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Abstract

Homomorphic encryption (HE) schemes enable the processing of encrypted data and may be used
by a user to outsource storage and computations to an untrusted server. A plethora of HE schemes has
been suggested in the past four decades, based on various assumptions, and which achieve different
attributes. In this work, we assume that the user and server are quantum computers, and look for HE
schemes of classical data. We set a high bar of requirements and ask what can be achieved under these
requirements. Namely, we look for HE schemes which are efficient, information-theoretically secure,
perfectly correct, and which support homomorphic operations in a fully compact and non-interactive
way. Fully compact means that decryption costs O(1) time and space. In contrast to the legacy quantum
one-time pad scheme, our scheme is computation agnostic. That is, when delegating computations, the
user can remain utterly oblivious to the implementation method chosen by the cloud.

We suggest an encryption scheme based on random bases and discuss the homomorphic properties
of that scheme. One of the advantages of our scheme is providing better security in the face of weak
measurements (WM). Measurements of this kind enable collecting partial information on a quantum state
while only slightly disturbing the state. We suggest here a novel QKD scheme based on random bases,
which is resilient against WM-based attacks. We demonstrate the usefulness of our scheme in several
applications. Notably, we bring up a new concept we call securing entanglement. We look at entangled
systems of qubits as a resource, used for carrying out quantum computations, and show how our scheme
may be used to guarantee that an entangled system can be used only by its rightful owners. To the best
of our knowledge, this concept has not been discussed in previous literature.
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I. INTRODUCTION

Delegation of computation, while preserving the confidentiality of the data (and sometimes even the
program), is a challenging practical task that has kept researches busy ever since it was brought up in
1978 by Rivest, Adelman, and Dertouzos [RAD78]. That problem addresses scenarios similar to the
following. A user is holding information in the form of a string x. The user wishes to use the services
of a remote server, which will be referred to as the cloud, to store x and perform computations over the
stored data using computing engines provided by the cloud. Assume that x is confidential, and hence,
the user does not want to share x with the cloud infrastructure enterprises. For example, the user may
be a financial company and x some information regarding the financial activity of the company. The
company wishes to use the services of an untrusted cloud to store the data and perform computations
over the data.

In particular, there can be much use in information-theoretically secure (IT-secure) schemes that would
enable such a delegation of data and computations. The security of computationally secure schemes
is based on (a) unproven assumptions regarding the computational hardness of specific mathematical
problems, and (b) the assumption that the computing power of the adversary is insufficient for solving
instances of these assumed-to-be-hard mathematical problems. The security of IT-secure schemes is free
of such assumptions and is derived from information theory.

Existing solutions to the problem of the delegation of computation are based on either the distributed
approach of secure multiparty computation (MPC, see [CDN15]) or the single-server approach of ho-
momorphic encryption (HE, see [AAUC18]). MPC-oriented solutions often achieve IT-security, but to
support the processing of any function over the encrypted data, they require ongoing communication
between the servers among whom the ciphertext is distributed. HE-oriented solutions typically require
no communication, but to maintain IT-security, they can support the processing of only a limited set of
functions over the encrypted data. Fully homomorphic encryption (FHE) schemes, which may support
the processing of any function over the encrypted data, can only achieve computational security.

HE schemes may be described by a collection of four algorithms. We denote by K,M, and C the key
space, the message space and the ciphertext space of a given scheme, respectively. The algorithms are
as follows.
• Gen – A key generation algorithm which, given a security parameter input, n, outputs a key, k ∈ K.
• Enc – An encryption algorithm which, given a plaintext input, x ∈ M, and a key, k, outputs a

ciphertext c ∈ C. We will write c =Enck(x) to emphasize that the encryption depends on k.
• Eval – An evaluation algorithm which, given a ciphertext input, c =Enck(x), and a function, f ,

outputs F (c), where F (c) is an encryption of f(x) using the same key. Namely, F (c) =Enck
(
f(x)

)
.

• Dec – A decryption algorithm which, given a ciphertext input, c =Enck(x), and a key, k, outputs x.
HE schemes may be classified according to their level of security, complexity, and other attributes.

Informally, a scheme is secure if the ciphertext leaks a negligible amount of information regarding
the plaintext. Security is typically formalized in the IT or computational setting using standard privacy
definitions. The collection of functions f , for which Eval is defined, may be different for different
schemes. If Eval is defined for all Boolean functions, then the scheme is fully homomorphic. The first
FHE scheme was presented in [Gen09], followed by several revisions and further solutions [VDGHV10],
[GHS12], [BP16], [GHS16], [XWZ+18]. If Dec is efficient (i.e., poly-time), the scheme is compact. If
Dec requiresO(1) time and space, the scheme is fully compact. In some schemes (e.g., most quantum one-
time pad based schemes, see below), the evaluation algorithm may output an encryption of the evaluated
plaintext that uses a different key. Namely, on input c = Enck(x), Eavl outputs F (c) = Enck′(f(x)), an
encryption of f(x) using a different key, k′. Typically, in such schemes, k′ depends on f , and decryption
of the evaluated ciphertext requires the user to modify her keys according to f . We stress that such
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schemes cannot achieve full compactness.

Quantum computers threaten the security of computationally secure schemes. If built in-scale, they
may allow feasible solutions to problems that are currently considered impractical to solve. For example,
Deutsch and Jozsa showed in 1992 that quantum computers could solve certain problems exponentially
faster than classical computers [DJ92]. Shor suggested in 1994 algorithms that may be invoked by
quantum computers to compute discrete logarithms and factor large integers in polynomial time [Sho94],
two problems that are considered computationally hard and stand in the basis of many commonly used
computationally secure cryptographic schemes. In 1996, Grover presented a quantum search algorithm
that finds a desired record in an N records database in O(

√
N) steps [Gro96]. Bennett and Brassard

[BB84] presented a quantum key distribution (QKD) protocol, which enables two distant parties to agree
on a random key with IT-security. These are but four well-known algorithms out of numerous results
established in the growing field of quantum computation [Jor18].

In light of these results, it is natural to ask if an IT-secure FHE scheme may be achieved using quantum
computers. In 2014, it was shown by [YPDF14] that it is impossible to construct an efficient IT-secure
quantum FHE (QFHE) scheme. Specifically, the size of the encryption of an IT-secure QFHE scheme
must grow exponentially with the input size. The non-existence of efficient IT-secure QFHE may also be
deduced from different arguments, as in [ABC+19]. Either way, efficient IT-secure encryption schemes
can be used to homomorphically evaluate only a subset of all possible functions. Such schemes are
quantum homomorphic encryption (QHE) schemes, e.g., [RFG12], [Lia13], [TKO+16], [OTF18]. Other
works use computationally secure FHE schemes to construct computationally secure QFHE schemes.
E.g., [BJ15], [DSS16], [ADSS17], [Mah18], [Bra18]. Quantum schemes with homomorphic properties
are often based on the quantum one-time pad (QOTP) encryption scheme, suggested in [AMTdW00].
There, Pauli gates are randomly applied to the qubits to obtain IT-secure encryption.

Different schemes are based on different assumptions regarding the capabilities of the parties. QHE
schemes typically assume that the server has full quantum capabilities. Assumptions regarding the
quantum abilities of the user vary on a broad spectrum between a classical user (with no quantum abilities
at all) and a fully quantum user. When the user has (at least some) quantum abilities, the information
x held by that user may either be classical or quantum (of course, if the user has no quantum abilities,
x can only be classical). In this work, we assume that both the user and the server have full quantum
abilities. Namely, they both can: (a) generate qubits in the computational basis; (b) manipulate qubits
using quantum logic gates; (c) transmit qubits between each other; (d) measure qubits. We assume that
the information held by the user is classical. The function f that is to be homomorphically evaluated
over x may either be a classical or quantum algorithm.

In this work, we look for QHE schemes that enable users to delegate classical data to be stored and
processed by an untrusted cloud and have the following properties.
• IT-secure.
• Efficient. I.e., all algorithms are poly-time.
• Fully compact. I.e., the decryption algorithm requires O(1) time, regardless of f . This means that

the user is not required to apply any transformations to the encryption keys to decrypt the processed
data correctly.

• Perfectly correct. I.e., the ciphertext decrypts to the right plaintext with probability 1 (we ignore
errors that may arise due to the nature of noisy physical implementations of quantum schemes).

• Non-interactive. I.e., no client-server interaction is allowed other than the user sending c =Enck(x)
to the server, and the server replying with F (c) =Enck

(
f(x)

)
.
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We ask which operations may be homomorphically applied to encrypted data under these restrictions.
Ambianis et al.’s QOTP scheme, suggested in [AMTdW00], was used to construct QHE scheme that
have some of the properties listed above. Several such schemes are reviewed below.

Quantum key distribution (QKD). QKD schemes were the first sign of the significant breakthroughs to
come in quantum computing. In their seminal work from 1984, Bennett and Brassard [BB84] presented
a scheme (hereafter the BB84 protocol) that utilizes a quantum mechanics phenomenon to enable two
distant parties, Alice and Bob, to agree on a random key without relying on any computational hardness
assumptions. This result indicated that quantum computers could perform tasks that could not be carried
using classical computers.

The BB84 scheme was not only a theoretic breakthrough that paved the way for further theoretic dis-
coveries in the field of quantum computing but was also found to have far-reaching practical applications,
as it is feasible to implement it using current-day technology. Private quantum-computing companies (e.g.,
IDQ and AUREA Technology) offer today quantum-based IT-secure key-exchange services, based on the
BB84 protocol, or newer variations of it. Their users include government agencies, financial institutions,
companies with distributed offices, and data centers worldwide.

The security of the BB84 protocol (and the following variations of it) is information-theoretic, i.e., it
assumes no limitations on the possible computing power of the adversary. The security of these protocols
is based on the laws of quantum mechanics. Mainly, it is based on the third postulate of quantum
mechanics, which states that measurements of a quantum state cause the state to collapse [NC02]. This
phenomenon enables Alice and Bob to reveal eavesdropping attempts. Various attacks on QKD schemes
have been suggested over the years. These attacks mainly target weaknesses in the implementation of
the scheme and are discussed in, e.g., [GLLP04], [Wan05], [LSMLYWW15], [BP12].

A different approach to attack QKD schemes, which was not previously addressed elsewhere, is based
on weak measurements. The model of weak measurements, rooted in the work of Aharonov et al. from
1964 [ABL64], then further developed and studied in, e.g., [ED01], [ABP+02], [JK10], [EC11], raises
the possibility of weakly measuring a quantum state. That is, gathering a small amount of information
regarding the state while only slightly disturbing it, but not collapsing it. In this work, we investigate ways
in which weak measurements incur a threat to the security of QKD schemes. Using weak measurements,
an eavesdropper may gather information regarding the key obtained by Alice and Bob, while leaving
but slight indications of the eavesdropping that has occurred. How does that affect the security of the
scheme, the key-generation rate?

Quantum secure direct communication (QSDC) schemes, which are based on similar ideas to those of
QKD, enable Alice and Bob to IT-securely exchange not only random keys but also arbitrary messages of
their choice. See, e.g., [DL04], [ABP+02] and the references therein. Similarly to QKD schemes, QSDC
schemes might also be vulnerable to WM-based attacks.

Related work.
(1) Computationally secure QHE schemes. Broadbent suggested in [Bro15] a client-server scheme based
on combining the QOTP encryption scheme with a computationally secure classical FHE scheme. Their
scheme enables the delegation of quantum information to a quantum server and homomorphic processing
of a universal set of quantum gates over the encrypted data. However, their scheme does not obtain
the properties listed above. First, their scheme employs a computationally secure FHE protocol, which
makes their scheme only computationally secure (as mentioned, in this work, we are interested in IT-
secure schemes). Second, their scheme requires quantum and classical interaction between the user and
the server for the processing of non-Clifford gates (while the scope of this work is constructing non-
interactive schemes). Third, their scheme is not fully compact, as it requires the user to update the keys
used to encrypt the data throughout the computation. Namely, to homomorphically evaluate a quantum
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circuit over encrypted data, the client should re-adjust her knowledge of the encryption keys on each
relevant quantum wire after each gate processing. That re-adjustment requires O(s) time, where s is the
size of the circuit. As mentioned, in this work, we look for fully compact schemes — schemes in which
Dec requires O(1) time.

An approach similar to [Bro15] was adopted by [BJ15]. There, two schemes were proposed. The
first has a decryption procedure whose time-complexity scales with the square of the number of T-gates
(and hence does not obtain full compactness). The second scheme uses a quantum evaluation key of
length given by a polynomial of degree exponential in the circuit’s T-gate depth, yielding a homomorphic
scheme only for quantum circuits with constant T-depth. The evaluation key includes auxiliary qubits that
encode the required corrections that should be performed over the processed data. Since a large number
of possible corrections must be available, the length of the evaluation key is exponential in the circuit’s
T-gate depth, yielding a homomorphic scheme that is efficient only for quantum circuits with constant
T-depth. Both the schemes of [Bro15] and [BJ15] are only computationally secure (in this work, we are
looking for IT-secure schemes).

Dulek et al. [DSS16] built on the framework of [BJ15] and used a classical FHE scheme to construct
quantum gadgets that allow perfect correction of the errors that occur during the homomorphic evaluation
of T-gates on encrypted quantum data. These gadgets give rise to an efficient non-interactive QFHE
scheme. Their scheme is compact, but not fully compact since decryption requires the user to apply
classical changes to the keys according to f . Furthermore, it is only computationally secure.

Mahadev presented in [Mah18] a non-interactive FHE scheme for quantum circuits that is based on
QOTP and uses classical keys. The scheme allows a classical user to delegate quantum computations to a
quantum server, while the server is unable to learn any information about the computation. Their scheme
does not obtain the requirement of perfect correctness as it has positive error probability. Brakerski [Bra18]
used the high-level outline of [Mah18] to construct a computationally secure QFHE scheme that enables
homomorphic evaluation of classical circuits with bounded depth over classical data and with improved
correctness. To support unbounded depth, [Mah18] further rely on a circular security assumption.

The schemes listed above suggest practical solutions to the problem of homomorphic encryption.
However, all these schemes have computational security (and not IT-security) and hence does not obtain
the properties in which we are interested in this work. The security of their schemes is based on
unproven computational hardness assumptions. The schemes listed below rely on no computational
hardness assumptions.

(2) Other QHE schemes. As mentioned above, it was shown in [AMTdW00] that QOTP is an IT-secure
encryption scheme that supports homomorphic evaluation of Pauli gates. Encryption is performed by
randomly applying X and Z gates to qubits, conditioned on a two-bit (classical) key, and decryption is
performed by applying the same gates in the opposite direction. However, this method alone provides
no means for constructing a QHE scheme that withstands our requirements. In particular, homomorphic
evaluation of Clifford gates over QOTP-encrypted data requires that the user perform computations over
the classical keys in compliance with the computations that are performed by the server over the encrypted
qubits. This requirement results in decryption complexity linear in the size of the circuit, and hence, the
scheme is not fully compact. Set side by side, our scheme is computation agnostic. That is, the user must
care not how the cloud implements the computation.

Childs [Chi05] discussed ways in which a powerful quantum server may assist a user in performing
operations while preserving the confidentiality of the data. In their work, the user is assumed to have
capabilities significantly inferior to those of the server. In particular, the user is only allowed to generate
qubits in the |0〉 state, store qubits, perform swap and Pauli gates, and perform no measurements. Under
these considerations, they suggest a (QOTP based) way in which the server may perform measurements
on encrypted data. They also suggest algorithms that enable the server to help the user in performing a
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universal set of quantum gates over encrypted data. However, these algorithms are neither compact nor
non-interactive — they require the user to perform at least as many operations as the server for each
gate, and some of them require rounds of client-server interaction.

Rhode et al. presented in [RFG12] a protocol that enables a quantum user to manipulate client data in
two models of restricted quantum computation — the boson sampling and quantum walk models. Their
protocol is non-interactive, fully compact, and assumes no computational hardness assumptions and no
limitations on the computing power of the adversary. However, in their scheme, the same key is used for
encoding each of the input qubits, and hence, their scheme withstands no standard cryptographic criterion
of security. Tan et al. [TKO+16] improved on [RFG12] and presented a protocol that supports a class
of quantum computations, including and beyond boson sampling, with improved security (under similar
assumptions). However, they achieve no standard criterion of IT-security, as they only bound the amount
of information accessible to an adversary.

Ouyang, Tan, and Fitzsimons [OTF18] took a different approach and further improved on the results
of [TKO+16]. Built on constructions taken from quantum codes, they achieved an encryption scheme
that supports the evaluation of circuits with a constant number of non-Clifford gates. Though achieving
stronger security guarantees than [RFG12], [TKO+16], their scheme withstands no standard cryptographic
criterion of security. Furthermore, their scheme is neither perfectly correct nor fully compact. It suggests
a tradeoff between the size of the encoding and the success probability, where achieving constant success
probability costs in increasing the size of the encoding exponentially with the total number of T gates.

[Lia13] constructed a QOTP-based quantum encryption scheme which, given the encryption key,
permits any unitary transformation to be evaluated on an arbitrary encrypted n-qubit state. Their scheme
is efficient, compact, and IT-secure against an eavesdropper who may intercept an encrypted message
(before or after evaluation). However, their scheme suggests no solution to the main problem discussed
in this paper, as their evaluation algorithm is dependent on the key. Under this restriction, the server
must hold the key to compute on the encrypted data. Given the key, the server may decrypt and read the
message, which by no means provides the user with any level of privacy. They also constructed a scheme
in which the evaluation algorithm is independent of the key, but it only supports trivial operations that
are independent of the key.

(3) Weak measurements and QKD. Weak measurements enable accumulating information regarding the
state of the qubit while not collapsing the state, but only biasing it a little. Weak measurements consist
of two stages. First, we weakly interact the subject qubit with an ancillary qubit using a two-qubit gate.
Then, we (strongly) measure the ancillary qubit. The outcome of the (strong) measurement of the ancillary
qubit is the outcome of the weak measurement of the subject qubit. This process enables imprecisely
measuring quantum states, outsmarting the uncertainty principle.

Weak measurements are discussed in several places in literature, but never as a tool to attack QKD
schemes. In [GDL+10], an improved feedback-control of quantum systems was experimentally shown to
be possible using weak measurements. Troupe and Farinholt [TF17] used weak measurements to construct
a QKD scheme with an improved key-rate, immunity to detector basis-dependent attacks (such as detector
blinding), and other various side-channel attacks. However, they have not considered WM-based attacks
against their scheme, and only suggested ways in which Alice and Bob could use WM. In [HK08], weak
measurements were used to detect a spin-dependent displacement of photons passing through an air-glass
interface, the photonic version of the spin Hall effect in electronic systems.

Bennett and Brassard [BB84] presented the first QKD scheme. In their scheme, Alice sends Bob random
bits encoded as qubits in either the computational basis {|0〉 , |1〉} or the diagonal basis {|+〉 , |−〉}. The
bit 0 is always encoded by either |0〉 or |+〉, and the bit 1 is always encoded by either |1〉 or |−〉. In this
work, we consider the following scenario. An adversary may intercept the qubits sent from Alice to Bob,
perform weak measurements over them and accumulate some information regarding their state, and send
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them to Alice as if they were never intercepted. Such an attack may give the adversary a non-negligible
advantage at a reduced risk of being caught. The same hindrance of using a different set of qubits to
encode each classical bit repeats itself in many other QKD schemes, and hence, similar attacks can be
applied there too. In our QKD scheme, 0 and 1 bits may have the same encoding, and hence, weak
measurement attacks give the adversary no advantage.

Kak presented in [Kak06] a protocol that suggests a method for Alice and Bob to communicate securely
using three rounds of interaction via an authenticated quantum channel. In Kak’s scheme, before the
protocol is executed, two orthogonal states are set as the encodings of the bits. Then, Alice applies a
random rotation A to the encoding of her message b and sends it to Bob. In turn, Bob applies a random
rotation B to the bit and sends it back to Alice, which now rotates the qubit in the opposite direction
by applying A† to it. Alice now sends the qubit back to Bob, which applies B† to it and obtains the
encoding for Alice’s bit.

We note that Kak’s QKD protocol may be resilient against WM-based attacks. However, the scheme we
suggest here outperforms Kak’s protocol in several aspects. First, our protocol requires only two stages
of communication, while Kak’s protocol requires three stages of communication – a 50% communication
overhead comparing to our scheme. Second, while in Kak’s, protocol each of the parties must have the
capability of applying arbitrary quantum gates to quantum states, in our protocol, only Bob needs to
possess this capability, whereas it is sufficient for Alice to be able to apply only NOT gates to qubits.
Furthermore, in Kak’s scheme, Alice and Bob should agree on the encoding of the bits before the
execution of the scheme. In our scheme, no such requirement is presented.

Deng and Long suggested in [DL04] a method for secure communication between Alice and Bob.
Similarly to [BB84], their scheme uses qubits only in the computational or diagonal basis, and hence
their scheme is vulnerable to weak measurement attacks, as shown below.

Our contribution. We suggest here a new approach to encrypt and outsource the storage of classical
data while enabling IT-secure quantum gate computations over the encrypted data. Our method is based
on using a specific family of random bases to encrypt classical bits. Our schemes support fully compact
IT-secure homomorphic evaluation of NOT gates, and a modified version of the Hadamard gate, which
we show to be useful in several applications. We can also support CNOT gates, where the control qubits
are set in a non-random basis (i.e., plaintext qubits). The latter implies that cascading is possible only in
specific yet important cases. We detail applications of our constructions, including random basis QKD and
coalitions-resilient secure multiparty XOR computation. We note that, while some of these applications
may also be constructed using other existing QHE schemes, our schemes are the first to support these
applications while maintaining all of the following: IT-security, full compactness, perfect correctness, and
non-interactively. The collection of these attributes makes our scheme computation agnostic. Furthermore,
and most importantly, our schemes have safer security implications in the face of weak measurements,
as we discuss below.

Second, in this work, we bring up a new concept called securing entanglement. Entanglement is known
to be an essential resource in many quantum settings. The utilization of entanglement in communication,
computation, and other scenarios is a very active area of research. In practice, entanglement is usually
created by direct interactions between subatomic particles. The creation of entangled systems requires
efforts and expenditures. We suggest that, once it was created, this resource should be secured in the
sense that only its rightful owners will be able to use it.
Paper organization. In Section II, we present our random basis encryption scheme and discuss its homo-
morphic properties. The concept of securing entanglement is presented in Section III and demonstrated
through the use of entangled qubits in a pseudo telepathy game. In Section IV, we describe WM attacks
on existing QKD schemes and present our random basis QKD. Section V concludes the work. Relevant
background on quantum computation, notations, and some of the proofs may be found in the Appendix.
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II. THE RANDOM BASIS ENCRYPTION SCHEME

We begin with some intuition. Our main intention is encrypting the classical bits 0 and 1 while enabling
some operations to be performed homomorphically over the ciphertext. Typically, these bits are encoded
in quantum computation as the elements |0〉 and |1〉 of the standard basis of H = C2. Of course, that
encoding is by no means an encryption of the bits. Approaching proper encryption, we take some random
(θ, ϕ) ∈ [0, 2π]2, set |ψ0〉 =

(
cos(θ/2)

eiϕ sin(θ/2)

)
, and think of |ψ0〉 as an encryption of |0〉 using (θ, ϕ) as

the encryption key. The plaintext qubits |0〉 and |1〉 are orthogonal. To maintain orthogonality of the
ciphertext, we set |ψ1〉 =

(
sin(θ/2)

−eiϕ cos(θ/2)

)
to be the encryption of |1〉 using the same key. One may

readily verify that |ψ0〉 and |ψ1〉 are orthogonal. For random (θ, ϕ) ∈ [0, 2π]2, the elements |ψ0〉 and
|ψ1〉 constitute a random orthonormal basis of H, denoted B(θ,ϕ). Now, as mentioned, we want that
encryption to support some homomorphic operations in a fully compact non-interactive IT-secure way.
First, we require supporting homomorphic NOT gates. We want |ψ0〉 to be equal (up to a global phase
factor) to NOT |ψ1〉 (and vice versa). A straightforward computation shows that this requirement compels
ϕ = ±π/2. Hence, for (θ, ϕ) ∈ [0, 2π]× {±π

2 }, the random basis

B(
θ,±π2

) =
{(

cos(θ/2)
±i sin(θ/2)

)
,
(

sin(θ/2)
∓i cos(θ/2)

)}
is NOT -invariant.

The discussion above, and the inability of determining the coordinates of an arbitrary qubit, given a
realization of it, give rise to the following QHE scheme of classical data, which allows a user to outsource
the storage of confidential information to an untrusted server. We now present the algorithms Gen, Enc,
and Dec. In the next section, we construct Eval, and detail operations that may be homomorphically
applied to the ciphertext in a fully compact and non-interactive way.

The Random Basis Encryption (RBE) scheme

Gen (key generation): Output a uniformly random pair (θ, ϕ) from [0, 2π]× {π2 ,−
π
2 }.

Enc (encryption): On input message b ∈M and a key k = (θ, ϕ):
• Generate the qubit |b〉.
• Let K =

(
cos(θ/2) sin(θ/2)

eiϕ sin(θ/2) −eiϕ cos(θ/2)

)
∈M2(C) and apply K to |b〉 to obtain |q〉 = K |b〉.

• Output |q〉.
Dec (decryption): On input ciphertext |ψ〉 and a key k = (θ, ϕ):
• Let K† denote the conjugate transpose of K, where K is as in Enc and apply K† to |ψ〉.
• Measure K† |ψ〉 in reference to the computational basis.
• Output the outcome of the measurement.

The matrix K defined in the scheme is the unitary matrix whose columns are the elements of B(θ,ϕ).
Multiplying the elements of the computational basis, {|0〉 , |1〉}, by K, we obtain the elements of B(θ,ϕ).
We refer to the encryption algorithm as taking the elements of the computational basis to the elements
of the random basis B(θ,ϕ). Since K is a unitary transformation, K† is its inverse, and hence, given
(θ, ϕ), the decryption algorithm takes the elements of B(θ,ϕ) to the elements of the computational basis.
Of course, the scheme may be applied bit-wise to a string x of classical bits to enable outsourcing the
storage of x to an untrusted quantum server. The scheme is perfectly correct. Indeed, assume that |q〉 is
the encryption of b ∈ {0, 1} using (θ, ϕ). By Enc, |q〉 = K |b〉. In Dec, K† is applied to |q〉. One has
K† |q〉 = K†K |b〉 = |b〉. Since |b〉 is a pure state, measuring it in reference to the computational basis,
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we get b with probability 1. In the appendix, we prove that the scheme is IT-secure. In Gen, the key is
chosen from an infinite set. Implementing this might be challenging. Remark 1 below discusses how K
may be made discrete and the security consequences of this procedure.

Homomorphic operations. We now explore the possibility of homomorphically applying quantum gates
to the ciphertext by the untrusted quantum server. Obviously, any gate that commutes (up to a global phase
factor) with the family of the encryption gates K, may be homomorphically applied to the encrypted data.
Several unitary operations are typically used in quantum computing. We now investigate the consequences
of applying some of these typically-used quantum gates to a random basis B(θ,ϕ) encryption of classical
data.

The NOT gate. The NOT gate is the unitary transformation that interchanges the elements of the
computational basis: |b〉 → |1− b〉. The matrix representation of NOT in the computational basis is
X =

(
0 1
1 0

)
. What happens when one applies an X gate to an element of a random basis B(θ,ϕ)? A

simple calculation shows that, applying an X gate to an element of B(θ,ϕ) we get the other element of
that basis, up to a global phase factor. Since eiϕ = ±i, we have

X |ψ0〉 =
(
0 1
1 0

)( cos(θ/2)
±i sin(θ/2)

)
=
(±i sin(θ/2)

cos(θ/2)

)
= ±i

( sin(θ/2)
∓i cos(θ/2)

)
= ±i |ψ1〉 .

Similarly, X |ψ1〉 = ∓ |ψ0〉. To conclude, applying a NOT gate to elements of B(θ,ϕ) we get the same
effect as when applying it to an element of the computational basis. Consequently, X gates may be
homomorphically applied to encrypted data.

The Hadamard gate. The Hadamard gate is the unitary transformation, whose matrix representation in
the computational basis is H = 1√

2

(
1 1
1 −1

)
. H takes the elements of the computational basis to the

elements of B(π
4
,0) =

{
1√
2

(
1
1

)
, 1√

2

(
1
−1
)}

. The elements of B(π
4
,0) are often denoted by |+〉 and |−〉.

When measuring any of the elements of B(π
4
,0) in reference to the computational basis, the probabilities

of obtaining zero or one are both 1
2 . What happens when one applies H to an element of a random basis

B(θ,ϕ)? Explicitly, what are the probabilities of obtaining zero or one when measuring an element of
H
[
B(θ,ϕ)

]
in reference to B(θ,ϕ)? By Equation (5) (in the appendix), the probability of obtaining zero

when measuring H |ψ0〉 in reference to B(θ,ϕ) is the square of the absolute value of the inner product of
H |ψ0〉 and |ψ0〉. Since

H |ψ0〉 = 1√
2

(
1 1
1 −1

)(
cos(θ/2)
±i sin(θ/2)

)
= 1√

2

(
cos(θ/2)±i sin(θ/2)
cos(θ/2)∓i sin(θ/2)

)
, (1)

the inner product is
〈
ψ0

∣∣H∣∣ψ0

〉
= cos θ√

2
. Taking the square of the result, one finds that the probability of

obtaining a zero outcome when measuring H |ψ0〉 in reference to B(θ,ϕ), is cos2 θ
2 . Since the probabilities

add up to one, when measuring H |ψ0〉 in reference to B(θ,ϕ) the outcome one is obtained with proba-
bility 1+sin2 θ

2 . Similar computations yield similar results for |ψ1〉. Explicitly, when measuring H |ψ1〉 in
reference to B(θ,ϕ), the probability of obtaining the outcome one is cos2 θ

2 and the probability of obtaining
the outcome zero is 1+sin2 θ

2 . To conclude, applying a Hadamard gate to an element of a random basis,
the probabilities of the elements of the basis in the superposition we get are in general not 1

2 each.

These results are rather unfortunate since they imply that the Hadamard gate does not create an equally
weighted superposition when applied to an element of a random basis, and hence cannot be applied to
the encrypted data homomorphically. Is there a quantum gate that takes elements of every B(θ,ϕ) basis
to an equally weighted superposition of the elements of that basis? We give a positive answer to that
question in the form of the following quantum gate that uses an ancillary |0〉 qubit:
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D = 1√
2

(
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

)
.

D is the matrix representation (in the computational basis) of the quantum gate used in [EPR35] to create
Bell states. This gate is the two-qubit quantum circuit established by first applying a Hadamard gate to
the first qubit, and then a CNOT gate to that system of two qubits, where the first qubit is the control
qubit and the second is the target qubit. That circuit is illustrated in Figure 1.

Figure 1: Random Based D gate.

We now prove that, applying a D gate to a tensor product of |0〉 and an element of a random basis,
measuring the second qubit in reference to that same random basis, the probabilities of obtaining the
outcomes zero and one are both 1

2 . Explicitly, let |ψb〉 an element of a random basis, B(θ,ϕ), where ϕ =
and θ ∈ [0, 2π]. We have

Lemma 1. D is a quantum gate which takes tensor products of the form |0ψb〉 to a system of two
qubits, such that, measuring that system in reference to {|0〉 , |1〉}⊗B(θ,ϕ), the probability of each of the
outcomes zero and one for the second qubit is 1

2 .

The proof of Lemma 1 appears in the appendix. To conclude, the D gate may be homomorphically
applied to the elements of a random basis, using an ancillary |0〉 qubit, resulting in the same effect as
when applying a Hadamard gate to the elements of the computational basis – creating a superposition
of the elements of that basis with equal probabilities. We note that the ancillary qubit may be generated
by the server with no interference of or interaction with the user.

The CNOT gate. The CNOT gate is a two-qubit gate, whose matrix representation in the computational
basis of H⊗2 is (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
.

Tensor products of the elements of the computational basis {|0〉 , |1〉} of H, give the computational basis
{|00〉 , |01〉 , |10〉 , |11〉} of H⊗2. Applying the CNOT gate to the elements of the latter basis, we leave
|00〉 and |01〉 unchanged, and interchange |10〉 and |11〉. In other words, if the first qubit is |0〉, then the
second qubit is left unchanged, and if the first qubit is |1〉, then a NOT gate is applied to the second
qubit. For this reason, this gate is called the controlled-NOT gate. The first qubit is the control qubit
and the second is the target qubit.

What happens if one applies a CNOT gate to the elements of a random basis of H⊗2? Namely, let
B(θ,ϕ) = {|ψ0〉 , |ψ1〉} and B(θ′,ϕ′) = {|ψ′0〉 , |ψ′1〉} two orthonormal bases of H . Tensor products of the
elements of B(θ,ϕ) and B(θ′,ϕ′) give the following orthonormal basis of H⊗2:

{|ψ0ψ
′
0〉 , |ψ0ψ

′
1〉 , |ψ1ψ

′
0〉 , |ψ1ψ

′
1〉}.

Is the control-target structure kept when applying CNOT to the elements of that basis, leaving |ψ0ψ
′
0〉

and |ψ0ψ
′
1〉 unchanged, and interchanging |ψ1ψ

′
0〉 and |ψ1ψ

′
1〉? The answer turns out to be negative.

Applying a CNOT gate to these elements, we take each of them to a superposition of the others.
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Can we find a quantum gate (using ancillary qubits, perhaps) that keeps the control-target structure
when applied to the elements of a random basis of H⊗2? Again, the answer is negative. For example, if
such a gate P exists, it must leave |ψ0ψ0〉 unchanged and take |ψ1ψ1〉 to |ψ1ψ0〉, regardless of θ and ϕ.
Taking θ′ = π − θ and ϕ′ = π − ϕ, we switch between |ψ0〉 and |ψ1〉, implying a contradiction when
examining P ’s operation on |ψ0ψ0〉 and |ψ1ψ1〉. For example, consider the following two cases. First, if
θ = 0 and ϕ = π, we have |ψ0〉 = |0〉 and |ψ1〉 = |1〉. Second, if θ = π and ϕ = 0, we have |ψ0〉 = |1〉
and |ψ1〉 = |0〉. In the first case, P |ψ0ψ0〉 = P |00〉 and P |ψ1ψ1〉 = P |11〉, implying that |00〉 is
unchanged by P and |11〉 is taken to |10〉. On the other hand, in the second case, P |ψ0ψ0〉 = P |11〉 and
P |ψ1ψ1〉 = P |00〉, implying that |11〉 is unchanged and |00〉 is taken to |01〉. By the first case, |00〉 is
unchanged, but by the second case, it is taken to |01〉. The contradiction shows that such a P cannot exist.
Nevertheless, by applying a CNOT gate to the elements of a partially-random basis {|0〉 , |1〉}⊗B(θ,ϕ)

of H⊗2 we do keep the target-control structure. The elements of such a basis are

|0ψ0〉 =

(
cos(θ/2)
±i sin(θ/2)

0
0

)
, |0ψ1〉 =

(
sin(θ/2)
∓i cos(θ/2)

0
0

)
, |1ψ0〉 =

(
0
0

cos(θ/2)
±i sin(θ/2)

)
, |1ψ1〉 =

(
0
0

sin(θ/2)
∓i cos(θ/2)

)
.

Applying a CNOT gate to these elements, we leave |0ψb〉 unchanged and interchange |1ψb〉 and |1ψ1−b〉,
up to a global phase factor. In fact,

CNOT |1ψ0〉 =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)( 0
0

cos(θ/2)
±i sin(θ/2)

)
=

(
0
0

±i sin(θ/2)
cos(θ/2)

)
= ±i

(
0
0

sin(θ/2)
∓i cos(θ/2)

)
= ±i |1ψ1〉 , (2)

and a similar computation shows that CNOT |1ψ1〉 = ∓i |1ψ0〉. Since the last two entries of |0ψb〉 are
zero, applying a CNOT gate we leave them unchanged. To conclude, CNOT gates may be homomor-
phically applied to systems of two qubits when the control qubit is an element of the computational basis
and the target qubit is an element of B(θ,ϕ).

CnNOT gates. For a positive integer n, the CnNOT gate is an n + 1 qubit gate, whose matrix
representation in the computational basis of H⊗(n+1) is the matrix obtained from the identity matrix
of order 2n+1 by replacing its bottom right block ( 1 0

0 1 ) with the block ( 0 1
1 0 ). Namely, the NOT and

CNOT gates discussed above are the special cases n = 0 and n = 1, respectively, of CnNOT . Similarly
to (2), one may readily verify that, given a random basis B(θ,ϕ),

CnNOT |b1b2 . . . bnψb〉 =

{
|b1b2 . . . bnψ1−b〉 ,

∏n
i=1 bi = 1,

|b1b2 . . . bnψb〉 , otherwise.
(3)

Hence, CnNOT gates may be homomorphically applied to systems of qubits when the control qubits
are elements of the computational basis and the target qubit is an element of B(θ,ϕ).

To conclude, we have shown that our scheme supports homomorphic NOT operations, and a modified
version of the Hadamard gate. It also supports homomorphic CNOT gates, where the control qubits are
set in clear.

III. SECURING ENTANGLEMENT

Entanglement is an essential resource in quantum computation. In this section, we present a method
for securing that important resource in an IT-secure way, using our scheme. One example of a setting in
which entanglement is used as a core element is Quantum Pseudo-Telepathy games. This concept was
introduced in [BBT03] and refers to the use of entanglement to eliminate the need for communication in
specific multiparty tasks. Comprehensive coverage of the subject may be found in [BBT05]. An example
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of such a task is the Mermin-Peres magic square game [Mer90]. In this game, two parties, Alice and
Bob, are presented with a 3×3 table. Each of them is required to fill in a part of the table, as follows.
Alice is given a number i, 1 ≤ i ≤ 3, and needs to put either 0 or 1 at each entry of the i-th row, in such
a way that the sum of the three entries will be even. Similarly, Bob is given a j, 1 ≤ j ≤ 3, and needs to
fill in the j-th column with the constraint that the sum be odd. The numbers i and j are the inputs of the
parties. Alice and Bob win the game if they place the same number at the intersection of the row and the
column that they fill. The parties do not know i and j ahead of the game, and they cannot communicate
after being given these values. They are allowed to communicate before the game begins and discuss
game strategies, or share any information they desire. It was shown in [BBT05] that there is no classical
algorithm that lets Alice and Bob win the game with probability greater than 8

9 , whereas there exists a
quantum algorithm that lets them win the game with probability 1. This quantum algorithm is based on
having each of the parties hold two qubits out of an entangled system of four qubits. The system of four
qubits used in [Mer90] for that purpose is

|Ψ〉 = 1
2 |0011〉 − 1

2 |0110〉 − 1
2 |1001〉+ 1

2 |1100〉 .

Entanglement is the core element behind not only the quantum algorithm that wins the magic square
game but also behind many other breakthrough quantum algorithms. Once generated, it should be
guaranteed that only the rightful owners of it would be able to use it. Next, we demonstrate a specific
scenario where securing entanglement is required and discuss how it can be done.

Assume that Alice and Bob are two parties that wish to engage in the magic square game. Alternatively,
Alice and Bob are two scientists working in distant labs and wish to complete a joint task that requires
entanglement. First, we consider the case in which Alice and Bob can get together and jointly generate
entangled qubits, or purchase them from a trusted provider. Alice and Bob, having obtained a large
number of entangled qubits, store these qubits in their laboratories to use them when the task requires
it. Alice and Bob are worried that at the end of the day, when Alice and Bob are no longer at their
labs, other people, say, Eve and Mallory will break into their labs. Eve will steal half of each entangled
system from Alice’s lab, and Mallory will steal the corresponding half from Bob’s lab and use the stolen
entangled pairs for their own needs. In light of this concern, Alice and Bob are looking for a way to
secure their entangled particles to ensure that no one else can use them. Like a smartphones password
lock that will not let anyone use the smartphone without knowing the password.

One may suggest that, before leaving their laboratories, Alice and Bob use QOTP to (independently)
encrypt each half of each entangled pair. How will it work? For example, assume that Alice and Bob
hold two halves of an EPR pair,

|Φ+〉 = 1√
2

(
|0〉A |0〉B + |1〉A |1〉B

)
.

The subscripts A and B indicate the parts of the system held by each party. Alice picks QOTP keys
(a1, a2) uniformly at random from {0, 1}2, and Bob similarly picks (b1, b2). At the end of the day, to
secure the entangled pair, Alice applies Xa1Za2 to her half, and Bob applies Xb1Zb2 to his part. Doing
so, they obtain a new state:

Xa1Za2 ⊗Xb1Zb2 |Φ+〉 = 1√
2

((
Xa1Za2 |0〉A

)(
Xb1Zb2 |0〉B)

)
+
(
Xa1Za2 |1〉A

)(
Xb1Zb2 |1〉B)

))
.

Since the encryption keys were picked uniformly at random and independently of each other, the
density matrix of the new state is equal to the identity (up to a constant). So it seems like this procedure
secures the entangled system in the sense that, without knowing the encryption keys, the encrypted
system contains zero amount of entanglement. This claim can be phrased using conventional measures of
entanglement like entanglement distillation and entanglement dilution. However, if Eve and Mallory steal
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a large amount of OTP-encrypted EPR pairs from Alice and Bob, then they could guess the encryption
keys for each pair, and their guess is expected to be perfectly correct 1

16 of the times (on average).
We want to refine this point. Eve and Mallory cannot produce two halves of an entangled system by

using local operations and classical communication (LOCC) alone. Stealing OTP-encrypted EPR pairs
from Alice and Bob, they can recover the original entangled system with a non-negligible probability
using LOCC alone. Then, the recovered systems can be used by Eve and Mallory for their purpose. We
conclude that QOTP encryption of EPR pairs reduces the value of a stolen pair to 1

16 of its original value.
In such a situation, it still pays for Eve and Mallory to steal EPR pairs, as 6.25% of them are expected
to be usable.

A better way of securing entangled systems by Alice and Bob comes from our random basis encryption
scheme. Alice and Bob can use our RBE scheme to encrypt each half of an EPR pair using independent
random keys θa and θb. This way, if Eve and Mallory steal the encrypted qubits and try to decrypt
them by guessing the keys, their guess is expected to be perfectly correct zero percent of the time. This
makes stolen EPR pairs completely unusable, and in such a situation, the theft of EPR pairs becomes
unprofitable.

What happens if Alice and Bob are far apart and cannot get together to generate (or purchase) an
entangled system? Being far apart, they may ask a third party, Charlie, to generate such an entangled
system and transmit half of it to each of them. In that case, two concerns may arise. First, Charlie might
be untrustworthy. Second, Eve and Mallory might intercept Charlie’s transmission and use the entangled
qubits sent by Charlie for their purposes (see Figure 2).

Figure 2: Adversarial attack by two adversaries.

To overcome the possibility that Charlie is untrustworthy, Alice and Bob may decide that one of them,
say, Alice will generate the entangled system and transmit half of it to Bob. This does not solve the
second concern. A single adversary, Eve, may still intercept the transmission and use the half sent to
Bob to engage in the task with Alice (instead of Bob, see Figure 3).

Figure 3: Adversarial attack by a single adversary.

To solve both concerns, Alice and Bob can securely generate and share an EPR pair using our random
basis encryption scheme, as follows.
• Alice generates an EPR pair and encrypts each half independently using our RBE scheme.
• Alice keeps the first half to herself and transmits the second half to Bob.
• Alice and Bob communicate through a secure communication channel (possibly, using our QKD

scheme presented below) and Alice shares with Bob the key she used to encrypt his half.
• When they need to use the entangled system, Alice and Bob decrypt the qubits they hold and obtain

a proper entangled system.
This way, even if Eve intercepts the transmitted qubit, she can not use it to engage in the task instead

of Alice without knowing the encryption key.
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IV. THE RANDOM BASIS CNOT QUANTUM KEY DISTRIBUTION SCHEME

Quantum key distribution (QKD), first suggested by Bennett and Brassard in 1984, is one of the most
celebrated results in quantum computing. The discovery that quantum mechanics enables two distant
parties to agree on a joint encryption key while relying on no computational assumptions is one of the most
significant breakthroughs in the research on secure communications. However, the BB84 protocol, and
most of the QKD schemes that followed it, do not prevent an eavesdropper from gaining any information
on the key. Instead, these schemes are designed to enable Alice and Bob to detect eavesdropping attempts
with high probability. This is done based on one of the most fundamental postulates of quantum mechanics
– information gain is possible only at the cost of disturbing the state. After invoking the quantum part
of the QKD scheme, Alice and Bob invoke classical privacy amplification (PA) and data reconciliation
(DR) procedures.

These procedures are required to reduce the amount of information held by a possibly undetected
eavesdropper, and to correct possible errors in the key caused by the eavesdropping. However, these
procedures reduce the bandwidth and have time, communication, and computational costs. Similarly to
the securing entanglement scenario, it would be very helpful if there was a way of reducing the ability
of an eavesdropper to gain information from the outset, thereby impairing the motivation to attack the
transmission and avoiding these expensive procedures.

In this section, we review two QKD protocols, namely, the BB84 protocol and the QKD scheme
suggested by Deng and Long in [DL04], and suggest a new type of attack against these schemes. Our
attack is based on weak measurements (WM), and it enables the attacker, Eve, to control the probability
in which Alice and Bob detect her. Our WM attack allows Eve a tradeoff between the probability of
being caught and the amount of information that she can gain in her attack. Then, we introduce our
random basis CNOT QKD scheme, based on our RBE scheme. Our scheme, being resilient against such
WM attacks, takes a step towards significantly impairing the motivation of a possible adversary.
The BB84 scheme. We now briefly review the BB84 QKD scheme (described in detail also in [NC02]).
Alice picks two uniformly random bits a and b and generates the qubit HaXb |0〉. Alice transmits the
qubit to Bob, who picks a uniformly random bit c, applies a c-conditioned Hadamard to the qubit, and
measures the qubit in the computational basis (see Figure 4).

Figure 4: The BB84 QKD protocol.

Alice and Bob then announce a and c. If a and c are equal (which is expected with probability 0.5),
and there was no adversarial interference on the transmission, then the outcome of Bob’s measurement
is guaranteed to be b (assuming an error-free quantum channel). Alice and Bob repeat this process for
≈ 4n qubits. Then, to detect possible eavesdropping, Alice and Bob compare n outcomes of Bob’s
measurements (randomly chosen from the 2n qubits for which a = c) with the corresponding b’s. If the
error rate is too high, Alice and Bob abort. If not, they can bound the amount of information held by an
eavesdropper, and then invoke PA and DR procedures to obtain a joint secure key.

Remark 2. We suggest an improvement to the BB84 scheme. Instead of having Bob guess the basis
Alice used (by randomly choosing c ∈ {0, 1}), Bob can notify Alice when he received the qubit, and then
Alice can reveal the basis she used (i.e., reveal a). Next, Bob will use the correct basis for measurement
100% of the time. Since Alice’s basis is announced only after the qubit has already arrived at Bob’s safe
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hands, Eve cannot use this information (i.e., a) to gain any information on the key. This simple variation
of announcing the correct basis by Alice makes all Bob’s measurements performed according to the right
basis (by setting c = a), which results in doubling the key generation rate. This simple variation does
not change the security of the scheme and was probably overlooked so far.

WM attack on BB84. Below we describe a WM-based attack on the BB84 QKD scheme. As mentioned
in the Introduction, weak measurements consist of two stages. First, we weakly interact the subject qubit
with an ancillary qubit using a two-qubit gate. Then, we (strongly) measure the ancillary qubit. The
outcome of the (strong) measurement of the ancillary qubit is the outcome of the weak measurement of
the subject qubit. This process enables imprecisely measuring quantum states, outsmarting the uncertainty
principle. We now demonstrate such a procedure. Let ε > 0 and denote by Wε the following two-qubit
quantum gate

Wε =
√
ε · i · CNOT +

√
1− ε · I ⊗ I,

where I is the identity over a single qubit. One readily verifies that Wε is unitary. This unitary can
be used by Eve to gain information regarding the qubit transmitted from Alice to Bob, leaving but slight
indications of her presence. We begin with some intuition. It is known that qubits in the computational
basis can be cloned using the CNOT gate and an ancillary |0〉 qubit. If the qubit designated for cloning
is in the computational basis, then performing a CNOT with the ancillary qubit as the target qubit copies
the control qubit to the target qubit without disturbing the control qubit. However, if the control qubit is
not in the computational basis, the CNOT gate does disturb it (and it, of course, the target cannot be
cloned). The Wε gate is a linear combination of the identity operation on two qubits and the CNOT
gate. The smaller ε is, the closer Wε is to the identity operation. If a qubit |ψ〉 is in one of the four states
|0〉 , |1〉 , |+〉 or |−〉, we can apply Wε to |ψ〉 and an ancillary |0〉 qubit and then measure the ancilla.
This way, if |ψ〉 is either |0〉 or |1〉 we can gain a small amount of information regarding |ψ〉 without
disturbing it, and if |ψ〉 is either |+〉 or |−〉 then we (get no information but) only slightly disturb the state.

The key-bit guessing game. The WM-attack is described in the setting of the key bit guessing game.
This game attempts to encapsulate the essence of a QKD scheme being IT-secure against eavesdropping
attempts by measuring the amount of information that can be gained by an eavesdropper before the PA
and DR procedures are invoked. The participants in this game are Alice, Bob, and Eve. We assume
that the participants can generate qubits in the computational basis, apply quantum gates to the qubits,
and measure qubits. Alice and Bob are connected via a noiseless quantum channel and an authenticated
classical public channel. Eve has full access to the quantum channel and is constantly listening to the
public channel. Eve is computationally unbounded.

The key-bit guessing game is defined as follows. The parties are given a positive integer input n.
Alice and Bob engage in a QKD protocol of their choice to obtain a key of ≈ n bits, while ≈ 4n
qubits can be transmitted between them. We assume that 2n qubits are used by Alice and Bob for
the eavesdropping check. As mentioned, in practice, as part of the QKD protocol, Alice and Bob use
DR (which are, essentially, error-correcting codes) and PA (essentially, cryptographic hash functions).
However, the necessity of these procedures depends on the maximal amount of information that may
be obtained by an adversary. Reducing the amount of information accessible to an adversary increases
the capacity of the channel and diminishes the need for error-correction and hash procedures. Hence,
our game assumes no PA and DR processes are carried. Having full access to the quantum channel,
Eve decides on a strategy of her choice and may intercept qubits, measure them, replace them with
other qubits of her choice, apply quantum gates to qubits, etc. At the last stage of the game, Alice
and Bob decide if they want to abort the game. If they do, then no one wins. If not, then all parties
simultaneously announce their output. Alice outputs her key, an n-bit string kA = a1 . . . an, Bob outputs
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his key, kB = b1 . . . bn, and Eve outputs either ⊥ or a pair (e, i), where i is an integer and e is a bit.
Eve wins the game if ai = bi = e. This is equivalent to Eve correctly guessing a key bit.

We now describe the WM attack against BB84. Eve randomly picks j ∈ {1, . . . , 4n}, prepares an
ancilla |0〉 qubit, applies Wε to the j’th qubit transmitted from Alice to Bob and the ancilla, and sends
Alice’s qubit to Bob. Eve measures the ancilla and obtains an outcome e (illustrated in Figure 5).

Figure 5: The weak measurement attack on BB84.

Next, Eve is listening to the discussion of Alice and Bob over the public channel and finds whether
Bob measured the j’th qubit in the right basis (i.e, if a = c). If not, Eve outputs ⊥. If a = c, then Eve
keeps on listening to find whether the j’th qubit was used by Alice and Bob for eavesdrop-checking or
not. If it was, then Eve outputs ⊥. If not, then the outcome of Bob’s measurement on the j’th qubit is
Bob’s i’th key-bit, and Eve outputs (e, i). We assume that Alice and Bob abort only if they used the
bit for eavesdropping-check and got different results. Hence, if Eve delivers an output (and not ⊥) then
Alice and Bob do not abort.

We now analyze the described attack - how much information is gained by Eve, and what is the
probability that Alice and Bob detect Eve’s presence. We are only interested in the cases where Alice
and Bob measured the j’th qubit in the same basis, i.e., a = c. Consider the system of two qubits where
the first qubit is the qubit transmitted from Alice to Bob and the second qubit is the ancillary qubit used
by Eve for the WM attack. If a = c = 0, then that system of two qubits is in the state

(1− b)
(√

1− ε+
√
ε · i
)
|00〉+ b ·

√
1− ε · |10〉+

√
ε · i · b · |11〉 ,

and if a = c = 1, then the system of two qubits is in the state
√
1−ε+(−1)b

√
1−ε+i·

√
ε

2 |00〉+ (−1)b · i·
√
ε

2 |01〉+
√
1−ε+i·

√
ε−(−1)b

√
1−ε

2 |10〉 − (−1)b · i·
√
ε

2 |11〉 .

We use the probabilities of the different possible outcomes of measurements of Bob and Eve given by
these states to compute the total success probability of Eve given that a = c (see Figure 6).

The pairs (x, y) in the bottom of the probabilities tree indicate the outcomes of the measurements
of Bob (x) and Eve (y). The numbers in the green rectangles indicate the probabilities of the cases in
which Eve correctly guessed the key-bit without causing an erroneous outcome for Bob. This happens
with probability 1

2 + ε
8 . The numbers in the red ovals indicate the probabilities of the cases in which

Eve’s attack resulted in Bob measuring an erroneous result. This happens with probability ε
4 , and in these

cases, if Alice and Bob use this bit for eavesdropping-check, then they will detect Eve’s presence and
abort. The purple hexagons indicate the probabilities of the cases in which Bob gets the right result, and
Eve fails in guessing the key bit. In these cases, if Alice and Bob use this bit for eavesdropping-check,
they will not detect Eve’s presence. We conclude that using the WM-attack described above via the Wε

gate, Eve can gain an ε
8 advantage in guessing a key-bit while reducing the risk of getting caught.
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Figure 6: Probabilities of possible outcomes for the Wε attack.

The DL04 scheme. We now briefly review the QKD scheme suggested by Deng and Long in [DL04]
(hereafter, the DL04 scheme). At the first stage of the scheme, Bob picks uniformly random bits a and
b and generates the qubit HaXb |0〉. Bob repeats the process (independently) 2n times and transmits
the 2n qubits to Alice. Next, Alice randomly picks some of the qubits, say n, measures each of the
selected qubits in either the standard or Hadamard basis (randomly) and announces the outcomes to
Bob1. Next, if Bob finds that the error rate is low enough (say, no errors were found), then there are
n qubits left (the ones that were not measured) with which they continue. Alice picks c ∈ {0, 1} and
applies a c-conditioned U gate to the first qubit, where U =

(
0 1
−1 0

)
. Alice repeats the process for all

the n qubits she has not measured yet and sends the qubits back to Bob. The unitary U interchanges
(up to a global phase factor) the elements of each of the relevant bases. I.e., |0〉 U←→ |1〉 and |+〉 U←→ |−〉.
Knowing the a’s, Bob decrypts the qubits and measures them to get b⊕ c, from which, knowing b, c is
readily extractible. The scheme is illustrated in Figure 7.

Figure 7: The DL04 scheme.

WM attack on DL04. Below we describe a WM-based attack on the DL04 scheme. This attack is based
on the same idea as the attack on the BB84 scheme we described above, and uses the Wε gate. Eve
randomly picks j ∈ {1, . . . , 2n}. The j’th qubit is the objective qubit for the attack. Eve prepares an
ancilla |0〉 qubit, applies Wε to the j’th qubit transmitted from Bob to Alice and the ancilla, and sends
Bob’s qubit to Alice. Eve measures the ancilla and obtains an outcome e1. Next, Eve is listening to the
measurement outcomes of Alice, announced over the classical public channel, and finds whether Alice
measured the j’th qubit for eavesdropping check. If she did, Eve outputs ⊥. If not, then Eve prepares
another |0〉 ancilla. Denote by i to new location of the objective qubit among the n qubits that were not

1This scheme can also be improved at this stage by using the same idea that we mentioned at Remark 2. Instead of Alice
randomly choose the measurement basis, she can tell Bob which qubits she chose, Bob will reveal the corresponding a’s, and
Alice will use this information to measure the qubits in the right basis. This will improve the probability of detecting possible
adversarial eavesdropping attempts
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measured. Eve applies Wε to the i’th qubit transmitted from Alice to Bob and the ancilla and sends the
qubit to Bob. Eve measures the (new) ancilla and obtains an outcome e2, and outputs (e1 ⊕ e2, i). The
attack is illustrated in Figure 8.

Figure 8: The WM attack on the DL04 scheme.

We now analyze the described attack - how much information is gained by Eve, and what is the
probability that Alice and Bob detect Eve’s presence. We begin with some intuition. As before, if a = 0,
applying Wε does not change the objective qubit. In these cases, Alice and Bob cannot detect Eve’s
presence, and Eve can learn O(ε2) information. The exponent 2 comes from the fact that Eve should
correctly detect the state in both directions. When a = 1, Eve gets no information but only slightly
disturbs the state.

First, we consider the case in which Alice used the objective qubit (the one chosen by Eve), for
eavesdropping check. In this case, Eve outputs ⊥. However, what is the probability that Alice and Bob
Detect Eve’s presence on the line? Observe that this case (partly illustrated at the left part of Figure 8), is
completely identical to the BB84 case described above (illustrated in Figure 5). Here, Bob is the one that
generates one of the four qubits |0〉 , |1〉 , |+〉 or |−1〉 (with probability 1

4 each), Eve’s attack is identical
(applying Wε with an ancilla), and Alice is the one who measures in the standard or Hadamard basis.
As computed above, the probability that Alice and Bob disagree (and hence detect Eve’s presence) is ε

4 .
Next, we consider the case in which Alice did not choose the objective qubit for the eavesdropping

check. Now, Alice applies a c conditioned U to the objective qubit and transmits it back to Bob. Eve
applies a second to the objective qubit with an ancilla and measures the ancilla to obtain an outcome
e2. What is the probability that Eve’s guess on c is correct, i.e., e1 ⊕ e2 = c? We have

Lemma 3. The probability that Eve’s guess is correct is 1
2 + 6ε2−3ε3

16−8ε .
The proof of Lemma 3 may be found in the appendix. To conclude, using our WM attack on DL04,

Eve can get an O(ε2) advantage guessing Alice’s while being caught with probability ε
4 .

Our scheme. The random basis encryption scheme may also be used to construct a two-stage (random
basis) QKD scheme, in which one participant sends to another information in the form of a string of
classical bits. That information may be a key, to be used in a symmetric key encryption scheme, or
simply plain data. Suppose Alice holds a string of n classical bits b = b1 . . . bn ∈ {0, 1}n, and wishes
to send b privately to Bob. To this end, Alice and Bob may follow the following scheme (illustrated in
Figure 9).

Figure 9: Sharing Key by Random Basis.
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The two-stage random basis CNOT -QKD scheme.
1) Bob randomly picks b′ = b′1 . . . b

′
2n from {0, 1}2n.

2) For 1 ≤ i ≤ 2n, Bob uses the random basis encryption scheme to generate an (independent)
encryption |ψb′i〉 of b′i, and transmits |ψb′i〉 to Alice.

3) Alice randomly picks n of the qubits received from Bob. She calls Bob over a public channel,
announces the positions of the qubits she chose, and Bob reveals the keys used for encrypting
these qubits.

4) Alice decrypts the n qubits she chose, using the keys obtained at the previous stage, and announces
the outcomes to Bob, which in turn, checks the correctness of the outcomes to detect possible
adversarial eavesdropping attempts. If the error rate is small enough, they proceed to the next
stage.

5) Alice now uses the n qubits that she did not measure at the previous stage, and for 1 ≤ i ≤ n, if
bi = 1 Alice applies a NOT gate to the i’th qubit; otherwise, she leaves it unchanged.

6) Alice sends the n qubits that were not measured by her back to Bob, who decrypts them and
obtains a string, b′′.

7) Denote by b̃ ∈ {0, 1}n the n-bit string obtained from b′ after omitting the n bits chosen by Alice
at stage 3. Bob computes b′′ ⊕ b̃ to obtain b.

The correctness and security of the scheme follows directly from the security of the random basis
encryption scheme. However, unlike the BB84 and DL04 schemes, our scheme is resilient against WM
attacks. The WM attacks described above rely on the fact that in both the BB84 and DL04 schemes, in
50% of the cases the objective qubit is in the standard basis, and in these cases, an adversary can copy
and measure the qubit without disturbing it. The disturbance (and hence, the possibility of being caught)
occurs only when the qubit is in the Hadamard basis. In the WM attacks, the adversary can control the
probability of getting caught by the choice of ε. In our scheme, a qubit is in the standard basis 0% of
the time, which leaves no room for any kind of adversarial attempts.

V. DISCUSSION

We have suggested an encryption scheme of classical data using quantum computers, based on a specific
family of random bases. We have proved that our scheme is IT-secure, and discussed its homomorphic
properties. The homomorphic operations that we support are supported by our scheme in an efficient,
fully compact, non-interactive, perfectly correct, and IT-secure way and most importantly, with safer
security in the face of adversarial attacks based on weak measurements.

We have suggested a protocol enabling two distant parties to securely obtain an entangled pair, and to
secure stored entangled qubits. In so doing, we first brought up the concept of securing the resource of
entanglement. We demonstrated how our scheme might be used to establish a symmetric key by a two-
stage random basis QKD scheme. We believe that our new approach and techniques suggest a possible
direction for future research on IT-secure quantum homomorphic encryption and quantum computation
and information.
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VI. APPENDIX A – THE ROLE OF BASES IN QUANTUM COMPUTING

To address a broad spectrum of readers, we here give a brief overview of the basics of quantum
computation. Further details on the topic may be found in [NC02]. The basic building block of quantum
computation protocols is the qubit. The qubit is the quantum version of the classical bit used in classical
computing. Whereas a classical bit may be described as an element of {0, 1}, a qubit may be described
as a unit vector in the Hilbert space C2. Denote H = C2, and |0〉 and |1〉 be the elements

(
1
0

)
and

(
0
1

)
of H, respectively. {|0〉 , |1〉} is the computational basis of H. We use the Ket notation and denote qubits
by |ψ〉. A system composed of n qubits is described by a unit vector of H⊗n, the n-fold tensor product
of H with itself. Such a system of n qubits is the quantum version of an n-long string of classical bits.

An arbitrary qubit |ψ〉 ∈ H may be described by its coordinates in the computational basis using four
real numbers: |ψ〉 = α |0〉 + β |1〉, where α, β ∈ C. If |ψ1〉 and |ψ2〉 are two elements of H such that
|ψ1〉 = eiγ |ψ2〉 for some γ ∈ R, then |ψ1〉 and |ψ2〉 are equal up to a global phase factor. Global phase
factors have no influence on quantum computations, and hence may be ignored. Hence, and as |ψ〉 is a
unit vector, one may write |ψ〉 using only two real numbers:

|ψ〉 = cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉 ,

where θ, ϕ ∈ R. This is the Bloch sphere representation of |ψ〉. The name sphere representation comes
from the fact that θ and ϕ may be used to visualize |ψ〉 as a unit vector in R3.

In classical computing, strings of classical bits are manipulated using logic gates, information is
represented as a string of bits, and the function to be computed over the information is represented
as a logic circuit, which is composed of logic gates. In quantum computing, systems of qubits are
manipulated using quantum gates, information is represented as a system of qubits and the function to be
computed over the information is represented as a quantum circuit, which is composed of quantum gates.
In order to implement a classical computation, bits are physically realized and the physical realizations of
the bits are manipulated using physical realizations of logic gates. To implement quantum computations,
qubits are physically realized, and these physical realizations of the qubits are manipulated using physical
realizations of quantum gates. While classical logic gates are Boolean functions, quantum gates are unitary
operators on Hilbert spaces. We use the Kronecker product notation to represent unitary operations as
matrices.

Quantum computers may be used to perform computations that have been performed using classical
computers, as well as other tasks. For example, any information that may be represented classically
as a string of bits may be represented in the quantum model as a tensor product of elements of the
computational basis {|0〉 , |1〉} of H. Then, any classical circuit may be implemented in the quantum
model using a quantum circuit composed of Toffoli gates, which is the quantum version of the classical
universal NAND gate.

Reading quantum information. A physical realization of a qubit may come in different forms. However,
according to the postulates of quantum mechanics, no matter what form of realization is chosen, given
a physical realization of an arbitrary qubit, |ψ〉, one cannot determine its coordinates. This phenomenon
is known as the uncertainty principle. The inability to determine the coordinates of an arbitrary qubit is
not an issue of insufficient measuring devices, but a consequence of the fundamental laws of quantum
mechanics. According to these laws, an arbitrary qubit may be realized (up to a certain amount of
precision, dependent of the accuracy of the equipment used), but it cannot be read. Qubits can be
measured. Measurements of qubits are performed in reference to a chosen orthonormal basis of H
and the outcome of the measurement is random, either zero or one, as detailed below. As a result
of the measurement, the qubit is transformed into one of the two qubits of that orthonormal basis.
The probability of obtaining each of the possible outcomes is the square of the absolute value of the
corresponding coordinate of the qubit in the chosen basis. Explicitly, given θ, ϕ ∈ R, denote
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|ψ0〉 =
(

cos(θ/2)
eiϕ sin(θ/2)

)
, |ψ1〉 =

(
sin(θ/2)

−eiϕ cos(θ/2)

)
, (4)

and denote by B(θ,ϕ) the orthonormal basis {|ψ0〉 , |ψ1〉} of H. For a qubit |ψ〉 ∈ H and an orthonormal
basis B(θ,ϕ) of H, write |ψ〉 = α |ψ0〉+ β |ψ1〉. When |ψ〉 is measured in reference to B(θ,ϕ), there is a
probability of |α|2 that |ψ〉 will transform into |ψ0〉, yielding the outcome 0, and a probability of |β|2
that it will transform into |ψ1〉, yielding the outcome 1. We say that, when |ψ〉 is measured in reference
to the basis B(θ,ϕ), it collapses into one of the elements of that basis. Given B(θ,ϕ), an orthonormal basis
of H, any unit vector |ψ〉 = α |ψ0〉 + β |ψ1〉 is a superposition of |ψ0〉 and |ψ1〉, and the elements of
B(θ,ϕ) are pure states in reference to B(θ,ϕ). Since B(θ,ϕ) is an orthonormal basis, α and β are the inner
products of |ψ〉 and the elements of B(θ,ϕ). In general, if B = {|v1〉 , . . . , |vn〉} is an orthonormal basis
of an n-dimensional Hilbert space and |v〉 =

∑n
j=1 αj |vj〉, the inner product of |vk〉 and |v〉, denoted

by 〈vk|v〉, is

〈vk|v〉 =

〈
vk

∣∣∣∣∣
n∑
j=1

αj |vj〉

〉
=

n∑
j=1

αj 〈vk|vj〉 = αk. (5)

Hence, |α|2 = | 〈ψ0|ψ〉 |2 and |β|2 = | 〈ψ1|ψ〉 |2. This fact is used in this paper to compute the probabilities
of obtaining the different outcomes when measuring a given qubit (or a system of qubits) in reference to a
given orthonormal basis. Measurements of systems of l qubits are performed in reference to orthonormal
bases of H⊗l, and result in a collapse of the system into one of the elements of that basis. The possible
outcomes of such a measurement are the corresponding binary strings of length l, and the probability
of obtaining each of the possible outcomes is the square of the absolute value of the corresponding
coordinate of the system in the chosen basis. These may be computed using (5). E.g., consider l = 2, and
let B(θ,ϕ) = {|ψ0〉 , |ψ1〉} and B(θ′,ϕ′) = {|ψ′0〉 , |ψ′1〉} two orthonormal bases of H. Tensor products
of elements of these bases give the following orthonormal basis {|ψ0ψ

′
0〉 , |ψ0ψ

′
1〉 , |ψ1ψ

′
0〉 , |ψ1ψ

′
1〉},

denoted B(θ,ϕ) ⊗ B(θ′,ϕ′) of H⊗2. Given a system of two qubits, measuring that system in reference
to B(θ,ϕ) ⊗B(θ′,ϕ′) is equivalent to measuring the first qubit in reference to B(θ,ϕ) and the second qubit
in reference to B(θ′,ϕ′).

VII. APPENDIX B - SECURITY PROOF OF THE RANDOM BASIS ENCRYPTION SCHEME

We now prove that the random basis encryption scheme is IT-secure. We do it in two different ways.
First, as our scheme deals with encrypting and computing over classical data, we give a proof based
on standard security definitions of classical schemes. Namely, we use a variant of a standard privacy
definition from [LK14]. The second proof follows a standard privacy definition from the quantum setting
derived from [AMTdW00].

As described in Section I, an encryption scheme is composed of three algorithms, Gen, Enc and Dec.
M, K and C are the message space, key space and ciphertext space of the scheme, respectively. In our
case,M = {0, 1} and K = [0, 2π]×{±π

2 }. What is C? On the one hand, C is the set of possible outputs
of Enc, implying that C = H. On the other hand, a ciphertext cannot indicate the encrypted information
if it is not read. To read information from a qubit, one must measure that qubit. The output of such a
measurement is an element of {0, 1}, implying that C = {0, 1}. The first (classical approach) proof uses
the latter interpretation of C, and the second (quantum approach) proof uses the former.

We begin with the classical approach. Assume that an adversary is holding an encryption |q〉 of
b generated using some key (θ, ϕ) ∈ K. The adversary wishes to use |q〉 to find b, or to gain any
information that will enable a better guess of b. The adversary is only able to measure |q〉 in reference
to any orthonormal basis he chooses. If the measurement is performed in reference to any orthonormal
basis other than B(θ,ϕ), then each of the outcomes zero or one may be obtained with positive probability.
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We now rigorously prove that, no matter which orthonormal basis B(θ0,ϕ0) is used by the adversary to
measure |q〉, the probability of each of the outcomes zero or one is 1

2 , regardless of the actual value of b.
We now define the security criterion. Since Gen is a probabilistic algorithm, given a message m ∈M,

the probability distribution over K induces a probability distribution over C. An encryption scheme is
perfectly secure if all messages m ∈ M induce the same probability distribution over C. Formally (see
[LK14, Lemma 2.3]):

Definition 1. An encryption scheme (Gen, Enc, Dec) over a message spaceM is perfectly secure if for
every probability distribution over M, every m0,m1 ∈M, and every c ∈ C:

Pr[C = c|M = m0] = Pr[C = c|M = m1],

where C and M are the random variables denoting the value of the ciphertext and the message,
respectively.

By Definition 1, perfect security of the random basis encryption scheme follows from

Lemma 2. Let (θ0, ϕ0) ∈ [0, 2π]2. One has

Pr
[
M
(
|ψ0〉 , B(θ0,ϕ0)

)
= 0
]

= Pr
[
M
(
|ψ1〉 , B(θ0,ϕ0)

)
= 0
]
, (6)

where
• B(θ0,ϕ0) is the orthonormal basis used by an adversary to measure an encryption of a bit,
• |ψ0〉 and |ψ1〉 are as in (4), and are encryptions of zero and one, obtained using our scheme,
• M

(
|ψ〉 , B(θ0,ϕ0)

)
is the random variable denoting the result obtained when measuring |ψ〉 in

reference to B(θ0,ϕ0),
• the probability is over the choice of (θ, ϕ) from [0, 2π]2 and the inherent randomness of quantum

measurements.

Proof. We begin with computing the expression on the left-hand side Pr
[
M
(
|ψ0〉 , B(θ0,ϕ0)

)
= 0
]

of (6).
That is, computing the probability of obtaining the outcome zero when measuring |ψ0〉 in reference to
B(θ0,ϕ0) in terms of θ and ϕ. This probability is the square of the absolute value of the first coordinate of
|ψ0〉 in the orthonormal basis B(θ0,ϕ0). Denote by |v0〉 and |v1〉 the elements of B(θ0,ϕ0). As mentioned
in (5), the coordinates of |ψ0〉 in B(θ0,ϕ0) are given by appropriate inner products. Define α0, β0 ∈ C by
|ψ0〉 = α0 |v0〉+ β0 |v1〉. One has

α0 = 〈v0|ψ0〉 =

〈(
cos(θ0/2)

eiϕ0 sin(θ0/2)

)∣∣∣∣∣( cos(θ/2)
eiϕ sin(θ/2)

)〉
= cos(θ0/2) cos(θ/2) + ei(ϕ−ϕ0) sin(θ0/2) sin(θ/2).

Multiplying by α∗0, and using routine trigonometric identities, we obtain:

|α0|2 = 1
2

[
cos2 θ+θ02 + cos2 θ−θ02 + sin θ sin θ0 cos(ϕ− ϕ0)

]
. (7)

Now, θ and ϕ are chosen uniformly random from [0, 2π] × {±π
2 }. The mean value of |α0|2 over that

domain may be computed in various ways. One may compute it using the formula f = 1
V ol(U)

∫
U f ,

which yields 1
2 . By the law of total probability, the right-hand side of (6) is also 1

2 . All in all, we have

Pr
[
M
(
|ψ0〉 , (θ0, ϕ0)

)
= 0
]

= Pr
[
M
(
|ψ1〉 , (θ0, ϕ0)

)
= 0
]

= 1
2 . �

This concludes the classical proof. We have shown that, no matter which orthonormal basis is chosen
by the adversary to measure |q〉, the outcome 0 will be obtained with probability 1

2 , regardless of the
actual value of b. By the laws of quantum mechanics, any operation other than measuring the qubit will
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yield less information regarding the plaintext. Since measuring the qubit gives no information at all, the
scheme is perfectly secure. We now turn to the quantum approach, which interprets the ciphertext space
as H. We use the density matrix representation of quantum states and base our claims on a security
definition which follows the same line as Definition 3.1 from [AMTdW00] (modified for the continuous
setting of our scheme).

Definition 2. Let S ⊆ H be a set of qubits, E = {Ui : i ∈ I} be a set of unitary mappings on H, and
ρ0 be some density matrix. Uniformly at random applying an element of E to a given element |s〉 ∈ S
perfectly hides |s〉 if and only if for all |s〉 ∈ S we have∫

I
Ui |s〉 〈s|U †i = ρ0.

In our case, S = {|0〉 , |1〉}, and E =

{(
cos(θ/2) sin(θ/2)

eiϕ sin(θ/2) −eiϕ cos(θ/2)

)
: (θ, ϕ) ∈ K

}
. To show that the

random basis encryption scheme is perfectly secure, we need to show that∫
K
Kθ,ϕ |0〉 〈0|K†θϕ =

∫
K
Kθϕ |1〉 〈1|K†θϕ, (8)

where Kθϕ =

(
cos(θ/2) sin(θ/2)

eiϕ sin(θ/2) −eiϕ cos(θ/2)

)
. Routine computation shows that the left- and right-hand side

of (8) are equal. To conclude, the density matrix that an adversary sees after encryption is the same,
regardless of the input. This shows that the random basis encryption scheme is perfectly secure. We note
that, since the evaluation algorithm is non-interactive, the adversary gains no new information executing
it, and hence the scheme is secure.

Remark 1. In the key generation algorithm of our random basis encryption scheme, the user is required
to pick a uniformly random element θ from [0, 2π]. Implementing random choices from a continuous
domain might be technically challenging. However, the set of keys may be made discrete as follows. Let
N a positive integer, and KN =

{
2πn
N : n ∈ {1, 2, . . . , N}

}
. Instead of picking θ from [0, 2π], the user

may uniformly at random pick θ from KN . How does that affect the security? In the classical security
proof above, the mean value of the right hand side of (7) was computed by integrating over [0, 2π].
Replacing [0, 2π] with KN , we compute the mean value of the right hand side of (7) by summing over
all the possibilities for θ divided by N . Now, it is well known that for any real continuous function f ,∫

[0,2π]
f(x)dx = lim

N→∞

N∑
n=1

2π
N f
(
2πn
N

)
.

Hence, by taking large enough N , the mean value of the discrete version can be made arbitrarily close
to 1

2 . In the quantum proof, by similar arguments, we can make the left- and right-hand sides of (8)
arbitrarily close to each other by taking large enough N . To conclude, taking the discrete version of the
key space, we make Gen easier to implement in the cost of making the scheme statistically secure (rather
than perfectly secure). Either way, the scheme is IT-secure.
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VIII. APPENDIX C — PROOF OF LEMMA 1

Proof. Let θ ∈ [0, 2π] and ϕ = ±i. One has:

|0ψ0〉 =
(
1
0

)
⊗
(

cos(θ/2)
±i sin(θ/2)

)
=

(
cos(θ/2)
±i sin(θ/2)

0
0

)
,

D |0ψ0〉 = 1√
2

(
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

)( cos(θ/2)
±i sin(θ/2)

0
0

)
= 1√

2

 cos(θ/2)
±i sin(θ/2)
±i sin(θ/2)
cos(θ/2)

. (9)

The probabilities of obtaining each of the possible outcomes, when measuring D |0ψ0〉 in reference to
{|0〉 , |1〉}⊗B(θ,ϕ), are the squares of the absolute values of the coordinates of D |0ψ0〉 in that basis. The
elements of {|0〉 , |1〉} ⊗ B(θ,ϕ) are |0ψ0〉 , |0ψ1〉 , |1ψ0〉 and |1ψ1〉. The first, |0ψ0〉, has been computed
in (9). Now,

|1ψ1〉 =
(
0
1

)
⊗
(

sin(θ/2)
∓i cos(θ/2)

)
=

(
0
0

sin(θ/2)
∓i cos(θ/2)

)
. (10)

By (9) and (10),

|0ψ0〉 ± i |1ψ1〉√
2

= 1√
2

 cos(θ/2)
±i sin(θ/2)
±i sin(θ/2)
cos(θ/2)

 = D |0ψ0〉 .

This shows that the coordinates of D |0ψ0〉 in {|0〉 , |1〉}⊗B(θ,ϕ) are 1√
2
, 0, 0 and ±i√

2
. Taking the squares

of the absolute values of these coordinates one sees that, measuring in reference to {|0〉 , |1〉} ⊗ B(θ,ϕ),
the outcome 00 is obtained with probability 1

2 , as so is 11. The probabilities of obtaining the different
outcomes when measuring D |0ψ1〉 in reference to {|0〉 , |1〉} ⊗ B(θ,ϕ) may be found by substituting
θ = π − θ′ and ϕ = −ϕ′. That substitution yields D |0ψ1〉 = |0ψ1〉∓i|1ψ0〉√

2
. Taking the squares of the

absolute values, we obtain the desired probabilities. �
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IX. APPENDIX D — PROOF OF LEMMA 2

Proof. We begin with some notations regarding the WM attack on DL04 described above. Recall that,
at the first stage of DL04, Bob chooses a, b ∈ {0, 1} uniformly at random and sends HaXb |0〉 to Alice.
We denote by |ψ1〉 the two qubit system whose first qubit is the qubit sent from Bob to Alice, and the
second qubit of |ψ1〉 is Eve’s (first) |0〉 ancilla. Namely, |ψ1〉 = (HaXb |0〉)⊗ |0〉. |ψ2〉 denotes Wε |ψ1〉.
Recall that Eve measures the right qubit of |ψ2〉 to obtain e1. We denote by |ψ3〉 the two-qubit system
whose left qubit is the left qubit of |ψ2〉 after Eve measures the right qubit of |ψ2〉, and the right qubit of
|ψ3〉 is Eve’s new |0〉 ancilla. |ψ4〉 is the system obtained from |ψ3〉 after Alice applies a c-conditioned
U to its left qubit. |ψ5〉 denotes Wε |ψ4〉. These notations are illustrated at Figure 10.

Figure 10: The WM attack on DL04.

Recall that Eve measures the right qubit of |ψ5〉 to obtain e2. Eve’s guess is e1⊕2. The guess is correct
if e1 ⊕ e2 = c. To compute the probability of Eve guessing c correctly we examine all the possibilities
for (a, b, c) ∈ {0, 1}3. Each possibility occurs with probability 1

8 (We assume that c is chosen uniformly
at random).

• First case: a = 0.
– Assume (b, c) = (0, 0). In this case, |ψ1〉 = |00〉, and hence |ψ2〉 = Wε |ψ1〉 =

√
εi ·CNOT +√

1− ε · I ⊗ I |00〉 = |00〉 . Next, Eve measures the right qubit of |ψ2〉 and obtains e1 = 0 with
probability 1. Now, |ψ3〉 = |00〉, and since c = 0, we have |ψ4〉 = |00〉 and |ψ5〉 = |00〉 as
well. Measuring the right qubit of |ψ5〉 Eve obtains e2 = 0 with probability 1, which implies
that Eve’s guess in this case is e1 ⊕ e2 = 0 ⊕ 0 = 0. Since here c = 0, the guess is correct.
This contributes 1

8 to the total success probability.
– Assume (b, c) = (0, 1). Here, e1 and |ψ3〉 are the same as in the previous case since Alice’s

choice of c is only reflected at |ψ4〉. Now, |ψ4〉 = |10〉, and hence |ψ5〉 = Wε |10〉 = i
√
ε |11〉+√

1− ε |10〉. When Eve measures the right qubit of |ψ5〉 she obtains the outcome e2 = 1 with
probability ε, and the outcome e2 = 0 is obtained with probability 1−ε. The former possibility
implies a correct guess (since e1⊕e2 = 0⊕1 = 1 = c), which contributes ε

8 to the total success
probability.

– Assume (b, c) = (1, 0). Here, |ψ1〉 = |10〉. Now, |ψ2〉 = Wε |10〉 = i
√
ε |11〉 +

√
1− ε |10〉.

Measuring the right qubit of |ψ1〉 Eve obtains e1 = 1 with probability ε and e1 = 0 with
probability 1 − ε. Either way, |ψ4〉 = |10〉 and |ψ5〉 = i

√
ε |11〉 +

√
1− ε |10〉. Measuring the

right qubit of |ψ5〉, Eve obtains e2 = 1 with probability ε and e2 = 0 with probability 1 − ε.
Since c = 0, the correct guesses come from the cases where (e1, e2) = (0, 0) or (e1, e2) = (1, 1).
The former possibility has probability of (1 − ε)2, and the latter occurs with probability ε2.
This contributes (1−ε)2

8 + ε2

8 = 1−2ε+2ε2

8 to the total success probability.
– Assume (b, c) = (1, 1). Since Alice’s choice of c is only reflected at |ψ4〉, the probabilities for
e1 are as in the previous case, and |ψ3〉 = |10〉. Here c = 1, and hence |ψ4〉 = |00〉, which
implies that |ψ5〉 = Wε |00〉 = |00〉. Measuring the right qubit of |ψ5〉, Eve obtains the outcome
e2 = 0 with probability 1. If e1 = 1 was obtained before, then Eve’s guess is correct since
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1⊕ 0 = 1. Since the outcome e1 = 1 is obtained with probability ε we conclude that this case
contributes ε

8 to the total success probability.

All in all, the contribution of the case a = 0 to the total success probability is

1
8 + 2ε

8 + (1−ε)2
8 + ε2

8 = 1
4 + ε2

8 .

• Second case: a = 1. First, we note that the left qubit of |ψ1〉 is HaXb |0〉 = H |b〉 = |0〉+(−1)b |1〉.
If b = 0 then the left qubit of |ψ1〉 is |+〉, and if b = 1 then it is |−〉. We write |ψ1〉 = |±〉 |0〉. Now,
|ψ2〉 = Wε |±〉 |0〉 = Wε

(
1√
2
|00〉 ± 1√

2
|10〉

)
. Recall that Wε =

√
εi ·CNOT +

√
1− ε · I ⊗ I . We

have
|ψ2〉 =

√
1− ε

(
1√
2
|00〉 ± 1√

2
|10〉

)
+ i
√
ε
(

1√
2
|00〉 ± 1√

2
|11〉

)
.

Rearranging, we get
|ψ2〉 =

√
1−ε+i

√
ε√

2
|00〉 ±

√
1−ε√
2
|10〉 ± i

√
ε√
2
|11〉 .

Measuring the right qubit of |ψ2〉, Eve obtains the outcome e1 = 1 with probability ε
2 , regardless of

b. The outcome e1 = 0 is obtained with probability 1− ε
2 . We examine each possibility.

– If the outcome e1 = 1 was obtained (which happens with probability ε
2 ) then the left qubit of

|ψ2〉 collapses to |1〉. Now, there are two possibilities for c.
∗ If c = 1 then |ψ4〉 = |00〉, which implies that |ψ5〉 = |00〉 as well. Measuring the right qubit

of |ψ5〉 Eve obtains the outcome e2 = 0 with probability 1. Since we assume here e1 = 1,
Eve’s guess, 1⊕ 0 = 1, is correct. This contributes ε

8 to the total success probability.
∗ If c = 0 then |ψ4〉 = |10〉, which implies that |ψ5〉 = Wε |10〉 = i

√
ε |11〉 +

√
1− ε |10〉 .

Measuring the right qubit of |ψ5〉, Eve obtains the outcome e2 = 1 with probability ε, which
compels a correct guess, 1⊕ 1 = 0 = c. This contributes ε2

8 to the total success probability.

– If the outcome e1 = 0 was obtained (which happens with probability 1− ε
2 ) then the left qubit

of |ψ2〉 collapses to √
1−ε+i

√
ε√

2
|0〉 ±

√
1−ε√
2
|1〉∣∣∣∣∣∣√1−ε+i√ε√

2
|0〉 ±

√
1−ε√
2
|1〉
∣∣∣∣∣∣ .

Using routine algebraic manipulations and joining Eve’s (new) |0〉 ancilla we get

|ψ3〉 =
√

2
2−ε

(√
1−ε+i

√
ε√

2
|00〉+

√
1−ε√
2
|10〉

)
.

Now, there are two possibilities for c.
∗ If c = 0 then |ψ4〉 = |ψ3〉. In this case, since |ψ5〉 = Wε |ψ4〉 we get

|ψ5〉 =
√
2−2ε√
2−ε

(√
1−ε+i

√
ε√

2
|00〉+

√
1−ε√
2
|10〉

)
+ i
√
2ε√

2−ε

(√
1−ε+i

√
ε√

2
|00〉+

√
1−ε√
2
|11〉

)
.

We rearrange |ψ5〉 by the standard basis elements and see that the coefficient of |11〉 is
i
√
2ε√

2−ε ·
√
1−ε√
2

and the coefficient of |01〉 in |ψ5〉 is 0. Hence, measuring the right qubit of
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|ψ5〉 Eve obtains the outcome e2 = 1 with probability α := ε(1−ε)
2−ε . Hence, the outcome

e2 = 0 is obtained with probability 1 − α. If that happens, we have e1 ⊕ e2 = 0 ⊕ 0 = 0,
which yields a correct guess. This contributes 1

4(1− ε
2)(1−α) to the total success probability.

∗ If c = 1 then Alice applies U to the left qubit of |ψ3〉 and hence

|ψ4〉 =
√

2
2−ε

(√
1−ε+i

√
ε√

2
|10〉+

√
1−ε√
2
|00〉

)
.

Now, |ψ5〉 = Wε |ψ4〉 . Here we get

|ψ5〉 =
√

2−2ε
2−ε

(√
1−ε+i

√
ε√

2
|10〉+

√
1−ε√
2
|00〉

)
+ i
√

2ε
2−ε

(√
1−ε+i

√
ε√

2
|11〉+

√
1−ε√
2
|00〉

)
.

Measuring the right qubit of |ψ5〉 Eve obtains the outcome e2 = 1 with probability

β =
∣∣∣i√ 2ε

2−ε ·
√
1−ε+i

√
ε√

2

∣∣∣2 = ε
2−ε .

In this case we get e1 ⊕ e2 = 0 ⊕ 1 = c, which yields a correct guess. This contributes
β
4 (1− ε

2) to the total success probability.

All in all, the contribution of the case a = 1 to the total success probability is
ε
8 + ε2

8 + 1
4(1− ε

2)(1− α) + β
4 (1− ε

2).

Using routine algebraic manipulations, the reader may readily verify that the contributions of the cases
a = 0 and a = 1 add up to a total success probability of 1

2 + 6ε2−3ε3
8(2−ε) . �


