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Abstract

Homomorphic encryption (HE) schemes enable processing of encrypted data and may be used by a
user to outsource storage and computations to an untrusted server. A plethora of HE schemes has been
suggested in the past four decades, based on various assumptions, and which achieve different attributes.
In this work, we assume that the user and server are quantum computers, and look for HE schemes of
classical data. We set a high bar of requirements and ask what can be achieved under these requirements.
Namely, we look for HE schemes which are efficient, information-theoretically (IT) secure, perfectly
correct, and which support homomorphic operations in a fully-compact and non-interactive way. Fully-
compact means that decryption costs O(1) time and space. To the best of our knowledge, there is no
known scheme which fulfills all the above requirements. We suggest an encryption scheme based on
random bases and discuss the homomorphic properties of that scheme. We demonstrate the usefulness
of random bases in an efficient and secure QKD protocol and other applications. In particular, our QKD
scheme has safer security in the face of weak measurements.

Keywords: Homomorphic encryption, Quantum computing, Information-theoretic security



2

I. INTRODUCTION

Delegation of computation, while preserving the confidentiality of the data (and sometimes even the
program), is a challenging practical task which has kept researches busy ever since it was brought up
in 1978 by Rivest, Adelman, and Dertouzos [RAD78]. That problem addresses scenarios similar to the
following. A user is holding information in the form of a string x. The user wishes to use the services
of a remote server, which will be referred to as the cloud, to store x and perform computations over the
stored data using computing engines provided by the cloud. Assume that x is confidential, and hence, the
user does not want to share x with the cloud infrastructure enterprises. For example, the user may be a
financial company and x some information regarding the financial activity of the company. The company
wishes to use the services of a distrustful cloud to store the data and perform computations over the data.

In particular, there can be much use in information-theoretically secure (IT-secure) schemes that would
enable such a delegation of data and computations. The security of computationally secure schemes
is based on (a) unproven assumptions regarding the computational hardness of specific mathematical
problems, and (b) the assumption that the computing power of the adversary is insufficient for solving
instances of these assumed-to-be-hard mathematical problems. The security of IT-secure schemes is free
of such assumptions and is derived from information theory.

Existing solutions to the problem of delegation of computation are based on either the distributed
approach of secure multi-party computation (MPC, see [CDN15]) or the single-server approach of
homomorphic encryption (HE, see [AAUC18]). MPC-oriented solutions often achieve IT-security, but
to support processing of any function over the encrypted data they require ongoing communication
between the servers among whom the ciphertext is distributed. HE-oriented solutions typically require no
communication, but to maintain IT-security, they can support processing of only a limited set of functions
over the encrypted data. Fully homomorphic encryption (FHE) schemes, which may support processing
of any function over the encrypted data, can only achieve computational security.

HE schemes may be described by a collection of four algorithms. We denote by K,M, and C the key
space, the message space and the ciphertext space of a given scheme, respectively. The algorithms are
as follows.
• Gen – A key generation algorithm which, given a security parameter input, n, outputs a key, k ∈ K.
• Enc – An encryption algorithm which, given a plaintext input, x ∈ M, and a key, k, outputs a

ciphertext c ∈ C. We will write c =Enck(x) to emphasize that the encryption depends on k.
• Eval – An evaluation algorithm which, given a ciphertext input, c =Enck(x), and a function, f ,

outputs F (c), where F (c) is an encryption of f(x) using the same key. Namely, F (c) =Enck
(
f(x)

)
.

• Dec – A decryption algorithm which, given a ciphertext input, c =Enck(x), and a key, k, outputs x.
HE schemes may be classified according to their level of security, complexity, and other attributes.
Informally, a scheme is secure if the ciphertext leaks negligible amount of information regarding the
plaintext. Security is typically formalized in the IT or computational setting using standard privacy
definitions. The collection of functions f , for which Eval is defined, may be different for different
schemes. If Eval is defined for all Boolean functions, then the scheme is fully homomorphic. The first
FHE scheme was presented in [Gen09], followed by several revisions and further solutions [VDGHV10],
[GHS12], [BP16], [GHS16], [XWZ+18]. If Dec is efficient, the scheme is compact. If Dec requires O(1)
time and space, the scheme is fully compact. In some schemes (e.g., most quantum one-time pad based
schemes, see below), the evaluation algorithm may output an encryption of the evaluated plaintext that
uses a different key. Namely, on input c = Enck(x), Eavl outputs F (c) = Enck′(f(x)), an encryption
of f(x) using a different key, k′. Typically, In such schemes, k′ is dependent of f , and decryption of the
evaluated ciphertext requires the user to modify her keys according to f . Such schemes cannot achieve
full compactness.
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Quantum computers threaten the security of computationally secure schemes. If built in-scale, they
may allow feasible solutions to problems that are currently considered impractical to solve. For example,
Deutsch and Jozsa showed in 1992 that quantum computers could solve certain problems exponentially
faster than classical computers [DJ92]. Shor suggested in 1994 algorithms that may be invoked by
quantum computers to compute discrete logarithms and factor large integers in polynomial time [Sho94],
two problems that are considered computationally hard and stand in the basis of many commonly used
computationally secure cryptographic schemes. In 1996, Grover presented a quantum search algorithm
that finds a desired record in an N records database in O(

√
N) steps [Gro96]. Bennett and Brassard

[BB84] presented a quantum key distribution (QKD) protocol, which enables two distant parties to agree
on a random key with IT-security. These are but four well-known algorithms out of numerous results
established in the growing field of quantum computation [Jor18].

In light of these results, it is natural to ask if an IT-secure FHE scheme may be achieved using quantum
computers. In 2014, it was shown by [YPDF14] that it is impossible to construct an efficient IT-secure
quantum FHE (QFHE) scheme. Specifically, the size of the encryption of an IT-secure QFHE scheme
must grow exponentially with the input size. The non-existence of efficient IT-secure QFHE may also be
deduced from different arguments, as in [ABC+19]. Either way, efficient IT-secure encryption schemes
can be used to homomorphically evaluate only a subset of all possible functions. Such schemes are
quantum homomorphic encryption (QHE) schemes, e.g., [RFG12], [Lia13], [TKO+16], [OTF18]. Other
works use computationally-secure FHE schemes to construct computationally-secure QFHE schemes.
E.g., [BJ15], [DSS16], [ADSS17], [Mah18], [Bra18]. Quantum schemes with homomorphic properties
are often based on the quantum one-time pad (QOTP) encryption scheme, suggested in [AMTdW00].
There, Pauli gates are randomly applied to the qubits to obtain IT-secure encryption.

Different schemes are based on different assumptions regarding the capabilities of the parties. QHE
schemes typically assume that the server has full quantum capabilities. Assumptions regarding the
quantum abilities of the user vary on a broad spectrum between a classical user (with no quantum abilities
at all) and a fully quantum user. When the user has (at least some) quantum abilities, the information
x held by that user may either be classical or quantum (of course, if the user has no quantum abilities,
x can only be classical). In this work, we assume that both the user and the server have full quantum
abilities. Namely, they both can: (a) generate qubits in the computational basis; (b) manipulate qubits
using quantum logic gates; (c) transmit qubits between each other; (d) measure qubits. We assume that
the information held by x is classical. The function f that is to be homomorphically evaluated over x
may either be a classical or quantum algorithm.

In this work, we look for QHE schemes that enable users to delegate classical data to be stored and
processed by a distrustful cloud and have the following properties.
• Efficient.
• IT-secure.
• Fully compact.
• Perfectly correct. I.e., the ciphertext always decrypts to the right plaintext, except for errors that

may arise due to the nature of noisy physical implementations of quantum schemes.
• Non-interactive. I.e., no interaction is allowed other than the user sending c =Enck(x) to the server,

and the server replying with F (c) =Enck
(
f(x)

)
.

We ask which operations may be homomorphically applied to encrypted data under these properties. To
the best of our knowledge, there is no known QHE scheme that guarantees all these properties.
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Our results. We suggest here a new approach to encrypt and outsource the storage of classical data
while enabling IT-secure quantum gate computations over the encrypted data. Our method is based on
using a specific family of random bases to encrypt classical bits. Our schemes support fully-compact
IT-secure homomorphic evaluation of NOT and Hadamard gates, and also CNOT gates, where the
control qubits are set in none-random basis. The latter implies that cascading is possible only in specific
yet important cases. We detail applications of our constructions, including random basis QKD, coalitions-
resilient secure multi-party XOR computation, and secure quantum pseudo-telepathy scheme. We note
that, while some of these applications may also be constructed using other existing QHE schemes, our
schemes support these applications while maintaining IT-security, full compactness, perfect correctness,
and non-interactively. In particular, we believe that our random basis QKD scheme has many important
practical use cases. All our schemes, based on adding extra randomness, have safer security implications
in the face of weak measurements.

Related work. Broadbent suggested in [Bro15] a client-server scheme based on combining the QOTP
encryption scheme with a computationally secure classical FHE scheme. Their scheme enables delegation
of quantum information to a quantum server and homomorphic processing of a universal set of quantum
gates over the encrypted data. However, their scheme falls short of achieving the properties listed above.
First, their scheme employs a computationally-secure FHE protocol, which makes their scheme only
computationally secure (as mentioned, we are interested in IT-secure schemes). Second, their scheme
requires quantum and classical interaction between the user and the server for the processing of non-
Clifford gates (the scope of this work is constructing non-interactive schemes). Third, their scheme is
not fully compact, as it requires the user to update the keys used to encrypt the data throughout the
computation. Namely, to homomorphically evaluate a quantum circuit over encrypted data, the client
should re-adjust her knowledge of the encryption keys on each relevant quantum wire after each gate
processing. That re-adjustment requires O(s) work, where s is the size of the circuit. As mentioned, in
this work we look for fully-compact schemes — schemes in which the complexity of Dec is O(1).

An approach similar to [Bro15] was adopted by [BJ15]. There, two schemes were proposed. The
first has a decryption procedure whose complexity scales with the square of the number of T-gates and
hence falls short of achieving full compactness. The second scheme uses a quantum evaluation key of
length given by a polynomial of degree exponential in the circuit’s T-gate depth, yielding a homomorphic
scheme only for quantum circuits with constant T-depth. The evaluation key includes auxiliary qubits that
encode the required corrections that should be performed over the processed data. Since a large number
of possible corrections must be available, the length of the evaluation key is exponential in the circuit’s
T-gate depth, yielding a homomorphic scheme that is efficient only for quantum circuits with constant
T-depth. Both the schemes of [Bro15] and [BJ15] are only computationally secure.

Dulek et al. [DSS16] built on the framework of [BJ15] and used a classical FHE scheme to construct
quantum gadgets that allow perfect correction of the errors that occur during the homomorphic evaluation
of T-gates on encrypted quantum data. These gadgets give rise to an efficient non-interactive QFHE
scheme. Their scheme is compact, but not fully compact, since decryption requires the user to apply
classical changes to the keys according to f . Furthermore, it is only computationally secure.

Mahadev presented in [Mah18] a non-interactive FHE scheme for quantum circuits that uses classical
keys. The scheme allows a classical user to delegate quantum computations to a quantum server, while
the server is unable to learn any information about the computation. Their scheme is based on QOTP, is
only computationally secure, and is not perfectly correct as it has positive error probability.

Brakerski [Bra18] used the high-level outline of [Mah18] to construct a computationally secure QFHE
scheme which enables homomorphic evaluation of classical circuits with bounded depth over classical
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data and with improved correctness. To support unbounded depth, they further rely on a circular security
assumption.

Childs [Chi05] discussed ways in which a powerful quantum server may assist a user in performing
operations while preserving the confidentiality of the data. In their work, the user is assumed to have
capabilities significantly inferior to those of the server. In particular, the user is only allowed to generate
qubits in the |0〉 state, store qubits, perform swap and Pauli gates, and perform no measurements. Under
these considerations, they suggest a (QOTP based) way in which the server may perform measurements
on encrypted data. They also suggest algorithms which enable the server to help the user in performing
a universal set of quantum gates over encrypted data, but these algorithms are neither compact nor non-
interactive — they require the user to perform at least as many operations as the server for each gate,
and some of them require rounds of client-server interaction. In particular, they suggest a non-compact
way of performing Hadamard gates over the encrypted qubits, while we suggest here a fully compact,
efficient, non-interactive, IT-secure and perfectly correct way of homomorphically applying Hadamard
gates to encrypted qubits.

Rhode et al. presented in [RFG12] a protocol that enables a quantum user to manipulate client data in
two models of restricted quantum computation — the boson sampling and quantum walk models. Their
protocol is non-interactive, fully compact, and assumes no computational hardness assumptions and no
limitations on the computing power of the adversary. However, in their scheme, the same key is used for
encoding each of the input qubits, and hence, their scheme withstands no standard cryptographic criterion
of security. Tan et al. [TKO+16] improved on [RFG12] and presented a protocol that supports a class
of quantum computations, including and beyond boson sampling, with improved security (under similar
assumptions). However, they achieve no standard criterion of IT-security, as they only bound the amount
of information accessible to an adversary.

Ouyang, Tan, and Fitzsimons [OTF18] took a different approach and further improved on the results of
[TKO+16]. Built on constructions taken from quantum codes, they achieved an encryption scheme that
supports evaluation of circuits with a constant number of non-Clifford gates. Though achieving stronger
security guarantees than [RFG12], [TKO+16], their scheme withstands no standard cryptographic criterion
of security. Furthermore, their scheme is neither perfectly correct nor fully compact. It suggests a tradeoff
between the size of the encoding and the success probability, where achieving constant success probability
costs in increasing the size of the encoding exponentially with the total number of T gates.

[Lia13] constructed a QOTP-based quantum encryption scheme which, given the encryption key,
permits any unitary transformation to be evaluated on an arbitrary encrypted n-qubit state. Their scheme
is efficient, compact, and IT-secure against an eavesdropper who may intercept an encrypted message
(before or after evaluation). However, their scheme suggests no solution to the main problem discussed
in this paper, as their evaluation algorithm is dependent on the key. Under such restriction, the server
must hold the key to compute on the encrypted data. Given the key, the server may decrypt and read the
message, which by no means provides the user with any level of privacy. They also constructed a scheme
in which the evaluation algorithm is independent of the key, but it only supports trivial operations that
are independent of the key.

Paper organization. In Section II, we present our random basis encryption scheme. In Section III, we
discuss the homomorphic properties of our scheme. Several applications are discussed in Section IV.
Section V concludes the work. Relevant background on quantum computation, notations, some of the
proofs, and one application may be found in the Appendix.
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II. THE RANDOM BASIS ENCRYPTION SCHEME

We begin with some intuition. Our main intention is encrypting the classical bits 0 and 1 while enabling
some operations to be performed homomorphically over the ciphertext. Typically, these bits are encoded
in quantum computation as the elements |0〉 and |1〉 of the standard basis of H = C2. Of course, that
encoding is by no means an encryption of the bits. Approaching proper encryption, we take some random
(θ, ϕ) ∈ [0, 2π]2, set |ψ0〉 =

(
cos(θ/2)

eiϕ sin(θ/2)

)
, and think of |ψ0〉 as an encryption of |0〉 using (θ, ϕ) as the

encryption key. The plaintext qubits |0〉 and |1〉 are orthogonal. To maintain orthogonality of the ciphertext,
we set |ψ1〉 =

(
sin(θ/2)

−eiϕ cos(θ/2)

)
to be the encryption of |1〉 using the same key. One may readily verify that

|ψ0〉 and |ψ1〉 are orthogonal. For random (θ, ϕ) ∈ [0, 2π]2, the elements |ψ0〉 and |ψ1〉 constitute a random
orthonormal basis of H, denoted B(θ,ϕ). Now, as mentioned, we want that encryption to support some
homomorphic operations in a fully-compact non-interactive IT-secure way. First, we require supporting
homomorphic NOT gates. We want |ψ0〉 to be equal (up to a global phase factor) to NOT |ψ1〉 (and
vice versa). This requirement compels ϕ = ±π/2. Hence, for (θ, ϕ) ∈ [0, 2π]×{±π

2 }, the random basis
B(θ,ϕ) is NOT -invariant.

The discussion above, and the inability of determining the coordinates of an arbitrary qubit, given a
realization of it, give rise to the following QHE scheme of classical data, which allows a user to outsource
the storage of confidential information to an untrusted server. We now present the algorithms Gen, Enc,
and Dec. In the next section, we construct Eval, and detail operations which may be homomorphically
applied to the ciphertext in a fully-compact and non-interactive way.

The Random Basis Encryption scheme

Gen (key generation): Output a uniformly random pair (θ, ϕ) from [0, 2π]× {π2 ,−
π
2 }.

Enc (encryption): On input message b ∈M and a key k = (θ, ϕ):
• Generate the qubit |b〉.
• Let K =

(
cos(θ/2) sin(θ/2)

eiϕ sin(θ/2) −eiϕ cos(θ/2)

)
∈M2(C) and apply K to |b〉 to obtain |q〉 = K |b〉.

• Output |q〉.
Dec (decryption): On input ciphertext |ψ〉 and a key k = (θ, ϕ):
• Let K† denote the conjugate transpose of K, where K is as in Enc and apply K† to |ψ〉.
• Measure K† |ψ〉 in reference to the computational basis.
• Output the outcome of the measurement.

The matrix K defined in the scheme is the unitary matrix whose columns are the elements of B(θ,ϕ).
Multiplying the elements of the computational basis, {|0〉 , |1〉}, by K, we obtain the elements of B(θ,ϕ).
We refer to the encryption algorithm as taking the elements of the computational basis to the elements
of the random basis B(θ,ϕ). Since K is a unitary transformation, K† is its inverse, and hence, given
(θ, ϕ), the decryption algorithm takes the elements of B(θ,ϕ) to the elements of the computational basis.
Of course, the scheme may be applied bit-wise to a string x of classical bits to enable outsourcing the
storage of x to an untrusted quantum server. The scheme is perfectly correct. Indeed, assume that |q〉 is
the encryption of b ∈ {0, 1} using (θ, ϕ). By Enc, |q〉 = K |b〉. In Dec, K† is applied to |q〉. One has
K† |q〉 = K†K |b〉 = |b〉. Since |b〉 is a pure state, measuring it in reference to the computational basis,
we get b with probability 1. In the appendix, we prove that the scheme is IT-secure. In Gen, the key is
chosen from an infinite set. Implementing this might be challenging. Remark 1 below discusses how K
may be made discrete and the security consequences of this procedure.
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III. QUANTUM GATE COMPUTATIONS

We now explore the consequences of homomorphically applying quantum gates to the ciphertext by
the distrustful quantum server. Obviously, any gate that commutes with the family of the encryption gates
K, may be homomorphically applied to the encrypted data. Several unitary operations are typically used
in quantum computing. We now investigate the consequences of applying some of these typically-used
quantum gates to a random basis B(θ,ϕ) encryption of classical data.

The NOT gate. The NOT gate is the unitary transformation that interchanges the elements of the
computational basis: |b〉 → |1− b〉. The matrix representation of NOT in the computational basis is
X =

(
0 1
1 0

)
. What happens when one applies an X gate to an element of a random basis B(θ,ϕ)? A

simple calculation will show that, applying an X gate to an element of B(θ,ϕ) we get the other element
of that basis, up to a global phase factor. Since eiϕ = ±i, we have

X |ψ0〉 =
(
0 1
1 0

)( cos(θ/2)
±i sin(θ/2)

)
=
(±i sin(θ/2)

cos(θ/2)

)
= ±i

( sin(θ/2)
∓i cos(θ/2)

)
= ±i |ψ1〉 .

Similarly, X |ψ1〉 = ∓ |ψ0〉. To conclude, applying a NOT gate to elements of B(θ,ϕ) we get the same
effect as when applying it to an element of the computational basis. Consequently, X gates may be
homomorphically applied to encrypted data.

The CNOT gate. The CNOT gate is a two-qubit gate, whose matrix representation in the computational
basis of H⊗2 is (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
.

Tensor products of the elements of the computational basis {|0〉 , |1〉} of H, give the computational basis
{|00〉 , |01〉 , |10〉 , |11〉} of H⊗2. Applying the CNOT gate to the elements of the latter basis, we leave
|00〉 and |01〉 unchanged, and interchange |10〉 and |11〉. In other words, if the first qubit is |0〉, then the
second qubit is left unchanged, and if the first qubit is |1〉, then a NOT gate is applied to the second
qubit. For this reason, this gate is called the controlled-NOT gate. The first qubit is the control qubit
and the second is the target qubit.

What happens if one applies a CNOT gate to the elements of a random basis of H⊗2? Namely, let
B(θ,ϕ) = {|ψ0〉 , |ψ1〉} and B(θ′,ϕ′) = {|ψ′0〉 , |ψ′1〉} two orthonormal bases of H . Tensor products of the
elements of B(θ,ϕ) and B(θ′,ϕ′) give the following orthonormal basis of H⊗2:

{|ψ0ψ
′
0〉 , |ψ0ψ

′
1〉 , |ψ1ψ

′
0〉 , |ψ1ψ

′
1〉}.

Is the control-target structure kept when applying CNOT to the elements of that basis, leaving |ψ0ψ
′
0〉

and |ψ0ψ
′
1〉 unchanged, and interchanging |ψ1ψ

′
0〉 and |ψ1ψ

′
1〉? The answer turns out to be negative.

Applying a CNOT gate to these elements, we take each of them to a superposition of the others.
Can we find a quantum gate (using ancillary qubits, perhaps) that keeps the control-target structure

when applied to the elements of a random basis of H⊗2? Again, the answer is negative. For example, if
such a gate P exists, it must leave |ψ0ψ0〉 unchanged and take |ψ1ψ1〉 to |ψ1ψ0〉, regardless of θ and ϕ.
Taking θ′ = π − θ and ϕ′ = π − ϕ, we switch between |ψ0〉 and |ψ1〉, implying a contradiction when
examining P ’s operation on |ψ0ψ0〉 and |ψ1ψ1〉. For example, consider the following two cases. First, if
θ = 0 and ϕ = π, we have |ψ0〉 = |0〉 and |ψ1〉 = |1〉. Second, if θ = π and ϕ = 0, we have |ψ0〉 = |1〉
and |ψ1〉 = |0〉. In the first case, P |ψ0ψ0〉 = P |00〉 and P |ψ1ψ1〉 = P |11〉, implying that |00〉 is
unchanged by P and |11〉 is taken to |10〉. On the other hand, in the second case, P |ψ0ψ0〉 = P |11〉 and
P |ψ1ψ1〉 = P |00〉, implying that |11〉 is unchanged and |00〉 is taken to |01〉. By the first case, |00〉 is
unchanged, but by the second case, it is taken to |01〉. The contradiction shows that such a P cannot exist.
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Nevertheless, by applying a CNOT gate to the elements of a partially-random basis {|0〉 , |1〉}⊗B(θ,ϕ)

of H⊗2 we do keep the target-control structure. The elements of such a basis are

|0ψ0〉 =

(
cos(θ/2)
±i sin(θ/2)

0
0

)
, |0ψ1〉 =

(
sin(θ/2)
∓i cos(θ/2)

0
0

)
, |1ψ0〉 =

(
0
0

cos(θ/2)
±i sin(θ/2)

)
, |1ψ1〉 =

(
0
0

sin(θ/2)
∓i cos(θ/2)

)
.

Applying a CNOT gate to these elements, we leave |0ψb〉 unchanged and interchange |1ψb〉 and |1ψ1−b〉,
up to a global phase factor. In fact,

CNOT |1ψ0〉 =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)( 0
0

cos(θ/2)
±i sin(θ/2)

)
=

(
0
0

±i sin(θ/2)
cos(θ/2)

)
= ±i

(
0
0

sin(θ/2)
∓i cos(θ/2)

)
= ±i |1ψ1〉 , (1)

and a similar computation shows that CNOT |1ψ1〉 = ∓i |1ψ0〉. Since the last two entries of |0ψb〉 are
zero, applying a CNOT gate we leave them unchanged. To conclude, CNOT gates may be homomor-
phically applied to systems of two qubits when the control qubit is an element of the computational basis
and the target qubit is an element of B(θ,ϕ).

CnNOT gates. For a positive integer n, the CnNOT gate is an n + 1 qubit gate, whose matrix
representation in the computational basis of H⊗(n+1) is the matrix obtained from the identity matrix
of order 2n+1 by replacing its bottom right block ( 1 0

0 1 ) with the block ( 0 1
1 0 ). Namely, the NOT and

CNOT gates discussed above are the special cases n = 0 and n = 1, respectively, of CnNOT . Similarly
to (1), one may readily verify that, given a random basis B(θ,ϕ),

CnNOT |b1b2 . . . bnψb〉 =

{
|b1b2 . . . bnψ1−b〉 ,

∏n
i=1 bi = 1,

|b1b2 . . . bnψb〉 , otherwise.
(2)

Hence, CnNOT gates may be homomorphically applied to systems of qubits when the control qubits
are elements of the computational basis and the target qubit is an element of B(θ,ϕ).

The Hadamard gate. The Hadamard gate is the unitary transformation, whose matrix representation
in the computational basis is H = 1√

2

(
1 1
1 −1

)
. H takes the elements of the computational basis to the

elements of B(π
4
,0) =

{
1√
2

(
1
1

)
, 1√

2

(
1
−1
)}

. When measuring any of the elements of B(π
4
,0) in reference

to the computational basis, the probabilities of obtaining zero or one are both 1
2 . What happens when

one applies H to an element of a random basis B(θ,ϕ)? Explicitly, what are the probabilities of obtaining
zero or one when measuring an element of H

[
B(θ,ϕ)

]
in reference to B(θ,ϕ)? By Equation (5) (in the

appendix), the probability of obtaining zero when measuring H |ψ0〉 in reference to B(θ,ϕ) is the square
of the absolute value of the inner product of H |ψ0〉 and |ψ0〉. Since

H |ψ0〉 = 1√
2

(
1 1
1 −1

)(
cos(θ/2)
±i sin(θ/2)

)
= 1√

2

(
cos(θ/2)±i sin(θ/2)
cos(θ/2)∓i sin(θ/2)

)
, (3)

the inner product is
〈
ψ0

∣∣H∣∣ψ0

〉
= cos θ√

2
. Taking the square of the result, one finds that the probability of

obtaining a zero outcome when measuring H |ψ0〉 in reference to B(θ,ϕ), is cos2 θ
2 . Since the probabilities

add up to one, when measuring H |ψ0〉 in reference to B(θ,ϕ) the outcome one is obtained with proba-
bility 1+sin2 θ

2 . Similar computations yield similar results for |ψ1〉. Explicitly, when measuring H |ψ1〉 in
reference to B(θ,ϕ), the probability of obtaining the outcome one is cos2 θ

2 and the probability of obtaining
the outcome zero is 1+sin2 θ

2 . To conclude, applying a Hadamard gate to an element of a random basis,
the probabilities of the elements of the basis in the superposition we get are in general not 1

2 each.
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These results are rather unfortunate since they imply that the Hadamard gate does not create an equally
weighted superposition when applied to an element of a random basis, and hence cannot be applied to
the encrypted data homomorphically. Is there a quantum gate that takes elements of every B(θ,ϕ) basis
to an equally weighted superposition of the elements of that basis? We give a positive answer to that
question in the form of the following quantum gate that uses an ancillary |0〉 qubit:

D = 1√
2

(
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

)
.

D is the matrix representation (in the computational basis) of the quantum gate used in [EPR35] to create
Bell states. This gate is the two-qubit quantum circuit established by first applying a Hadamard gate to
the first qubit, and then a CNOT gate to that system of two qubits, where the first qubit is the control
qubit and the second is the target qubit. That circuit is illustrated in Figure 1.

Figure 1: Random Based D gate.

We now prove that, applying a D gate to a tensor product of |0〉 and an element of a random basis,
measuring the second qubit in reference to that same random basis, the probabilities of obtaining the
outcomes zero and one are both 1

2 . Explicitly, let |ψb〉 an element of a random basis, B(θ,ϕ), where ϕ =
and θ ∈ [0, 2π]. We have

Lemma 1. D is a quantum gate which takes tensor products of the form |0ψb〉 to a system of two
qubits, such that, measuring that system in reference to {|0〉 , |1〉}⊗B(θ,ϕ), the probability of each of the
outcomes zero and one for the second qubit is 1

2 .
The proof of Lemma 1 appears in the appendix. To conclude, the D gate may be homomorphically

applied to the elements of a random basis, using an ancillary |0〉 qubit, resulting in the same effect as
when applying a Hadamard gate to the elements of the computational basis – creating a superposition
of the elements of that basis with equal probabilities. We note that the ancillary qubit may be generated
by the server with no interference of or interaction with the user.

IV. APPLICATIONS

Coalitions-resilient secure multi-party XOR computation. Consider the following scenario. Each of
N honest-but-curious participants, Pi, 1 ≤ i ≤ N , is holding a bit bi ∈ {0, 1}. The participants are
interested in learning the XOR of their bits, b1 ⊕ · · · ⊕ bN , without revealing their own bits. One trivial
solution to that problem is as follows (see Figure 2).
• One of the participants, say P1, picks b′0 ∈ {0, 1} uniformly at random.
• For 1 ≤ i ≤ N : Pi computes b′i := b′i−1 ⊕ bi and sends the result to the next participant.
• P1 computes b′N ⊕ b′0(= b1 ⊕ · · · ⊕ bN ), and sends the result to the other participants.

Figure 2: A trivial solution to the multi-party XOR computation problem.
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This solution is vulnerable to attacks of coalitions of honest-but-curious participants, trying to gain
information regarding the bits of other participants. E.g., Pk−1 and Pk+1 can learn Pk’s bit by com-
puting b′k−1 ⊕ b′k. More generally, Pm and Pm+l can learn the XOR of the bits of the participants
Pm+1, . . . ,Pm+l−1.

One application of our random basis encryption scheme is the following solution to the multi-party XOR
computation problem, which is resilient to such attacks of coalitions of honest-but-curious participants.
The scheme is illustrated in Figure 3, and its stages are as follows:
• P1 picks b ∈ {0, 1} uniformly at random and uses the random basis encryption scheme to generate

an encryption |ψb〉 of b.
• For 1 ≤ i ≤ N :

– If bi = 1, then Pi applies a NOT gate to the received qubit.
– Pi transmits the qubit to the next participant.

• P1 decrypts the received qubit to obtain an outcome b′. Computing b ⊕ b′, she obtains the desired
XOR of the bits of all the participants and sends the result to them.

Figure 3: The coalitions-resilient solution to the multi-party XOR computation problem.

At each stage, the qubit received by a participant Pi is an encryption of a random bit. Since our
encryption scheme is IT-secure, measuring that encryption-qubit, Pi obtains zero and one with equal
probabilities, regardless of the actual value of the encrypted bit. Hence, using our IT-secure random basis
encryption scheme, coalitions of honest-but-curious participants cannot gain any information regarding the
bits of the other participants. In fact, allowing the participants in that coalition to perform measurements is
a slight deviation from the definition of being honest-but-curious. Honest-but-curious participants cannot
deviate from the protocol, but only attempt to gain further information from the data that they receive
during the execution of the protocol. As mentioned above, our scheme remains IT-secure even if we
allow that deviation.

In the event that a certain Pi does deviate from the protocol, and performs a measurement of the
qubit, it may yield an erroneous result. Repeated executions of the protocol will reveal that with high
probability: If no measurements are performed, the same result will be obtained in all the executions.
If measurements are performed, they will produce a random sequence of results that will most probably
not be constant.

A Random Basis CNOT Quantum Key Distribution (QKD) scheme. The random basis encryption
scheme requires that the participants hold a shared key. Nevertheless, it may also be used to construct a
two-stage (random basis) QKD scheme, in which one participant sends to another information in the form
of a string of classical bits. That information may be a key, to be used in a symmetric key encryption
scheme, or simply plain data. Suppose Alice holds a bit b ∈ {0, 1}, and wishes to send it privately to
Bob. To this end, Alice and Bob may follow the following single-bit two-stage encryption scheme.

1) Bob randomly picks b′ from {0, 1}, uses the random basis encryption scheme to generate an
encryption |ψb′〉 of b′, and then transmits |ψb′〉 to Alice.

2) If b = 1 Alice applies a NOT gate to |ψb′〉; otherwise, she leaves it unchanged.
3) Alice sends the qubit back to Bob, who decrypts it and obtains a bit, b′′.
4) Bob computes b′′ ⊕ b′ to obtain b.
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Figure 4: Sharing Key by Random Basis.

The scheme is illustrated in Figure 4. Obviously, it may be applied bit-wise to a sequence of bits of
any length.
Security. Since our random basis encryption scheme is IT-secure, the random basis QKD scheme is
IT-secure against an adversary that is limited to eavesdropping. However, the scheme is susceptible to
man-in-the-middle attacks like the following. An adversary may operate as follows.

1) Intercept the encrypted qubit |b′〉 sent from Bob to Alice and store it.
2) Generate and send to Alice a falsify |0〉 qubit (as if it was Bob’s qubit).
3) Receive the qubit back from Alice and measure it to obtain b.
4) Apply a NOT gate to Bob’s (original) stored qubit, conditioned on b, and send it back to Bob (as

if Alice sent it).
This way, the adversary can learn Alice’s message without being caught. Our scheme may be made
resilient to such attacks by adding a stage in which Alice and Bob communicate over a classical (non-
encrypted) channel to expose such adversarial attacks, and prevent the adversary from gaining any valuable
information. Explicitly, assume that Alice wishes to use our scheme to send Bob n bits, b1b2 . . . bn. Denote
by |ψb′i〉, 1 ≤ i ≤ n+ l, encryptions of n+ l random bits b′i, generated by Bob using our random basis
encryption scheme at stage 1 of the random basis QKD scheme. After Bob transmits these n+ l qubits
to Alice, and before stage 2, Bob and Alice talk over the telephone. Alice randomly chooses a subset
L ⊆ [n + l] of size l and tells L to bob. Bob reveals the keys he used for encrypting the bits b′j for
all j ∈ L. Alice then uses these keys to decrypt the corresponding qubits and tells Bob the results she
obtained. If the l bits obtained by Alice differ from Bob’s random bits, the parties abort. Otherwise, they
continue with stage 2 of the scheme using the n qubits that were not measured.

Weak measurements and comparison with other schemes. An adversary may attempt to gain information
regarding the encrypted data following the framework of the weak measurement model, suggested by
Aharonov et al. [ABP+02] and described in [EC11], [TC13]. Weak measurements enable accumulating
information regarding the state of the qubit while not collapsing the state, but only biasing it a little. Weak
measurements consist of two stages. First, we weakly interact the subject qubit with an ancillary qubit
using a two-qubit gate. Then, we (strongly) measure the ancillary qubit. The outcome of the (strong)
measurement of the ancillary qubit is the outcome of the weak measurement of the subject qubit. This
process enables imprecisely measuring quantum states, outsmarting the uncertainty principle [EC11].
Our scheme, based on adding extra randomness to the encryption process, has safer security implications
against weak measurements.

Bennett and Brassard [BB84] presented the first QKD scheme. In their scheme, Alice sends Bob random
bits encoded as qubits in either the computational basis {|0〉 , |1〉} or the diagonal basis {|+〉 , |−〉}. The
bit 0 is always encoded by either |0〉 or |+〉, and the bit 1 is always encoded by either |1〉 or |−〉.
An adversary may intercept the qubits sent from Alice to Bob, perform weak measurements over them
and accumulate some information regarding their state, and send them to Alice as if they were never
intercepted. Such an attack may give the adversary a non-negligible advantage at a reduced risk of being
caught. In our QKD scheme, 0 and 1 bits may have the same encoding, and hence, weak measurement
attacks give the adversary no advantage. As shown in the security proof of our scheme (Appendix B),
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even if the adversary is given all the entries of the density matrix representing the encrypted state, it
leaks no information regarding the plaintext. Namely, for every ρ = Enc(θ,ϕ)

(
0
)
, there exist valid θ′, ϕ′

such that ρ = Enc(θ′,ϕ′)(1). Furthermore, our scheme may be used to transmit not only a random key but
any binary message. Hence, our scheme provides a method for Alice and Bob to communicate securely
using two rounds of interaction via an authenticated quantum channel.

Kak presented in [Kak06] a protocol which suggests a method for Alice and Bob to communicate
securely using three rounds of interaction via an authenticated quantum channel. In Kak’s scheme, before
the protocol executes, two orthogonal states are set as the encodings of the bits. Then, Alice applies a
random rotation A to the encoding of her message b and sends it to Bob. In turn, Bob applies a random
rotation B to the bit and sends it back to Alice, which now rotates the qubit in the opposite direction
by applying A† to it. Alice now sends the qubit back to Bob, which applies B† to it and obtains the
encoding of Alice’s bit. While Kak’s scheme requires three round of interaction, our scheme requires
only two rounds. Furthermore, in Kak’s scheme, Alice and Bob should agree on an encoding of the bits
before the execution of the scheme. In our scheme, no such requirement is presented.

Deng and Long suggested in [DL04] a method for secure communication between Alice and Bob.
Similarly to [Bra18], their scheme use qubits only in the computational or diagonal basis, and hence
their scheme is vulnerable to weak measurement attacks.

V. DISCUSSION

We have suggested an encryption scheme of classical data using quantum computers, based on a specific
family of random bases. We have proved that our scheme is IT-secure, and showed that it allows a user to
outsource confidential data to a distrustful quantum server. We have examined the homomorphic properties
of our scheme and showed that the NOT gate may be applied homomorphically to the encrypted data.
Likewise, any gate that commutes (up to a global phase factor) with the family of unitary matrices K,
defined in Enc, may be applied homomorphically to the encrypted data. We have constructed a quantum
gate that uses an ancillary qubit and allows applying Hadamard gates to encrypted data. We have shown
that controlled-NOT gates may be applied to systems of qubits, where the control qubits are plaintext
qubits and the target qubits are encrypted using a random basis. Encrypted bits are not used as control
qubits in our system since any ordered (orthonormal) basis may be chosen as a key, including pairs of
bases composed of the same elements in reversed order. We support these homomorphic operations in
an efficient, fully-compact, non-interactive, perfectly correct, and IT-secure way.

We have shown how our scheme may be used to perform multi-party computation of binary XOR in a
way that guarantees perfect security even under an attack of coalitions of honest-but curious participants.
We demonstrated how our scheme may be used to establish a symmetric key by a two-stage random basis
QKD scheme. We have suggested a protocol enabling two distant parties securely obtain an entangled pair
to be used in a quantum pseudo telepathy game. All our schemes are based on extra randomness, which
gives safer security implications in face of weak measurements. We believe that our new approach and
techniques suggest a possible direction for future research on IT-secure quantum homomorphic encryption.
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VI. APPENDIX A – THE ROLE OF BASES IN QUANTUM COMPUTING

To address a broad spectrum of readers, we here give a brief overview of the basics of quantum
computation. Further details on the topic may be found in [NC02]. The basic building block of quantum
computation protocols is the qubit. The qubit is the quantum version of the classical bit used in classical
computing. Whereas a classical bit may be described as an element of {0, 1}, a qubit may be described
as a unit vector in the Hilbert space C2. Denote H = C2, and |0〉 and |1〉 be the elements

(
1
0

)
and

(
0
1

)
of H, respectively. {|0〉 , |1〉} is the computational basis of H. We use the Ket notation and denote qubits
by |ψ〉. A system composed of n qubits is described by a unit vector of H⊗n, the n-fold tensor product
of H with itself. Such a system of n qubits is the quantum version of an n-long string of classical bits.

An arbitrary qubit |ψ〉 ∈ H may be described by its coordinates in the computational basis using four
real numbers: |ψ〉 = α |0〉 + β |1〉, where α, β ∈ C. If |ψ1〉 and |ψ2〉 are two elements of H such that
|ψ1〉 = eiγ |ψ2〉 for some γ ∈ R, then |ψ1〉 and |ψ2〉 are equal up to a global phase factor. Global phase
factors have no influence on quantum computations, and hence may be ignored. Hence, and as |ψ〉 is a
unit vector, one may write |ψ〉 using only two real numbers:

|ψ〉 = cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉 ,

where θ, ϕ ∈ R. This is the Bloch sphere representation of |ψ〉. The name sphere representation comes
from the fact that θ and ϕ may be used to visualize |ψ〉 as a unit vector in R3.

In classical computing, strings of classical bits are manipulated using logic gates, information is
represented as a string of bits, and the function to be computed over the information is represented
as a logic circuit, which is composed of logic gates. In quantum computing, systems of qubits are
manipulated using quantum gates, information is represented as a system of qubits and the function to be
computed over the information is represented as a quantum circuit, which is composed of quantum gates.
In order to implement a classical computation, bits are physically realized and the physical realizations of
the bits are manipulated using physical realizations of logic gates. To implement quantum computations,
qubits are physically realized, and these physical realizations of the qubits are manipulated using physical
realizations of quantum gates. While classical logic gates are Boolean functions, quantum gates are unitary
operators on Hilbert spaces. We use the Kronecker product notation to represent unitary operations as
matrices.

Quantum computers may be used to perform computations that have been performed using classical
computers, as well as other tasks. For example, any information that may be represented classically
as a string of bits may be represented in the quantum model as a tensor product of elements of the
computational basis {|0〉 , |1〉} of H. Then, any classical circuit may be implemented in the quantum
model using a quantum circuit composed of Toffoli gates, which is the quantum version of the classical
universal NAND gate.

Reading quantum information. A physical realization of a qubit may come in different forms. However,
according to the postulates of quantum mechanics, no matter what form of realization is chosen, given
a physical realization of an arbitrary qubit, |ψ〉, one cannot determine its coordinates. This phenomenon
is known as the uncertainty principle. The inability to determine the coordinates of an arbitrary qubit is
not an issue of insufficient measuring devices, but a consequence of the fundamental laws of quantum
mechanics. According to these laws, an arbitrary qubit may be realized (up to a certain amount of
precision, dependent of the accuracy of the equipment used), but it cannot be read. Qubits may be
measured. Measurements of qubits are performed in reference to a chosen orthonormal basis of H
and the outcome of the measurement is random, either zero or one, as detailed below. As a result
of the measurement, the qubit is transformed into one of the two qubits of that orthonormal basis.
The probability of obtaining each of the possible outcomes is the square of the absolute value of the
corresponding coordinate of the qubit in the chosen basis. Explicitly, given θ, ϕ ∈ R, denote
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|ψ0〉 =
(

cos(θ/2)
eiϕ sin(θ/2)

)
, |ψ1〉 =

(
sin(θ/2)

−eiϕ cos(θ/2)

)
, (4)

and denote by B(θ,ϕ) the orthonormal basis {|ψ0〉 , |ψ1〉} of H. For a qubit |ψ〉 ∈ H and an orthonormal
basis B(θ,ϕ) of H, write |ψ〉 = α |ψ0〉+ β |ψ1〉. When |ψ〉 is measured in reference to B(θ,ϕ), there is a
probability of |α|2 that |ψ〉 will transform into |ψ0〉, yielding the outcome 0, and a probability of |β|2
that it will transform into |ψ1〉, yielding the outcome 1. We say that, when |ψ〉 is measured in reference
to the basis B(θ,ϕ), it collapses into one of the elements of that basis. Given B(θ,ϕ), an orthonormal basis
of H, any unit vector |ψ〉 = α |ψ0〉 + β |ψ1〉 is a superposition of |ψ0〉 and |ψ1〉, and the elements of
B(θ,ϕ) are pure states in reference to B(θ,ϕ). Since B(θ,ϕ) is an orthonormal basis, α and β are the inner
products of |ψ〉 and the elements of B(θ,ϕ). In general, if B = {|v1〉 , . . . , |vn〉} is an orthonormal basis
of an n-dimensional Hilbert space and |v〉 =

∑n
j=1 αj |vj〉, the inner product of |vk〉 and |v〉, denoted

by 〈vk|v〉, is

〈vk|v〉 =

〈
vk

∣∣∣∣∣
n∑
j=1

αj |vj〉

〉
=

n∑
j=1

αj 〈vk|vj〉 = αk. (5)

Hence, |α|2 = | 〈ψ0|ψ〉 |2 and |β|2 = | 〈ψ1|ψ〉 |2. This fact is used in this paper to compute the probabilities
of obtaining the different outcomes when measuring a given qubit (or a system of qubits) in reference to a
given orthonormal basis. Measurements of systems of l qubits are performed in reference to orthonormal
bases of H⊗l, and result in a collapse of the system into one of the elements of that basis. The possible
outcomes of such a measurement are the corresponding binary strings of length l, and the probability
of obtaining each of the possible outcomes is the square of the absolute value of the corresponding
coordinate of the system in the chosen basis. These may be computed using (5). E.g., consider l = 2, and
let B(θ,ϕ) = {|ψ0〉 , |ψ1〉} and B(θ′,ϕ′) = {|ψ′0〉 , |ψ′1〉} two orthonormal bases of H. Tensor products
of elements of these bases give the following orthonormal basis {|ψ0ψ

′
0〉 , |ψ0ψ

′
1〉 , |ψ1ψ

′
0〉 , |ψ1ψ

′
1〉},

denoted B(θ,ϕ) ⊗ B(θ′,ϕ′) of H⊗2. Given a system of two qubits, measuring that system in reference
to B(θ,ϕ) ⊗B(θ′,ϕ′) is equivalent to measuring the first qubit in reference to B(θ,ϕ) and the second qubit
in reference to B(θ′,ϕ′).

VII. APPENDIX B - SECURITY PROOF OF THE RANDOM BASIS ENCRYPTION SCHEME

We now prove that the random basis encryption scheme is IT-secure. We do it in two different ways.
First, as our scheme deals with encrypting and computing over classical data, we give a proof based
on standard security definitions of classical schemes. Namely, we use a variant of a standard privacy
definition from [LK14]. The second proof follows a standard privacy definition from the quantum setting
derived from [AMTdW00].

As described in Section I, an encryption scheme is composed of three algorithms, Gen, Enc and Dec.
M, K and C are the message space, key space and ciphertext space of the scheme, respectively. In our
case,M = {0, 1} and K = [0, 2π]×{±π

2 }. What is C? On the one hand, C is the set of possible outputs
of Enc, implying that C = H. On the other hand, a ciphertext cannot indicate the encrypted information
if it is not read. To read information from a qubit, one must measure that qubit. The output of such a
measurement is an element of {0, 1}, implying that C = {0, 1}. The first (classical approach) proof uses
the latter interpretation of C, and the second (quantum approach) proof uses the former.

We begin with the classical approach. Assume that an adversary is holding an encryption |q〉 of
b generated using some key (θ, ϕ) ∈ K. The adversary wishes to use |q〉 to find b, or to gain any
information that will enable a better guess of b. The adversary is only able to measure |q〉 in reference
to any orthonormal basis he chooses. If the measurement is performed in reference to any orthonormal
basis other than B(θ,ϕ), then each of the outcomes zero or one may be obtained with positive probability.
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We now rigorously prove that, no matter which orthonormal basis B(θ0,ϕ0) is used by the adversary to
measure |q〉, the probability of each of the outcomes zero or one is 1

2 , regardless of the actual value of b.
We now define the security criterion. Since Gen is a probabilistic algorithm, given a message m ∈M,

the probability distribution over K induces a probability distribution over C. An encryption scheme is
perfectly secure if all messages m ∈ M induce the same probability distribution over C. Formally (see
[LK14, Lemma 2.3]):

Definition 1. An encryption scheme (Gen, Enc, Dec) over a message spaceM is perfectly secure if for
every probability distribution over M, every m0,m1 ∈M, and every c ∈ C:

Pr[C = c|M = m0] = Pr[C = c|M = m1],

where C and M are the random variables denoting the value of the ciphertext and the message,
respectively.

By Definition 1, perfect security of the random basis encryption scheme follows from

Lemma 2. Let (θ0, ϕ0) ∈ [0, 2π]2. One has

Pr
[
M
(
|ψ0〉 , B(θ0,ϕ0)

)
= 0
]

= Pr
[
M
(
|ψ1〉 , B(θ0,ϕ0)

)
= 0
]
, (6)

where
• B(θ0,ϕ0) is the orthonormal basis used by an adversary to measure an encryption of a bit,
• |ψ0〉 and |ψ1〉 are as in (4), and are encryptions of zero and one, obtained using our scheme,
• M

(
|ψ〉 , B(θ0,ϕ0)

)
is the random variable denoting the result obtained when measuring |ψ〉 in

reference to B(θ0,ϕ0),
• the probability is over the choice of (θ, ϕ) from [0, 2π]2 and the inherent randomness of quantum

measurements.

Proof. We begin with computing the expression on the left-hand side Pr
[
M
(
|ψ0〉 , B(θ0,ϕ0)

)
= 0
]

of (6).
That is, computing the probability of obtaining the outcome zero when measuring |ψ0〉 in reference to
B(θ0,ϕ0) in terms of θ and ϕ. This probability is the square of the absolute value of the first coordinate of
|ψ0〉 in the orthonormal basis B(θ0,ϕ0). Denote by |v0〉 and |v1〉 the elements of B(θ0,ϕ0). As mentioned
in (5), the coordinates of |ψ0〉 in B(θ0,ϕ0) are given by appropriate inner products. Define α0, β0 ∈ C by
|ψ0〉 = α0 |v0〉+ β0 |v1〉. One has

α0 = 〈v0|ψ0〉 =

〈(
cos(θ0/2)

eiϕ0 sin(θ0/2)

)∣∣∣∣∣( cos(θ/2)
eiϕ sin(θ/2)

)〉
= cos(θ0/2) cos(θ/2) + ei(ϕ−ϕ0) sin(θ0/2) sin(θ/2).

Multiplying by α∗0, and using routine trigonometric identities, we obtain:

|α0|2 = 1
2

[
cos2 θ+θ02 + cos2 θ−θ02 + sin θ sin θ0 cos(ϕ− ϕ0)

]
. (7)

Now, θ and ϕ are chosen uniformly random from [0, 2π] × {±π
2 }. The mean value of |α0|2 over that

domain may be computed in various ways. One may compute it using the formula f = 1
V ol(U)

∫
U f ,

which yields 1
2 . By the law of total probability, the right-hand side of (6) is also 1

2 . All in all, we have

Pr
[
M
(
|ψ0〉 , (θ0, ϕ0)

)
= 0
]

= Pr
[
M
(
|ψ1〉 , (θ0, ϕ0)

)
= 0
]

= 1
2 . �

This concludes the classical proof. We have shown that, no matter which orthonormal basis is chosen
by the adversary to measure |q〉, the outcome 0 will be obtained with probability 1

2 , regardless of the
actual value of b. By the laws of quantum mechanics, any operation other than measuring the qubit will
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yield less information regarding the plaintext. Since measuring the qubit gives no information at all, the
scheme is perfectly secure. We now turn to the quantum approach, which interprets the ciphertext space
as H. We use the density matrix representation of quantum states and base our claims on a security
definition which follows the same line as Definition 3.1 from [AMTdW00] (modified for the continuous
setting of our scheme).

Definition 2. Let S ⊆ H be a set of qubits, E = {Ui : i ∈ I} be a set of unitary mappings on H, and
ρ0 be some density matrix. Uniformly at random applying an element of E to a given element |s〉 ∈ S
perfectly hides |s〉 if and only if for all |s〉 ∈ S we have∫

I
Ui |s〉 〈s|U †i = ρ0.

In our case, S = {|0〉 , |1〉}, and E =

{(
cos(θ/2) sin(θ/2)

eiϕ sin(θ/2) −eiϕ cos(θ/2)

)
: (θ, ϕ) ∈ K

}
. To show that the

random basis encryption scheme is perfectly secure, we need to show that∫
K
Kθ,ϕ |0〉 〈0|K†θϕ =

∫
K
Kθϕ |1〉 〈1|K†θϕ, (8)

where Kθϕ =

(
cos(θ/2) sin(θ/2)

eiϕ sin(θ/2) −eiϕ cos(θ/2)

)
. Routine computation shows that the left- and right-hand side

of (8) are equal. To conclude, the density matrix that an adversary sees after encryption is the same,
regardless of the input. This shows that the random basis encryption scheme is perfectly secure. We note
that, since the evaluation algorithm is non-interactive, the adversary gains no new information executing
it, and hence the scheme is secure.

Remark 1. In the key generation algorithm of our random basis encryption scheme, the user is required
to pick a uniformly random element θ from [0, 2π]. Implementing random choices from a continuous
domain might be technically challenging. However, the set of keys may be made discrete as follows. Let
N a positive integer, and KN =

{
2πn
N : n ∈ {1, 2, . . . , N}

}
. Instead of picking θ from [0, 2π], the user

may uniformly at random pick θ from KN . How does that affect the security? In the classical security
proof above, the mean value of the right hand side of (7) was computed by integrating over [0, 2π].
Replacing [0, 2π] with KN , we compute the mean value of the right hand side of (7) by summing over
all the possibilities for θ divided by N . Now, it is well known that for any real continuous function f ,∫

[0,2π]
f(x)dx = lim

N→∞

N∑
n=1

2π
N f
(
2πn
N

)
.

Hence, by taking large enough N , the mean value of the discrete version can be made arbitrarily close
to 1

2 . In the quantum proof, by similar arguments, we can make the left- and right-hand sides of (8)
arbitrarily close to each other by taking large enough N . To conclude, taking the discrete version of the
key space, we make Gen easier to implement in the cost of making the scheme statistically secure (rather
than perfectly secure). Either way, the scheme is IT-secure.
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VIII. APPENDIX C — PROOF OF LEMMA 1

Proof. Let θ ∈ [0, 2π] and ϕ = ±i. One has:

|0ψ0〉 =
(
1
0

)
⊗
(

cos(θ/2)
±i sin(θ/2)

)
=

(
cos(θ/2)
±i sin(θ/2)

0
0

)
,

D |0ψ0〉 = 1√
2

(
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

)( cos(θ/2)
±i sin(θ/2)

0
0

)
= 1√

2

 cos(θ/2)
±i sin(θ/2)
±i sin(θ/2)
cos(θ/2)

. (9)

The probabilities of obtaining each of the possible outcomes, when measuring D |0ψ0〉 in reference to
{|0〉 , |1〉}⊗B(θ,ϕ), are the squares of the absolute values of the coordinates of D |0ψ0〉 in that basis. The
elements of {|0〉 , |1〉} ⊗ B(θ,ϕ) are |0ψ0〉 , |0ψ1〉 , |1ψ0〉 and |1ψ1〉. The first, |0ψ0〉, has been computed
in (9). Now,

|1ψ1〉 =
(
0
1

)
⊗
(

sin(θ/2)
∓i cos(θ/2)

)
=

(
0
0

sin(θ/2)
∓i cos(θ/2)

)
. (10)

By (9) and (10),

|0ψ0〉 ± i |1ψ1〉√
2

= 1√
2

 cos(θ/2)
±i sin(θ/2)
±i sin(θ/2)
cos(θ/2)

 = D |0ψ0〉 .

This shows that the coordinates of D |0ψ0〉 in {|0〉 , |1〉}⊗B(θ,ϕ) are 1√
2
, 0, 0 and ±i√

2
. Taking the squares

of the absolute values of these coordinates one sees that, measuring in reference to {|0〉 , |1〉} ⊗ B(θ,ϕ),
the outcome 00 is obtained with probability 1

2 , as so is 11. The probabilities of obtaining the different
outcomes when measuring D |0ψ1〉 in reference to {|0〉 , |1〉} ⊗ B(θ,ϕ) may be found by substituting
θ = π − θ′ and ϕ = −ϕ′. That substitution yields D |0ψ1〉 = |0ψ1〉∓i|1ψ0〉√

2
. Taking the squares of the

absolute values, we obtain the desired probabilities. �

IX. APPENDIX D — THE MAGIC SQUARE GAME

A secure Quantum Pseudo-Telepathy scheme. The phrase Quantum Pseudo-Telepathy was first intro-
duced in [BBT03], and refers to the use of quantum entanglement to eliminate the need for communication
in specific multi-party tasks. A comprehensive coverage of the subject may be found in [BBT05].
The simplest example of quantum pseudo-telepathy comes from the Mermin-Peres magic square game
[Mer90]. In that game, two parties, Alice and Bob, are presented with a 3×3 table. Each of them is
required to fill in a part of the table, as follows. Alice is given a number i, 1 ≤ i ≤ 3, and needs to put
either 0 or 1 at each entry of the i-th row, in such a way that the sum of the three entries will be even.
Similarly, Bob is given a j, 1 ≤ j ≤ 3, and needs to fill in the j-th column with the constraint that the
sum be odd. The numbers i and j are the inputs of the parties. Alice and Bob win the game if they place
the same number in the intersection of the row and the column that they fill. The parties do not know i
and j ahead of the game, and they cannot communicate after being given these values. They are allowed
to communicate before the game begins, discuss game strategies, and send information to each other. It
was shown in [BBT05] that there is no classical algorithm that lets Alice and Bob win the game with
probability greater than 8

9 , whereas there exists a quantum algorithm that lets them win the game with
probability 1. This quantum algorithm is based on having each of the parties hold two qubits out of an
entangled system of four qubits. The system of four qubits used in [Mer90] for that purpose is

|Ψ〉 = 1
2 |0011〉 − 1

2 |0110〉 − 1
2 |1001〉+ 1

2 |1100〉 .
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We briefly explain the meaning of entanglement in the system |Ψ〉. The system |Ψ〉 is a superposition
of four of the elements of the computational basis of H⊗4. Measuring that system in reference to the
computational basis of H⊗4 we get one of the elements of that basis that appear in |Ψ〉, each with
probability 1

4 . Measuring any single qubit from the system |Ψ〉 in reference to the computational basis
of H, each of the outcomes zero and one is obtained with probability 1

2 . Nevertheless, the result of
such a measurement will affect the possible outcomes of measurements of other qubits of that system.
Specifically, assume that the first qubit of the system |Ψ〉 has been measured (in reference to the
computational basis of H) and that the outcome b was obtained. Then, measuring the third qubit of
that system (in reference to the computational basis of H) we get the outcome 1− b with probability 1.
The same holds for measurements of the second and fourth qubit. Such a system of qubits, on which a
measurement of some of the qubits affects the possible outcomes of measurements of other qubits, is an
entangled system. Entanglement is the core element behind the quantum algorithm that wins the magic
square game.

Following is a brief description of the main stages of the winning algorithm as introduced in [Mer90].
Before the game begins, the parties generate a system of four entangled qubits (such as |Ψ〉) and share it
in such a way that Alice holds the first two qubits of the system and Bob holds the other two. The game
begins, and the participants are given their inputs. Then, each party applies one of several predetermined
quantum gates to his/her qubits according to the input. (Explicit matrix representation of these gates may
be found in [BBT05].) Next, the parties measure their qubits (in reference to the computational basis of
H) and fill in the first two entries of their row/column according to the outcomes of their measurements.
Each of them fills the last entry of her/his row/column according to the parity condition defined above. It
was proved in [Mer90] that, by following this algorithm, Alice and Bob are guaranteed to win the game.

Assume that Alice and Bob are two distant parties, willing to participate in the game. To use the
algorithm described above, they must share an entangled four-qubit state. They may ask a third party,
Charlie, to generate such an entangled state and transmit two qubits to each of them. In that case, two
concerns may arise. First, Charlie might be untrustworthy. Second, two adversaries, Eve and Mallory,
might intercept Charlie’s transmission and use the entangled qubits sent by Charlie for a game of their
own, or any other purpose (see Figure 5).

Figure 5: Adversarial attack by two adversaries.

To overcome the possibility that Charlie is untrustworthy, Alice and Bob may decide that one of them,
say Alice, will generate the desired four-qubit entangled state and transmit two of the qubits to Bob. This
does not solve the second concern. A single adversary, Eve, may intercept the transmission and use the
qubits to engage in the Mermin-Peres magic square game with Alice instead of Bob (see Figure 6).

Figure 6: Adversarial attack by a single adversary.

We now show how two distant parties may securely generate and share a system of entangled qubits
using our random basis encryption scheme. The constructions we use here, enabling securing this process
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against adversarial attacks, are similar to those used above where we construct the D gate. The stages
are as follows.
• Alice uses our random basis encryption scheme in order to generate independent encryptions of two

0 bits and two 1 bits. For ease of presentation, we denote that four-qubit system by |ψ0ψ0ψ1ψ1〉.We
stress that each of the qubits is encrypted independently.

• Alice generates a pair of ancillary |0〉 qubits and applies the gate described in Figure 7 to her system
of six qubits.

Figure 7: random basis entanglement gate.

• The first two qubits are ancillary qubits, and are not used in the next stages of the scheme. Alice
keeps the next two qubits to herself and transmits the last two to Bob.

• Alice and Bob engage in our QKD scheme, during which Alice shares with Bob the keys she used
to generate the encrypted qubits in the first stage of this scheme.

• Alice and Bob decrypt the qubits they hold and obtain a system of four entangled qubits.
Each of the qubits that Alice transmits to Bob in the third stage of this scheme is encrypted using a
different key, and hence, if an adversary intercepts the transmission and possesses these qubits, then the
adversary cannot use them to engage in the game in place of Bob. After decryption, the last four output
qubits constitute a system of two pairs of maximally entangled qubits, which may be used to win the
magic square game using the same methods as in [Mer90]. Observe that, and Hadamard gate is applied
to the first and second qubits of the system. Then, each of these qubits is used as a control qubit in two
CNOT gates, where the target qubits are the other four qubits. This procedure results in obtaining the
same four qubit state as the one used in [Mer90].

Generally, entanglement is an important resource in quantum computation. Once generated, it should
be guaranteed that only the rightful owners of it may be able to use it. The above is but one example of a
setting in which entanglement should be secured. Our scheme provided a way of securing that important
resource in an IT-secure way.


