) = (x,y) ∈ F2n

2 and denote

A1(x,y) = A1 = x+ y, A2(x,y) = A2 = σ(x)+ y+F1(A1)+σ(F1(A1)),
A3(x,y) = A3 = σ(σ(x+F1(A1))+F2(A2))+ y+F1(A1)+F2(A2),
T (x,y) = T = F2(A2)+F2(A2 +σ(a)+a),

B1(x,y) = B1 = A1 +σ−1(a)+σ(a)+T +σ−1(T ).

The output (`i,ri) of the i-th round, i = 1,2,3 of S, is detailed below:

(`1,r1) = (σ(x+F1(A1)),y+F1(A1)) ,
(`2,r2) = (σ(σ(x+F1(A1))+F2(A2)),y+F1(A1)+F2(A2)) ,
(`3,r3) = (σ(σ(x+F1(A1))+F2(A2))+F3(A3),y+F1(A1)+F2(A2)+F3(A3)) .



Denote by (`′0,r
′
0) = (`3,r3)+(σ(a),σ(a)) the input of S−1. Similarly, we have

(`′1,r
′
1) = (a+σ(x+F1(A1))+F2(A2),σ(a)+ y+F1(A1)+F2(A2)) ,

(`′2,r
′
2) =

(
σ−1(a)+ x+F1(A1)+σ−1(T ),σ(a)+ y+F1(A1)+T

)
,

(`′3,r
′
3) = ((σ−1(a)+ x+F1(A1)+F1(B1)+σ−1(T ),

σ(a)+ y+F1(A1)+F1(B1)+T ).

As A1(x+a,y+a) =A1(x,y) and A2(x+a,y+a) =A2(x,y)+σ(a)+a, it holds that T (x+a,y+a) =
T (x,y) and B1(x+a,y+a) = B1(x,y). Therefore, Eq. (3) holds and we deduce the proposition. ut

3 BCTs of 3-round MISTY Networks

The MISTY network mimicks a structure used in the MISTY cipher [21]. While it might ressemble a
Feistel network it requires all three inner functions to be bijective in order for the whole function to
be a permutation. As we will show, the MISTY structure also differs from the Feistel one via its BCT:
the boomerang uniformity of a 3-round MISTY structure depends on the specifics of the subfunctions
used.

Though the results are similar in both cases, the case where the branches are of the same
size (balanced) and of different sizes (unbalanced) require different analyses which we provide in
Sections 3.1 and 3.2 respectively.

3.1 3-round Balanced MISTY Networks

Proposition 4. Let S : (Fn
2)

2→ (Fn
2)

2 be a 3-round balanced MISTY network and let F1,F2 and F3
be its inner functions as depicted in Fig. 1c, with F1,F2,F3 : Fn

2→ Fn
2 bijective. Then,

βS ≥ 2n
βF2 .
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F2

F3

b1

b1

F−1
3

F−1
2

F−1
1

S S−1

FIG. 4: The function Sb(x) = S−1(S(x)+b), for x ∈ Fn
2×Fn

2 and b = (b1,b1) where S is a 3-round balanced
MISTY structure.

Proof. The boomerang uniformity of F2 is βF2 meaning that there exists (a1,b1) ∈ (Fn
2)

2 such that
βF2(a1,b1) = βF2 . If a = (a1,0),b = (b1,b1) then we deduce from Proposition 1 that

βS(a,b) = #{(x,y) ∈ Fn
2×Fn

2 | Sb(x,y)+Sb(x+a1,y) = (a1,0)} ,

where Sb is as depicted in Fig. 4. Since b = (b1,b1), it can be simplified into

Sb(x,y) =
(
F−1

2 (F2(x)+b1), F−1
1 (F−1

2 (F2(x)+b1)+F1(y)+ x)
)

so we deduce

Sb(x,y)+Sb(x+a1,y) =
(

F−1
2 (F2(x)+b1)+F−1

2 (F2(x+a1)+b1),

F−1
1

(
F−1

2 (F2(x)+b1)+F1(y)+ x
)
+

F−1
1

(
F−1

2 (F2(x+a1)+b1)+F1(y)+ x+a1
))

.

(4)



We now show that βS(a,b) = 2n|A|, where

A =
{

x ∈ Fn
2 | F−1

2 (F2(x)+b1)+F−1
2 (F2(x+a1)+b1) = a1

}
.

For any x ∈ A, the right hand side of Sb(x,y)+Sb(x+a1,y) can be simplified:

F−1
1

(
F−1

2 (F2(x)+b1)+F1(y)+ x
)

+F−1
1

(
F−1

2 (F2(x+a1)+b1)+F1(y)+ x+a1
)

= F−1
1

(
F−1

2 (F2(x)+b1)+F1(y)+ x
)
+F−1

1

(
F−1

2 (F2(x)+b1)+F1(y)+ x
)

= 0 .

As |A|= βF2(a1,b1) = βF2 , we conclude that the boomerang uniformity of a 3-round balanced MISTY
network is lower bounded by 2nβF2 . ut

Remark 1. We give here the minimal bounds for a 3-round MISTY network, for some popular choices
of n. All functions F1,F2 and F3 are supposed bijective.

n = 4 As proved in [8], the minimal boomerang uniformity for a permutation of F4
2 is 6. Therefore,

by choosing F2, with βF2 = 6, we get that βS ≥ 96. As we will argue in Section 5.1, this is a
very high value for an 8-bit S-box. Note here that the bound of Proposition 4 is tight. Indeed, the
8-bit MISTY network with F1 = F2 = F3 = [8,0,1,12,15,5,6,7,4,3,10,11,9,13,14,2], where
βF2 = 6, has boomerang uniformity 96 and reaches thus this lower bound.

n = 3 APN permutations exist for n = 3. Using one as F2, we obtain βS ≥ 16.

Proposition 5. Let S : (Fn
2)

2→ (Fn
2)

2 be a 3-round MISTY network with inner functions F1,F2 and
F3. If F1 or F3 is an affine permutation, then βS = 22n.

Proof. Suppose that F1 is affine. In this case, we focus on the BCT value at the point (a,b) =(
(0,a2),(b1,b1)

)
, where a2,b1 ∈ Fn

2 \{0}. Then

βS(a,b) = #{(x,y) ∈ (Fn
2)

2|Sb(x,y)+Sb(x,y+a2) = (0,a2)}

and, again, we have

Sb(x,y)+Sb(x,y+a2) =
(

0,F−1
1

(
F−1

2 (F2(x)+b1)+F1(y)+ x
)

+F−1
1

(
F−1

2 (F2(x)+b1)+F1(y+a2)+ x
))

.
(5)

For x∈Fn
2, denote f (x) =F−1

2 (F2(x)+b1)+x. Then, βS(a,b) = ∑
x∈Fn

2

βF1(a2, f (x)). Suppose f (x) = c,

then F2(x+c)+F2(x) = b1. This means that there are δF2(c,b1) different x corresponding to the same
f (x). We deduce that

∑
x∈Fn

2

βF1(a2, f (x)) = ∑
c∈Fn

2

βF1(a2,c)δF2(c,b1) = 2n
∑

c∈Fn
2

δF2(c,b1) = 22n

since when F1 is affine, we always have βF1(a2,c) = 2n. Therefore, βS(a,b) = 22n which is the worst
possible case.

The case where F3 is affine reduces to where F1 is. The reduction uses that the boomerang
uniformity is preserved by both functional inversion and affine equivalence (Proposition 1). Suppose
now that F3 is an affine permutation. This is obviously also the case for F−1

3 . Therefore, the 3-round
MISTY network with inner functions (F−1

3 ,F−1
2 ,F−1

1 ) has a boomerang uniformity equal to 22n

because of the previous proposition. However, this network is a simple affine equivalent of the inverse
of the MISTY network with inner functions (F1,F2,F3), as this can be seen from Fig. 4. The result
follows from the fact that the boomerang uniformity is preserved under affine equivalence. ut



3.2 3-round Unbalanced MISTY Networks

In practice, all known MISTY constructions are unbalanced. More specifically, they use branches
of n− 1 and n+ 1 bits. This is the case for the original MISTY1 cipher [21], where some inner
components follow a 3-round construction with one 7-bit and one 9-bit branch. It is also the case of
the 8-bit S-box of Fantomas [15], where a 3-bit and a 5-bit branch are used. One reason for this is
that an unbalanced 3-round MISTY structure can potentially achieve a better differential uniformity
than a balanced one. For example, Canteaut et al. showed in [10] that for n = 4, a 2n-bit permutation
S following a balanced MISTY structure has δS ≥ 16, while by taking a 3-bit and a 5-bit branch it is
possible to find a permutation S with δS = 8. Another reason is that taking branches of an odd length
of bits permits to use APN permutations for the inner components—as was indeed done in MISTY1.

We studied the boomerang uniformity of 3-round unbalanced MISTY networks. Our arguments
differ slightly depending on whether the widest branch is on the left or on the right. Let m be the
size of the smallest branch and n the size of the biggest one. If S1 is the construction on the left part
of Fig. 5 and S2 is the construction on the right part of the same figure then we get the following
proposition:

Proposition 6. The boomerang uniformities of the unbalanced MISTY structures in Fig. 5 are
bounded as follows:

βS1 ≥ 2n
βF2 and βS2 ≥ 2m

βF2|Fm
2
.

F1

F2

F3

m m

n−mm

n−m

m n−m

F1

F2

mm

n−m m

F3

n−m

FIG. 5: The two different types of unbalanced 3-round MISTY networks (S1 is on the left, S2 is on the right).

The proof of the above proposition is provided in Appendix A.

4 Non-Iterative Constructions

Until now, we have only considered 3-round constructions. However, S-box designers sometimes
choose non-iterative structures. In this section, we look at 1-round SPN (as used e.g. in Midori [2])
and at the ad hoc Lai-Massey-like structure used by the Littlun S-Box of the block cipher FLY [17]. It
is composed of a single Lai-Massey round followed by an S-box layer (see Fig. 6a). While Littlun is
such that F1 = F2 = F3, we do not make this assumption.

The following straightforward proposition deals with the properties of a 1-round SPN.

Proposition 7. Let F1,F2 be n-bit permutations and let S : (Fn
2)

2→ (Fn
2)

2 be such that S(x1,x2) =
(F1(x1),F2(x2)). Then we have

βS ((a1,a2),(b1,b2)) = βF1(a1,b1)×βF2(a2,b2) ,

so that in particular βS = βS ((a,0),(0,b)) = 22n. ut
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(B) The function Sb(x) = S−1(S(x,y)+b), where S is the Littlun S-box.

FIG. 6: Analysis of the Littlun structure

Let us now consider the Littlun construction. If F1 is an affine permutation, then the corresponding
Littlun-like S-box is a 1-round SPN structure which has thus the worst possible boomerang uniformity.
If not, the following proposition relates its boomerang uniformity to that of its subcomponents.

Proposition 8. Let S be a generalised-Littlun structure with n-bit permutations F1,F2 and F3 (see
Fig. 6a). Then βS ≥ 2n max{βF2 ,βF3}.

Proof. We define the two following functions H and G over (Fn
2)

2:

H(x,y) = (x+F1(x+ y),y+F1(x+ y)) and G(x,y) = (F2(x),F3(y)) .

Both H and G are permutations of (Fn
2)

2, H is an involution, and S(x,y) = (G◦H)(x,y). we claim
that βS(a,b)≥ βG(a,b), for a = (a1,a1), a1 6= 0 and b = (b1,b2). Indeed,

βS(a,b) = #
{

X ∈ (Fn
2)

2 | H(G−1(G(H(X)+a)+b))+H(G−1(G(H(X)+b))) = a
}

= #
{

Y ∈ (Fn
2)

2 | H(G−1(G(Y +a)+b))+H(G−1(G(Y )+b)) = a
}

= #
{

Y ∈ (Fn
2)

2 | H(G−1(G(Y )+b)+G−1(G(Y )+b))
+G−1(G(Y +a)+b))+H(G−1(G(Y )+b)) = a

}
≥ #

{
Y ∈ (Fn

2)
2 | G−1(G(Y )+b)+G−1(G(Y +a)+b) = a

}
= βG(a,b) .

By applying Proposition 7 to βG (a,b) with a = (a1,a1),b = (b1,b2), we obtain that βS(a,b) =
2nβF2(a1,b1) when b2 = 0 and βS(a,b)= 2nβF2(a1,b2) when b1 = 0. We deduce that βS≥ 2n max(βF2 ,βF3).

ut

5 Using the Maximum BCT Coefficients

The S-boxes we study in this paper are highly structured, it is then not surprising that we find specific
artefacts in their BCT. In this section, we explore the significance of these properties. First, we recall
the expected behaviour of the BCT of a random permutation (Section 5.1) and deduce the expected
value of the boomerang uniformity of a random n-permutation. We then identify a specific pattern
that exists whenever the boomerang uniformity is maximum and compare it with the patterns that we
have identified in Feistel and Lai-Massey networks (Section 5.2).

5.1 A High Boomerang Uniformity is Unlikely

We first recall the following result.

Proposition 9 ( [7]). If S is a permutation of Fn
2 picked uniformly at random, then its BCT coefficients

βS(a,b) with a,b 6= 0 can be modelled like independent and identically distributed random variables
with the following distribution:

Pr [βS(a,b) = c] = ∑
2i1+4i2=c

P1(i1)P2(i2) ,



where P1 and P2 are stochastic variables following binomial distributions:

P1(i) = Binomial
(

i;2n−1,
1

2n−1

)
,

P2(i) = Binomial
(

i;22n−2−2n−1,
1

(2n−1)2

)
.

Applying the proposition above, we can derive a formula to compute the expected boomerang
uniformity for an n-bit random permutation, namely:

E(βs) =
2n

∑
c=0

c

((
c

∑
i=0

Pr [βS(a,b) = i]

)t

−
(

c−2

∑
i=0

Pr [βS(a,b) = i]

)t)
,

where t = (2n− 1)2. We used this formula to build a table containing the expected boomerang
uniformity for random permutations from n = 4 to 14 (see Table 2).

n 4 5 6 7 8 9 10 11 12 13 14

E(βs) 11.6 14.2 16.3 18.3 20.2 22.1 23.9 25.7 27.4 29.1 30.8
E(βs)/2n 0.7250 0.4437 0.2547 0.1430 0.0789 0.0432 0.0233 0.0125 0.0067 0.0036 0.0019

TABLE 2: The expected boomerang uniformity for n-bit random permutations.

As we can see, the expected boomerang uniformity increases slowly with n and it is significantly
smaller than 2n. This shows that a maximal boomerang uniformity is an extremely rare event indicative
of a very strong structure.

Furthermore, the non-maximal but still very high boomerang uniformity of the 3-round MISTY
and Littlun structures can also be leveraged to identify such potentially hidden structures. Indeed,
for n = 8, it holds that the boomerang uniformity of a balanced MISTY structure is at least 96 (see
Sec. 3.1), which is much higher than the expected 20.2.

5.2 Patterns in the Maximum BCT Coefficients

The coordinates of the BCT coefficients equal to the maximum possible value (namely 2n) always
have particular structures captured by the following proposition.

Proposition 10. Let S be a permutation of Fn
2. For every x ∈ Fn

2, the following sets are vector spaces:{
y ∈ Fn

2,βS(y,x) = 2n} and
{

y ∈ Fn
2,βS(x,y) = 2n} .

Proof. Suppose that βS(a,b) = βS(a′,b) = 2n. This is equivalent to saying that, for all x ∈ Fn
2, the

following two equations hold: Sb(x⊕a)⊕Sb(x) = a and Sb(x⊕a′)⊕Sb(x) = a′. Summing them and
replacing x with y = x⊕a, we get that

Sb(y)⊕Sb(y⊕a⊕a′) = a⊕a′

for all y ∈ Fn
2, which is equivalent to βS(a⊕a′,b) = 2n. We deduce that the first set in the proposition

is a vector space.
Since the BCT of S−1 is the transpose of that of S, applying what we just proved to the BCT of

S−1 yields that if βS(a,b) = βS(a,b′) = 2n, then βS(a,b⊕b′) = 2n. As a consequence, the second set
in the proposition is also a vector space. ut

These properties are reminiscent of those of linear structures. We first recall their definition.



Definition 1 (Linear Structure). Let f : Fn
2→ F2 be a Boolean function. A linear structure of f is

an element a ∈ Fn
2 such that f (x⊕a)⊕ f (x) = ε , where ε ∈ F2 is a constant. All such elements form

a vector space called the linear space of f which is denoted LS( f ).

The linear structures of a Boolean function always form a vector space, much like how the
input differences yielding a maximum BCT coefficient for a given output difference yield a vector
space (Proposition 10). This likeness is not a coincidence. Indeed, for a fixed output difference b,
the maximum BCT coefficients correspond to a such that Sb(x⊕ a)⊕ Sb(x) = a for all x ∈ Fn

2, i.e.
essentially to linear structures that are shared by all the coordinates of Sb.

As we have established, 3-round Feistel and Lai-Massey networks have maximum boomerang
uniformity. Furthermore, we have showed that the coordinates of the maximum coefficients have a
specific structure that is even stronger than the one implied by Proposition 10: in both cases, these
coordinates form a vector space of a specific dimension. The coordinates are both involved at the
same time in the construction of the vector space, unlike in Proposition 10.

– For the 3-round Feistel network operating on Fn+m
2 , the maximum coefficients have coordinates

(b,b) for b ∈ Fn+m
2 . It is a vector space of dimension n+m corresponding to the span of all

vectors of the form (ei,ei) where the vectors ei form the canonical basis of Fn+m
2 .

– For the 3-round Lai-Massey structure operating on F2n
2 , the maximum coefficients are at positions

((a,a),((σ(a),σ(a))) for all a ∈ Fn
2. Since σ is a linear permutation of Fn

2, we deduce that these
coordinates form a vector space of dimension n.

In [7], the authors introduced a bases extraction algorithm returning a basis for each of the vector
spaces of a given dimension contained in a specific set. We can then use this algorithm to figure out if
a permutation is affine-equivalent to a 3-round Feistel or Lai-Massey network. Indeed, let S : Fn

2→ Fn
2

be a permutation. If running this algorithm on the set of the coordinates of all the coefficients of
βS equal to the maximum returns a space of dimension n, then it is a strong indication that S is
affine-equivalent to a 3-round Feistel network. If it instead finds a space of dimension n/2 then it is
probably affine-equivalent to a 3-round Lai-Massey network.

6 Boomerang Uniformity for some Specific EA-Equivalence Classes

In this section, we investigate the boomerang properties of n-bit monomial permutations, namely those
with exponents 2n−2 (multiplicative inverse) and 2i+1 (Gold functions). As mentioned before, these
S-boxes are common in symmetric cryptography because of their excellent differential properties.
Due to the simplicity of their mathematical structure, they are also interesting targets for a more
general study of boomerang properties and in particular for the search of permutations with optimal
boomerang uniformity.

Before going further, we recall some notions of finite fields arithmetics. We denote with Fq the
finite field with q elements. If q = pn and if n = k×m for some integers k and m, then we define the
trace from Fpn to Fpk as

Trn
k(x) =

m−1

∑
i=0

xpi×k
.

If k = 1 then we simply write Tr. The vector space (Fp)
n is isomorphic to the finite field Fpn . Thus,

our results over Fn
2 can easily be re-written over F2n —and vice-versa.

The inverse and the Gold functions have been investigated in [8]. In fact, almost all permutations
with optimal boomerang uniformity known today are extended-affine equivalent to the Gold function.
We recall the definition of this equivalence below.

Definition 2 (EA-equivalence). Two functions F : Fn
2→ Fm

2 and G : Fn
2→ Fm

2 are extended-affine
(EA)-equivalent if there exist two affine permutations A : Fn

2→ Fn
2, B : Fm

2 → Fm
2 and an affine function

C : Fn
2→ Fm

2 such that, for all x ∈ Fn
2,

F(x) = (B◦G◦A)(x)+C(x) .



This investigation has two aspects. First, we need to find permutations in the EA-equivalence
class of the functions studied. Second, we need to verify that the boomerang uniformity is preserved
under EA-equivalence.

6.1 EA-Equivalence for Gold Functions

We investigate first the EA-equivalence class of some Gold functions. As we are only interested in
permutations in our analysis, we focus on the problem of finding all linear polynomials L such that
F(x) = x2i+1 +L(x) is a permutation over F2n . Note that this problem was investigated by Yongqiang
Li et al. in [19] for the case gcd(i,n) = 1. In the following, we focus on the case gcd(i,n) = k > 1.

Proposition 11. Suppose gcd(i,n) = k > 1 with m even and n = k×m. Then, there are no permuta-
tions EA-equivalent (expect for affine equivalent) to x2i+1 over F2n .

Proof. First, notice that

gcd(22i−1,2n−1) = 22k−1 > 2k−1 = gcd(2i−1,2n−1)

when m is even. Let S1,S2 be the image sets of x2i−1 and x22i−1 respectively, then

|S1|= |{x2i−1|x ∈ F2n}|> |{x22i−1|x ∈ F2n}|= |S2|

implying that S1\S2 is not empty. By choosing b∈ F∗2n we have that (b−1)2i−1 /∈ S2. Then, b2i
x22i

+bx
is a linear permutation over F2n .

Assume that there exists a linear polynomial L such that F(x) = x2i+1 +L(x) is a permutation.
Then, for any b′ ∈ F2n , the Boolean function Tr(b′F(x)) is balanced. However, g(x) = Tr(bF(x)) is a
bent function. Indeed, for any a ∈ F2n , we have(

∑
x∈F2n

(−1)g(x)+Tr(ax)

)2

= ∑
x,u∈F2n

(−1)Tr(b(x2i+1+(x+u)2i+1)+au+L(u))

= ∑
u∈F2n

(−1)Tr(bu2i+1+au+L(u))
∑

x∈F2n
(−1)Tr

(
(bu2i

+(bu)2n−i
)x
)

= 2n.

This indicates that g(x) is never balanced, which contradicts the assumption. Therefore, in this case,
there are no permutations EA-equivalent (expect for affine equivalent) to Gold. ut

Remark 2. Gold permutations (i.e., k = 2) have an optimal boomerang uniformity over F22m when
m is odd. Unfortunately, these functions are not permutations anymore when m is even. In order
to find permutations with a good boomerang uniformity for n even, an idea would be to search for
permutations in the EA-equivalence class of a Gold function and hope that it has good boomerang
properties. Unfortunately, Proposition 11 shows that there exist no permutations EA-equivalent to
Gold over F22m when m is even.

Next we consider the case of n/k = m odd. We start by recalling a useful lemma from [6].

Lemma 1 ( [6]). Suppose F is finite and λ ∈ F∗. There is y ∈ F such that yq− y = λ if and only if
TrF\FQ(λ ) = 0, where q is a power of prime p and FQ = F ∩FQ(q).

If we set F = F2n and q = 2i with gcd(i,n) = k, then FQ = FQ(2k). The following result follows.

Corollary 1. Suppose gcd(i,n) = k and λ ∈ F∗2n . Then, there exists y ∈ F2n such that y2i
+ y = λ if

and only if Trn
k(λ ) = 0.



Proposition 12. Suppose gcd(i,n) = k > 1 with m = n/k odd and L a linear polynomial. Then
F(x) = x2i+1 +L(x) is a permutation over F2n if and only if, for all u ∈ F∗2n ,

Trn
k

(
L(u)
u2i+1

)
6= 1 .

Proof. Suppose L is a linear polynomial. Then F(x) = x2i+1 +L(x) is a permutation if and only if,
for any u ∈ F∗2n , the following equation

x2i+1 +(x+u)2i+1 = L(u)

which is equivalent to
x
u
+
( x

u

)2i

=
L(u)
u2i+1

+1

has no solutions in F2n . Thus, F is a permutation if and only if

L(u)
u2i+1

+1 /∈ {x+ x2i |x ∈ F2n}.

Here, we claim that
{x+ x2i |x ∈ F2n}= {Trn

k(x) = 0 |x ∈ F2n}.

Indeed, on one hand, if b = x0 + x2i

0 , it is obvious that Trn
k(b) = Trn

k(x0)+Trn
k(x

2i

0 ) = 0. On the other
hand, for any b ∈ F∗2n with Trn

k(b) = 0, the equation x2i
+ x = b always has solutions according to

Corollary 1 and for the case of b = 0, x = 0 is the corresponding solution. Note that m is odd, then
Trn

k(1) = 1 and therefore F is a permutation if and only if Trn
k

(
L(u)
u2i+1

+1
)
6= 0, i.e., Trn

k

(
L(u)
u2i+1

)
6= 1

for any u ∈ F∗2n . ut

Remark 3. Note that it is easy to find a linear function L satisfying the conditions of Proposition 12.
Indeed, the most trivial form for L is L(x) = ax2i

+a2i
x. However, characterizing all linear functions

L that satisfy this condition is hard. By doing experiments in F26 we were able to find, besides the
trivial case, other examples. For instance, when i = 2, L(x) = gx8 +g62x2 and L(x) = g36x32 +g18x8 ,
where g is a primitive element, are another examples of admissible functions.

6.2 Boomerang Uniformity under EA-Equivalence of the Gold Functions

Proposition 12 shows that when gcd(i,n) = k > 1 and n/k =m is odd it is possible to find permutations
inside the EA-equivalence class of the Gold function x2i+1. By doing experiments, we generated
many such permutations and observed that all of them have a boomerang uniformity equal to 4. This
seems not to be a coincidence. Although in general the boomerang uniformity is not preserved under
EA-equivalence, the above observation shows that the boomerang uniformity might be EA-invariant
for some families of functions. Indeed, as we will prove in Theorem 2, this is so for the Gold family
of functions.

We begin with a useful theorem from [18], which we will frequently mention in the proofs. This
theorem shows an alternative way for computing the boomerang uniformity of a function.

Theorem 1 ( [18]). Let F be a permutation over Fn
2. Then the boomerang uniformity of F is the

maximum number of solutions of the following equation system{
F(x+b)+F(y+b) = a,
F(x)+F(y) = a (6)

for any a,b ∈ Fn
2.



To determine the boomerang uniformity of members of the EA-equivalence class of a permutation
F , we need to compute βF and βG, where G(x) = F(x)+L(x) for L a linear function. According to
Theorem 1 this is equivalent to finding the number of solutions of the following systems of equations:{

F(x)+F(y) = a
F(x+b)+F(x)+F(y)+F(y+b) = 0 (7)

and {
F(x)+F(y)+L(x+ y) = a
F(x+b)+F(x)+F(y)+F(y+b) = 0 (8)

Note that Systems (7) and (8) share the same equation:

F(x+b)+F(x)+F(y)+F(y+b) = 0. (9)

Therefore, for solving these systems, one can first determine the number of solutions to Eq. (9)
and then consider the difference between Systems (7) and (8).

Theorem 2. Let n be odd and gcd(i,2n) = 2. Then, all permutations EA-equivalent to x2i+1 over
F22n have boomerang uniformity 4.

Proof. Applying the method discussed above to compute βF(a,b), we plug F(x) = x2i+1 into Eq. (9)
and get

b(x+ y)2i
+b2i

(x+ y) = 0 .

That is, (x+ y)2i−1 = b2i−1. Then, y ∈ {x+w,x+w2,x+ 1}, where w is the primitive element of
F22n

⋂
F2i = F22 . To make this clear, we denote by y = x+α , α ∈ F∗22 and plug it into the first

equation of System (8). We have,

x2i+1 +(x+α)2i+1 +L(α)+a = 0

which can be simplified as ( x
α

)2i

+
x
α
+1+

a+L(α)

α2i+1
= 0. (10)

From Proposition 12, we know that Tr2n
2

(
L(α)

α2i+1

)
6= 1. Meanwhile, according to Corollary 1, Eq. (10)

has solutions if and only if Tr2n
2

(
1+ a+L(α)

α2i+1

)
= 0. Now, we focus on the number of α ∈ F∗22 such

that Eq. (10) has solutions. Note that, α2i
= α and α makes Eq. (10) have solutions means that

Tr2n
2

(
1+

a+L(α)

α2i+1

)
= 1+

Tr2n
2 (a+L(α))

α2 = 0

due to n being odd. We thus need Tr2n
2 (a+L(α)) = α2. We claim that there is at most one α ∈ F∗22

that makes the above equation hold. Indeed, we consider the solutions over F22 of the equation

x2 +Tr2n
2 (L(x))+Tr2n

2 (a) = 0, (11)

which is affine. Therefore, whether it has no solutions or it has the same number of solutions over F22

as
x2 +Tr2n

2 (L(x)) = 0. (12)

Since Tr2n
2

(
L(x)
x2i+1

)
=

Tr2n
2 (L(x))

x2 6= 1 (Proposition 12), we deduce that Eq. (12) has a unique solution
x0 = 0 and therefore Eq. (11) has at most one solution over F22 . Consequently, there is at most one a
such that Eq. (10) holds and thus System (8) has at most 4 solutions. ut

Remark 4. Theorem 2 offers us an easy way to understand why the permutation proved in [18] and
the 960 examples given in Table 1 of [22] have boomerang uniformity 4. To find new boomerang
4-uniform permutations, we first need to verify whether they are in the EA-equivalence class of Gold.



6.3 Boomerang Uniformity under EA-Equivalence of the Inverse

Now, we investigate the boomerang uniformity for another optimal class, namely for the inverse
permutation.

Theorem 3. All permutations EA-equivalent to x2n−2 over F22n have boomerang uniformity at most
6.

Proof. Similarly to the proof of Theorem 2, we plug F(x) = x2n−2 into Eq. (9) and get

(x+1)2n−2 +(y+1)2n−2 + x2n−2 + y2n−2 = 0. (13)

We investigate different cases.

Case 1: x,y /∈ {0,1} and y = x+1. Consider System (8), we have

x2n−2 +(x+1)2n−2 +L(1)+a = 0,

i.e.,
(L(1)+a)(x2 + x)+1 = 0.

If L(1)+ a = 0, it has no solutions. Otherwise, it has no solution when Tr( 1
L(1)+a ) = 1 and has 2

solutions when Tr( 1
L(1)+a ) = 0. In general, we have no solutions if

a = L(1) or

{
a 6= L(1)

Tr
(

1
L(1)+a

)
= 1

and we have 2 solutions otherwise, i.e. if

a 6= L(1) and Tr
(

1
L(1)+a

)
= 0 ,

in which case (x0,x0 +1) and (x0 +1,x0) are the solutions.

Case 2: x = 0. It implies y 6= 0 since a 6= 0 in System (8). Eq. (13) means y2n−2+(y+1)2n−2+1 = 0.
We then have y ∈ {1,w,w2}, where w is a primitive element of F22 . We plug it back into System (8)
and obtain

a = L(1)+1 =⇒ (0,1) is a solution ,

a = L(w)+w2 =⇒ (0,w) is a solution ,

a = L(w2)+w =⇒ (0,w2) is a solution ,

a /∈ {L(1)+1,L(w)+w2,L(w2)+w =⇒ there is no solution .

Case 3: x = 1. As above, we deduce y 6= 1, because Eq. (13) implies y2n−2 +(y+ 1)2n−2 + 1 = 0.
Then y = {0,w,w2}, where w is a primitive element of F22 . We deduce that the situation is similar to
the one in Case 2:

a = L(1)+1 =⇒ (1,0) is a solution ,

a = L(w)+w2 =⇒ (1,w) is a solution ,

a = L(w2)+w =⇒ (1,w2) is a solution ,

a /∈ {L(1)+1,L(w)+w2,L(w2)+w =⇒ there is no solution .

The last two cases are similar to the previous ones, thus we omit their details and just display the
results.



Case 4: y = 0, which implies x 6= 0. Using the same method, we obtain that

a = L(1)+1 =⇒ (1,0) is a solution ,

a = L(w)+w2 =⇒ (w,0) is a solution ,

a = L(w2)+w =⇒ (w2,0) is a solution ,

a /∈ {L(1)+1,L(w)+w2,L(w2)+w =⇒ there is no solution .

Case 5: y = 1, in which case x 6= 1. We deduce:

a = L(1)+1 =⇒ (0,1) is a solution ,

a = L(w)+w2 =⇒ (w,1) is a solution ,

a = L(w2)+w =⇒ (w2,1) is a solution ,

a /∈ {L(1)+1,L(w)+w2,L(w2)+w =⇒ there is no solution .

Let us use the knowledge of these cases to deduce the boomerang uniformity of the permutation
x 7→ x2n−2 +L(x). First, note that L(1)+ 1,L(w2)+w and L(w)+w2 are different elements, since
L(x)+x2n−2 permutes F22n . Using all the observations above, we consider the three cases that depend
on the value of a.

– If a = L(1)+ 1 then a 6= L(1) and Tr( 1
L(1)+a ) = Tr(1) = 0. Then System (8) has 4 solutions:

{(0,1),(1,0),(x0,x0 +1),(x0 +1,x0)}.
– If a = L(w2)+w (respectively a = L(w)+w2) then System (8) has at most 6 solutions, namely:
{(1,w),(w,1),(0,w2),(w2,0),(x0,x0+1),(x0+1,x0)} (respectively {(1,w2),(w2,1),(0,w),(w,0),(x0,x0+
1),(x0 +1,x0)}).

Therefore, for all a ∈ F∗22n , System (8) has at most 6 solutions. We deduce the theorem. ut

Remark 5. From the above theorem, we may come up with the idea of finding optimal permutations
among the EA-equivalence class of the inverse permutation. However, [20] shows that there are
no EA-equivalent permutations (except for the affine equivalent) to the inverse over F2m when
m ≥ 5. Furthermore, when m = 4, the only class of L(x) that makes x2n−2 +L(x) a permutation is
L(x) = αx2 +(αx)8, where α ∈ F∗24 and α5 = 1. In fact, the boomerang uniformity of this specified
EA-equivalence class is exactly 6.

Corollary 2. All permutations EA-equivalent to x2n−2 over F22n have boomerang uniformity 4 when
n is odd and 6 when n is even.

Proof. The proof is straightforward from the above remark and the fact that βx2n−2 = 4 when n is odd
and βx2n−2 = 6 when n is even (see [8]). ut

7 An algorithm for inverting a given BCT

We are interested now in a different but related problem concerning Boomerang Connectivity Tables.
This problem is stated as follows: “Given a table B, find all permutations that have B as their
Boomerang Connectivity Table.” This same problem has been recently investigated by Boura et al.
in [9] for the Difference Distribution Table (DDT). Reconstructing an S-box from its DDT or BCT
and finding how many permutations share the same table is a theoretically interesting problem that
can however also be useful to designers or cryptanalysts of block ciphers. For studying this problem,
authors in [9] introduced the notion of DDT-equivalence, applying to functions sharing the same DDT.
Similarly, we introduce here the notions of BCT-equivalence and BCT-equivalence class.

Definition 3. Two permutations F and G are said BCT-equivalent if they have the same Boomerang
Connectivity Table. Furthermore, for a given permutation F, all permutations sharing the same BCT
as F form its BCT-equivalence class, CBCT(F).



In [9], an algorithm for computing the DDT-equivalence class of a given function was provided.
However, finding a similar algorithm for computing the BCT-equivalence class of a permutation was
stated as an open problem in [8] and [13]. The main goal of this section is to present such an algorithm
that permitted us to reconstruct the BCT-equivalence class of many known permutations. Before
this, we start by presenting some simple observations concerning the nature of the BCT-equivalence
classes.

The first natural question is whether there exist permutations sharing the same BCT and if yes
then what are the possible sizes of a BCT-equivalence class. The answer to this question is rather
trivial and is given by the following proposition, directly adapted from Proposition 2 in [9].

Proposition 13. Let F be a permutation of Fn
2 and let ` denote the dimension of its linear space, i.e.,

of the space formed by all linear structures of F. Then, the BCT-equivalence class of F contains the
22n−` distinct permutations of the form

x 7→ F(x⊕ c)⊕d, c,d ∈ Fn
2.

Proof. From Theorem 1, for a,b ∈ Fn
2 \{0}, βF(a,b) equals the number of solutions (x,y) ∈ Fn

2×Fn
2

of the system of equations {
F(x⊕a)⊕F(y⊕a) = b,
F(x)⊕F(y) = b.

Then, for G a permutation of Fn
2 with G(x) = F(x⊕ c)⊕d, the system of equations{

G(x⊕a)⊕G(y⊕a) = b,
G(x)⊕G(y) = b.

⇔
{

F(x⊕ c⊕a)⊕F(y⊕ c⊕a) = b,
F(x⊕ c)⊕F(y⊕ c) = b.

has the same number of solutions as the first one, by setting x′ = x⊕c and y′ = y⊕c. This means that
for any a,b ∈ Fn

2 \{0}, βG(a,b) = βF(a,b). The rest of the proof on the minimal size of a class is
identical to the proof of Proposition 2 in [9] and is therefore omitted here. ut

Let F,G be permutations of Fn
2 with G(x) = F(x⊕c)⊕d, where c,d ∈ Fn

2. We will say that F and
G are trivially BCT-equivalent. Proposition 13, when compared to Proposition 2 of [9] shows that the
lower bound on the size of equivalence classes is the same for both DDT and BCT equivalences. Note
however that while the lower bounds for the two equivalence notions are the same the two classes
for a given permutation can be very different. Indeed, for n = 6, the DDT-equivalence class of the
quadratic permutation x 7→ x5 contains 212 trivial permutations, while its BCT-equivalence class is
much larger.

7.1 Invariance of the Sizes of BCT-Equivalence Classes Under Affine Equivalence

Another natural question is the relation of the BCT-equivalence with other classical equivalences. We
show here that the size of the BCT-equivalence classes is preserved under affine-equivalence.

Proposition 14 (adapted from [9]). Let F and G be two functions which are affine-equivalent, i.e.,
there exist two affine permutations A1,A2 such that G = A2 ◦F ◦A1. Then, the BCT-equivalence
classes of F and of G have the same size. Moreover, the class of G is composed of all A2 ◦F ′ ◦A1
where F ′ varies in the class of F.

Proof. Let L1 and L2 denote the linear parts of the affine functions A1 and A2. It was shown in [8]
that the BCT coefficients of F and G are related by

βG(a,b) = βF(L1(a),L−1
2 (b)), for all (a,b) . (14)



Let F ′ ∈ CBCT(F) be an element in the BCT-equivalence class of F and let us consider G′ =
A2 ◦F ′ ◦A1. Then, the BCT of F ′ and G′ satisfy: for all (a,b)

βG′(a,b) = βF ′(L1(a),L−1
2 (b)) = βF(L1(a),L−1

2 (b))),

where the last equality comes from the fact that F and F ′ have the same BCT. Then, we deduce
from (14) that βG′(a,b) = βG(a,b) for all (a,b). It follows that{

(A2 ◦F ′ ◦A1),F ′ ∈ CBCT(F)
}
⊆ CBCT(G).

By exchanging the roles of F and G, we deduce that both sets coincide. ut
This last result is useful for computations as it shows that is sufficient to compute the size of a

BCT-equivalence class for only one representative of the affine-equivalence class.

7.2 Relation between DDT and BCT-Equivalence Classes

To understand the way that the DDT and BCT-equivalence classes are related we have computed
and analyzed all DDT and BCT-equivalence classes for 3-bit permutations. Our experiments showed
that for n = 3 there are 924 DDT-equivalence classes and 512 BCT-equivalence classes. All DDT-
equivalence classes are trivial while the BCT-equivalence classes are partitioned as follows:

– 294 trivial classes containing 32 permutations each. Each class corresponds to a different DDT-
equivalence class.

– 168 trivial classes containing 64 permutations each. Each class corresponds to a different DDT-
equivalence class.

– 1 class containing 1344 permutations. This class corresponds to the BCT where all entries are 8.
It encloses 168 DDT-equivalence classes of 8 permutations each, that correspond to all linear
permutations for n = 3.

– 49 classes containing 384 members each. Each class encapsulates 6 different DDT-equivalence
classes containing 64 permutations. For example the BCT-equivalence class shown in Fig. 7
contains all permutations corresponding to the 6 DDTs shown in Fig. 8.

0 1 2 3 4 5 6 7

0 8 8 8 8 8 8 8 8
1 8 2 . 2 2 . 2 .
2 8 . 8 . . 8 . 8
3 8 2 . 2 2 . 2 .
4 8 2 . 2 2 . 2 .
5 8 . 8 . . 8 . 8
6 8 2 . 2 2 . 2 .
7 8 . 8 . . 8 . 8

FIG. 7: A BCT-equivalence class containing 384 permutations with 6 different DDTs.

As shown by the above computations, two permutations F and G that are BCT-equivalent are
not necessarily DDT-equivalent. Moreover, for a permutation F of F3

2 we always have CDDT(F)⊆
CBCT(F), with equality occurring for some classes. However, for higher dimensions this inclusion
does not always hold. For example, the two functions of Table 3 are (non-trivially) DDT-equivalent
but have different BCTs. More precisely, the DDT-equivalence class of these two permutations has
7 ∗ 211 members inside. These permutations can be partitioned into 28 groups of 29 permutations
each, each group belonging a different BCT class. Furthermore, each of these BCT classes has also
7∗211 permutations inside, coming here also from 28 different DDT-equivalence classes. This last
example shows that the relation between DDT and BCT-equivalences is not trivial and needs further
investigation.



0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . 2 . 2 2 . 2 .
2 . . 4 . . 4 . .
3 . 2 . 2 2 . 2 .
4 . 2 . 2 2 . 2 .
5 . . 4 . . . . 4
6 . 2 . 2 2 . 2 .
7 . . . . . 4 . 4

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . 2 . 2 2 . 2 .
2 . . 4 . . 4 . .
3 . 2 . 2 2 . 2 .
4 . 2 . 2 2 . 2 .
5 . . . . . 4 . 4
6 . 2 . 2 2 . 2 .
7 . . 4 . . . . 4

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . 2 . 2 2 . 2 .
2 . . 4 . . . . 4
3 . 2 . 2 2 . 2 .
4 . 2 . 2 2 . 2 .
5 . . 4 . . 4 . .
6 . 2 . 2 2 . 2 .
7 . . . . . 4 . 4

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . 2 . 2 2 . 2 .
2 . . 4 . . . . 4
3 . 2 . 2 2 . 2 .
4 . 2 . 2 2 . 2 .
5 . . . . . 4 . 4
6 . 2 . 2 2 . 2 .
7 . . 4 . . 4 . .

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . 2 . 2 2 . 2 .
2 . . . . . 4 . 4
3 . 2 . 2 2 . 2 .
4 . 2 . 2 2 . 2 .
5 . . 4 . . . . 4
6 . 2 . 2 2 . 2 .
7 . . 4 . . 4 . .

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . 2 . 2 2 . 2 .
2 . . . . . 4 . 4
3 . 2 . 2 2 . 2 .
4 . 2 . 2 2 . 2 .
5 . . 4 . . 4 . .
6 . 2 . 2 2 . 2 .
7 . . 4 . . . . 4

FIG. 8: The 6 DDT-equivalence classes contained in the BCT-equivalence classe shown in Fig. 7.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F(x) 0 1 2 3 4 5 6 7 8 9 10 11 13 12 15 14
F ′(x) 0 1 2 3 4 5 6 7 8 9 10 11 13 12 15 14

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F(x) 16 17 19 18 20 21 23 22 25 24 26 27 28 29 31 30
F ′(x) 16 17 19 18 21 20 22 23 24 25 27 26 28 29 31 30

TABLE 3: Two non-trivially DDT-equivalent permutations with different BCTs.

7.3 An Algorithm for Computing the Size of a BCT-Equivalence Class

We present in this section an algorithm that given a table B of size 2n×2n returns all permutations S
whose BCT is the same as B. In other words, the presented algorithm computes and returns the BCT-
equivalence class of permutations of a given table B. For this, it implements a tree-traversal search
where each level i of the tree corresponds to the possible values of S(i). Therefore, the tree depth
is 2n. The general structure recalls the algorithm given in [9] for recovering the DDT-equivalence
class corresponding to a given input table but the inner details remain quite different, because of the
differences in the nature of these two tables. More precisely, the main difference in the two algorithms
is the ComputePossibleValues subroutine (described in detail below) that at each level i computes
and stores in a list all possible values for S(i) by taking into account values for S computed at a higher
level of the search (notably the values S(0), . . . ,S(i−1)) and the constraints imposed by the input
table B.

At first sight, the difficulty for providing an algorithm for reconstructing an S-box from its BCT
similar to the one given in [9] is that in the original definition of a BCT entry, both S and its inverse
S−1 appear. However, by using the equivalent definition of β (a,b) provided in Theorem 1, that sees
this quantity as the number of solutions of a system of equations involving only S and not its inverse,
the above problem can be bypassed.

The ComputePossibleValues subroutine At line 1, en empty list L is initialised that will contain
at the end of the algorithm all possible values for S(i). For this, all possible values 0 ≤ x < 2n are
checked. A flag for each value x, f lagx is initialised at line 3. This flag equals 1 if the value is possible
and 0 otherwise. The first test in lines 4-6 verifies if the value x has not already been taken by a



Algorithm 1 Main

Input: A table B of size 2n×2n

Output: A list F of all permutations S of Fn
2 whose BCT equals B

1: F ←{ /0} . Globaly defined
2: S← [0,1,2, . . . ,2n−1] . len(S) = 2n

3: RecursiveSearch(S,1)
4: return F

Algorithm 2 RecursiveSearch

Input: A table S of size 2n, an integer i
1: if i < 2n then
2: ComputePossibleValues(S, i)
3: else
4: if BCTS = B then
5: Append S to F

6: return
7: if L 6= /0 then
8: for all x ∈L do
9: S[i]← x

10: RecursiveSearch(S, i+1)
11: else
12: return

value S( j) for 0≤ j < i. If this is the case, then x is not possible for S(i), as S is a permutation. The
following central test will be performed for all possible differences δ . The idea is to verify if for some
δ and some value k ≤ i the equation x⊕S(k) = S(i⊕δ )⊕S(k⊕δ ) is satisfied. If this equation has a
solution and at the same time B[δ ][x⊕S[k]] = 0, then x cannot be a solution for S(i). The condition at
line 10 ensures that the tested values have already been computed and are not at a lower level of the
tree.

7.4 Experiments

Using the above algorithm we were able to compute the BCT-equivalence classes of many known
permutations. In our experiments we are not interested in APN permutations, as their BCT-equivalence
class equals their DDT-equivalence class and this problem was studied in [9]. We provide here a
summary of the results:

S-boxes for n = 4 We have computed the BCT-equivalence classes for all 4-bit S-boxes. According
to the classification of De Cannière [12] there are 302 classes up to affine equivalence and further to
Proposition 14 it is enough to compute the size of the BCT-equivalence class for one representative
of the class only. Our algorithm shows that among the 302 classes, 280 are trivial, meaning that
they are only composed of permutations of the form F(x⊕ c)⊕d, for c,d ∈ Fn

2. The other 22 non-
trivial classes are summarized in Table 4. The class numbering follows the one given in Table 5.8
of [12]. A first observation is that all S-boxes that appear in Table 4 have differential uniformity
δS ≥ 8. This means that normally, all S-boxes used in practice (i.e. having δS = 4,6) have trivial
BCT-equivalence classes. Another remark concerns quadratic permutations. These permutations are
particularly interesting as many different classes of quadratic permutations were shown to have an
optimal boomerang uniformity [8, 18, 22]. There are 6 affine-equivalent quadratic classes for n = 4
and all of them have non-trivial BCT-equivalence classes. Finally, as it can be seen, all permutations
of Table 4 have BCT-equivalence classes larger or equal than the corresponding DDT-equivalence
classes. The symbol † in the table below means that we were not able to finish the computation for
the corresponding classes. The reason is that our algorithm does not work well for very dense BCTs
(i.e. with only a few zeros). However, we were able to verify that the concerned classes are not trivial,
as we found non trivial members inside.



Algorithm 3 ComputePossibleValues

Input: A table S of size 2n, an integer i
1: V ←{ /0}
2: for all x ∈ {0,1, . . .2n−1} do
3: f lagx← 1
4: for all j ∈ {0, . . . , i−1} do . S is a permutation.
5: if S( j) = x then
6: f lagx← 0
7: if f lagx = 1 then
8: for all δ ∈ {1, . . . ,2n−1} do
9: for all k ∈ {0, . . . , i} do

10: if i⊕δ ≤ i and k⊕a≤ i then
11: if x⊕S(k) = S(i⊕δ )⊕S(k⊕δ ) and B[δ ][x⊕S[k]] = 0 then
12: f lagx← 0
13: if f lagx = 1 then
14: Append x to V .

Class Representative Degree δS βS #CDDT # CBCT

1. 32 [12,0,10,2,3,5,4,7,6,9,1,11,8,13,14,15] 3 8 16 28 29

2. 33 [13,0,10,2,3,5,4,7,6,9,1,11,12,8,14,15] 3 8 16 28 29

3. 253 [4,0,1,2,3,5,6,7,12,9,8,11,10,13,14,15] 3 8 12 28 29

4. 254 [4,0,1,2,3,5,6,7,13,9,8,11,12,10,14,15] 3 8 16 28 29

5. 255 [4,0,1,3,2,5,6,7,10,13,9,11,12,8,14,15] 3 8 16 28 29

6. 256 [6,0,1,2,3,5,4,7,12,9,10,11,8,13,14,15] 3 8 16 28 29

7. 257 [6,0,1,2,3,5,4,7,13,9,10,11,12,8,14,15] 3 8 16 28 29

8. 258 [6,5,1,2,3,0,4,7,8,9,10,11,12,13,14,15] 2 8 16 28 63×214

9. 267 [4,0,1,2,3,5,6,7,12,9,10,11,8,13,14,15] 3 8 16 28 29

10. 268 [4,0,1,2,3,5,6,7,15,9,10,11,12,13,14,8] 3 8 16 28 29

11. 277 [4,0,1,6,2,5,3,7,8,9,10,11,12,13,14,15] 3 10 16 29 29

12. 292 [2,0,1,3,4,5,6,7,8,9,10,11,12,13,14,15] 3 12 16 28 †
13. 293 [8,0,10,2,3,5,1,7,4,9,6,11,12,13,14,15] 3 16 16 27 214

14. 294 [4,0,1,3,2,5,6,7,12,8,9,11,10,13,14,15] 2 16 16 27 214

15. 295 [4,0,6,2,3,5,1,7,10,9,8,11,12,13,14,15] 2 16 16 27 212

16. 296 [4,0,6,2,3,5,1,7,8,9,10,11,12,13,14,15] 3 16 16 27 213

17. 297 [2,0,1,3,6,4,5,7,8,9,10,11,12,13,14,15] 2 16 16 27 1.5×214

18. 298 [3,0,1,2,6,5,4,7,8,9,10,11,12,13,14,15] 2 16 16 27 210

19. 299 [3,0,1,2,4,5,6,7,8,9,10,11,12,13,14,15] 3 16 16 27 210

20. 300 [1,0,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 3 16 16 27 †
21. 301 [1,0,3,2,4,5,6,7,8,9,10,11,12,13,14,15] 2 16 16 26 9×29

22. 302 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 1 16 16 24 †
TABLE 4: Size of the DDT and the BCT equivalence classes of all permutations for n = 4 having a non-trivial
BCT-equivalence class. The second column corresponds to the class numbering corresponding to the classification
of [12] .

Some popular S-boxes for n = 8 We have also computed the BCT and DDT-equivalence classes for
some 8-bit S-boxes from the literature. For all of them we have found both DDT and BCT-equivalence
classes to be trivial. We give below the list of the S-boxes that we analyzed and we divide them
according to their structure, in the same way as in Table 9.7 of [23].

Mathematical : AES, BelT, E2, MAGENTA, Safer, Snow-3G
SPN : CLEFIA S0, Crypton 0.5, Enocoro, Iceberg, Khazad, Twofish ρ0, Twofish ρ1
Feistel : Crypton 1.0, Zorro, Scream, iScream, Zuc s0, CS-cipher
Lai-Massey : Fox, Fly, Whirlpool
Hill-climbing : Anubis, Kalyna π0, Kalyna π1, Kalyna π2, Kalyna π3



Pseudo-random : MD2, newDES, Turing
Unknown : Skipjack, Kuznyechik

8 Conclusion

Our results on the BCT and on the boomerang uniformity of permutations with various structures
have several consequences. First, by the fact that βS = 2 if and only if S is APN, we can immediately
see that 3-round Feistel, Lai-Massey and MISTY structures can never be APN.

As mentioned in Section 2.1, the consequences in terms of cryptanalysis can also extend further
than boomerang attacks. The guess and determine of Biryukov et al. [4] uses a property equivalent
to the fact that the boomerang uniformity of a 3-round Feistel network is always maximal. We can
therefore expect the same attack to work against Lai-Massey structures. Interestingly, our results
show that it is possible to construct a 3-round MISTY structure immune against the existence of such
probability 1 patterns, meaning that they seem to offer some inherent resilience against these attacks.
Not only are our results regarding Feistel and Lai-Massey structures very similar, the arguments
we used to derive them are also very close—independently of the choice of the linear mapping σ .
While the similarity between these two structures makes intuitive sense, we find it interesting to see it
displayed in such a clear manner.

We have encountered several cases: for 3-round Lai-Massey, 3-round Feistel and 1-round SPN,
the boomerang uniformity is maximal regardless of the subcomponents used. In the 3-round MISTY
case, the boomerang uniformity is bounded by the differential uniformity of its subfunction and, in
the Littlun case, it is bounded by the boomerang uniformity of its subfunction.

Another application of our results lies in S-box reverse-engineering [5]. In this context, the aim is
to recover the hidden structure of an S-box using only its lookup table. If an S-box has non-trivial
differential and linear properties but a boomerang uniformity equal to 2n then we can suspect that it is
a 3-round Lai-Massey or Feistel structure. Since the boomerang uniformity is preserved under the
composition with an affine permutation, this test would work even if the S-box structure is obfuscated
by such permutations—as is the case for instance in the S-box of ZUC [14].

Finally, the initial analysis of the BCT-equivalence classes problem that we provided, gives rise
to many open questions. For example, for a permutation F , is the cardinality of a BCT-equivalence
class always higher or equal to the size of the corresponding DDT-equivalence class? Further, can we
derive any bounds on the size of the BCT-equivalence classes for quadratic permutations? Finally, an
interesting direction is to further investigate the relation between the two equivalence notions.
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A Proof of Proposition 6

We prove here the bounds provided in Proposition 6 for the two types of unbalanced MISTY network
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FIG. 9: The functions Sb(x) = S−1(S(x)+b), for x ∈ Fm
2 ×Fn

2 (on the left), and for x ∈ Fn
2×Fm

2 (on the right),
where S is a 3-round unbalanced MISTY structure.

where F1 and F3 are permutations over Fn
2 and F2 is a permutation over Fm

2 . This function is displayed
at the left of Fig. 9. We denote the values of (x,y,z) after i rounds for both cases as (`i,mi,ri).

Begin with (l0,m0,r0) = (x,y,z) ∈ Fm
2 ×Fm

2 ×Fn−m
2 . Then

(l1,m1,r1) = (x,F1(y||z)l + x,F1(y||z)r) ;
(l2,m2,r2) = (F2(x)+F1(y||z)l + x,F1(y||z)l + x,F1(y||z)r) ;
(l3,m3,r3) =

(
F2(x)+F1(y||z)l + x,F2(x)+F1(y||z)l + x+F3(F1(y||z)+ x||0)l ,

F3(F1(y||z)+ x||0)r
)
.

Consider b = (b1,b2,b3) with b1 = b2 6= 0 and b3 = 0, with b1 and b2 being m-bit values and b3 being
an (n−m)-bit value. By starting with (l3 +b1,m3 +b1,r3), we get

(l4,m4,r4) = (F2(x)+F1(y||z)l + x+b1,F1(y||z)l + x,F1(y||z)r) ;
(l5,m5,r5) =

(
F−1

2 (F2(x)+b1),F1(y||z)l + x,F1(y||z)r
)

;
(l6,m6,r6) =

(
F−1

2 (F2(x)+b1),F−1
1

(
F1(y||z)+(F−1

2 (F2(x)+b1)+ x)||0
)

l ,

F−1
1

(
F1(y||z)+(F−1

2 (F2(x)+b1)+ x)||0
)

r

)
.

That is, for b = (b1,b1,0) with b1 6= 0 ∈ Fm
2 ,

Sb(x,y,z) =
(
F−1

2 (F2(x)+b1),F−1
1

(
F1(y||z)+(F−1

2 (F2(x)+b1)+ x)||0
)

l ,

F−1
1

(
F1(y||z)+(F−1

2 (F2(x)+b1)+ x)||0
)

r

)
.



Then, for a = (a1,0,0),b = (b1,b1,0) ∈ Fm
2 ×Fm

2 ×Fn−m
2 ,

S−1(S(x,y,z)+(b1,b1,0))+S−1(S(x+a1,y,z)+(b1,b1,0))
= Sb(x,y,z)+Sb(x+a1,y,z)
=
(
F−1

2 (F2(x)+b1)+F−1
2 (F2(x+a1)+b1),F−1

1

(
F1(y||z)+(F−1

2 (F2(x)+b1)+ x)||0)
)

l
+F−1

1

(
F1(y||z)+(F−1

2 (F2(x+a1)+b1)+ x+a1)||0
)

l ,F
−1
1

(
(F−1

2 (F2(x)+b1)+ x)||0)
+F1(y||z)

)
r +F−1

1

(
F1(y||z)+(F−1

2 (F2(x+a1)+b1)+ x+a1)||0
)

r

)
.

(15)

By definition, we deduce that βS(a,b) = 2nβF2(a1,b1). Indeed, since for any x ∈ T where

T = {x ∈ Fn
2|F−1

2 (F2(x)+b1)+F−1
2 (F2(x+a1)+b1) = a1}

we have F−1
2 (F2(x+a1)+b1) = F−1

2 (F2(x)+b1)+a1, Eq. (15) becomes

S−1(S(x,y,z)+(b1,b1,0))+S−1(S(x+a1,y,z)+(b1,b1,0)) = (a1,0,0).

Now, by choosing a1,b1 such that βF2(a1,b1) = βF2 , it follows that βS ≥ 2nβF2 . ut

Lemma 2. If F1 is an affine permutation then the unbalanced MISTY network on the left of Fig. 5
has the worst possible BCT.

Proof. Since F1 is affine, we can simplify the function Sb(x,y,z) as

Sb(x,y,z) =
(
F−1

2 (F2(x)+b1),y+F−1
1 (0)l +F−1

1

(
(F−1

2 (F2(x)+b1)+ x)||0
)

l ,

z+F−1
1 (0)r +F−1

1

(
(F−1

2 (F2(x)+b1)+ x)||0
)

r

)
.

By chosing a = (0,a2,a3) ∈ Fm
2 ×Fm

2 ×Fn−m
2 with a2,a3 6= 0, we get

S−1(S(x,y,z)+(b1,b1,0))+S−1(S(x,y+a2,z+a3)+(b1,b1,0))
= Sb(x,y,z)+Sb(x,y+a2,z+a3)
= (0,a2,a3)

which holds for any (x,y,z) ∈ Fm
2 ×Fm

2 ×Fn−m
2 . Therefore, βS = 2n+m. ut

We provide now the proof for the network depicted on the right of Fig. 5. The proof for this case
is very similar to the previous one and we only provide it here for the sake of completeness.

Proof. Suppose that m < n and define the function

Sb :

{
Fn−m

2 ×Fm
2 ×Fm

2 → Fn−m
2 ×Fm

2 ×Fm
2

(x,y,z) 7→ S−1(S(x,y,z)+b)

when F1 and F3 are permutations over Fm
2 and F2 is a permutation over Fn

2. This function is displayed
on the rightside of Fig. 9. We denote the values of (x,y,z) after i rounds for both cases as (`i,mi,ri).

Begin with (l0,m0,r0) = (x,y,z) ∈ Fn−m
2 ×Fm

2 ×Fm
2 . Then,

(l1,m1,r1) = (x,y,y+F1(z)) ;
(l2,m2,r2) = (F2(x||y)l ,y+F1(z)+F2(x||y)r,y+F1(z)) ;
(l3,m3,r3) =

(
F2(x||y)l ,y+F1(z)+F2(x||y)r,y+F1(z)+F2(x||y)r +F3 (y+F1(z))

)
.

Consider b = (b1,b2,b3) with b1 = 0 and b2 = b3 6= 0, with b1 being an (n−m)-bit value and b2,b3
being m-bit values. Then, by beginning with (l3,m3 +b2,r3 +b2) we get

(l4,m4,r4) =
(
F2(x||y)l ,b2 + y+F1(z)+F2(x||y)r,y+F1(z)

)
;

(l5,m5,r5) =
(
F−1

2 (F2(x||y)+(0||b2))l ,F
−1
2 (F2(x||y)+(0||b2))r ,y+F1(z)

)
;

(l6,m6,r6) =
(
F−1

2 (F2(x||y)+(0||b2))l ,F
−1
2 (F2(x||y)+(0||b2))r ,

F−1
1

(
y+F1(z)+F−1

2 (F2(x||y)+(0||b2))r
))

.



That is, for b = (0,b2,b2) with b2 6= 0 ∈ Fm
2 ,

Sb(x,y,z) =
(
F−1

2 (F2(x||y)+(0||b2))l ,F
−1
2 (F2(x||y)+(0||b2))r ,

F−1
1

(
y+F1(z)+F−1

2 (F2(x||y)+(0||b2))r
))

.

Then, for a = (0,a2,0), b = (0,b2,b2) ∈ Fn−m
2 ×Fm

2 ×Fm
2 with a2,b2 6= 0 we have

S−1(S(x,y,z)+(0,b2,b2))+S−1(S(x,y+a2,z)+(0,b2,b2))
= Sb(x,y,z)+Sb(x,y+a2,z)
=
(
F−1

2 (F2(x||y)+(0||b2))l +F−1
2 (F2(x||y+a2)+(0||b2))l ,F

−1
2 (F2(x||y)+(0||b2))r

+F−1
2 (F2(x||y+a2)+(0||b2))r ,F

−1
1

(
y+F1(z)+F−1

2 (F2(x||y)+(0||b2))r
)

+F−1
1

(
y+F1(z)+F−1

2 (F2(x||y+a2)+(0||b2))r
))

.

(16)

By definition, we deduce that βS(a,b) = 2mβF2(0||a2,0||b2). Indeed, since for any x||y ∈ T where

T = {x||y ∈ Fn
2|F−1

2 (F2(x||y)+(0||b2))+F−1
2 (F2(x||y+a2)+(0||b2)) = 0||a2},

F−1
2 (F2(x||y+a2)+(0||b2)) = F−1

2 (F2(x||y)+(0||b2))+0||a2, Eq. (16) becomes

S−1(S(x,y,z)+(b1,b1,0))+S−1(S(x,y,z)+(b1,b1,0)) = (0,a2,0).

Now, we choose a2,b2 such that βF2(0||a2,0||b2) = βF2|Fm
2

. It follows that βS ≥ 2mβF2|Fm
2

. ut

From the above lower bound, we may come up with the idea of constructing an S-box with
boomerang uniformity equal to 4 by setting m = 1 and by choosing F2 to be an APN permutation.
However, in this case, F1 would have to be an affine permutation as the only 1-bit permutations are
x 7→ x and x 7→ x⊕1. Lemma 2 can be adapted to this situation and yields the same conclusion: the
boomerang uniformity of such a 3-round MISTY network is maximal. Hence, this approach cannot
work.
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