
Privacy-preserving semi-parallel logistic
regression training with Fully Homomorphic

Encryption

Sergiu Carpov1, Nicolas Gama3, Mariya Georgieva2,3, and Juan Ramon
Troncoso-Pastoriza2

1 CEA, LIST
Point Courier 172

91191 Gif-sur-Yvette cedex
France

2 EPFL
Route Cantonal

CH-1015 Lausanne
Switzerland

3 Inpher
https://inpher.io

Abstract. Background Privacy-preserving computations on genomic
data, and more generally on medical data, is a critical path technol-
ogy for innovative, life-saving research to positively and equally impact
the global population. It enables medical research algorithms to be se-
curely deployed in the cloud because operations on encrypted genomic
databases are conducted without revealing any individual genomes. Meth-
ods for secure computation have shown significant performance improve-
ments over the last several years. However, it is still challenging to apply
them on large biomedical datasets.

Methods The HE Track of iDash 2018 competition focused on solving
an important problem in practical machine learning scenarios, where a
data analyst that has trained a regression model (both linear and lo-
gistic) with a certain set of features, attempts to find all features in an
encrypted database that will improve the quality of the model. Our solu-
tion is based on the hybrid framework Chimera that allows for switching
between different families of fully homomorphic schemes, namely TFHE
and HEAAN.

Results Our solution is one of the finalist of Track 2 of iDash 2018 com-
petition. Among the submitted solutions, ours is the only bootstrapped
approach that can be applied for different sets of parameters without
re-encrypting the genomic database, making it practical for real-world
applications.

Conclusions This is the first step towards the more general feature
selection problem across large encrypted databases.

Keywords: fully homomorphic encryption · logistic regression · genome
privacy · genome-wide association study

Background

The advent of next generation sequencing and the progressive reduction of costs
in sequencing processes result in an increasing amount of available genomic data,
which is essential for better modeling the relation between genotypic traits, pre-
disposition to diseases, response to treatments, effect of drugs, and, in general, for
achieving more accurate models that enable personalized and precision medicine.
While machine learning computations on large scale genomic data present obvi-
ous outsourcing needs and can benefit from Cloud services, the high sensitivity
of genomic data and the impossibility of properly anonymizing it [10, 12] call
for effective protection methods that enable accurate and efficient computation
without leaking information about the individual genomic sequences to untrusted
cloud service providers. In order to become feasible and usable for the purpose of
personalized medicine, these protection mechanisms must optimize the trade-off
between the accuracy of the results, the efficiency of the computation, and the
security level.

In this context, the iDASH Privacy and Security Workshop has joined to-
gether experts on privacy enhancing techniques, applied cryptography and secure
computation to design and implement secure and privacy-preserving solutions
to fundamental genomics and bioinformatics problems. iDASH has pushed the
state of the art on practical secure computation by organizing a world-wide com-
petition to evaluate the most advanced techniques in the field. In particular, in
its 2017 and 2018 editions, iDASH featured a track focused on training logistic
regression models on encrypted genomic datasets, by relying on Homomorphic
Encryption (HE), which enables certain operations (additions and/or multipli-
cations) to be performed on encrypted ciphertexts without the need to decrypt
them first.

Linear and logistic regressions are one of the most common and versatile
machine learning tools used in genomic studies. These are the core of Genome
Wide-Association Studies (GWAS), and its privacy-preserving implementation
represents a first step towards effective and efficient outsourced machine learning
on genomic data. During the last years, there have been numerous approaches
to implement secure regressions, either based on secure multiparty computation
and secret sharing [3], or based on homomorphic encryption [1, 9, 11, 2, 5].

In 2016, Aono et al. [1] proposed a solution for training a logistic regres-
sion based on additive homomorphic encryption, which requires the client to
precompute some intermediate values in order to account for the limited range
of operations (additions) supported under encryption. Afterwards, most of the
finalists of the HE track in iDASH 2017 leveraged input packing and somewhat
homomorphic cryptosystems (SHE), enabling both encrypted additions and a
limited number of encrypted products, to implement the basic logistic regres-
sion block; i.e., a Gradient descent algorithm with an approximated Sigmoid
function on an encrypted matrix of input data; the sought output is the vector
of regression coefficients. Bonte et al. [2] implemented one iteration of a simpli-
fied fixed Hessian method with the Fan-Vercauteren (FV) SHE cryptosystem;
Kim et al. [11] employed a Nesterov’s accelerated Gradient descent algorithm

with the HEAAN SHE cryptosystem, which supports homomorphic rescaling
and approximate arithmetic; Chenet al. [5] implemented 1-bit Gradient descent
with a modified FV cryptosystem featuring rescaling and bootstrapping, but
the used bootstrapping introduces a notable performance penalty. In 2018, in
parallel with our work, Crawford et al. [9] introduced a fully homomorphic en-
cryption (FHE)-based method for the same problem that relies on the BGV
cryptosystem, and requires to solve a linear system of equations in the client
after decryption; despite the many optimizations used in the work, the boot-
strapping takes 75% of the computation time, and this is still notably higher
than the previous SHE-based solutions.

The HE track in iDASH 2018 has evolved in complexity, targeting a more ad-
vanced semi-parallel logistic regression algorithm that outputs the p-values of the
trained regression estimates. In this paper, we propose a solution to semi-parallel
logistic regression on encrypted genomic data based on fully homomorphic en-
cryption, that leverages on a novel framework, Chimera [4], to (a) seamlessly
switch between different Ring-LWE-based ciphertext forms, therefore combining
the advantages of each of the existing Ring-LWE-based cryptosystems to perform
each of the steps of the process in a more efficient way, and (b) is generic, in such
a way that it can cope with arbitrary input sizes (number of covariates, number
of records, and number of genomic variants), and (c) features two configurations
depending on the sought trade-off between accuracy and confidentiality.

Methods

Notation We denote by T the real Torus R/Z, the set of real numbers modulo
1. We denote by ZN [X] = Z[X]/(XN + 1) the ring of polynomials with integer
coefficients modulo XN + 1. Respectively, RN [X] = R[X]/(XN + 1) is the ring
of real polynomials module XN + 1. We denote the ZN [X]-module TN [X] =
RN [X]/ZN [X] (a.k.a R[X] mod XN + 1 mod 1). We denote also BN [X] as the
subset of ZN [X] with binary coefficients.

We provide now a brief description of the two Ring-LWE homomorphic
schemes used in this work, namely TFHE [8, ?] and HEAAN [6] (a.k.a CKKS),
both enabling error-tolerant decryption functions, and hence approximated arith-
metic, and we present then the Chimera framework [4] unifying both.

TFHE (Torus Fully Homomorphic Encryption) [8] defines messages and ci-
phertexts over the torus modulo 1 (T = R/Z), and keeps track of the noise
standard deviation α� 1, a dynamic parameter that changes after each opera-
tion. Therefore, plaintexts have ` = − log2(α) fractional bits of precision. TFHE
can represent three plaintext spaces, with various morphisms or actions to switch
between them:

– TLWE encodes individual (continuous) messages over the torus T;
– TRLWE encodes (continuous) messages over R[X] mod (XN + 1) mod 1,

which can be viewed as the packing of N individual coefficients;
– TRGSW encodes integer polynomials in ZN [X] with bounded norm.

We describe below the main algorithms that are used for the TFHE with
TRLWE encryption scheme, considering a security parameter λ = 128, and a
minimal noise standard deviation α; these parameters implicitly define a minimal
key size N ≈ max(256, 32α) (see Section 6 of [7]).

KeyGen/Phase: A uniformly random binary key s ∈ BN [X], this implicitly
defines the secret phase function ϕ : TN [X]2 → TN [X], (a, b) 7→ (b− sa).

Encrypt (µ, s, α): Pick a uniformly random a ∈ TN [X], and a small Gaussian
error e from TN [X] with standard deviation α, and return (a, s.a+ µ+ e).

DecryptApprox(c, s): Return ϕs(c), which is close to the actual message.

Decrypt(c, s,M): Round ϕs(c) to the nearest point in M.

Arithmetic operations supported by TFHE are the addition and the multi-
plication of plaintext messages. We differentiate 2 types of multiplication: (i)
internal – multiply 2 TRLWE samples and (ii) external – multiply a TRGSW and
a TRLWE sample. The external multiplication is faster and the noise increase is
smaller. The public key switch operation allows to evaluate a linear function with
integer coefficients over TLWE or TRLWE input samples. A private key switch
allows to hide the integer coefficients. The sample extract operation allows to
obtain a TLWE sample that encodes the i-th polynomial coefficient of an input
TRLWE sample with at most the same noise variance or amplitude.

Bootstrapping traditionally evaluates the rounding function (homomorphic
decryption) on the encrypted plaintext, in order to refresh a noisy ciphertext c.
The gate bootstrapping in TFHE can refresh a noisy TLWE ciphertext c, but it can
be more general, by also changing the plaintext space; i.e., the gate bootstrapping
algorithm allows to evaluate any pointwise defined negacyclic function f : T→ T
to the phase of a TLWE sample.

Finally, it is worth noting that any TLWE, TRLWE, TRGSW ciphertext, boot-
strapping key or keyswitching key given at a given precision, can always be
rounded and truncated to match the current (lower) precision α. Whenever α
varies (e.g. increases after each multiplication, or decreases after a bootstrap-
ping), we always use the last keyswitching and bootstrapping operation to switch
to a new encryption key whose entropy is as close as possible to the lower bound
N ≈ max(256, 32α) from the security estimates.

HEAAN [6] also supports approximate arithmetic; its message space is the
set of small-norm polynomials with coefficients in Rq. The least significant bits
of a message µ are considered as noise, and only its most significant bits are
required to have a correct decryption. A HEAAN ciphertext is a Ring-LWE tuple
(a, b) ∈ R2

q, where a is uniformly random in Rq, and b is close to a · s + µ,
up to a Gaussian error of small amplitude. Plaintexts and ciphertexts share
the same space, and homomorphic multiplication of two ciphertexts involves
a relinearization with a keyswitch operation, followed by a modulus-rescaling
operation that rescales both plaintext and ciphertext; this helps managing not
only the noise growth but also the plaintext growth, keeping a constant upper
bound on the message.

Chimera: unifying HEAAN and TFHE

As shown in [4], both HEAAN and TFHE use the same ciphertext space (up
to rescaling by a factor q), and the TFHE notion of phase can be extended to
HEAAN. The Chimera framework interprets the plaintext spaces as subsets of the
same module TN [X], and uses the distance function on the torus to quantify the
transformation error; then, both schemes use the same ciphertext space TN [X]2,
the same key space BN [X] and the same phase function ϕs(a, b) = b − s · a.
In this framework, decryption finds two definitions: the first one, common to
HEAAN and TFHE, considers that the phase is always close (within distance
< α) to the actual message and is a good enough approximation thereof. Then,
accumulated errors are not corrected by the cryptosystem (but rather by the
numerical stability of the homomorphically evaluated algorithm). The second
decryption, unique to TFHE, restricts the valid message space to a discrete subset
of TN [X] with a packing radius ≥ α. Then, the exact message is recovered by
rounding the phase to the closest valid message.

In this unified plaintext space TN [X], it is important to preserve the notion of
user-side slots, which corresponds to the way the end-user actually employs the
schemes. Following HEAAN formulation, homomorphic operations are presented
as N/2 SIMD (Single Instruction Multiple Data) slots containing complex num-
bers in fixed-point representation with the same public exponent and the same
precision. By interpolating the complex roots of XN + 1, the native plaintext
can be mapped to small polynomials of TN [X]. Hence, it is possible to represent
(pack) a plaintext message either with slot packing (enabling component-wise
products) or with coefficient packing (enabling convolution products), and both
representations are related to each-other by a homomorphic linear transform.

Finally, Chimera also preserves the notion of levels common to TFHE and
HEAAN: the level L ≥ 0 bounds the ratio between the ciphertext modulus and
the native plaintext modulus, and therefore the number of homomorphic opera-
tions supported by the ciphertext. Each homomorphic product reduces the level
of the resulting ciphertext; when the level 0 is reached, the ciphertext must be
bootstrapped to continue operating on it.

Semi-parallel logistic regression and our simplification

The HE track in iDASH 2018 consists in executing a semi-parallel logistic re-
gression [13] with encrypted phenotypic and genotypic features; the former are
represented as a covariate matrix X (k + 1 covariates ×n patients), and the
latter as a binary SNP matrix S (n patients ×m SNPs). The original method
in [13] is sketched in Algorithm 1; it comprises two parts: first, it builds a lo-
gistic regression model using only phenotype features (i.e. covariates matrix X)
through an iterative process (i.e. gradient descent); afterwards, it updates this
model with genotype features (matrix S). The outputs of the algorithm are the
p-values of the estimates after training the model. The obtained acceleration
factor (compared to doing individual logistic regressions) comes mainly from the

Algorithm 1 Algorithm from [13]

1: β(iters) ← Logistic regression(X,y)
2: p← σ(Xβ(iters))
3: W ← diag(p ∗ (1− p))

4: z← log
(

p
1−p

)
+ y−p

p·(1−p)

5: G← XT ·W ·X
6: U2← G−1 ·XT ·W · z

7: z∗ ← z−X · U2
8: U4← G−1 ·XT ·W · S
9: S∗ ← S −X · U4

10: s∗2 ← colsums (W · (S∗ � S∗))
11: stat←

(
z∗T ·W · S∗) /√s∗2

12: p-value← 2 · p-Norm (− |stat|)

fact that the second part is performed once and includes all genotype features
S.

In this work we have further simplified the approach proposed in [13], re-
sulting in Algorithm 2. First, let E be the subspan generated by the columns of
X ′ =

√
WX, z′ be the vector

√
Wz, z′∗ be the vector

√
Wz∗, S′ be the matrix√

WS, and S′∗ be the matrix
√
WS∗. With this change of variable, Line 7 and

9 result: z′∗ = z′ −X ′(X ′TX ′)−1X ′T z′ S′∗ = S′ −X ′(X ′TX ′)−1X ′TS′.
In other words, z′∗ and z′∗ are the orthogonal projection of z′ and S′ over E⊥.

Note that by definition, z′ = X ′β+
√
W
−1

(y−p). In this sum, the first operand
is in E by construction, and we verify that the second operand is in E⊥. Indeed,

the dot product X ′T .
√
W
−1

(y−p) = X(y−p) is the gradient of the cost function
of the logistic regression, and is null at the point of convergence. Therefore, the

projection z′∗ is equal to
√
W
−1

(y − p), and the numerator of the stat (line 11)
simplifies to the FHE-friendly expression: z∗TWS∗ = z′∗TS′∗ = (y − p)T .S

For the denominator of the stat, we note that for all j ∈ [1,m], s∗2j =

S∗Tj WS∗j =
∥∥S′∗j ∥∥2 where S′∗j is the j-th column of S′∗. By definition of the

orthogonal projection, we therefore have s∗2j =
∥∥S′j∥∥2−∥∥πE(S′j)

∥∥2 where πE(S′j)

is the orthogonal projection of S′j on E. Namely, if we call A = X ′TS′ = XTWS,

then
∥∥πE(S′j)

∥∥2 = AT
j G
−1Aj . Therefore, once we have precomputed A and G−1,

line 10 can be simplified as: s∗2 = colsums (W · (S � S))−colsums
(
A�G−1A

)
,

and any other intermediate variable that does not appear in this formula can be
removed from the pseudocode. As a bonus, for binary valued matrices S, (S � S)
is equal to S, and due to the geometric interpretation of the logistic regression
and the projections, the input matrix X can be replaced by any basis of the
same vector span without affecting the final result.

The algorithm must also be transformed to use fixed-point data type instead
of floating-point, due to the homomorphic encryption libraries we use. Hence,
input data must be carefully scaled so that no overflow happens during the exe-
cution. We have performed simulations with the optimized algorithm in order to
determine the ranges of intermediary variables. Table 1 depicts the obtained sim-
ulation results. These ranges are used for scaling input data. The inverse sigmoid
function applied on the probability vector p gives us an input range −1.6 . . . 1.8
of the sigmoid function; this input corresponds to elements of vector X · βiters.

Algorithm 2 Optimized plaintext algorithm

1: β(iters) ← Logistic regression(X,y) . Logistic regression
2: p← σ(Xβ(iters))
3: z∗ ← (y − p)T .S . Numerator
4: W ← diag(p ∗ (1− p))
5: G← XT .W.X ≈ 1

4
∗ Id (assumed that X orthogonal)

6: A← XT .W.S
7: s∗2 = colsums(W · (S � S))− colsums(A�G−1A) . Denominator

(≈ A[0] ∗
√
n− 4 ∗ colsums(A�A))

Solution 1 Solution 2
8: ri = [2 · log(|z∗i|) − log(|s∗2i|)], ∀i ∈

[1,m]

Post-process
8: stati = z∗i/

√
s∗2

i , ∀i ∈ [1,m]
9: p-valuei = p-Norm(stati), ∀i ∈ [1,m]

Post-process
9: p-valuei = p-Norm(− exp(ri/2)), ∀i ∈

[1,m]

This range is extended to −4 . . . 4 (σmin . . . σmax) to allow a margin of error. By
mapping this range to the plaintext space of Torus based homomorphic libraries,
the scaling factor 1/16 of X · βiters is obtained. Note that only the −1/4 . . . 1/4
part of Torus is used in our computations because of the negacyclic property
of functions evaluated by the TFHE bootstrapping procedure. Propagating the
range of X · βiters backward and forward in Algorithm 2 the scaling factors for
other variables (including input data) are obtained.

FHE algorithm

The proposed solution is split into 3 sequentially executed parts, which are im-
plemented using different homomorphic encryption techniques and libraries. As
shown in Algorithm 2, our solution features two options, depending on the sought
trade-off between confidentiality and accuracy. The first solution outputs both
numerator and denominator of the stats, while the second solution outputs only
the quotient, which is equivalent to the p-value. We explain in detail each part
and the encryptions of input data in the next sub-sections.

Step1 – Logistic regression Algorithm 3 illustrates a more explicit version of
the implemented logistic regression algorithm. We have used the TFHE library
[8] to homomorphically execute this algorithm.

Input data encryption. Input covariates matrix X and outcome vector y are
encrypted using different encoding and HE scheme types. Each column of the
covariate matrix is encrypted in a TRGSW ciphertext. A total of k ciphertexts are
used for matrix X. The outcome vector is encrypted in a single TRLWE cipher-
text. Besides these encryptions we use additional ones used by the bootstrapping

Algorithm 3 Logistic regression – homomorphic implementation

Require: X – covariates matrix, y – outcome vector
Require: α – step, iters – number of iterations
Ensure: X · β(iters)

1: for j = 0 . . . k − 1 do . Compute initial beta α ·XT · (y − σ(0)) and α ·Xt · y
2: ej ←

∑n−1
i=0 α ·Xi,j · yi

3: β
(0)
j ←

∑n−1
i=0 α ·Xi,j · (yi − 1/2)

4: end for
5: for t = 1 to iters do
6: for i = 0 . . . n− 1 do . u = X · β
7: ui ←

∑k−1
j=0 Xi,j · β(t−1)

j

8: end for
9: if t ≡ iters then

10: return ui, i = 0 . . . n− 1 . coefficients of result X · β(iters) ≡ (ui)i=0...n−1

11: end if
12: for j = 0 . . . k − 1 do . α ·XT · σ(u)
13: ∆j ←

∑n−1
i=0 α ·Xi,j · σ (ui)

14: β
(t)
j ← β

(t−1)
j + ej −∆j

15: end for
16: end for

procedure. For the sake of simplicity we omit input data scaling factors, men-
tioned in previous subsection, from our discourse. In what follows we describe
the encoding we use:

– j-th column of matrix X is coefficient packed into a polynomial PX.,j
(Z) =∑n−1

i=0 Xi,j · Zi and encrypted in a TRGSW ciphertext (L1 and L2)
– vector y (scaled by step α) is coefficient packed in reverse order into a polyno-

mial Py (Z) = α ·
∑n−1

i=0 yn−i−1 ·Zi and encrypted in a L2 TRLWE ciphertext
– test polynomials for gate bootstrapping encode sigmoid function (defined

over the range [σmin, σmax] and discretized on d = bN/kc−1 levels) multiplied
by matrix X rows and encrypted as L2 TRLWE ciphertexts:
• TP i (Z) =

∑d
q=0 α·σ (σmin + q/d · (σmax − σmin))

∑k−1
j=0 Xi,j ·Zq·k+j−N/2

TFHE implementation. Subsequently we explain how each operation in Algo-
rithm 3 is performed using the TFHE library.

Line 2. Firstly, L2 encryptions of matrix X column (PX.,j) and outcome vec-
tor (Py) are multiplied together (external product). This results in an encryption

of
∑n−1

i=0 α ·Xi,j · yi ·Zn−1 + The (n− 1) -th coefficient of this polynomial is
the scalar value ej . The coefficient extraction procedure is used to obtain a L2
TLWE encryption of ej .

Line 3. This operation is similar to the previous one except that: (i) be-
forehand plaintext α ·

∑
i
1/2 · Zi (note that 1/2 ≡ σ (0)) is subtracted from the

encryption of Py and (ii) a key-switching procedure is used to obtain a L1 TRLWE

encrypting β
(0)
j from the L2 TLWE sample after the coefficient extraction. A copy

of L2 TLWE encryption of β
(0)
j is kept for update performed in algorithm line 14.

Line 7. L1 TRLWE encryption of β
(t−1)
j (from previous iteration) and L1

TRGSW encryption of PX.,j
are multiplied together for all j = 0 . . . k−1. Encryp-

tions of polynomials
∑

iXi,j · β(t−1)
j ·Zi are obtained. These L1 TRLWE cipher-

texts are summed-up and an encryption of polynomial
∑

i

∑
j Xi,j ·β(t−1)

j ·Zi ≡∑
i ui · Zi is obtained. Coefficient extraction and key-switching procedures are

used afterwards to obtain n individual L0 TLWE encryptions of ui, i = 0 . . . n−1.
These L0 TLWE ciphertexts represent logistic regression algorithm outputs over
the last iteration.

Line 13. The blind rotate procedure (a fundamental building block of the
TFHE gate bootstrapping) allows to multiply a polynomial TP (Z) (called test
polynomial) by Zm where m is the message encrypted in a TLWE ciphertext.
Moreover, the resulting TRLWE ciphertext noise (encrypting polynomial TP (Z)·
Zm) is independent of the noise of input TLWE ciphertext encrypting m.

In this step of algorithm we use the blind rotate procedure n times to obtain
TRLWE encryptions of TP i · Zui for i = 0 . . . n − 1. Observe that TP i · Zui ≡∑k−1

j=0 α ·σ (ui) ·Xi,j ·Zj + . . . thanks to the special form of test polynomials TP i.
Summing up these ciphertexts (i.e. obtaining

∑
i TP i · Zui) and extracting the

first k coefficients from the result we obtain k L2 TLWE ciphertexts encrypting
∆j , j = 0 . . . k − 1.

Line 14. Finally, we update the L2 TLWE encryptions of β
(t−1)
j , j = 0 . . . k−

1, by adding ej and subtracting ∆j obtained in previous step.

Step2 – Incorporate S into the regression model The second part of
the Algorithm 2 consists of large-scale linear algebra computation in order to
integrate the matrix S in the regression model calculated in the previous phase.
We use the following input data encryptions with parameters given in Table 3:

– X is encrypted as (k + 1) ∗ n individual TRGSW samples (level L2),
– y is encrypted in n TRLWE samples (level L2),
– S is encrypted as TRGSW matrix sample packed in slots by line in level L3.

We describe now the homomorphic evaluation of each step of Algorithm 2.
Line 2. We first bootstrap the probability vector to a fixed level, and we

use Chimera framework described in [4] to simultaneously change the key size
to support lower noise, convert TFHE into HEAAN ciphertexts, and evaluate
the sigmoid function homomorphically. Although this bootstrapping takes more
than 90% of the evaluation time, it has the advantage that the encryption of
the database S is independent from the previous computations: we can iterate
the initial logistic regression loop as many times as it is needed for the model
to converge, which is required to support a larger number of features. We use a
single coefficient per TRLWE ciphertext at this step (no packing).

Line 3. The coefficients of S are packed row-wise to form a matrix of n ×
(dm/4096e) of TRGSW ciphertexts. The external homomorphic product between
a single-coefficient TRLWE ciphertext and a packed TRGSW ciphertext provides
4096 slots of z∗ at once. For m = 10643 and n = 245, we need a total of n × 3

external products. At this depth, the TRGSW-TRLWE external product is indeed
at least twice as fast as its internal TRLWE-TRLWE equivalent, whenever one of
the operand is a fresh ciphertext. At this step, we support either the coefficient
packing or the slot packing, depending on the encoding of the needed output.

Line 4. The result is a vector of n TRLWE ciphertext, each one holds a single
coefficient wi = pi − p2i , each square uses one TRLWE internal product.

Line 5. We need the matrix G and its inverse to fulfill the algorithm. How-
ever, inverting G is a relatively large depth operation, so we considered two
approaches: (1) we note that G = 1

4Ik+1 + ε where the norm of ε is very small
(unless the input dataset is exceptionnaly biased in one direction). Thus, G−1

can be approximated with its Taylor series: 4(Ik+1−ε+ε2− . . .). On the iDASH
dataset, G−1 = 4Ik+1 already provides a sufficient approximation. (2) the sec-
ond approach consists in evaluating the Gaussian elimination loop (or better in
this case, the Cholesky factorization) using one TFHE bootstrapping everytime a
coefficient needs to be inverted. Since G is a very small matrix (k � n), this step
remains very fast even if an individual bootstrapping lasts a few seconds. This
bootstrapping uses look-up tables to deal with the non-linearity of the inverses
and simultaneously refreshes the noise of ciphertexts to the same level through-
out the inversion loop. If the required precision is too large for look-up tables,
we can switch to binary gates evaluating the IEEE754 floating-point division
circuit. The coefficients of G−1 are computed as individual TRLWE ciphertexts.

Line 6. As in Step 3, the coefficients of X are stored as individual TRGSW
ciphertexts, and the coefficients of S are packed row-wise (using the same ci-
phertext as in Step 3). The resulting k ×m matrix is row-packed.

Line 7. Since S has binary entries, the element-wise product S � S is equal
to S, so only the element-wise product on the right needs to be computed. If
A is slot-packed, this hadamard product corresponds to the internal product of
TRLWE. If A is coefficient packed, the squaring is merged to the next non-linear
function (here, the logarithm), and handled via the HEAAN bootstrapping.

Depending on the choice of packing (coefficients or slots), the final output of
the second phase is either (a) z∗ and s∗2 packed as slots (which can be decrypted
and divided as postprocessing to reveal the t-stat), or (b) z∗ and A coefficient-
packed, ready to pass to phase 3.

Step3 – Stats computation in the logarithmic domain The target out-
come of the protocol is the vector of p-values of the obtained results. It must
be noted that the p-values are a monotonic (but non-polynomial) function of

the t-stats
z∗
i

s∗i
2 , so they both convey the exact same information. Therefore, the

computation of the p-values themselves under encryption would produce an un-
justified overhead, whereas computing the t-stats and releasing them is optimal
in terms of security/efficiency. Consequently, depending on the desired trade-off
between accuracy and leakage, it is possible to produce the target p-values by
computing the t-stats either (a) in the client-side, after decrypting (and leak-
ing) both numerator and denominator separately, or (b) by performing a third
homomorphic step that leaks only the t-stats. For option (a), the second phase

outputs the slot-packed version of both numerator and denominator. Here, we
detail option (b), for which we leverage on SIMD operations on HEAAN cipher-
texts, taking as input the coefficient-packed (fully packed) versions of z∗i and s∗i
from phase 2.

HEAAN-based implementation This phase is focused on the computation of
line 8 of Solution 2 in Algorithm 2, which takes as inputs the terms z∗i and s∗i
as fully-packed level 0 RLWE encryptions. There are two options to compute
the t-stats: either approximate the inverse of the denominator and multiply
numerator and inverted denominator, or apply a logarithm and avoid further
homomorphic products that will further reduce the precision of the results due
to the approximate arithmetic used in HEAAN. Hence, we have chosen the second
approach. This phase applies the following operations:

1. As the logarithm computation requires more levels than what the input
encryptions can withstand, the first step is key-switching both encryptions z∗i
and s∗i to an expanded key with higher-degree polynomials (from N0 = 4096 to
N1 = 32768), resulting in (sparsely) coefficient-packed ciphertexts. At this stage,
the encryptions are completely exhausted, so a bootstrapping is needed to keep
computing on them.

2. HEAAN boostrapping is applied to the expanded ciphers, hence achieving
level 1 encryptions. After the bootstrapping, we keep slot-packing, in order to
perform the coefficient-wise computation of the squaring and logarithm opera-
tions.

3. The numerator z∗i is still a signed number, so we compute the logarithm
of the absolute value by resorting to a least-squares symmetric (even-degree)
polynomial approximation of the logarithm. In order to improve on the error and
due to the fact that most of the relevant inputs should be far from the vertical
asymptote, we use as objective function a smoothed version of the logarithm,
defined as

smoothed logabs(x) =

{
log(|x|), if |x| > th
ax2 + b, otherwise,

where th < 1 is a pre-calculated threshold adapted to the dataset features, and
a and b are computed to make the function continuous and differentiable at
x = th. For the implementation, we use a degree-8 polynomial approximation of
smoothed logabs in the plausible range for the numerator values.

4. The denominator term s∗i is first squared and centered, in order to arrive at
an encryption of s2∗i , and then a least-squares degree-8 polynomial approximation
of the smoothed logarithm is applied to the result.

5. The numerator is rescaled to the same quantization factor as the denom-
inator, and both are homomorphically subtracted, hence achieving the desired
encrypted result stati = z∗

i√
s∗2

i

, that can be sent to the client for decryption.

Results

Implementation details

The three parts of the homomorphic algorithm were implemented as separate
applications which are executed one after another. The first application per-
forms the logistic regression part and outputs encryptions of X · β(iters). The
second one does the generalization of the previous logistic regression model with
genotype data S. Finally, the last application computes the quotients on the
stats, that can be used to obtain the sought p-values. Besides these applications
performing homomorphic computation several helper applications were imple-
mented for generating keys, encrypting input data and decrypting the result.
Data exchange (ciphertext data) between application executions is done via the
file-system. That is, each application reads input data from files and writes the
results to files.

C/C++ programming language was used for implementation. Two open-
source HE libraries are employed: (i) TFHE library4, in particular the torus generic

branch, (ii) HEAAN library5. Besides these two HE libraries, a prototype of the
Chimera framework[4] was coded for the purpose of this project.

Benchmarks and Dataset details

The dataset used for the HE Track of iDASH 2018 has the following features:
m = 10643 SNPs, n = 245 patients, k = 3 covariates. The test environment is
an Amazon T2 Xlarge VM, with 4 vCPU, 16GB memory, and 200GB of disk
space. We have also tested on a m5.24xlarge VM with 96 vCPU machines to
verify that the execution scales with the number of CPU without increasing the
memory.

Table 2 shows the running time and the used memory for our solution, broken
down in each of the steps. The size of the input encryptions is 5GB, including
the encryption of X, y and S. The size of the output is 640KB including the
encryption of the numerator and the denominator. The ecryption parameters
are given in Table 3. The numerical accuracy is depicted in Figure 1, that plots
the homomorphic versus plaintext computation of the stat coefficients.

Discussion

The main part of the computation is consumed during the bootstrapping at
the beginning of step 2 (more that 90% of the total evaluation time). But this
bootstrapping allows us to use different values for k and for the number of
iterations during the logistic regression phase; hence, it makes the solution much
more generic than other approaches (as the depth of our circuit does not depend
on the these parameters). Additionally, this is the only bootstrapped solution

4 https://github.com/tfhe/tfhe
5 https://github.com/snucrypto/HEAAN

submitted to the iDASH competition that can be applied for different sets of
parameters without re-encrypting the genomic database, making it practical for
real-world applications.

One possibility to further improve the running time is to use the HEAAN
bootstrapping instead of the several TFHE bootstrappings in Step 2 of the so-
lution.

Conclusions

The HE Track of iDash 2018 competition succeed the improvement of the actual
state of art for privacy-preserving computation on genomic data. In this work
we proposed fully homomorphic based solution, one of the most generic solution,
that can be used with different sets of parameters. This is the first step towards
the more general feature selection problem across large encrypted databases.

References

1. Aono, Y., Hayashi, T., Trieu Phong, L., Wang, L.: Scalable and secure logistic
regression via homomorphic encryption. In: Proceedings of the Sixth ACM Con-
ference on Data and Application Security and Privacy. pp. 142–144. CODASPY
’16, ACM, New York, NY, USA (2016)

2. Bonte, C., Vercauteren, F.: Privacy-preserving logistic regression training. BMC
Medical Genomics 11(4), 86 (Oct 2018)

3. Boura, C., Chillotti, I., Gama, N., Jetchev, D., Peceny, S., Petric, A.: High-precision
privacy-preserving real-valued function evaluation. In: Financial Cryptography and
Data Security - FC 2018 (2018)

4. Boura, C., Gama, N., Georgieva, M.: Chimera: a unified framework for b/fv, tfhe
and heaan fully homomorphic encryption and predictions for deep learning. Cryp-
tology ePrint Archive, Report 2018/758 (2018)

5. Chen, H., Gilad-Bachrach, R., Han, K., Huang, Z., Jalali, A., Laine, K., Lauter,
K.: Logistic regression over encrypted data from fully homomorphic encryption.
BMC Medical Genomics 11(4), 81 (Oct 2018)

6. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: EUROCRYPT 2018, Proceedings, Part I. LNCS, vol.
10820, pp. 360–384. Springer (2018)

7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast Fully Homo-
morphic Encryption over the Torus. IACR Cryptology ePrint Archive 2018:421

8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: ASIACRYPT 2016, Pro-
ceedings, Part I. LNCS, vol. 10031, pp. 3–33. Springer (2016)

9. Crawford, J.L.H., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work
with fhe: The case of logistic regression. In: Workshop on Encrypted Computing
& Applied Homomorphic Cryptography (2018)

10. Gymrek, M., McGuire, A.L., Golan, D., Halperin, E., Erlich, Y.: Identifying per-
sonal genomes by surname inference. Science 339(6117), 321–324 (2013)

11. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Medical Genomics
11(4), 83 (Oct 2018)

12. Lippert, C., Sabatini, R., Maher, M.C., Kang, E.Y., Lee, S., Arikan, O., Harley,
A., Bernal, A., Garst, P., Lavrenko, V., Yocum, K., Wong, T., Zhu, M., Yang,
W.Y., Chang, C., Lu, T., Lee, C.W.H., Hicks, B., Ramakrishnan, S., Tang, H.,
Xie, C., Piper, J., Brewerton, S., Turpaz, Y., Telenti, A., Roby, R.K., Och, F.J.,
Venter, J.C.: Identification of individuals by trait prediction using whole-genome
sequencing data. Proceedings of the National Academy of Sciences 114(38), 10166–
10171 (2017)

13. Sikorska, K., Lesaffre, E., Groenen, P.F., Eilers, P.H.: Gwas on your notebook: fast
semi-parallel linear and logistic regression for genome-wide association studies.
BMC bioinformatics 14(1), 166 (2013)

-10

-5

 0

 5

 10

-10 -5 0 5 10

actual vs. computed
y=x

Fig. 1. Accuracy. Expected versus computed stat vector

variable avg stdev min max

p 0.440816 0.0975715 0.176397 0.853487
W 0.236977 0.0201871 0.125047 0.25
z∗ -3.33092 7.36068 -30.9426 31.2008
G 0.0577846 0.0953495 -0.011997 0.236977
A 0.0621965 0.301255 -0.317312 2.236
s∗2 2.44243 4.11085 0.111961 14.5044
ri 0.200039 1.84459 -13.7207 4.36158

p-value 0.310218 0.24083 0 0.999163
Table 1. Data ranges of intermediary variables in the plaintext Algorithm 2. The
average, standard deviation, minimum and maximum statistics are shown.

Steps Timing (4 cores) Timing (96 cores) RAM

KeyGen Solution 1 5.5 mins 2.0 mins 4.4GB
KeyGen Solution 2 6.2 mins 2.5 mins 14GB
Encryption 7.2 mins 1.3 mins 8.6GB
Step 1 6.5 mins 0.5 mins 5.6 GB
Step 2 3h00 3.5 mins 7.9 GB
Step 3 32 mins 10 mins 15GB
Total Cloud run time Solution 1 3h06 4 mins 7.9 GB
Total Cloud run time Solution 2 3h38 14 mins 15 GB

Table 2. Timing and memory results

Step Level Type n/N stdv Security

1 L0 LWE n = 612 2−15 ≈ 128
L1 RLWE N = 2048 2−53 ≈ 128
L2 RLWE N = 8192 2−53 � 128

2 L0 LWE n = 612 2−15 ≈ 128
L1 RLWE N = 4096 2−32 � 128
L2 RLWE N = 4096 2−48 � 128
L3 RLWE N = 4096 2−64, � 128
L4 RLWE N = 4096 2−80, � 128
L5 RLWE N = 4096 2−105 ≈ 130

3 L0 RLWE N = 4096 3.2/q with q = 232 � 128
L1 RLWE N = 32768 3.2/q with q = 2581 ≈ 128

Table 3. Encryption parameters, also used to encrypt TRLWE or TRGSW ciphertexts.

