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The preprocessing model enables perfectly secure MPC in the presence of a dishonest majority, in doing so,

circumventing a known no-go result regarding plain-model MPC. It was recently shown that this can even be

done in an optimal number of rounds of communication, namely, two rounds. However, when the function

to be evaluated is a polynomial with a possibly high degree over inputs taken from a large domain, in order

to maintain perfect security against honest majority, existing solutions require either amount of memory

exponential in the size of the domain or more than two rounds of communication.

We present here the first preprocessing-MPC schemes for high-degree polynomials over non-zero inputs,

which have optimal round complexity, perfect security against coalitions of up to N − 1 out of N parties,

communication and space complexities that grow linearly with the number of monomials in the polynomial

(independent of its degree), while using function-independent correlated randomness. We extend our results

to the client-server model and present a scheme that enables a user to outsource the storage of non-zero

secrets to N distrusted servers and have the servers obliviously evaluate polynomials over the secrets in a

single round of communication, perfectly secure against coalitions of up to N − 1 servers. Our schemes are

based on a novel secret sharing scheme, Distributed Random Matrix (DRM), which we present here. The DRM

secret sharing scheme supports homomorphic multiplications, and, after a single round of communication,

supports homomorphic additions.
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1 INTRODUCTION
Secure multiparty computation (MPC) is an extensively studied field in cryptography which

discusses the following problem. N participants, P1, . . . ,PN , are holding secret inputs, s1, . . . , sN ,
and wish to evaluate a function y = f (x1, . . . , xN ) over their secret inputs while not revealing any
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information regarding their secret inputs to each other (except for what may be deduced from

the output). A vast number of papers were written on that topic in the past four decades, e.g.,

[Yao82, GMW87, BOGW88, CCD88, BMR90, Riv99, DN03, ABT18], suggesting solutions to that

problem based on different approaches. These solutions differ in their security and efficiency levels

and their assumptions regarding the behavior of the parties and the communication setting.

Regarding the security level, MPC schemes may be either information-theoretically secure (IT-
secure) or computationally secure. The security of computationally secure schemes is based on

unproven computational hardness assumptions and assumes limitations on the computing power

of possible adversaries. The security of IT-secure schemes is derived from information theory and

is free of unproven assumptions. An IT-secure scheme which leaks some information is statistically
secure. Otherwise, it is perfectly secure. The scope of this work is perfectly secure schemes.

In this work, we assume that parties are honest-but-curious (a.k.a. semi-honest). That is, parties

follow the protocol, yet, they may attempt to use the information they receive throughout the

execution of the protocol to gain information regarding the secret inputs of other parties. Further-

more, a subset of corrupted parties may form a coalition, joining the information they hold in an

adversarial attempt to reveal the secret inputs of the other honest parties. The term passive security
is used as short for security against honest-but-curious parties (or coalitions thereof).

1
Given an

MPC protocol π , the maximal size t of an adversarial coalition of corrupted parties under which the

privacy of the inputs of honest parties is maintained is the threshold of π . If t < N /2 (resp. t ≥ 2)

we say that π assumes honest majority (resp. dishonest majority).
In their seminal work from 1988, Ben-Or et al. [BOGW88] showed that, in the plain model, every

function of N inputs can be efficiently computed with perfect passive security by N parties if and

only if an honest majority is assumed.

One may circumvent this no-go result by switching to the preprocessing model, first suggested
in [Bea97]. That model enables achieving perfect passive security against dishonest majority by

enabling the parties to engage in an offline preprocessing phase before the secret inputs are known.

At the end of that offline phase, the parties obtain correlated randomness (CR) - random coins to be

used in the online phase of the protocol. That is, each party obtains a binary string of r bits such that
the rN -string composed of the concatenation of the r -strings is aD-distributed element of {0, 1}rN ,
where D is some predefined public distribution over {0, 1}rN . Preferably, D is independent of f .
Given a P-MPC protocol, the space complexity of the scheme indicates how r grows with respect to

other parameters (number of parties, size of the input, etc.). It was shown that MPC protocols in

the preprocessing model (hereafter, we refer to such protocols as P-MPC protocols) can achieve

goals which are known to be unachievable in the plain model. E.g., perfectly secure commitment

schemes, perfectly secure oblivious transfer [Riv99], perfectly secure MPC with dishonest majority

[IKM
+
13].

Another measure of efficiency of MPC schemes is the round complexity. An MPC protocol is

composed of rounds of communication. A round of communication (or round, in short) is a phase in

which each party may do some or all of the following: (a) send at most one message to each of the

other parties, (b) perform arbitrary computations, (c) receive at most one message from each of

the other parties [KN06]. It is usually assumed that the parties are connected via authenticated

point-to-point channels, and that f is given as an arithmetic or Boolean circuit. Primary solutions

used rounds of communication to reduce the degree of the polynomial that encrypts the data after

each multiplication during the computation. E.g., the methods of [BOGW88] are based on Shamir’s

1
The term active security refers to security against malicious parties. These parties might deviate from the protocol in an

attempt to sabotage the computation process. Handling malicious parties is out of the scope of this work.
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secret sharing scheme [Sha79], and the number of rounds of their protocols is proportional to the

depth of the arithmetic circuit representing f .
Substantial efforts have been spent on finding the minimal number of rounds of communication

required for perfectly secure MPC, both theoretically and practically. Bar-Ilan and Beaver [BIB89]

were the first to suggest a way to evaluate functions in a constant number of rounds, followed

by further works that attempt to lower bound that constant number. Theoretically, two rounds

of communication are now known to be optimal for MPC — in the plain or preprocessing model

[PR18, DLN19]. Recent works by [ABT18, GIS18, ACGJ18] present plain-model protocols which en-

able MPC in two rounds of communication and which have perfect passive security against honest

majority. Ishai et al. suggested in [IKM
+
13] two-round P-MPC protocols with perfect passive secu-

rity against dishonest majority, followed by several improvements suggested in [DNNR17, Cou19].

Though the problem of finding perfectly secure MPC schemes with optimal rounds and optimal

threshold was resolved both in the plain and preprocessing models, all known solutions require

using amounts of either time, memory or communication exponential in some of the parameters:

depth or size of the circuit, size of the domain, number of parties. Particularly, in the plain model,

the total communication complexity of two-round perfectly secure schemes is exponential in the

depth of the arithmetic circuit. Achieving sub-exponential communication in the plain model

requires increasing the number of rounds (or making other compromises, e.g., security-wise).

In the preprocessing model, the space complexity of known solutions is (believed to be inher-

ently
2
) exponential in the size of the input and N . Similarly, reducing the space complexity of

these schemes (even for specific cases) costs in increasing round complexity (or other compromises).

In particular, consider the following scenario. N parties, holding non-zero inputs, want to jointly

evaluate f : FNp → Fp , where f is a polynomial of a possibly high degree and a small number

of monomials, and F is a field of a potentially very large cardinality. The parties wish to carry

that task while maintaining perfect security against dishonest majority and using two rounds of

communication and function-independent correlated randomness. To the best of our knowledge,

no known P-MPC scheme handles efficiently with this scenario. This scenario is hereafter referred

to as the target scenario.

1.1 Our results
We construct the first N -party P-MPC schemes for polynomials over non-zero inputs which

have communication and space complexities linear in the number of monomials, two-rounds of

communication, perfect security against dishonest majority, and f -independent CR. Our Distributed
Random Matrix (DRM) two-round one-time secrets (OTS) scheme presented here assumes that f :

FNp → Fp is a polynomial with k monomials, and that all secret inputs are non-zero elements of Fp .
This scheme achieves all of the following properties.

• Perfect passive security against coalitions of up to N − 1 parties.
• Space complexity O(kNn), where n = ⌈logp⌉ is the size of the input.
• Total communication complexity O(kN 2n).
• Function-independent correlated randomness.

• Optimal round complexity. I.e., two rounds of communication.

2
If every two-party functionality had a protocol with polynomial space complexity, this would imply an unexpected

answer to a longstanding open question on the complexity of information-theoretic private information retrieval. See

[IKM
+
13, CGKS95].
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Our schemes are based on the DRM secret sharing scheme, our new homomorphic secret sharing

scheme presented here. When we say that the CR required for our scheme is independent of f we

mean that each unit of CR is f -independent. However, the amount of CR units required is linear in

the number of monomials of f . In our schemes, these CR units can be generated and distributed by

Ted and stored for future use by the parties in advance.

The client-server model. We extend our results to handle the following scenario. Assume N ≥ 2

honest-but-curious servers and m ≥ 1 users, with a fully connected network of servers and a

connection channel between each user to each server. Let each of the users hold an arbitrary

number of non-zero secret inputs in Fp . The DRM single-round client-server scheme enables the
users to securely outsource the storage of their private inputs to the servers and have the servers

evaluate polynomials over the entire collection of users-inputs and obtain the result after a single

round of communication between the servers. The DRM client-server scheme is perfectly secure

against coalitions of up to N − 1 honest-but-curious servers. The users do not communicate with

each other during the scheme, and each of them only distributes secret-shares of her inputs to the

servers and receives the output from the servers. Hence, the users learn no information regarding

the secret inputs of other users other than what may be deduced from the output. The servers may

hold secret inputs as well.

Polynomials instead circuits and non-zero inputs. Our approach deviates from standard con-

ventions of MPC. First, we evaluate each monomial of the polynomial independently, without

converting it into an arithmetic circuit. On first sight, this choice may be unclear as arithmetic

circuits have the benefit of enabling re-use of mid-values that were already computed. However, our

approach enables handling high degree polynomials without being concerned with the depth of the

arithmetic circuit, which is one of the main complexity bottlenecks in MPC. The communication

and space complexities of our schemes are independent of the degree of f .
Second, we address the particular case of evaluating polynomials over non-zero inputs. A large

part of the literature of MPC discusses the possibility of realizing families of functions (e.g., NC1
),

but conditions over the inputs are hardly ever discussed. However, we inspect that non-zero inputs

case and obtain a scheme which solves it (for polynomials) with remarkable performances — two

rounds of communication, perfect passive security, dishonest majority, f -independent correlated
randomness, O(Nkn) space complexity, and O(N 2kn) communication complexity.

Polynomial functions. The computations of polynomials (over a large field) using arithmetic

operations are of course as natural as the computation of Boolean functions via logical gates, and

capture many natural important tasks [Wig17]. These tasks include Fourier transforms, linear

algebra, matrix computations, Reed-Muller encodings and more generally symbolic algebraic

computations arising in many settings. E.g., the determinant of a square matrix of order N over a

finite field is a polynomial of degree N , whose variables are the entries of that matrix. The entries

of the product of two matrices are quadratic polynomials whose variables are the entries of these

matrices. Similarly, the entries of the product of N square matrices are polynomials of degree N ,

whose variables are the entries of these matrices.

1.2 Related work
Ishai et al. [IKM

+
13] suggested two-round P-MPC schemes which are based on One-Time Truth

Tables (OTTT) and have perfect passive security against dishonest majority. The communication

complexity of their schemes grows linearly with the input size and the number of parties and is

independent of the function. The space complexity of their schemes, however, is exponential in the

number of parties and the size of the input, regardless of f , which makes their schemes impractical
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for large inputs or a large number of parties, even when considering simple functions. The CR

used in their schemes is an additive secret sharing of the truth-table representation of the function,

and hence dependent on it. They also suggested schemes with reduced space complexity, which

assume a circuit representation of the function, but these schemes require rounds of communication

proportional to the depth of the circuit. They also discuss the case of malicious parties and obtain

statistically secure schemes for this case. In particular, when considering the target scenario, the

schemes suggested in [IKM
+
13] require either an amount of (function-dependent) CR exponential

in the cardinality of Fp , or a number of rounds proportional to the depth of an arithmetic circuit

representation of the polynomial.

Damgård et al. [DZ13] presented MiniMac, a P-MPC protocol for well-formed Boolean circuits.

That is, a circuit in which every layer is Ω(k) gates wide, and the number of bits that are output

from layer i in the circuit and used in layer j is either 0 or Ω(k) for all i < j (where k is the security

parameter, and a constant number of exceptions are allowed). Their schemes have statistical active

security against dishonest majority, negligible error probability, constant computational overhead,

and communication complexity linear in the size of the circuit and the number of parties. Similar

performances for general circuits are achieved by the TinyTable protocol, suggested in [DNNR17].

Recent work by Couteau [Cou19] presents P-MPC schemes for layered Boolean circuits — circuits

whose nodes can be arranged into layers so that any edge connects adjacent layers. Their schemes

have perfect passive security against dishonest majority, and their communication complexity is

sublinear in the circuit size. However, the round complexity of their schemes isO(d/log log s), where
d and s are the depth and size, respectively, of the layered Boolean circuit. However, none of the

works of [DZ13, DNNR17, Cou19] suggests a solution to the target scenario, as their protocols have

round complexity proportional to the depth of the circuit, or have space complexity exponential in

the cardinality of the field.

Ghodosi et al. discuss the problem of evaluating polynomials over non-zero inputs [GPS12]. They

present a P-MPC protocol for this task. Their protocol is similar to our DRM-DBO scheme. However,

their scheme is not optimal-round as it requires a secret sharing phase invoked offline. To the best

of our knowledge, there is no known P-MPC protocol which enables evaluation of high-degree

polynomials over non-zero inputs in two rounds of communication with perfect passive security

against dishonest majority and with communication and space complexities that grow linearly

with the number of monomials of f . The DRM two-round OTS scheme presented here is the first

to solve the target scenario with all of these attributes.

1.3 Paper organization
The rest of the paper is organized as follows. Preliminaries appear in Section 2. In Section 3, we

present the DRM secret sharing scheme and discuss its homomorphic properties. The DRM P-MPC

schemes are presented in Section 4. Section 5 discusses the client-server model. Conclusions and

appear in Section 6. Extensions of our schemes for handling general scenarios may be found in

Appendix.

2 PRELIMINARIES
We recall some linear algebra and MPC notations and definitions and define several terms and

concepts used throughout the paper. We use Fp to denote the finite field containing p elements

(where p is prime), Fkp to denote the k-dimensional vector space over Fp , and F
×
p to denote the

multiplicative group of Fp . (F
×
p )

k
is the set of k-tuples over F×p , with the operations ‘+’ and ‘·’ for Fp

entry-wise addition and scalar multiplication, respectively. The notation ‘∗’ stands for entrywise

multiplication, and ‘| |’ for concatenation. We useMn(Fp ) to denote the set of square matrices of
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order n over Fp . N is the set of natural numbers. For n ∈ N, [n] = {1, . . . ,n}. If α is a k-tuple then

(α)i is the i’th entry of α . If C is a matrix then [C]i is the i’th column of C . We denote by x
R
← A

the process of assigning to the variable x a uniformly random element of the set A.
Security of MPC schemes. The security of an MPC protocol is formalized and proved through

the Ideal world vs. Real world paradigm. We briefly overview the general idea. Let P = {Pj }
N
j=1 a set

of N parties and assume that each party Pj is holding a secret value sj in some domain Rj . Assume

that the parties wish to find f (s1, . . . , sn), where f : R1 × · · · × RN → R, while not revealing to

each other any information regarding their secret inputs, except for what may be deduced from

f (s1, . . . , sN ). In an ideal world, the parties could have found a trusted entity, Ted, to whom they

will all tell their private inputs and from whom they will receive the output. Ted will perform the

computation on their behalf and promise to keep their secrets safe.

In the real world, such a trusted entity is hard to find, and hence, the parties may attempt to

perform the computation themselves by following an MPC protocol π . Informally, to consider

π secure for computing f , it should have the property that by following it, the parties gain no

information regarding the secret inputs of other parties that they could not have learned by

following the ideal world solution. We also consider the case in which a subset T ⊆ P of the parties

join forces in an adversarial attempt to gain information regarding the secret inputs of parties in

T = P − T . Informally, we would say that π is secure for computing f with threshold t if it holds
that, for every T ⊆ P with |T | ≤ t , the parties in T gain no more information regarding {si }Pi ∈T
from π than they would have got from an ideal world solution. π leaks no more information than

Ted if all the information obtained from π may be computed from the information received from

Ted only. To formalize that, we define view j to be the random variable indicating sj and all the

messages that Pj receives through the execution of π , including the results of random choices that

Pj makes. Recall that all parties are honest-but-curious, and hence, they follow the instructions of

π . That leads us to

Definition 2.1. Perfect correctness and perfect passive security of π . Let f a function, t ∈ N,
and π an N -party protocol for computing f . We say that π realizes f with perfect correctness and

perfect passive security with threshold t if (a) by executing π , all parties learn y = f (s1, . . . , sN ),
and (b) for every adversarial coalition of honest-but-curious parties T ⊆ P with |T | ≤ t there
exists a simulator — a probabilistic algorithm Sim — which on inputs y and {sj }Pj ⊆T , its output is
identically distributed to viewT = {view j }Pj ∈T .

Correlated Randomness (CR). In the preprocessing model, we assume that π may include an

offline preprocessing phase in which the parties obtain correlated randomness. That is, each party

Pj obtains a secret random binary string string R j ∈ {0, 1}
r
such that R = R1 | | . . . | |RN is a D-

distributed element of {0, 1}rN , where D is some predefined public distribution over {0, 1}rN

independent of the inputs. If D is also independent of f , we say that π uses f -independent CR.
We consider two ways of obtaining CR. The first involves a trusted initializer which provides the

parties with the random strings R j . We stress that there is a fundamental difference between the

trusted entity Ted mentioned earlier in the ideal world solution to the trusted initializer considered

now. While Ted receives the actual secret inputs from the parties and performs the computation in

their behalf, the trusted initializer remains utterly oblivious to the secret inputs as the CR phase

takes place before the secret inputs are known. Considering the presence of a trusted initializer

seems quite natural because when we engage in digital communication, we very often use the

services of a trusted server which provides authentication for the communicating parties. That

server might as well provide the parties with CR. The second way of obtaining CR requires the
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parties running some offline protocol to generate and store correlated random strings.

3 DISTRIBUTED RANDOMMATRIX SECRET SHARING SCHEME
In this section, we describe the basic tool of this work, theDistributed RandomMatrix procedure, DRM,
and discuss some of its properties. DRM employs two other basic procedures — Mult.split (which

will also be used by parties in our schemes to secret-share their private inputs) and Add.split. We

now describe these schemes and discuss some of their properties.

Multiplicative secret sharing procedure. The following procedure is invoked by party Pi to

split si ∈ F
×
p into N multiplicative secret shares. Given a prime p, an element s ∈ Fp , a natural

number N ∈ N, and 1 ≤ i ≤ N , the procedure Mult.split is as follows. Pick N − 1 uniformly

random non-zero elementsmj (1 ≤ j ≤ N , j , i) from Fp and setmi ∈ Fp such that s =
∏N

j=1mj .

Output (m1, . . . ,mN ), a sequence of multiplicative shares of s .

Procedure 1: Mult.split(p, s,N , i)
Input: a prime number p, s ∈ Fp , N ∈ N, and 1 ≤ i ≤ N

for 1 ≤ j ≤ N , j , i do
mj

R
← F×p

end for
δ ←

∏N
j=1, j,imj

mi ←
s
δ

return (m1, . . . ,mN )

Observe that, the assignmentmi ←
s
δ in Mult.split implies that, if s = 0 thenmi = 0 and if

s , 0 thenmi , 0. All other entriesmj of the output (with j , i) are uniformly random non-zero

elements of F×p .

Lemma 3.1. Procedure Mult.split is a perfectly secure secret sharing scheme for F×p elements with
a threshold of N − 1 and which supports homomorphic multiplications.

Proof. Assume that a user, holding a non-zero element s ∈ F×p , distributes the output of

Mult.split(p, s,N , i) (for some i) to a set of parties {Pj }
N
j=1. Any coalition of N − 1 parties gains

absolutely no information regarding s since given their shares, for every element s ′ ∈ F×p there

exists a single possible N ’th share for which the product of the N shares equals s ′. Now, assume

that s1 and s2 are two non-zero elements of Fp that were secret-shared by a user using Mult.split.
By construction, it immediately follows that

N∏
j=1

(
Mult.split(p, s1,N , i) ∗ Mult.split(p, s2,N , i

′)

)
j
= s1 · s2.

The same holds for any number of shared secrets. If a user secret shares d elements s1, . . . , sd of F×p ,
then, having each of the parties compute the product of her shares (locally), each party obtains a

multiplicative share of

∏d
i=1 si . □

Additive secret sharing procedure. Similarly to the previous procedure, given a prime p, an
element s ∈ Fp , and a natural number N ∈ N, the procedure Add.split(p, s,N ) is as follows.

Pick N − 1 uniformly random elements a1, . . . ,aN−1 from Fp and set aN = s −
∑N−1

i=1 ai . Output
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(a1, . . . ,aN ), a sequence of additive shares of s .While Mult.split takes an input i ∈ [N ], Add.split
takes no such input.

Lemma 3.2. The procedure Add.split is a perfectly secure secret sharing scheme for Fp elements
with threshold N − 1 and which supports homomorphic additions.

Proof. Assume that a user, holding an element s ∈ Fp , distributes the aj ’s to a set of parties

{Pj }
N
j=1. Any coalition of N − 1 parties gains absolutely no information regarding s since given

their shares, for every element s ′ ∈ Fp there exists a single possible N ’th share for which the

sum of the N shares equals s ′. Now, assume that s1 and s2 are two elements of Fp that were

Add.split-secret-shared. By construction it immediately follows that

N∑
j=1

(
Mult.split(p, s1,N , i) + Mult.split(p, s2,N , i

′)
)
j = s1 + s2.

The same holds for any number of shared secrets. If a user secret shares d elements s1, . . . , sd of Fp ,
then, having each of the parties locally compute the sum of the shares received, each party obtains

an additive share of

∑d
i=1 si . □

Distributed Random Matrix (DRM) secret sharing procedure. We now define the procedure

DRM. Given a prime p, an element x ∈ Fp and a natural number N ∈ N, the procedure DRM outputs

(the columns of) a matrixC , amatrix-random-split of x .C is generated by Add.split-secret sharing
x , followed by Mult.split-secret sharing each of the additive shares. Formally, we have the

following procedure.

Procedure 2: DRM(p, s,N )
Input: a prime number p, s ∈ Fp , and N ∈ N

(γ1, . . . ,γN ) ← Add.split(p, s,N )
for 1 ≤ i ≤ N do
(ci1, ci2, . . . , ciN ) ← Mult.split(p,γi ,N , i)

end for
C ← (ci j ) ∈ MN (Fp )

return
(
[C]1, . . . , [C]N

)
Observe that, Since the i’th row of C is an output of Mult.split(p,γi ,N , i), the matrix C may

contain zeroes only on its main diagonal, if any. That is, ci j = 0 =⇒ i = j.

Reconstruction of a DRM-secret-shared element x from N shares may be performed by multiplying

all the elements in each row of C and summing the products. Namely,

N∑
i=1

N∏
j=1

ci j = x .

To formalize that, we define the reconstruction procedure.

One may readily verify that, for a prime p, a natural number N ∈ N and an element s ∈ Fp , it holds
that Reconstruct

(
p, DRM(p, s,N ),N

)
= s .

We claim that the DRM secret sharing scheme supports an arbitrary number of homomorphic

multiplications by Mult.split-secret-shared non-zero elements, and after a single round of com-

munication, it supports an arbitrary number of homomorphic additions. To make this claim precise,
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we define the procedure M2A. The procedure is invoked by N parties, P1, . . . ,PN . Let s ∈ Fp and(
[C]1, . . . , [C]N

)
= DRM(p, s,N ). Assuming each party Pj is holding [C]j , the following procedure

enables the parties transforming from multiplicative shares of s to additive shares of it.

M2A

Communication round:
For 1 ≤ i, j ≤ N : Pj sends the i’t entry of [C]j to Pi .

Output computation:
For 1 ≤ i ≤ N : Pi computes γi =

∏N
j=1 ci j .

One may readily verify that, following M2A, each party obtains an additive share of s . Namely,∑N
i=1 γi = s . We are now ready to state and prove the main theorem of this section.

Theorem 3.3 (DRM secret-sharing). The procedure DRM is an N -party secret sharing scheme for
Fp elements which has perfect passive security and threshold t = N − 1. DRM supports homomorphic
multiplications by Mult.split-secret-shared non-zero elements. Have N parties hold DRM-shares
of s ∈ Fp , executing M2A, the parties obtain additive shares of s . These additive shares of s enable
homomorphic additions with an arbitrary number of Add.split-secret-shared elements.

Proof. To show that a secret sharing scheme is perfectly secure with threshold t we should
show that for every coalition of t parties, the shares held by that coalition are independent of

the secret. Let x, x ′, x ′′ ∈ Fp , x
′ , 0. Assume that a user distributes the output ([C]1, . . . , [C]N )

of DRM(p, x,N ) to a set P = {Pj }
N
j=1 of N parties, such that each Pj receives the DRM-share [C]j

(we denote by ci j the i’th entry of [C]j ). Let h ∈ [N ] and denote by Th = P − {Ph} the adversarial

coalition of size N − 1 which contains all parties except for Ph , a single honest party. Our first

goal is to show that the information held by Th is independent of the x . Denote by ΩTh the set of

(N − 1)-tuples of possible DRM-shares for parties in Th . ΩTh ⊆
(
FNp

)N−1
is the set of (N − 1)-tuples

with entries in FNp such that for every element (v1, . . . ,vh−1,vh+1, . . . ,vN ) of ΩTh it holds that for

every j ∈ [N ] (j , h), the only entry of vj that may be zero is its j’th entry. Formally,

ΩTh =
{
(v1, . . . ,vh−1,vh+1, . . . ,vN ) ∈

(
FNp

)N−1���(vj )i = 0 =⇒ i = j
}
.

Now, to show that DRM is a perfectly secure secret sharing scheme with threshold t = N − 1, we
need to show that the collection of N − 1 DRM-shares of x held by Th is uniformly distributed over

ΩTh (independently of x ). The key observation from which this follows is that given all entries of

the matrix C except for any single entry cii on the main diagonal of C (i ∈ [N ]), that last entry cii
ofC is uniquely determined by x . W.l.o.g., assume that h = N (other cases may be treated similarly).

The collection ([C]1, . . . , [C]N−1) of N − 1 DRM-shares of x held by TN is uniformly distributed over

ΩTN independently of x since, given these shares, for every element β ∈ Fp , there are (p − 1)
N−1

different ways to choose a valid N ’th DRM-share [C]′N of β . That is to say, [C]′N is an FNp column

vector (whose only entry that may be zero is its N ’th entry), and the order-N square matrix whose

columns are the vectors ([C]1, . . . , [C]N−1, [C]
′
N ) is a matrix-random-split of β . Indeed, uniformly

randomly choose N − 1 non-zero elements c ′
1,N , . . . , c

′
N−1,N of Fp and set

c ′NN =
β −

∑N−1
i=1

(
c ′iN ·

∏N−1
j=1 ci j

)
∏N−1

j=1 c jN
. (1)
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10 Dor Bitan and Shlomi Dolev

One may readily verify that the column vector [C]′N = (c
′
1N , . . . , c

′
NN ) is a valid N ’th DRM-share

of β . Hence, we conclude that the shares held by TN are uniformly distributed over ΩTN indepen-

dently of x . This shows that DRM is a perfectly secure secret sharing scheme with threshold t = N −1.

Now, assume that the user distributes the Mult.split-shares (m1, . . . ,mN ) of x
′
to the parties

such that each party Pj obtainsmj . To show that DRM supports perfectly secure homomorphic

multiplications by Mult.split-secret-shared non-zero elements, we need to show that:

• Privacy. The collection of N − 1 DRM-secret-shares of x held by Th , and the N − 1 Mult.split-
secret-shares of x ′ held by Th , is uniformly distributed over ΩTh × (F

×
p )

N−1
(independently of

x and x ′).
• Correctness. For j ∈ [N ], have Pj locally compute the productmj [C]j . Doing so, each party

obtains a DRM-share of x · x ′. In other words, the entrywise product of the N -tuple of DRM-
shares of x and the N -tuple of Mult.split-shares of x ′ is an N -tuple of DRM-shares of the
product x · x ′.

The privacy immediately follows from Lemma 3.1 and the first part of this proof. In the first part

of this proof we have shown that the DRM-shares of x are uniformly distributed over ΩTh . By Lemma

3.1, the Mult.split-shares of x ′ are uniformly distributed over (F×p )
N−1

. Hence, the collection of

shares of x and x ′ is uniformly distributed over ΩTh × (F
×
p )

N−1
. For correctness, observe that

Reconstruct
(
p,

(
m1[C]1, . . . ,mN [C]N

)
,p
)
=

N∑
i=1

N∏
j=1

(
mj [C]j

)
i

=

N∑
i=1

(( N∏
j=1

mj

)
·

( N∏
j=1

ci j
))
= x ′ ·

N∑
i=1

N∏
j=1

ci j = x · x ′.

(2)

Similarly, the user may perform d such homomorphic multiplications of x with d Mult.split-
shared non-zero elements x ′

1
, ..., x ′d (for an arbitrary d) and have the parties obtain a DRM-shares of

the product x ·
∏d

i=1 x
′
i . We also note that, even if x is made public, homomorphically multiplying

the DRM-shared element x with the secret Mult.split-shared element x ′ leaks no information

regarding x ′.

Regarding the transformation from supporting homomorphic multiplications to supporting

homomorphic additions, assumes that the parties execute M2A (using the DRM-shares of x ) to obtain

(γ1, . . . ,γN ) ∈ F
N
p and receive Add.split-shares (a1, . . . ,aN ) ofx

′′
from the user. Our goal now is to

show that the execution of M2A keeps x perfectly secure and enables perfectly secure homomorphic

additions with x ′′. Explicitly, we need to show:

• Correctness. The sum of (γ1, . . . ,γN ) and (a1, . . . ,aN ) is an N -tuple of additive shares of

x + x ′′.
• Privacy. The collection of N − 1 DRM-shares of x and the information received by Th in the

execution of M2A is uniformly distributed over ΩTh × (F
×
p )

N−1
(independently of x ).

For correctness, observe that

N∑
i=1

(
(γ1, . . . ,γN ) + (a1, . . . ,aN )

)
i =

N∑
i=1

γi +
N∑
i=1

ai =
N∑
i=1

N∏
j=1

ci j + x
′′ = x + x ′′.

For privacy, observe that all the new information received by Th in the execution of M2A is the
N − 1 elements of [C]h which are not on the main diagonal of C . W.l.o.g. let h = N (other cases

follow similarly). Similarly to (1), given the new elements c1N , . . . , cN−1,N , for every β ∈ Fp , there
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exists a single element c ′NN for which the matrixC ′, obtained fromC by replacing the element cNN
with c ′NN , is a matrix-random-split of β . Namely,

c ′NN =
β −

∑N−1
i=1

∏N
j=1 ci j∏N−1

j=1 c jN
.

We conclude that the collection of N − 1 DRM-shares of x and the information received by Th in

the execution of M2A is uniformly distributed over ΩTh × (F
×
p )

N−1
(independently of x ).

□

4 THE DRM P-MPC SCHEMES
In this section, we present perfectly secure P-MPC schemes for polynomials over non-zero

inputs, based on the DRM secret sharing scheme. We assume that P = {Pj }
N
j=1 is a set of N ≥ 2

honest-but-curious parties which are connected via point-to-point authenticated secure channels.

For ease of presentation, we assume that each party Pj holds a single input sj ∈ Fp . In general, each

party may hold an arbitrary number of secrets. Let s = (s1, . . . , sN ). The function to be evaluated is

f : FNp → Fp , where:

f (x1, . . . , xN ) =
∑

l=(l1, ...,lN )∈L

al · x
l1
1
. . . x lNN ,

where L = {0, . . . ,p − 1}N and al ∈ Fp . For l ∈ L, let Al = x l1
1
. . . x lNN . The l ’th monomial of f is

alAl . The size of the polynomial (i.e., the number of monomials with al , 0) is k , and the size of

the input is n = ⌈logp⌉.

We begin with the database-oriented (DBO) version of the DRM P-MPC scheme, and then present

the one-time secrets (OTS) version. The DBO version includes a secret sharing round as a part of the

preprocessing phase. This round creates a virtual database shared among the parties and enables

any polynomial to be evaluated over that database. The OTS version of the scheme includes no

secret sharing stage and hence solves the target scenario with optimal round complexity.

4.1 The DBO version
The general idea behind the scheme is as follows. At the preprocessing phase, the parties obtain

k units of correlated randomness (CR). Each unit of CR is a matrix-random-split of 1 ∈ Fp , split
between the parties such that each party obtains a single column of the matrix. These matrices are

independent of f , the secrets, and one another. At the first round of the scheme, each party Pj shares

sj between all parties using the Mult.split secret sharing scheme. Next, f is evaluated using the

homomorphic properties of the DRM secret sharing scheme. We assume that the parties agreed on

an ordering of the monomials of f , and evaluate each monomial by performing multiplications of

the corresponding column with the appropriate powers of shares of the secrets. In the second round

of the scheme, a simultaneous M2A stage is performed, at the end of which, each party obtains an

additive share of the output. In the third round of the scheme, each party reveals her share of the

output. The sum of these shares equals f (s1, . . . , sN ).

Theorem 4.1 (DBO). The DRM three-round DBO scheme is a three-round N -party P-MPC scheme
for polynomials over non-zero inputs which has perfect correctness, perfect passive security, threshold
N − 1, communication complexity O(N 2nk), space complexity O(Nnk), and f -independent CR.
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12 Dor Bitan and Shlomi Dolev

The DRM three-round DBO scheme
Preprocessing phase.
Correlated randomness. For each non-zero monomial alAl of f , each party Pj obtains a

DRM-share [C(l )]j of 1 ∈ Fp . Each C
(l )

is a matrix-random-split of 1 ∈ Fp .

Secret sharing. Each party Pi secret-shares si using Mult.split. The shares si1, . . . , siN of si
are distributed such that Pj receives si j .

Online phase.
Eval. 1. For each monomial alAl of f , each party Pj computes:

α (l )j =
N∏
i=1

slii j · [C
(l )]j .

Com. 1. For i, j ∈ [N ], Pj sends the i’th entry of each α (l )j to Pi .

Eval. 2. For each monomial alAl of f , each party Pi computes:

U (l )i = al

N∏
j=1

(
α (l )j

)
i .

Com. 2. Each party Pi sends yi =
∑
l U
(l )
i to all other parties.

Output reconstruction. Each party computes

∑N
i=1 yi .

Proof. Security. Let h ∈ [N ] and denote by Th = P − {Ph} the adversarial coalition of size

N − 1 which contains all parties except for Ph . W.l.o.g, we assume that h = N . We construct Sim
as follows. Given {sj }j ∈[N−1] and y = f (s1, . . . , sN ), the simulator chooses a uniformly random

element from the set of possible values of sN . Formally, let

E =
{
a
��f (s1, . . . , sN−1,a) = y} ⊆ Fp,

and pick a uniformly randomly element s ′N of E. Then, Sim simulates the actions of all N parties

according to the instructions of DBO for N parties with secrets s1, . . . , sN−1, s
′
N , and outputs the

simulated view of the first N − 1 parties. By Lemma 3.1, for every secret, any subset of N − 1

shares is uniformly distributed over FN−1p , and hence, so is the part of the view of Th that is viewed

at the secret sharing stage. In Com. 1, each message received by Th is some non-zero element∏N
m=1 s

lm
m, j , multiplied by some ci j . Since, those ci j ’s are uniformly random non-zero elements, and

multiplication by non-zero elements in Fp is a bijection, the part of the view of Th that is viewed at

Com. 1 is uniformly distributed. The last message obtained by Th from PN at Com. 2 is a function
of the input y and the additive shares held by Th . We conclude that, given s1, . . . , sN−1 and y, the
view of Th is uniformly distributed over the domain of possible views. Now, since the parties are

honest-but-curious, they follow the instructions of DBO, and hence, the simulated view output by

Sim is identically distributed to viewTh .

Correctness. The correctness of the scheme follows from the fact that

N∑
i=1

yi =
∑
l

N∑
i=1

U (l )i =
∑
l

N∑
i=1

al

N∏
j=1

(α j )i =
∑
l

al

N∑
i=1

N∏
j=1

(
sl1
1j . . . s

lN
N j · [C

(l )]j
)
i

=
∑
l

al

N∑
i=1

(
sl1
1
. . . slNN ·

N∏
j=1

c(l )i j

)
=
∑
l

al · s
l1
1
. . . slNN ·

N∑
i=1

γ (l )i ,
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where γ (l )i denotes the product c(l )i1 . . . c
(l )
in . Since each C

(l )
is a matrix-random-split of 1, we have∑N

i=1 γ
(l )
i = 1 and hence,

∑N
i=1 yi = f (s1, . . . , sN ).

Communication complexity. By construction, the scheme requires three rounds. The total number of

bits communicated in the online phase, is O(N 2kn). Indeed, in Com. 1, each of the N parties sends

N messages, where each message is a k-tuple, and each entry of that k-tuple is an Fp element. That

is a total of N 2kn bits. In Com. 2, each party sends a single Fp element to all other parties, i.e., a

total of Nn bits. All in all, N 2kn + Nn bits are communicated.

Space complexity.Howmany bits of CR are required? At the preprocessing phase, for each monomial

of f , each party obtains a single column of an order-N Fp -valued square matrix. That is a total of

kNn bits obtained by each party. Hence, the space complexity of the scheme is O(kNn). □

We note that DBO assumes that each party holds a single input. This assumption is not obligatory

and was made only for the ease of presentation. In general, each party may have an arbitrary

number of secrets. In that case, at the secret sharing stage, each party should secret-share each

secret she holds independently. The rest follows trivially.

4.2 The OTS version
Our novel OTS version of the DRM two-round MPC scheme includes no secret sharing stage and

solves the target scenario with optimal round complexity. It does include a preprocessing stage at

which f -independent CR is obtained by the parties. The scheme is presented below.

The DRM two-round OTS scheme
Preprocessing phase.
Correlated randomness. For each non-zero monomial alAl of f , each party Pj obtains a

DRM-share [C(l )]j of 1 ∈ Fp . Each C
(l )

is a matrix-random-split of 1 ∈ Fp .

Online phase.
Eval. 1. For each monomial of f , each party Pj computes α (l )j = s

lj
j [C

(l )]j .

Com. 1. For i, j ∈ [N ], Pj sends the i’th entry of each α (l )j to Pi .

Eval. 2. For each monomial alAl of f , each party Pi computes:

U (l )i = al

N∏
j=1

(
α (l )j

)
i .

Com. 2. Each party Pi sends yi =
∑
l U
(l )
i to all other parties.

Output reconstruction. Each party computes

∑N
i=1 yi .

Theorem 4.2 (OTS). The DRM two-round OTS scheme is a two-round N -party P-MPC scheme for
polynomials over non-zero inputs which has perfect correctness, perfect passive security, threshold
N − 1, communication complexity O(N 2nk), space complexity O(Nnk), and f -independent CR.

Proof. The correctness and security of OTS follows from similar arguments to those of DBO.

For correctness, observe that,

N∑
i=1

∑
l

U (l )i =
∑
l

N∑
i=1

U (l )i =
∑
l

N∑
i=1

al

N∏
j=1

(α j )i =
∑
l

al

N∑
i=1

N∏
j=1

(
s
lj
j [C

(l )]j
)
i
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=
∑
l

al

N∑
i=1

(
sl1
1
. . . slNN ·

N∏
j=1

c(l )i j

)
=
∑
l

al · s
l1
1
. . . slNN ·

N∑
i=1

γ (l )i = f (s1, . . . , sN ).

This scheme has the same security properties as DBO, i.e., perfect passive security and threshold

N − 1. This claim may be proved by arguments similar to those used at the security proof of DBO.

The key observation is that for every l and j, if i , j, then the i’th entry of [C(l )]j is a uniformly

random non-zero element of Fp , and hence, so is α (l )j . By construction, the communication and

space complexities of OTS are the same as those of the DBO. □

5 THE CLIENT-SERVER MODEL
In the last years, there is ongoing growth in the popularity of cloud services. More and more

companies offer on-demand storage devices and computing engines. While users of cloud services

enjoy the benefits of fast and cheap data processing, they are required to send their information to a

possibly untrusted cloud. A problem arises when that information is private. One possible solution

to that problem may be found at the scope of Fully Homomorphic Encryption (FHE). Unfortunately,

all known FHE schemes are only computationally secure and are currently time-wise inefficient.

A different approach comes from the scope of MPC — have the user secret-share her data among

several servers, and have the servers engage in an MPC scheme to jointly process computations

over that data.

The DRM P-MPC schemes suggested above may be used by a set ofm ≥ 1 users to securely

outsource the storage of their private information to a set of N ≥ 2 honest-but-curious servers, and

have the servers perform computations over that information in a single round of communication.

We now present the DRM one-round client-server scheme. For ease of presentation, we assume

m = 1. Assume that a user has a private connection channel with N honest-but-curious servers,

denoted P1,P2, . . . ,PN . The scheme we suggest now enables a user to secret-shareM non-zero

elements, s1, . . . , sM ∈ Fp , amongst the servers in away that allows the user to evaluate f (s1, . . . , sM )

using computing engines provided by the servers, where f : FMp → Fp is a polynomial with

monomials alAl as above. The general idea is as follows. The user uses Mult.split to secret-share

her secret inputs among the servers, and sends the servers a sufficient amount of CR units for

future use. Whenever the user wishes to evaluate a polynomial f over the secrets, she sends a

query to the servers with f . Then, the servers homomorphically evaluate f over their shares in a

single round of communication and send the additive shares of the result to the user.

Correctness and perfect passive security of the client-server scheme against coalitions of up to

N − 1 honest-but-curious servers follow from Theorem (3.3).

More users. Ifm > 1, then letM denote the total number of secrets held by all the users. Then, to

enable the set ofm users outsource their privet information to the servers and have the servers

process computations over the set of all the secrets, we modify the client-server scheme as follows.

• At Secret sharing, each user secret-shares her inputs (using Mult.split).
• At Query, the users divide the work of generating the required CR between them, such that

each user generates ≈ k/m matrix-random-splits of 1 and distributes them to the servers.

• At the last two stages of the scheme, the servers send the additive shares of the result to each

of the users, which in turn compute the output locally.

In fact, the servers may have secrets of their own as well, and f may be a function of those

secrets too. In that case, the users learn no more information regarding the secret inputs of the
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servers other than what may be learned from the output.

The DRM one-round client-server scheme
Secret sharing. For i ∈ [M], the user secret-shares each si using Mult.split. The shares

si1, . . . , siN of si are distributed among the servers such that Pj receives si j .

Query. The users sends f to the servers. For each monomial alAl of f , the user distributes
DRM-shares of 1 ∈ Fp . Each server Pj obtains [C

(l )]j , where C
(l )

is a matrix-random-split of

1 ∈ Fp . (This stage may be done in advance before f is known.)

Eval. 1. For each monomial alAl of f , each server Pj computes:

α (l )j =
M∏
i=1

slii j · [C
(l )]j .

Communication. For i, j ∈ [N ], Pj sends the i’th entry of each α (l )j to Pi .

Eval. 2. For each monomial alAl of f , Pi computes:

U (l )i = al

N∏
j=1

(
α (l )j

)
i .

Retrieving additive shares. Each server Pi sends yi =
∑
l U
(l )
i to the user.

Output reconstruction. The user computes

∑N
i=1 yi .

6 CONCLUSIONS
In this paper, we have suggested schemes for perfectly secure multiparty computation with optimal

round complexity of polynomials over non-zero inputs, both in the preprocessing model and the

client-server model. We began with the construction of an N -party perfectly secure secret sharing

scheme which supports multiplications with non-zero elements with threshold N − 1 against

honest-but-curious adversary. We showed how the parties may efficiently generate additive shares

of the secret from the multiplicative shares of it in a single round of communication, thus enabling

homomorphic additions with further secrets. This secret sharing scheme was then used to construct

a perfectly secure two-round P-MPC scheme for polynomials over non-zero inputs in Fp . We have

extended our scheme to the client-server model.

We note that our schemes, based on evaluating each monomial independently, induce con-

siderable computational overhead compared to schemes that evaluate the polynomial using an

arithmetic circuit representation. Circuit representations enable re-use of mid-values that were

already computed. How big is that overhead? In order to (asymptotically) compare the computa-

tional complexity of our schemes to that of standard schemes, one should write the number of

monomials k of f in terms of the size s and depth d of the arithmetic circuit. Finding the relation

between the number of monomials of a general function and the size and depth of a circuit which

computes the same function has roots in the algebraic analog of the P
?

= NP problem (suggested by

Valiant in [Val79]) and is beyond the scope of this paper.

However, the round complexity of our OTS scheme is optimal, i.e., two-rounds. To emphasize

the importance of round-efficiency, we note that, while processing information becomes faster as

technology improves, the time that it takes to transmit information between two distant places

is strongly limited by the speed of light. One may consider a future need to perform MPC over

inputs held by parties which reside in distant places, perhaps outside of earth. If T is the time

it takes to process the computations needed for evaluation of f using our schemes, then if the
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distance between parties is such that sending messages between parties takes more time than T ,
optimal-round schemes outperform any scheme with non-optimal round complexity.

The case of malicious parties (that may deviate from the protocol) was not discussed in this

paper. As a future direction, it would be interesting to investigate ways to equip our schemes with

mechanisms that will guarantee (to some extent) security and correctness in the face of active

adversaries.

Lastly, we believe that our new approach and techniques may be used to securely outsource

computations in a reduced cost of communication, and may be found to have further uses in many

other scopes.
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A NON-ZERO INPUTS AND GENERAL FUNCTIONS
We now show some simple ways in which our schemes may be adjusted to support evaluation

of arbitrary functions over possibly-zero inputs. We stress that the performances of the resulting

schemes is often inferior to those of existing solutions. We present these ways mainly to show that,

theoretically, our approach is capable of supporting general scenarios.
3

First, we note that any function f : FNp → Fp can be represented as a multivariate polynomial.

This representation may be obtained, for example, by solving a system of linear equations, or

using other polynomial interpolation methods. Due to Fermat’s little theorem, which states that

xp ≡ x (mod p), f can be written as a polynomial of degree at most N (p − 1) and with at most pN

monomials. Namely, one may write

f (x1, . . . , xN ) =
∑

l=(l1, ...,lN )∈L

al · x
l1
1
. . . x lNN , (3)

where L = {0, . . . ,p − 1}N , for appropriate elements al ∈ Fp .
Next, if f is a Boolean function, our scheme may be used to support MPC of f by working in

F2. A True Boolean value is 1 ∈ F2 and a False Boolean value is 0 ∈ F2. Boolean operations may

be identified with field operations in the following way. The ∧ operation is identified with F2
multiplication, the ⊕ operation with F2 addition, and the ¬ operation with adding 1 in F2. The
∨ operation of two literals is identified with x + y + xy, where x and y are the elements of F2
corresponding to the literals. Then, given a Boolean formula φ over Boolean literals b1, . . . ,bM ∈
{True, False}, one can take the F2 correspondents s1, . . . , sM ∈ F2 of b1, . . . ,bM , and evaluate the

Boolean formula φ : {True, False}M → {True, False} using the polynomial φ̃ : FM
2
→ F2, obtained

by replacing Boolean operations and literals with their F2 correspondents.
Now, the communication and space complexities of our schemes are analyzed with respect to

the number k of monomials in the polynomial representation of the function. Most of the known

MPC schemes assume that f is given as an arithmetic circuit, and their communication and space

complexities are analyzed with respect to the size s and depth d of the circuit. In order to (asymp-

totically) compare the performances of our schemes to those of a different scheme which assumes

f is given as a circuit with size s and depth d , one must write k in terms of s and d . For an arbitrary

3
Note that [GPS12] suggests a specific example for a specific technique to cope with possible zeros, which is a special case

for our techniques.
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f , that task might be hard. In general, consider the following question.

What is the relation between the size and depth of a circuit which computes an arbitrary function f
and the size of a polynomial which computes f ?

This question is an open problem, rooted in the algebraic analog of the P
?

= NP problem, suggested

by Valiant in [Val79], and is out of the scope of this paper.

So far, we have shown how MPC of Boolean or arithmetic functions reduces to MPC of polyno-

mials over finite fields. However, our schemes assumed that the inputs are non-zero elements of

the field. Next, we suggest several ways of handling possibly-zero inputs.

First, we suggest the q-bounded approach. Let s = (s1, . . . , sN ) ∈ FNp . One can compute f (s) by
performing operations in Fp according to the representation of f as a multivariate polynomial.

The same result is obtained if one computes f (s) over the positive integers and then takes the

result modulo p. Formally, for each entry sj of s let aj denote the minimal positive integer such

that aj ≡ sj (mod p). Then, performing the computation over the aj ’s using integer operations one
obtains an integer result f (s)N, such that f (s)N ≡ f (s) (mod p). If q is a prime number such that

for every s ∈ FNp , computation of f (s) over the integers yields an integer result, f (s)N, which is

smaller than q, then f is q-bounded. Since there are at most pN monomials in f , for every s ∈ FNp
it holds that f (s)N < pN · (p − 1) · (pp−1)N = pN · (p − 1) · pNp−N = (p − 1) · pNp

. Hence, f is q
bounded for a prime q larger than (p − 1) · pNp

. In practice, one may find a smaller prime q′ for
which f is q′-bounded.

Now, we can use this fact to evaluate Fp -polynomials over possibly-zero inputs by working in Fq
for large enough q. To this end we present the DRM three-round DBO-qB scheme. DBO-qB supports

evaluating polynomials over possibly-zero inputs by embedding Fp in a larger field, Fq , and using

DBO as a subroutine. The larger field Fq is chosen to satisfy the condition that f is q-bounded. The
embedding is performed as follows. For sj ∈ Fp , let σj denote the minimal positive integer such that

σj ≡ sj (mod p). Let s̃j ≡ σj (mod q) the Fq correspondent of sj in the q world. Let s̃ = (s̃1, . . . , s̃N ).

Now, let
˜f : FNq → Fq denote the function corresponding to f in the q-world. That is, ˜f is obtained

from f by replacing the leading coefficients of the monomials with their q-world correspondents.

DBO-qB may be invoked by the parties to find f (s).

The DRM three-round DBO-qB scheme

Calling DBO. Use DBO to find ỹ = ˜f (s̃) ∈ Fq .

Computing p-world output. Let σ denote the minimal positive integer such that σ ≡ ỹ (mod q),
and let y ≡ σ (mod p). Output y.

Theorem A.1. DBO-qB is a three-round N -party P-MPC scheme for arithmetic functions which has
perfect correctness, perfect passive security, threshold N − 1, communication complexity O(kN 3n2n),
space complexity O(kN 2n2n), and f -independent CR.

Proof. Since all q-world inputs are non-zero elements of Fq , security of DBO-qB follows from

that of DBO. Correctness follows from that of DBO and the fact that f is q-bounded. By construction,
the round complexity is two. Now, in DBO-qB, all the messages and the CR are Fq elements. At

the worst case, q ≈ ppN , and hence, the number of bits required for each element is ⌈logq⌉ ≈
log

(
ppN

)
= pN logp = 2

logpN logp = nN2
n . Since the number of messages and amount of CR

remains unchanged, the exact space and communication complexities of DBO-qB are obtained

from those of DBO by replacing n with nN 2
n
. □
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DBO-qB solves the general case by replacing Fp elements with Fq elements, hence the factor 2
n
.

DBO-IS and DBO-IS2, which we now present, avoid the 2
n
factor. Instead, these schemes replace f

with a K-monomials version of it.

The DRM three-round DBO-IS scheme solves the general case by splitting each input to a sum of

two non-zero elements, and replacing f with the split-inputs version of f . That is, for a polynomial

f , let φ : F2Np → Fp denote the function obtained from f by replacing each variable xi of f with

the sum of two variables, zi andwi , as follows:

φ(z1 . . . , zN ,w1, . . . ,wN ) =
∑
l ∈L

al · (z1 +w1)
l1 · · · (zN +wN )

lN

=
∑
λ∈Λ

bλ · z
λ1
1
· · · zλNN ·w

λN+1
1
· · ·wλ2N

N ,
(4)

where λ = (λ1, . . . , λ2N ), Λ = {0, 1, . . . ,p − 1}
2N

, and bλ ∈ Fp . φ is the split-inputs version of f .

We note that, since f is a polynomial of N variables, k ≤ pN , and since φ is a polynomial of 2N
variables, K ≤ p2N = (pN )2.

Now, if p , 2, DBO-IS may be invoked by the parties to find f (s).

The DRM three-round DBO-IS scheme
Each party Pj arbitrarily picks α j , βj ∈ F

×
p such that sj = α j + βj .

Use DBO to find y = φ(α1, . . . ,αN , β1, . . . , βN ). Output y.

Theorem A.2. DBO-IS is a three-round N -party P-MPC scheme for Fp functions (p , 2) which
has perfect correctness, perfect passive security, threshold N − 1, f -independent CR, communication
complexity O(N 2nK), and space complexity O(NnK), where K is the number of monomials of the
split-inputs version of f .

Proof. Correctness follows from that of DBO and from the observation that if αi , βi ∈ Fp
(1 ≤ i ≤ N ) are such that for every i ∈ [N ] it holds that si = αi + βi , then f (s1, . . . , sN ) =
φ(α1, . . . ,αN , β1, . . . , βN ). The security and complexity properties follow immediately from those

of DBO. □

Now, in F2, 1 cannot be written as a sum of two non-zero elements. This is the reason for the

requirement p , 2 in Theorem A.2. DBO-IS2 solves the case p = 2 by embedding F2 in F3 and
using DBO-IS as a subroutine. The embedding is performed as follows. The elements 0, 1 ∈ F2 are
identified with 0, 1 ∈ F3. For sj ∈ F2 let sj denote the F3 correspondent of sj . F2 operations are
identified with F3 operations as follows. F2-multiplication is identified with F3-multiplication, and

F2-addition is identified with Add : F2
3
→ F3, Add(x,y) = x + y + xy. Let f : FN

3
→ F3 denote the

F3 correspondent of f . That is, f is obtained from f by replacing the F2-operations ‘·’ and ‘+’ of f
with the F3-operations ‘·’ and ‘Add’. The parties may invoke DBO-IS2 to find f (s).

The DRM three-round DBO-IS2 scheme

Use DBO-IS to find y = f (s1, . . . , sN ). Output y.

, Vol. 1, No. 1, Article . Publication date: November 2020.



20 Dor Bitan and Shlomi Dolev

Theorem A.3. DBO-IS2 is a three-round N -party P-MPC scheme for arithmetic functions over F2
which has perfect correctness, perfect passive security, threshold N − 1, f -independent CR, communi-
cation complexity O(N 2nK), and space complexity O(NnK), where K is the number of monomials of
the split-input version of the F3 correspondent of f .

The proof follows immediately from construction. The schemes suggested above use DBO as

a subroutine to solve the case of evaluating arbitrary functions over possibly-zero inputs. We

construct OTS-qB, OTS-IS, and OTS-IS2 schemes by using OTS as a subroutine in a similar fashion.

These schemes handle the target scenario with optimal round complexity.

Theorem A.4. OTS-qB is a two-round N -party P-MPC scheme for arithmetic functions which has
perfect correctness, perfect passive security, threshold N − 1, communication complexity O(kN 3n2n),
space complexity O(kN 2n2n), and f -independent CR.

Theorem A.5. OTS-IS is a two-round N -party P-MPC scheme for Fp functions (p , 2) which
has perfect correctness, perfect passive security, threshold N − 1, f -independent CR, communication
complexity O(N 2nK), and space complexity O(NnK), where K is the number of monomials of the
split-inputs version of f .

TheoremA.6. OTS-IS2 is a two-roundN -party P-MPC scheme for arithmetic functions over F2 which
has perfect correctness, perfect passive security, threshold N − 1, f -independent CR, communication
complexity O(N 2nK), and space complexity O(NnK), where K is the number of monomials of the
split-input version of the F3 correspondent of f .
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