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Abstract Threshold Implementations (TI) are secure algorithmic coun-
termeasures against side-channel attacks in the form of differential power
analysis. The strength of TI lies in its minimal algorithmic requirements.
These requirements have been studied over more than 10 years and many
efficient implementations for symmetric primitives have been proposed.
Thus, over the years the practice of protecting implementations ma-
tured, however, the theory behind threshold implementations remained
the same. In this work, we revise this theory by looking at the prop-
erties of correctness, non-completeness, and uniformity as a composable
security model. We prove that this model provides first-order and higher-
order univariate security in the glitch-robust probing model which lets
us expand the theoretic framework of TI. We first provide a link between
uniformity and the notion of non-interference, a known composable se-
curity notion building out the probing model. We then relax the notion of
non-completeness which helps the design of secure expansion and com-
pression functions. Lastly, we provide generalisations of the threshold
notions to allow for general secret sharing schemes and provide examples
of how different sharing schemes affect the security and efficiency of the
countermeasure.
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1 Introduction

In 2006, Nikova et al. published the work on threshold implementations [16].
These implementations consist of a cascaded circuit where each stage repres-
ents a Boolean function which works over secret shared values. The work shows
that if these Boolean functions attain three core properties, correctness, non-
completeness, and uniformity, the hardware implementation is secured against
any first-order Differential Power Analysis (DPA) attack [14]. Threshold imple-
mentations have become a popular countermeasure as it is easy to apply for
designers and yet requires minimal overhead on the algorithm, for example it
does not require an online random number generator. As a result, the method-
ology was used to secure several symmetric primitives [5, 12,15,18,19].

In this work, we revise the security arguments of threshold implementations
and expand its theoretical framework. We provide the following four contribu-
tions in the order they appear in the work.
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– Robust Probing Security. We show that a cascaded circuit consisting
of correct, non-complete, and uniform functions is secure against a first-
order glitch-robust probing adversary placing the threshold circuit model as a
composable security notion which builds out the probing model. We continue
by showing that the higher-order non-completeness requirement from [2]
leads to higher-order univariate probing security. Additionally, we discuss
how the injection of fresh randomness affects the security of a threshold
design.

– Linking Non-interference. We take the composable security notion Non-
Interference (NI) from Barthe et al. [1] and show that its first-order variant
implies uniformity. As a result, functions secure in the first-order NI model
can be composed with threshold functions and be guaranteed of their secur-
ity.

– Relaxing Non-completeness. The proof of probing security shows that
we can relax the property of non-completeness to first-order robust probing
security where the notion of uniformity takes the role of ensuring the com-
position of multiple probing secure functions remains secure. This relaxation
in turns allows for more efficient secure designs.

– Allowing General Sharing Schemes. We generalise the notions of cor-
rectness, non-completeness, and uniformity by allowing for multiple inputs
and outputs, and to deal with general secret sharing schemes. We then dis-
cuss how to evaluate the uniformity of a sharing which has an embedded
linear code to protect against fault attacks and we give an example of a more
efficient sharing scheme than Boolean masking when evaluating a bricklayer
of S-boxes.

2 Notation and Preliminaries

2.1 Notation

We denote stochastic variables with upper case characters and share vectors in
bold. We denote Sh(x) as the set of all valid share vectors of an element x.
Additionally, xī denotes a share vector without the ith share. Finally, we denote
sx as the number of shares (x1, ...,xsx) of the secret x.

Throughout this work, we use the words “information”, “learn”, and “en-
tropy” to more easily explain notions in an informal way. In formal definitions
and proofs, probabilistic notions such as independence are used for their math-
ematical simplicity.

2.2 Boolean Masking

In order to defend algorithms against side-channel attacks a sound and widely
deployed approach is the masking countermeasure which was introduced at the
same time by Chari et al. [4] and by Goubin and Patarin [11]. The technique
splits each key-dependent variable x in the algorithm into shares xi such that
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x =
∑

i xi over a finite field F. In case this field is binary, this masking method
is referred to as Boolean masking. If no d shares give information on the secret
we say that the masking scheme has passive threshold d.

2.3 Threshold Implementations

We go over the basic properties of threshold implementations as shown in [16].
The first property pertains to the secret sharing of a variable. We require

that a sharing provides the expected threshold level, meaning that with d + 1
Boolean shares the adversary does not get information on the sharing’s secret
with less than d + 1 shares. This leads to the property of a uniform sharing.

Definition 1 (Uniform Masking). A masking X in sx shares is uniform if
for all x ∈ F we have

P (X = x |X = x) =

{
|F|−sx+1 if x ∈ Sh(x) ,

0 else .

In words, each share vector has an equal chance to occur.
We aim to create an algorithm which works over shared variables instead of

its secrets. As such, we denote N(x) = y as the shared function of N(x) = y.
This shared function takes in the shares of x and gives back a sharing of N ’s
outputs. We can thus consider a sharing of N as the component functions fi
taking in shares of x and giving a share of y as output. We first require that
the shared function N gives a correct sharing of the output y, meaning that the
sum of the output shares

∑sy
i=1 yi is equal to y. This leads to the correctness

property.

Definition 2 (Correctness). Given x and y = N(x), for each sharing x ∈
Sh(x) we have that the reconstruction of y = N(x) is equal to y.

Due to the effect of glitches, a sample of a power trace can contain more
information than of just one share and instead contains joint information on
all gates viewing a glitch. More information and a descriptive example on the
effect of glitches is found in [16]. To this effect harming the privacy of a secret
shared algorithm, we need to carefully place registers and demand that each
computation is made using “non-complete” information of a secret. This leads
to the definition of non-completeness on the level of component functions.

Definition 3 (Non-completeness). A shared function N(x) is non-complete
if each of its component functions fi uses at most sx − 1 input shares.

Lastly, we require that all sharings in an algorithm contain enough entropy,
meaning that each sharing is uniformly distributed as in Definition 1. Since we
assume that the initial sharing of secrets introduces enough entropy such that
the sharing is uniform, we require that all subsequent functions computing on
a uniform sharing give back an output which is again uniform. This property is
given in the following combinatorial form.
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Definition 4 (Uniformity). A shared function N(x) = y is uniform if ∀x ∈ F,
∀y ∈ Sh(N(x)) :

∣∣ {x ∈ Sh(x)
∣∣N(x) = y

} ∣∣ =
|F|sx−1

|F|sy−1
.

We note that if the number of inputs and outputs of the shared function are
equal, the above property is equivalent to the shared function being a permuta-
tion.

A uniform function maps a uniform input to a uniform outputs, this is proven
in [3].

Lemma 1. If a shared function N(x) = y is uniform then the masking Y is
uniform provided the masking X is uniform.

We finalise this section by giving definitions of a threshold layer and a
threshold circuit. These definitions are meant to capture the mathematical prop-
erties of a threshold implementation.

Definition 5 (Threshold Layer). A threshold layer is a shared function N
where its input and output are synchronised. A threshold layer consists of single
output functions fi, called component functions.

We then give a definition of a threshold layer where its input is first shared
and its output is reconstructed. To capture pipelined implementations, an im-
plementation technique where a logical circuit is divided in two divided by a
register stage to allow for higher clock frequencies, we allow for the circuit to be
divided over several threshold layers.

Definition 6 (Threshold Circuit). The composition of an input encoder, a
shared realisation N, and an output decoder is a threshold circuit if N consists
of the serial composition of threshold layers Ni.

We give a graphic representation of a threshold circuit in Figure 1.
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Figure 1. Representation of a threshold circuit.
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3 Probing Secure Threshold Circuits

In this section, we discuss the first-order and higher-order univariate probing
security of threshold circuits composed of correct, non-complete, and uniform
layers. We end the section by discussing how to model fresh randomness in a
threshold circuit.

3.1 First-order Probing Security

In this section we show that a threshold circuit composed of correct, non-
complete, and uniform layers is first-order secure. To give security proofs, we
need to have a security model. Since we are interested in the security of hard-
ware implementations, we make use of the glitch-robust probing model from [10].
A probing adversary chooses up to a threshold number of wires of the algorithm’s
circuit representation to read the value from (probing). When considering the
effect of glitches, with each probe the adversary can read all the input values
which flow to that wire until a register is reached. The interested reader is en-
couraged to learn more about this model in [10], a comparison of the probing
model with other leakage models is given in [13], and the proof of the reduction
of the noisy leakage model to the probing model is found in [9]. In threshold
circuits, the glitch-robust adversary transforms into an adversary reading the
circuit’s component functions due to the component functions being walled-off
by registers.

Definition 7 (First-order Robust Probing Security). A threshold circuit
is first-order robust probing secure if for any component function in the circuit,
its input values are jointly independent of the circuit’s secrets.

We now prove that a threshold circuit is first-order secure by providing lem-
mas to increase the proof’s transparency.

The first lemma tells us that the notion of uniformity is composable. Meaning
that the composition of two uniform functions is again uniform.

Lemma 2. The composition of two uniform functions is again uniform.

Proof. We recall the definition of a uniform function N,

∀x, ∀y ∈ Sh(N(x)) :
∣∣ {x ∈ Sh(x)

∣∣N(x) = y
} ∣∣ =

|F|sx−1

|F|sy−1
.

Let N and M be two uniform functions, we want to prove that N◦M is uniform.

Fix an input secret x and an output vector z ∈ Sh(N(M(x))), we are in-
terested in |{x ∈ Sh(x) |N(M(x)) = z}|. From N being a uniform function we
know that ∣∣ {y ∈ Sh(M(x))

∣∣N(y) = z
} ∣∣ =

|F|sy−1

|F|sz−1
.
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From M being a uniform function we find that for each y ∈ Sh(M(x))

∣∣ {x ∈ Sh(x)
∣∣M(x) = y

} ∣∣ =
|F|sx−1

|F|sy−1
.

Thus by looping through each y such that N(y) = z, we find that

∣∣ {x ∈ Sh(x)
∣∣N(M(x)) = z

} ∣∣ =
|F|sx−1

|F|sy−1

|F|sy−1

|F|sz−1
=
|F|sx−1

|F|sz−1
,

which is what we needed to prove.

We then move on to show that a uniform function has some interesting prop-
erties pertaining to the distribution of its input with respect to its output and
vice versa. These independence properties are the shared function’s equivalent
of the following property of a uniform sharing proven in [3].

Lemma 3. If the masking X of X is uniform, then Xī and X are independent
for every i.

Thus the secret of a uniform sharing is independent of every set of sx − 1
shares. We now show that there is a similar property uniform functions attain
but then between its input and output. The first one says that all sets of sx − 1
input shares of a function N(x) is independent of its output secret.

Lemma 4. If a shared function N(x) = y has uniform inputs, then Xī and Y
are independent for every i ∈ [sx].

Proof. We need to prove that

P (Xī = xī, Y = y) = P (Xī = xī)P (Y = y) .

We manipulate the equation’s left side to equal its right one.

P (Xī = xī, Y = y) =
∑

N(x)=y

P (Xī = xī, X = x) (1)

= P (Xī = xī)
∑

N(x)=y

P (X = x) (2)

= P (Xī = xī)P (Y = y)

Where (1) holds due to N being a function and (2) holds due to Lemma 3 since
X is uniform.

This independence property also holds in the opposite direction. Thus all sets
of sy − 1 of output shares of N are independent of the function’s input secret.

Lemma 5. If a uniform function N(x) = y has uniform inputs, then Yī and
X with N(X) = Y are independent for every i ∈ [sy].
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Proof. We recall the definition of a uniform function,

∀x, ∀y ∈ Sh(N(x)) :
∣∣ {x ∈ Sh(x)

∣∣N(x) = y
} ∣∣ =

|F|sx−1

|F|sy−1
.

We need to prove that

P (Yī = yī, X = x) = P (Yī = yī)P (X = x) .

We start from the left equation and manipulate it to the right one.

P (Yī = yī, X = x) = P (X = x)P (Yī = yī |X = x)

= P (X = x)P (Y = y |X = x)

= P (X = x)
|F|sx−1

|F|sy−1
P (X = x |X = x) (3)

= P (X = x)
|F|sx−1

|F|sy−1
|F|−sx+1 (4)

= P (X = x) |F|−sy+1

= P (X = x)P (Yī = yī) (5)

Where (3) holds due to Definition 4, (4) due to Definition 1 and (5) due to
Lemma 1.

These last two lemmas give a very intuitive proof of security against a probing
adversary. Namely, if the adversary probes a component function of a threshold
circuit consisting of correct, non-complete and uniform threshold layers, it learns
(due to the component function’s non-completeness) at most sx − 1 shares of a
secret x. Due to the input being a uniform sharing, the probed information is
independent of x and since the threshold layer is a function, this information is
also independent of that layer’s output secret. Similarly, due to each layer being
a uniform function, the adversary learns nothing from the preceding threshold
layer’s input secret. Since the property of uniformity is composable among layers,
the previous arguments hold with any composition of layers resulting in the
probed information being independent of any of the threshold circuit’s secrets.

The formal theorem of first-order security along with its proof is given as
follows.

Theorem 1. A threshold circuit composed of layers which are correct, non-
complete, and uniform is first-order robust probing secure.

Proof. We take an arbitrary probed component function fi from the threshold
circuit and we denote the probed input shares of fi by I.

We know that fi lies in exactly one threshold layer N(x) = y. This layer
complies to the non-completeness property, thus from Definition 3 we know that
I is independent of at least one input share xi. From Lemma 1 we know that X
is uniform and thus from Lemma 3 follows that I is independent of x.
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We then know from Lemma 4 that I is independent of the output secret y.
By taking together multiple threshold layers and using Lemma 2, we know that
I is independent of any output secrets of the layers after N. Identically, I is
independent of the input secrets of the layers before N due to Lemma 5.

Thus the probed information is independent of the input or output secrets of
each threshold layer. Since these are the only sensitive variables in the threshold
circuit and since the probed component function was taken arbitrarily, the the-
orem is proven.

3.2 Higher-order Univariate Security

A generalisation on the security notions of threshold implementations has been
given in the work of higher-order threshold implementations from [2] where there
is the following definition higher-order non-completeness.

Definition 8 (dth-order Non-completeness [2]). A shared function N(x) is
dth-order non-complete if any combination of d component functions fi uses at
most sx − 1 input shares.

The above definition together with uniformity is sufficient for higher-order
univariate security which signifies security against an adversary who can only
read component functions in one threshold layer but up to d of them.

From the dth-order non-completeness we see that the adversary can not view
all the shares of an input to the probed threshold layer. As a result, if the input
sharing was uniform, the probed information would be independent of the secret
input to that layer. We thus find the following theorem whose proof is parallel
to the one for first-order security.

Theorem 2. A threshold circuit composed of layers which are correct, dth-order
non-complete, and uniform is secure against a dth-order univariate adversary.

3.3 On Randomness in Threshold Circuits

In our proof of probing security we assumed that each function was deterministic
meaning that its input completely determined its output. However, this assump-
tion could be invalidated as in practice designers inject fresh randomness in a
shared function which is a technique to make functions uniform in case a proper
uniform sharing of the function can not be found or is expensive. In threshold
circuits we model the injected randomness as an input to the requesting layer
where the sharing is created by the encoder (see Definition 6). Thus randomness
is seen as an input sharing and since these shares are not used for correctness
purposes, we define that the secret of this sharing is zero. Injecting extra ran-
domness in a layer thus corresponds to adding extra inputs and outputs to the
shared function in order to make it uniform. As a result, our security proofs
still hold when extra randomness is injected as this extra sharing corresponds to
embedding the non-uniform function into a larger potentially uniform function.
This embedding can for example be done by using a Feistel network which gives
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the “Changing of the Guards” methods by Joan Daemen [7]. In this case, the
shared function also recycles all extra randomness given to it so that it can be
used for other functions in the circuit.

We note that recycling randomness not only works for inside a cipher but also
for modes of operation as for example we can recycle the randomness used when
reconstructing the ciphertext. Thus when reconstructing the ciphertext from its
shares {C0,C1,C2}, we give back the value C0 + C1 + C2 while keeping the
shares C1 and C2 so that when we start a new cipher call, we share the plaintext
M into the shares {M+C1+C2,C1,C2}. This trick further reduces randomness
costs of a protocol.

4 Non-interference Implies Uniformity

So far we have shown that threshold circuits build out the probing model to a
serially composable security notion which allows for the easy design of secure
functions. A threshold circuit is not the only model which allows for such com-
posability, another well-known notion is “non-interference” introduced by Barthe
et al. [1]. The notion of non-interference and strong non-interference not only
allows for serial composition but also the parallel composition of functions (more
specifically, functions working on dependent inputs). Additionally, it allows for
higher-order multivariate passive protection whereas threshold circuits are spe-
cialised for first-order or higher-order univariate security. More information on
the notions of non-interference can be found in the original work. In this section
we consider first-order non-interference (1-NI) and show it implies uniformity
which opens the possibility to find more efficient threshold designs compared to
first-order non-interferent designs.

We define first-order (strong) non-interference using the probabilistic notions
given in the work of De Meyer et al. [8]. These notions consider the case where
a non-interferent component is given a uniform sharing. The goal of this section
is to prove that if a non-interferent function is given a uniform input, it will give
back a uniform output.

We further generalise first-order non-interference to work over an arbitrary
number of Boolean masked shares (previously only 2 shares were considered).
We require a simulator who can reproduce each possible probe or sets of sy − 1
output shares given a set of sx − 1 input shares.1 Intuitively, this generalisation
of non-interference grants composable security since a probed value in a function
can be simulated with all-but-one input shares, which in its turn forms the output
of a previous function. In case the latter function is also non-interferent, these
output values can again be simulated with all-but-one of its input shares. This
chains until we reach the initial sharing function. Due to the passive threshold of
the Boolean masking scheme, knowing all-but-one shares of the encoder’s output
implies that the adversary does not learn the secret of the shares.

We thus look at first-order non-interference in case the considered function
is given uniform inputs.

1 For a formal definition of probing simulation, the reader is referred to [8].
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Definition 9 (First-order Non-interference). A shared function N(x) = y
with uniform input shares is 1-NI if, for any glitch-robust probe q and any x, the
following condition holds:

∃i ∈ [sx] : P (Q = q |X = x) = P (Q = q |Xī = xī) ,

together with:

∀j ∈ [sy], ∃i ∈ [sx] : P (Yj̄ = yj̄ |X = x) = P (Yj̄ = yj̄ |Xī = xī) .

While the above notion secures the serial composition of functions, we need
a more strict property if we want to secure the parallel composition as well. This
leads to the notion of strong non-interference where we add the condition that
the output does not reveal any information on the input.

Definition 10 (First-order Strong Non-interference). A shared function
N(x) = y with uniform input shares is 1-SNI if it is 1-NI and the following
condition holds for any x:

∀j ∈ [sy] : P (Yj̄ = yj̄ |X = x) = P (Yj̄ = yj̄) .

Essentially, non-interference tells us that each set of all-but-one output shares
is independent of the function’s input secret which is a property shared with
uniform functions (see Lemma 5).

Theorem 3. If a shared function N(x) = y is 1-NI (Def 9) it is uniform.

Proof. We take an arbitrary secret x with N(x) = y and an arbitrary y ∈ Sh(y),
and we assume that X is uniform. For a uniform input sharing X, it follows from
Definition 9 that every set of all-but-one output shares Yj̄ is independent of the
input secret X since for an arbitrary x we have

P (Yj̄ = yj̄ , X = x) =
∑

x∈Sh(x)

P (X = x)P (Yj̄ = yj̄ |X = x)

=
∑

x∈Sh(x)

P (X = x)P (Yj̄ = yj̄ |Xī = xī)

=
∑

x∈Sh(x)

P (Xi = xi)P (Yj̄ = yj̄ , Xī = xī)

=
∑
xī

P (Yj̄ = yj̄ , Xī = xī) ,

which is independent of the secret X.
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We prove that the output of N is uniform. We find the following equalities
for an arbitrary j.

P (Yj̄ = yj̄ , Y = y) =
∑

N(x)=y

P (Yj̄ = yj̄ , X = x)

=
∑

N(x)=y

P (X = x)P (Yj̄ = yj̄ |X = x)

=
∑

N(x)=y

P (X = x)P (Yj̄ = yj̄)

= P (Y = y)P (Yj̄ = yj̄)

Oppositely, we find a function which is non-complete and uniform but which
is not first-order non-interferent. Take the multiplication T (a, b, c) = ab + c in
three shares.

d1 = a1b1 + a1b2 + a2b1 + c1

d2 = a2b2 + a2b3 + a3b2 + c2

d3 = a3b3 + a3b1 + a1b3 + c3

Since c is seen as an input and not as unique randomness, two output shares
can not be simulated with only two shares of each input.

As a result of the connection between uniformity and non-interference, we
find that it is possible to securely compose (sequentially) NI-secure functions
with uniform and non-complete threshold layers. This also allows designers to
secure parallel composed functions working on dependent inputs as we can use
strong non-interference for those components in case no efficient uniform function
is found.

5 Relaxing Non-completeness

We see from the proof of probing security that we can relax the notion of non-
completeness as we only require that the information viewed by an adversary is
independent of a function’s input secret given a uniform input sharing. We thus
relax non-completeness as first-order glitch-robust probing security. Effectively,
this means that we can consider multiple staged functions where intermediate
sharings need not be uniform but given a uniform input the block gives back a
uniform output and where all intermediate computations are first-order robust
probing secure. This is typically useful when considering functions which first
expand and then compress their number of shares. We give a simple example for
the function T (a, b, c, d) = abc + d where each value is shared with two shares.
We find the following way of calculating T(a,b, c,d) in multiple stages where
each stage registers the outcome of its calculation.
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Stage 1 Stage 2 Stage 3 Stage 4

e0 = a0b0c0 + d0 f0 = e0 + e1 g0 = f0 + f1 h0 = g0 + g1

e1 = a0b0c1 f1 = e2 g1 = f2 h1 = g2 + g3

e2 = a0b1c0 f2 = e3 g2 = f3
e3 = a0b1c1 f3 = e4 g3 = f4 + f5
e4 = a1b0c0 f4 = e5

e5 = a1b0c1 f5 = e6 + e7

e6 = a1b1c0
e7 = a1b1c1 + d1

The above sharing is robust probing secure as a glitch-extended probe can
either only view one share of a,b, c,d or a value masked by one share of d, in
either case the information is independent of the input secrets. Additionally, the
above sharing gives a uniform sharing h given that a,b, c and d is uniform. The
result is a sharing which has high latency but minimal randomness requirements.

6 Threshold Circuits With Different Sharing Schemes

The definitions from Section 2 only considered single input/output functions
with Boolean masking. We now give more general definitions considering mul-
tiple inputs and outputs as in [17]. We also note that from a security per-
spective, threshold circuits easily handle inputs from different sharings, for ex-
ample, a shared function taking in both a polynomial masked variable and a
Boolean masked variable. Thus we extend the definitions of correctness, non-
completeness, and uniformity to account for different sharing schemes. For this
extension, we use the notation Sh(i) to denote the masking scheme for the ith

share vector.
We start by defining the passive threshold of a secret sharing scheme.

Definition 11 (Passive Threshold). A secret sharing scheme has a passive
threshold d if all sets of up to d shares are independent of the secret.

This definitions tells us how many shares we need to view in order to get
information on the secret. With Boolean masking this threshold is equal to
sx − 1, meaning that you need to view all shares in order to know the secret.

We again look at the uniformity property of a sharing.

Definition 12 (Uniform Masking). (X(1), ...,X(n)) is uniform if there exists
a constant c such that for all (x(1), ..., x(n)) we have

P ((X(1), ...,X(n)) = (x(1), ...,x(n))
∣∣(X(1), ..., X(n)) = (x(1), ..., x(n)))

=

{
c if ∀i ∈ [n], x(i) ∈ Sh(i)(x(i)) ,

0 else .

Notice that the uniformity of a sharing is a joint distribution. As a result, we
see that different share vectors of a uniform sharing are by definition independent
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of each other. This has raised some confusion as for example in the work of
Reparaz et al. [19] there is the extra requirement on “d + 1” sharings that each
input is shared independently. However, this requirement was already included
in the original definition of uniformity and should thus also hold for general
“td + 1” sharings.

We give the general version of the three core properties. The first one tells
us that all the outputs of a shared function can be reconstructed to their cor-
responding secret outputs.

Definition 13 (Correctness). Given (x(1), ..., x(n)), for each sharing x(i) ∈
Sh(i)(x), we have that the reconstruction of (y(1), ...,y(m)) = N(x(1), ...,x(n)) is
equal to (y(1), ..., y(m)) = N(x(1), ..., x(n)).

The multiple input/output definition of non-completeness considers the pass-
ive threshold di of each sharing separately. A component function can then take
in di shares of the corresponding secret. We note, however, that when we are en-
coding shares to counter fault attacks, we are no longer working with threshold
secret sharing schemes. We thus relax the notion of non-completeness by allow-
ing each component function to take in linear-dependent shares, for example a
component function can take in all replicas of a share. The number of linear-
independent shares a component function can input is bounded by the sharing
scheme’s passive threshold.

Definition 14 (Non-completeness). A shared function N is non-complete if
every of its component functions uses at most di linear-independent shares of
the ith input where di is that input sharing’s passive threshold.

Similarly as said in the previous section, we can, instead of non-completeness,
demand that the shared function is first-order glitch-robust probing secure.

Finally, the notion of uniformity of a shared function is extended similarly to
uniformity of a sharing. A uniform function expects a joint uniform input and
in return gives back a joint uniform output. The property is again given in its
combinatorial form.

Definition 15 (Uniformity). A shared function N(x(1), ...,x(n)) is uniform
if there is a c such that ∀x(i) ∈ F,∀y(i) ∈ Sh(i)(y(j)), and (y(1), ..., y(m)) =
N(x(1), ..., x(n)) :∣∣ {∪ix(i) ∈ Sh(i)(x(i))

∣∣N(x(1), ...,x(n)) = (y(1), ...,y(m))
} ∣∣ = c .

Examples: We give some examples of threshold implementations which use dif-
ferent sharing schemes.

To gain fault protection one can duplicate shares and add an error detection
mechanism to check whether a fault occurred on one of the two replicas. How-
ever, such a duplicated sharing is not uniform by Definition 1 which considers
Boolean shares. Instead, to correctly verify the sharing, it needs to be seen as a
“duplicated Boolean sharing”, i.e., Sh(x) = {(x1, x1, x2, x2) |x1+x2 = x}. Using
Definition 12 where Sh(x) is seen as the set of all duplicated Boolean sharings
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of x, one can again verify a duplicated circuit as secure. This further general-
ises for sharings which have a linear code embedded in them. Examples of such
sharings used in implementations are given in the work of Schneider et al. [20]
where these sharings are used in order to detect injected faults. Generally, when
considering a Boolean masked value where each share is encoded using a linear
code C, we write our set of shares as Sh(x) = {x ∈ Csx | ⊕sx

i=1 xi = x}. Using
this definition of shares, we can again define the designs of [20] as uniform.

Generalising uniformity and non-completeness to work with different sharing
schemes also allows us to gain improved efficiency over the usual Boolean sharing
schemes. We give an example where we jointly share inputs which are independ-
ently processed. This example is related to the work from Coron et al. [6] where
the above definitions of non-completeness and uniformity form its theoretical
basis.

We consider two parallel S-Boxes working on different inputs.

S1

S2

a

x

Figure 2. Two shared S-boxes (S1,S2) working on separate inputs a,x.

Taking the example in Figure 2, we can share a and x using usual Boolean
masking, considering we use 2 shares we have a state of size 4|F|. However, we can
also consider the sharing Sh(a, x) = {(a + r, x + r, r)|r ∈ F} which saves a field
element in the state size. The passive threshold of the previous sharing scheme is
equal to one, thus when we consider a function which operates on both a and x,
the sharing will become expensive. In ciphers such a recombination happens at
its diffusion layer, nevertheless in most ciphers we still stand to gain. Considering
AES as an example, we see that its diffusion layer only combines four S-boxes,
namely due to MixColumns. Thus by jointly sharing four bytes in a row of an
AES state we can save in the shared state size and still work with the more
restrictive passive threshold of the sharing.

We demonstrate the above sharing considering two parallel multiplications.
Following Figure 2, we have S1(a, b, c) = ab + c and S2(x, y, z) = xy + z where
we will jointly share the inputs of S1 and S2. This gives us the following shares
(a1,a2,a3), (b1,b2,b3), (c1, c2, c3) such that a1+a3 = a and a2+a3 = x similar
for b and c. By introducing extra stages, we find the following sharing for the
two multiplications S1 and S2.

We can see that the output f is uniform given that a,b, and c is uniform
and that the computation is first-order glitch-robust probing secure. Thus by
changing our sharing scheme and trading off latency, we can reduce our shared
state size. We also note that a clever designer can change the sharing scheme
from operation to operation to potentially further reduce costs.
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Stage 1 Stage 2 Stage 3

d1 = a1b1 + c1 e1 = d1 + d2 f1 = e1 + e2

d2 = a1b3 e2 = d3 f2 = e3 + e4

d3 = a3b1 e3 = d4 + d5 f3 = e5

d4 = a2b2 + c2 e4 = d6

d5 = a2b3 e5 = d7

d6 = a3b2

d7 = a3b3 + c3

7 Conclusion

We have proven that a function shared with the threshold implementation meth-
odology is secure against a first-order glitch-robust probing adversary. From this
proof of security, we were able to provide a link between non-interference and
uniformity and to relax the notion of non-completeness. We also provided more
general definitions of correctness, non-completeness, and uniformity in order to
account for sharing schemes different from Boolean masking. The results are an
assortment of techniques to potentially increase the efficiency of shared imple-
mentations.

Further work in this line consists of using the new understanding of non-
completeness and uniformity to generalise the notions in order to provide security
against stronger attackers such as higher-order multivariate passive attacks or
fault attacks.
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