
Dynamic Searchable Encryption with Access
Control

Johannes Blömer, Nils Löken

Abstract

We present a searchable encryption scheme for dynamic document collections in a
multi-user scenario. Our scheme features fine-grained access control to search results,
as well as access control to operations such as adding documents to the document
collection, or changing individual documents. The scheme features verifiability of
search results. Our scheme also satisfies the forward privacy notion crucial for the
security of dynamic searchable encryption schemes.

1 Introduction

Searchable encryption [17] allows users to remotely store their data in the cloud in a
secure, i.e. encrypted, fashion without losing the ability to search their data efficiently.
Particularly, the data can be searched without downloading it to search it locally, and
without revealing the plaintext to the cloud. Since the introduction of searchable encryp-
tion, many searchable encryption schemes with various properties have been proposed.
Many schemes are single user systems, others allow multiple users, either on the data
creation or on the data usage side, or both. There are schemes that allow updates to
the searchable document collection and those that do not. Some schemes allow for users
to verify the correctness of search results. Some of the multi-user schemes feature access
control, so users can only find documents in search results that they are allowed to access.
Other multi-user schemes include all relevant documents in a search result, ignoring access
restrictions to documents.

Although many features for searchable encryption schemes have been proposed in the
literature, schemes rarely implement more than one or two of the above features. Due to
specialized constructions, it is also rather hard to combine features into a single scheme
in a straightforward manner.

We construct a searchable encryption scheme that allows for many users with a multi-
tude of different access rights to jointly maintain and update a remotely stored document
collection. The collection is searched remotely, and users are guaranteed the correctness
of search results. Both, the search and the update processes, respect users’ access rights.
The server that stores the document collection neither learns the documents it stores, nor
does it learn what users search for.

Our construction assumes a multi-authority attribute-based encryption scheme that is
secure against adaptive adversaries. It must be noted that, to the best of our knowledge,
schemes that satisfy all our requirements have not been presented in the literature yet.
However, schemes secure against static adversaries (making all their oracle queries at
once) have been presented, so the assumption of an adaptively secure variant is not too
far-fetched.

1

Related work. Research on searchable encryption started with the seminal paper of
Song et al. [17]. Since then, various flavors of searchable encryption have emerged. For a
comprehensive overview see the survey on searchable encryption by Bösch et al. [4].

One direction of searchable encryption research focuses on the symmetric variant
(called SSE), heavily influenced by the work of Curtmola et al. [9]. SSE mainly ad-
dresses the single user setting, although multi-user extensions have been proposed. The
multi-user property is achieved by replacing some applications of symmetric encryption in
the original schemes by broadcast encryption [9] or attribute-based encryption [11]. The
main advantage of SSE is its efficiency, which not only stems from the use of symmetric
primitives, but also from the use of elaborate index data structures.

An alternative to SSE is public key encryption with keyword search (PEKS) as intro-
duced by Boneh et al. [3]. PEKS allows multiple data sources to produce ciphertexts that
only a designated user can search. Due to multiple sources, data structures for efficient
search are hard to use with PEKS. Instead, typical PEKS schemes create tags for each
keyword that a message contains, and append these tags to the message ciphertext. For
search, each tag has to be checked whether it matches the search query. The simplicity of
the tag-based approach allows for easy additions of documents to the encrypted searchable
document collection. Variants of PEKS include attribute-based encryption with keyword
search as presented by Sun et al. [19] and Zheng et al. [27]. Zheng et al. rely on the
tag-based approach, but introduce additional data structures to make the completeness of
search results verifiable; however, these data structures are static, so documents cannot
be added to the document collection.

Zhang et al. [25] have identified document dynamics in most PEKS schemes, but also
some SSE schemes, as a huge threat to security in practice. The threat stems from file
injection attacks, allowing an adversary to create new searchable ciphertexts to which old
search queries can be applied. As a result, adversaries can rather easily determine what
users search for. Schemes that do not allow new ciphertexts to be found via old queries
are called forward private [18]. Bost [5] puts forth a forward private dynamic SSE scheme
that has verifiable search results. These results are further improved by Etemad et al.
[10]. However, the schemes of Bost and Etemad et al. remain in the single user setting or
do not consider access control.

In the multi-user setting, both, the SSE and PEKS-based approaches to searchable
encryption allow for varying degrees of fine-grained access control to data and search
results to be enforced. This can be achieved through data structures [1] or attribute-
based encryption (see above). However, typically only read access to data is considered,
whereas write access is ignored.

Our contribution. In this paper, we provide a searchable encryption scheme in the
multi-user setting with fine-grained access control, document collection dynamics, and
verifiable search results. Particularly, the set of remotely stored searchable documents can
be updated and extended. Our scheme provides fine grained access to both, read and
write access. With respect to document collection dynamics, our scheme provides forward
privacy. While the individual properties of our searchable encryption scheme are not new,
their combination into a single scheme is. Our scheme is proven secure in the random
oracle model.

Paper organization. In the upcoming section, we provide a brief overview of our model
and techniques for dynamic searchable encryption with access control. In Section 3, we
formally define dynamic searchable encryption with access control, discuss its security,

2

and present building blocks for constructing it. Our searchable encryption scheme can be
found in Section 4. In Section 5, we provide a brief discussion and conclude the paper.

2 Our approach to searchable encryption

In this section we describe our model for searchable encryption and provide examples.
Particularly, we explain the functional properties of our searchable encryption primitive,
and then continue to describe, in a general way, how we implement these properties.

2.1 Our scenario

Our goal is to construct a searchable encryption scheme in a multi-user setting. Users can
search a common document collection for arbitrary (but single) keywords, or rather, the
parts of the collection the respective users have (read) access to.

As an example, consider the following scenario featuring three users Alice, Bob and
Charly. Alice holds access rights {a}, Bob holds access rights {b}, and Charly holds access
rights {b, c}. The searchable document collection consists of two documents. Document
d1 contains keywords w1 and w2; document d2 contains keyword w1. Both documents are
(read) accessible to users holding access rights {b}. Clearly, if Bob searches for keyword
w2, he should get document d1 as his search result. Similarly, Charly can expect to get
d1 and d2 as results to a search for w1. However, if Alice searches for either w1 or w2, her
search results should be empty, because Alice is disallowed from accessing either document.

Assume Alice’s search result for w1 contained d1, but, due to access control, Alice is
incapable of accessing the document. Besides not being able to access the document, Alice
still would have learned something about the contents of the document. Therefore, search
and access control need to be tightly coupled, and access rights must be considered during
search result computation.

Our construction not only allows users to search a document collection. Users are also
capable of contributing to the document collection by adding and modifying documents.
We call this document collection dynamics. Similar to read access, writing documents is
subject to fine-grained access control. We distinguish two types of write access: write
access to the documents, and ownership, i.e. write access to the write access policy.

Regarding document collection dynamics, we prevent the removal of documents from
the searchable document collection. This includes overriding documents through modifi-
cation. In particular, every version of a document is kept forever. This limits the damage
malicious users can cause, i.e. permanently damaging the collection via deletion of docu-
ments is prevented.

We illustrate the above points in our example scenario, extending it by separate access
rights for different operations, and by version numbers to model the modification of doc-
uments over time. Furthermore, we adopt a shorthand notation for access rights that we
use throughout this paper. An entry of our document collection is a 5-tuple (d:v, r:Aread,
w:Awrite, o:Aown,KW), meaning that the tuple represents the v-th version of document d,
the document has read access policy Aread, write access policy Awrite and ownership ac-
cess policy Aown, and it contains keywords KW . Then, our example document collection
consists of tuples (d1:1, r:{b},w:{a}, o:{b}, {w1, w2}) and (d2:1, r:{b},w:{b}, o:{c}, {w1}).
Here, for illustrative purposes, the access policies are given as sets of access rights a user
needs to hold in order to gain access to data.

Now, Alice updates the existing document collection by adding a new tuple (d1:2, r:{c},
w:{a}, o:{b}, {w1, w3}). This tuple represents a new version of document d1. Compared to

3

the previous version, the new version has a different read policy and a different keyword
set. Alice is capable of adding this tuple because her access rights satisfy the write policy
of the tuple representing the previous version of the document. Neither Bob nor Charly are
capable of performing this particular update, because their access rights do not satisfy the
write policy. However, while Alice is capable of changing the document’s read policy, she
cannot change its write or ownership policies, because Alice’s access rights do not satisfy
the document’s ownership policy. Note that Charly’s access rights satisfy the document’s
ownership policy. Still, he is not capable of writing the document, but he is capable of
changing the write policy.

Since we do not delete old versions of a tuple, if Charly now searches for w1, he will
find documents d1:1, d1:2 and d2:1 in his search result.

Alongside access control to users’ operations, we establish verifiability of these opera-
tions. This means, users are able to determine whether the server that stores the document
collection and performs search on user’s behalf, has tampered with the collection and has
performed search properly. This necessitates users to keep a state.

However, in our setting, we do not only consider the server to be a potential threat,
but also consider the impact of malicious users. Particularly, a misbehaving user may
cause a (protocol abiding) server to behave in a way that verification of certain operations
fails. Therefore, we introduce the concept of conflict resolution, by which the server can
blame a user’s malicious actions on the respective user. A trusted party, called judge,
checks the server’s claims of a user’s wrongdoing, and issues a notification if wrongdoing is
detected. We introduce notifications that enable users to distinguish whether verification
of an operation failed because the server was unwilling to perform the operation properly,
or some user’s actions caused the verification to fail. In order for the judge to be able
to identify misbehaving users, all users need to enroll before they can participate in our
system.

For our security notion, we adopt the rather strong model of Löken [13], although
we consider a dynamic version thereof. That means, an adversary controls the server as
well as corrupt users. This model allows for attacks that no adversary can reasonably
perform if it only controls either the server or corrupt user. For example, a corrupt server
is unable to launch a dictionary attack against our system, e.g. in order to determine
the set of keywords existing in the document collection, because the server lacks the
cryptographic keys for that. On the other hand, if some user was corrupt and tried
to launch a dictionary attack, the need for the user to be protocol abiding in terms of
their communication behavior with an honest server limits the efficiency of the attacks.
Additionally, an honest server may thwart the attack by raising alarms and limiting the
number of queries the corrupt user can make; in practice such behavior would be triggered
by mechanisms intended to defeat DDoS attacks. In Löken’s model, corrupt servers and
users are explicitly allowed to cooperate and together they are able to launch a dictionary
attack: the user provides the necessary cryptographic keys, while the server is not subject
to query limitations, and can operate directly on data, so it does not need to adhere to
the prescribed communication behavior. The queries may also not show up in log files, so
the collusion attack may go unnoticed.

For notational purposes, we group together all data stored by the server, i.e. the
searchable document collection, as well as auxiliary data structures, and denote it as the
server’s state. For technical reasons, the server’s state needs to be initialized by an enrolled
user. For updates to the document collection, we adopt the notion of batch updates, i.e.
users submit several new and updated documents in batches, rather than individually.

4

2.2 Our techniques

Our construction of dynamic searchable encryption with access control relies on the SEAC
scheme of Löken [13]. SEAC provides searchable encryption with access control for static
document collections. Hence, SEAC addresses the setting laid out in the first part of the
above scenario. It does not admit additions of documents to the document collection
or modifications of documents. Since SEAC’s document collection is static, SEAC does
not handle versions, write access and ownership of documents. Instead, the searchable
collection is set up once and for all.

On a technical level, SEAC pre-computes all potential search results in a preprocessing
phase; one search result for each combination of keyword and access policy. During search,
the server outputs those search results for the searched keyword that the user, on whose
behalf search is executed, has access to.

SEAC assumes an honest setup, so it does not provide means of conflict resolution.
It also lacks verifiability of search results and user operations. We, thus, improve upon
SEAC by achieving document collection dynamics, forward privacy, verifiability of oper-
ations, fine-grained write access, and conflict resolution. For more details on SEAC, see
Section 3.2.4.

We achieve document collection dynamics by maintaining multiple SEAC collections,
one for each batch-update. Since these collections are static, users, during the update
procedure, sign all pre-computed search results from the update. The signatures are used
in conflict resolution to blame malicious updates on the respective user, but also allow
(other) users to verify the correctness of search results on a per-batch basis.

We use authenticated dictionaries to enable users to check that they have received all
batch-specific results for the keyword they search for. These checks are performed relative
to a digest of the data structure that is stored as part of the users’ states. Additional
authenticated dictionaries are used for managing document versions and fine-grained write
access in a verifiable manner.

3 Formalism and building blocks

In this section, we formally define and discuss dynamic searchable encryption schemes
with access control, as described in Section 2. Our discussion includes a discussion of the
primitive’s security properties. Additionally, we introduce the building blocks that we use
in our construction of a dynamic searchable encryption scheme with access control.

3.1 Dynamic searchable encryption with access control

As described in Section 2, our notion of dynamic searchable encryption with access control
features two main operations, namely an operation for searching a document collection
and an operation for updating the collection. Our notion also features helper operations:
a system setup operation, an enrollment operation for users, an initialization operation
for the server, and conflict resolution.

Definition 1. A dynamic searchable encryption scheme with access control is a 6-tuple
(Setup,UserJoin, Init,Update,Search,Resolve) of protocols that involve five types of parties:
users, a server, a key issuer, a judge and a trusted party for system setup. Setup is the
only protocol that involves a single party.

5

Setup takes security parameter 1Λ and outputs a public key PK , a secret key MSK for
the key issuer, and a secret key JSK for the judge. This algorithm is executed by a
trusted party.

UserJoin involves a prospective user and the key issuer. Both parties take in PK ; the user
additionally takes in her desired attribute set U ; the key issuer additionally takes in
MSK and the set CL of all user certificates. The key issuer outputs an updated set
CL′ of user certificates; the user outputs a state stuid and a secret key uskuid .

Init involves an enrolled user uid and the server. Both parties take in PK and set CL
of all user certificates; the user additionally takes in uskuid and stuid ; the server
additionally takes in its state stserver. The server outputs an updated state st ′server;
the user outputs an updated state st ′uid .

Update involves a user uid and the server. Both parties take in PK and CL; the user
additionally takes in uskuid , stuid and a batch B of documents;1 the server addition-
ally takes in state stserver. The server may reject the update. Both parties output
updated states st ′uid and st ′server, respectively.

Search involves a user uid and the server. Both parties take in PK and CL; the user
additionally takes in uskuid , stuid and a keyword kw; the server additionally takes
in stserver. The server may reject the search request. The user privately outputs a
set X and updated state st ′uid ; the server outputs updated state st ′server.

Resolve involves the server and the judge. Both parties take in PK and CL; the server
additionally takes in stserver; the judge takes in JSK . The server outputs an updated
state st ′server; the judge may output one or more notifications ntf .

For correctness, we require for every properly set up system, joined user, and initialized
server, for every document doc that occurs in a document batch B used in any Update not
rejected by the server, for every keyword kw: upon executing non-rejected Search between
enrolled user uid and the server with the user using kw as her input resulting in user’s
output X, we have either (1) kw does not occur in doc, or (2) kw occurs in doc and
doc’s read policy is not satisfied by uid’s attributes, or (3) doc occurs in X, or (4) doc’s
occurrence in X is replaced by a notification ntf that results from an execution of the
Resolve protocol.

Our correctness notion ensures that every document that contains a searched keyword
is contained in the search result for that keyword provided that the document is accessible
to the user on whose behalf search is performed, and that the update that has introduced
the document to the document collection has not been found to be malicious.

Verifiability and fork consistency. The correctness notion of dynamic searchable
encryption with access control is only meaningful if the server follows its prescribed proto-
cols. Verifiability allows users to check that the server indeed abides by its protocols, i.e.
correctness holds in the presence of dishonest users and servers. Due to the incremental
nature of updates, verifiability has a prerequisite; it assumes a linear history of updates,
captured by the notion of fork consistency. Intuitively [6], fork consistency means that if
a fork occurs, i.e. two server states that are the result of applying two different updates to
the same predecessor state, honest users can only ever observe updates that occur on one

1A set of tuples as in Section 2.1, i.e. tuples consisting of a document plaintext and version number,
access policies for read and write access and ownership, and a set of keywords contained in the plaintext.

6

of the forks. This particularly means that two forks cannot be merged using reasonable
amounts of resources.

In terms of our example scenario, assume Bob to update document d2, i.e. Bob adds a
tuple (d2:2, r:{b},w:{b}, o:{c}, {w2, w3}). Then, fork consistency means that if the server
successfully tricks Charly into thinking that Bob’s update has not occurred, then Charly
will never again see any update performed by Bob, because Bob’s update occurs on a fork
that is different from Charly’s fork.

We do not formalize verifiability and fork consistency notions for dynamic searchable
encryption, but do so in the context of authenticated dictionaries (see below). We make
use of these dictionaries, such that their fork consistency and verifiability implies fork
consistency and verifiability of our dynamic searchable encryption scheme. Our intuition
about these notions is sufficient to check that our construction of dynamic searchable
encryption with access control satisfies fork consistency and verifiability.

Data confidentiality. We take a more formal approach towards what malicious adver-
saries can learn from participating in dynamic searchable encryption with access control.
The adversary we consider has full control over the server and can adaptively corrupt
users. Our formulation of data confidentiality limits what such adversaries can learn.

What adversaries can learn from participating in dynamic searchable encryption with
access control is captured in so called leakage functions. These functions are stateful with
a shared state, i.e. an evaluation of either function depends on the inputs and outputs of
all previous evaluations of all leakage functions.

Since the leakage functions describe what can be learnt from participating in dynamic
searchable encryption with access control, we have one leakage function for each inter-
action that either involves the adversary as a participating party or is observable by the
adversary. The server is always assumed to be adversarially controlled, so operations Init,
Update, Search and Resolve are of the former kind. User enrollment belongs to either
kind, depending on whether the user is corrupt. Enrollment of an honest user can only
be observed by the adversary; it is observable via publication of the user certificate. En-
rollment of a corrupt user is of the former kind, due to the adversary potentially being
able to adversarially choose parts of the prospective user’s key. Lastly, we also have to
consider the knowledge that the adversary can gain from corrupting a once honest user.
As a result, we have seven leakage functions.

We employ the leakage functions in a simulation-based security definition. An adver-
sary gets to interact with either a real instantiation of the system with real parties using
real data, or a simulator that only obtains the leakage of interactions. In either case,
the adversary fully controls the server and all corrupt users. Interactions between the
adversary and honest parties or the simulator, respectively, are modelled through oracles.
Honest users can be enrolled via oracle OHJ, corrupt users can be enrolled via OCJ, and
honest enrolled users can be corrupted via OUC. An honest user can be made to initialize
the server via oracle OIni, to perform search via OSea, and to update the document col-
lection via OUpd. Interaction with the judge for conflict resolution can be triggered via
oracle ORes.

In the real instantiation, the experiment plays the part of all honest users and trusted
parties, and has access to all arguments passed to the oracles. In the simulation, arguments
of oracle queries are passed to the respective leakage functions, and the leakage is given to
the simulator. Using the leakage, the simulator attempts to imitate the input and output
behavior of all honest parties communicating with each other and with the adversary, and
thus, to emulate the behavior of the oracles in the real instantiation. The goal is for the

7

adversary to distinguish whether it interacts with the real or the simulated system. If the
adversary is unable to distinguish the two setups, it does not learn more than the leakage,
i.e. all data passed to the leakage functions that is not output by the leakage functions
remains confidential. The two experiments are as follows.

Experiment RealΠ,A(Λ):

Setup: run (PK ,MSK , JSK)← Setup(1Λ) and give PK to adversary A.

Queries: adversary A adaptively queries its oracles OHJ(U), OCJ(), OUC(uid), OIni(uid),
OUpd(uid , B), OSea(uid , kw), and ORes(), where U is a set of attributes, uid is a user
identifier, B is a batch of documents, and kw is a keyword. We require A to only
use user identifiers uid that are part of results to previous calls to either oracle OHJ

or oracle OCJ. A user identifier uid output as part of a result to a call to oracle OCJ

or used as input to oracle OUC is marked as corrupt; a corrupt uid cannot be used
as input to any oracle call.2 Oracle OIni can be called at most once.

Responses: Upon query

OHJ(U), run protocol UserJoin, playing both the user and the key issuer, with inputs
(PK , U) and (PK ,MSK), respectively; remember the user’s outputs uskuid and
stuid for future use, where uid is as in the certificate (uid , uvkuid) published by
the key issuer.

OCJ(), play the key issuer’s part of UserJoin with input (PK ,MSK); A plays the
prospective user’s part of the protocol.

OUC(uid), output previously generated user key uskuid and user state stuid .

OIni(uid), play the user’s part of Init on input (PK ,CL, uskuid , stuid); A plays the
server’s part; store new user state st ′uid .

OUpd(uid , B), on input (PK ,CL, uskuid , stuid , B), play the user’s part of protocol
Update; A plays the server’s part; store new user state st ′uid .

OSea(uid , kw), on input (PK ,CL, uskuid , stuid , kw), play the user’s part of protocol
Search; A plays the server’s part; store new user state st ′uid .

ORes(), play the judge’s part of protocol Resolve with input (PK ,CL, JSK); A plays
the server’s part.

Oracle queries that take a user identifier as input are ignored, if the respective
identifier has not been output by a prior oracle query, or is marked as corrupt.

Guess: A outputs a bit b that is output by the experiment.

Experiment SimΠ,A,S(Λ):

Setup: run simulator PK ← S(1Λ) and give PK to adversary A.

Queries: A gets oracle access as before, and with the same restrictions on user identifiers.

Responses: Upon query Oop(arg), give leakage Lop(arg) to S, where op ∈ {HJ,CJ,
UC, Ini,Upd,Sea,Res}. Given leakage Lop(arg), the simulator S emulates the be-
havior of oracle Oop on input arg from experiment RealΠ,A. For the emulation, S
can interact with A.

2A corrupt user can perform operations on the corrupt server without involvement of an oracle.

8

Guess: A outputs a bit b that is output by the experiment.

Definition 2. A dynamic searchable encryption scheme with access control Π provides
data confidentiality relative to leakage functions LHJ, LCJ, LUC, LIni, LUpd, LSea, and LRes
if, fore every probabilistic polynomial time adversary A, there is a probabilistic polynomial
time simulator S such that

|Pr[RealΠ,A(Λ) = 1]− Pr[SimΠ,A,S(Λ) = 1]|

is negligible in the security parameter Λ, where the probabilities are over the random bits
of A, S, and the experiments.

Forward privacy. The notion of forward privacy for dynamic searchable encryption
schemes means that the server is unable to determine that a new document contains any
given keyword, even if that keyword has been searched for before. Unfortunately, that
notion does not fit our scenario, because we have batch updates, whereas the standard
formulation assumes single documents, i.e. batches of size 1, to be processed during
updates. Hence, we generalize the notion of forward privacy updates to consider batches
of arbitrary size.

A dynamic searchable encryption scheme is forward private, if for any batch of docu-
ments that gets introduced to the searchable document collection, the server is unable to
determine whether any document from the batch contains any given keyword, even if that
keyword has been searched for before the update has occurred.

Forward-privacy has been shown to be crucial for the real world security of dynamic
searchable encryption schemes [25].

3.2 Building blocks

We now present the main building blocks for our construction of dynamic searchable
encryption with access control. The list of building blocks can directly be taken from
Section 2: SEAC, digital signatures and append-only authenticated dictionaries. These
building blocks are complemented by multi-authority attribute-based encryption for the
purpose of access control to documents.

3.2.1 Signatures

Our discussion of building blocks starts with digital signature schemes and a natural, yet
unusual security property. Alongside the typical unforgeability property of signatures, we
want some signatures to hide the signed message until the signer decides to reveal the
message (release an open value to the public). At the same time, the signature provides
information on the signer, even before the message is revealed, so the origin of the signa-
ture, i.e. validity of the signature under a given signature verification key, can be checked.
As a result, and in contrast to standard signature schemes, we have two verification al-
gorithms: one for verifying the origin of a signature and one for verifying the signature
itself.

Definition 3. Formally, a signature scheme with delayed verifiability consists of three
algorithms (Setup,Sign,VSig,VOrig)

Setup takes a security parameter 1Λ and outputs a signing–signature verification key pair
(sk , vk).

9

Sign takes sk and a message m and outputs a signature–open value pair (σ, d).

VSig takes vk, message m, open value d, and signature σ and outputs valid or invalid.

VOrig takes vk and signature σ and outputs valid or invalid.

For correctness, we require for all security parameters 1Λ and all messages m: if
(sk , vk)← Setup(1Λ) and (σ, d)← Sign(sk ,m), then (1) VSig(vk ,m, d, σ) = valid and (2)
VOrig(vk , σ) = valid.

Particularly, correctness implies that (Setup, Sign,VSig) is a correct signature scheme
when using (σ, d) as a signature.

For security of signature schemes with delayed verifiability, we adopt the standard
security definition of existential unforgeability against adaptive chosen message attacks
(euf-cma). That notion must individually hold relative to both verification algorithms,
i.e. it should be hard for adversaries to find signatures (and corresponding open values)
valid under a given verification key (relative to VSig or VOrig) unless they know the
corresponding signing key. As mentioned, we additionally formalize a hiding notion for
signature schemes with delayed verifiability. The notion captures the property that a
signature does not leak any information (beyond length information) of the signed message,
even to adversaries that know other message-signature pairs.3

Consider the following experiment Exphide
Π,A(Λ) for signature scheme Π between a chal-

lenger and an adversary:

Setup: the challenger runs (sk , vk)← Setup(1Λ); vk is given to the adversary.

Phase I: the adversary gets access to a signing oracle. Upon query m to the oracle, the
experiment computes (σ, d)← Sign(sk ,m) and gives σ to the adversary.

Challenge: the adversary outputs two messages m0,m1 of equal length. The challenger
picks a bit b uniformly at random, computes σ ← Sign(sk ,mb), and gives σ to the
adversary.

Phase II: same as Phase I.

Guess: the adversary outputs a guess b′ on b.

Output: the outcome of the experiment is 1 if and only if b = b′.

Definition 4. A signature scheme Π = (Setup, Sign,VSig,VOrig) with delayed verifiability
is called hiding, if for all probabilistic polynomial time adversaries A∣∣∣Pr

[
Exphide

Π,A(Λ)
]
− 1/2

∣∣∣
is negligible in the security parameter Λ, where the probability is over the random choices
of the adversary and the challenger.

A signature scheme with delayed verifiability can easily be constructed by combining
standard signature schemes and commitment schemes in a commit-then-sign fashion. Let
(σ, d)← Sign(sk ,m). The signature σ = (c, s) consists of a commitment c on the message
m and a signature s on c (using the original signature scheme). The open value d is a
decommit value for commitment c and message m. For algorithm VSig, one verifies that

3The leakage of length information can be prevented by following the hash-then-sign paradigm using
hash functions with fixed output lengths.

10

signature component s is a valid signature on signature component c (using the original
scheme) and verifies that c is a commitment of m using decommit value d. For algorithm
VOrig, one verifies that signature component s is a valid signature on signature component
c (using the original signature scheme).

It is easy to check that this construction satisfies our security requirements. Un-
forgability relative to VOrig is inherited directly from the underlying signature scheme.
Unforgeability relative to VSig holds due to unforgeability of the underlying signature and
the binding property of the commitment. The construction also satisfies the hiding due
to the commitment’s hiding property.

3.2.2 Append-only authenticated dictionaries

We commence our discussion of building blocks for dynamic searchable encryption with
access control by reviewing append-only authenticated dictionaries. We rely on these data
structures for two purposes. First, authenticated data structures allow users to check
the correctness of search results, and second, authenticated data structures are used to
manage documents and write access to documents.

It is important that the data structures we use for these purposes are authenticated.
Authenticated data structures enable verifiability. We want the data structures to be
append-only, because then the damage that malicious users can cause is limited, particu-
larly, users cannot delete data.

An append-only authenticated dictionary is a data structure that is stored at a server,
and users can add (append) data to the dictionary. A dictionary maps a label ` to a
(multi-)set of values v.4 Initially all labels are mapped to the empty set. A user’s append
operation for a given label extends the (multi-)set that the label maps to. The server
that stores an authenticated dictionary can prove whether or not the dictionary maps any
given label to a non-empty set of values.

Tomescu et al. [20] propose authenticated append–only dictionaries that work as
follows.

Definition 5. An append-only authenticated dictionary features two types of parties,
a server and a number of clients. The server provides four operations (Setup,Append,
ProveMemb,ProveAppend) for clients to call.

Setup takes in security parameter 1Λ and capacity β. The algorithm outputs public pa-
rameters pp and verification key VK .

Append takes in pp, dictionary D, digest D, and a label–value pair (`, v). The operation
fails if the data structure has reached its capacity, i.e. the new version number
would be β. Otherwise, the operation outputs a new version D′ of the dictionary and
updated digest D′.

ProveMemb takes in pp, dictionary D and label `. The algorithm outputs the set v =
D[`] and (non-)membership proof π`,V.

ProveAppend takes in pp and two versions Di, Dj of a dictionary with version numbers
i < j. The algorithm outputs a proof πi,j for the statement that version Dj was
created from version Di by j − i many Append operations.

4In the data structures literature, labels are typically called keys. We prefer the term “label” as to
avoid confusion with cryptographic keys.

11

The client implements two operations (VrfyMemb,VrfyAppend) to verify the server’s
proofs.

VrfyMemb takes in VK , digest Di (associated with version Di of the dictionary), label-
values pair `,v and proof π`,v. The algorithm outputs a bit.

VrfyAppend takes in VK , two digests Di, Dj (associated with versions Di, Dj of the dic-
tionary, respectively), corresponding version numbers i, j and proof πi,j. The algo-
rithm outputs a bit.

All operations run in polynomial time and are deterministic with the exception of Setup,
which is probabilistic. We require append-only authenticated dictionaries to provide mem-
bership correctness (mc) and append-only correctness (aoc), i.e. in all correctly set up
systems,

mc: for any non-empty sequence of Append operations that results in dictionary D with
digest D, given a (non-)membership proof (v, π) ← ProveMemb(pp, D, `), the proof
is of the correct type (membership vs non-membership) relative to the sequence of
Append operations and VrfyMemb(VK , D, (`,v), π) = 1.

aoc: for any non-empty sequence of m Append operations that results in dictionary version
Dm with digest Dm and any non-empty sequence of (n-m) Append operations that,
applied to Dm, results in dictionary version Dn with digest Dn, given an append-only
proof π ← ProveAppend(pp, Dm, Dn), VrfyAppend(VK , Dm, Dn,m, n, π) = 1.

Intuitively, membership correctness means that the server upon call ProveMemb out-
puts all values associated with a given label added to the dictionary up to the time the
function is called. The server’s result and proof, together with the current dictionary
digest, make VrfyMemb output 1. This holds whether or not v is empty. Append-only
correctness means that if some authenticated dictionary version Dn has been created from
version Dm through any number of Append operations, then the set of labels stored in Dm

is a subset of the set of labels in Dn, and for all labels that both dictionaries store, the
set of values associated with such a label in Dm is a subset of the set associated with that
label in Dn.

Note that this notion of authenticated dictionaries does not use secret keys. The
notion assumes that the server broadcasts all newly generated dictionary digests, e.g.
Dn, together with an append-only proof π0,n, and that clients, upon receiving such a
digest and proof check that VrfyAppend(pp, D0, Dn, 0, n, π0,n) = 1, and more importantly,
VrfyAppend(pp, Di, Dn, i, n, πi,n) = 1, where Di is the previous digest that the client has
received and successfully verified. The initial digest D0 represents the empty set. Of
course, when the server broadcasts D0, there is no append-only proof for it.

While we mostly follow the above formulation, we diverge from it in the following two
ways.

1. We generalize function Append to take in a set of label–value pairs, instead of a
single label–value pair.

2. We assume clients to request digests from the server, rather than the server broad-
casting digests.

These changes do not affect correctness or security definitions.
For security, Tomescu et al. [20] put forth the following security notions.

12

Definition 6. We call an authenticate append-only dictionary membership secure (ms),
append-only secure (aos) and fork consistent (fc), respectively, if in a correctly set up
system,

ms: no ppt adversary can compute (D, `,v,v′, π, π′), v 6= v′, with non-negligible proba-
bility, such that VrfyMemb(VK , D, `,v, π) = 1 = VrfyMemb(VK , D, `,v′, π′).

aos: no ppt adversary can compute (Di, Dj , i, j, πa, `,v,v
′, π, π′), i < j, v 6⊆ v′, with non-

negligible probability such that VrfyAppend(VK , Di, Dj , i, j, πa) = VrfyMemb(VK , Di,
`,v, π) = VrfyMemb(VK , Dj , `,v

′, π′) = 1.

fc: no ppt adversary can compute (Di, D′i, Dj , i, j, πi, π
′
i), Di 6= D′i, with non-negligible

probability such that VrfyAppend(VK , Di, Dj , i, j, πi) = 1 = VrfyAppend(VK , D′i, Dj ,
i, j, π′i).

The security notions consider neither the server nor users to be trustworthy.

Intuitively, membership security means that it is hard to find membership proofs for
two distinct result sets for the same label and dictionary digest, i.e. an adversary cannot
claim two different sets of values to be associated with the same label. Append-only
security means that an adversary cannot produce membership proofs that certify a value
to be associated with a label at some point and not be associated with that label at a later
point, i.e. the adversary cannot remove values from the authenticated dictionary. Fork-
consistency means that the adversary cannot compute append-only proofs that certify a
digest to be a successor digest to two distinct older digests for the same version number
of the data structure.

Recently, Tomescu et al. [20] have proposed the first append-only authenticated dictio-
nary with succinct proofs, i.e. the size of proofs is independent of the number of elements
stored inside the data structure. Previous proposals had non-succinct proofs for at least
one operation on the data structure.

Authenticated data structures with unauthenticated data. We diverge from the
syntax above by allowing unauthenticated data in authenticated append-only dictionar-
ies, so the dictionary associates a label with some data that is covered by the dictionary’s
authentication mechanism, and some data that is not covered by the authentication mech-
anism. Hence, dictionary entries now are 3-tuples (label, authenticated data, unauthenti-
cated data) instead of 2-tuples (label, value).

Authenticated dictionaries with unauthenticated data can easily be constructed by
combining an authenticated dictionary with an unauthenticated dictionary, and storing the
label together with the authenticated value in the authenticated dictionary, and the label
together with the unauthenticated data in the unauthenticated dictionary. It is clear that
guarantees can only be given with respect to the authenticated part, but that is acceptable
in our scenario; the authenticated part inherits all its properties from the underlying
authenticated dictionary. Our notion of an authenticated dictionary with unauthenticated
data simplifies our view on data structures.

3.2.3 Multi-authority attribute-based encryption

Multi-authority [8] ciphertext-policy [2] attribute-based encryption [15] (MA-CP-ABE)
has been used in the construction of searchable encryption schemes before [13], particularly
in Löken’s SEAC scheme that serves as a basis for our construction. In MA-CP-ABE, users

13

hold a set of attributes — access rights — in the form of secret keys. Ciphertexts are
associated with access policies, and a user can decrypt a ciphertext only if her attributes
satisfy the policy. However, multiple users are unable to combine their attributes in order
to decrypt ciphertexts that neither colluding user can decrypt on her own. Attributes are
managed by multiple authorities.

Recently, Löken [13] has proposed an extension of MA-CP-ABE called authority key
customization. Authority key customization extends upon MA-CP-ABE by granting a
user all attributes managed by a particular authority in the sense that the user is given
a special key, the customized authority secret. Using that secret, the user can generate
the desired attribute-specific keys herself as needed. Still, the user is unable to compute
attribute-specific keys for other users.

We write “θ:u” to denote an attribute u managed by authority θ.

Definition 7. Formally, an MA-CP-ABE scheme with authority key customization [13]
features seven probabilistic polynomial time algorithms Setup,AuthSetup,KeyGen,Enc,Dec,
Customize,CustKeyGen).

Setup takes security parameter 1Λ. It outputs public parameters pp.

AuthSetup takes pp and an authority identifier θ. It outputs authority public key pkθ and
authority secret mskθ.

KeyGen takes pp, mskθ, user identifier uid and attribute name u. It outputs attribute-
specific user key uskuid ,“θ:u”.

Enc takes pp, {pkθ}θ, access policy A and a message msg. It outputs a ciphertext ct.

Dec takes pp, {uskuid ,“θ:u”}“θ:u” and ct. It outputs a message msg.

Customize takes pp, mskθ and uid. It outputs a customized master secret skuid ,θ

CustKeyGen takes pp, skuid ,θ and attribute name u. It outputs attribute-specific user key
uskuid ,“θ:u”.

For correctness, we require (1) attribute-specific keys output by CustKeyGen to be func-
tionally equivalent to keys output by KeyGen and (2) in every properly set up system, if
a user’s set uakuid = {uskuid ,“θ:u”}“θ:u” of attribute-specific keys satisfies an access policy
A, then for every message msg, we have Dec(pp, uakuid ,Enc(pp, {pkθ}θ,A,msg)) = msg.

Condition 2 of the correctness notion is the standard correctness notion for attribute-
based encryption schemes. Condition 1 ensures that, for the correctness put forth in
Condition 2, it does not matter whether the attribute-specific keys in uakuid originate
from the KeyGen algorithm or the CustKeyGen algorithm.

For security of MA-CP-ABE, we adopt the notion of security against chosen plaintext
attacks in the presence of authority key customization (cpa-akc), that was outlined in [13].
Conceptually, the cpa-akc notion is a variant of the standard notion of security against
chosen plaintext attacks, but, in addition to the KeyGen oracle, the adversary also gets
access to a Customize oracle.

MA-CP-ABE cpa-akc-security is defined using the following indistinguishability exper-
iment Expcpa-akc

Π,A (Λ) for MA-CP-ABE scheme Π between a challenger and an adversary
A.

Global setup: the challenger runs pp ← GlobalSetup(1Λ) and gives pp to A.

14

Choosing authorities: A outputs a set N of authority identifiers and a set C of au-
thority public keys. Authorities in N are considered honest, authorities in C are
considered corrupt.

Honest setup: for all θ ∈ N , the challenger runs (pkθ,mskθ) ← AuthSetup(pp, θ). The
public keys are given to A. Let PK ← C ∪ {pkθ}θ∈N .

Phase I: A adaptively queries oracles {KeyGenθ(·, ·)}θ∈N and {Customizeθ(·)}θ∈N .

• Upon query KeyGenθ(uid , u), the challenger runs uskuid ,“θ:u” ← KeyGen(pp,
mskθ, uid , u) and gives uskuid ,“θ:u” to A.

• Upon query Customizeθ(uid), the challenger computes skuid ,θ ← Customize(pp,
mskθ, uid) and gives skuid ,θ to A.

Challenge: A outputs an access policy A∗ and two messages msg0,msg1 of equal length.
The challenger picks a bit b←$ {0, 1}, runs ct∗ ← Enc(pp,msgb,A∗,PK) and gives
ct∗ to A.

Phase II: is the same as Phase I.

Guess: A outputs a bit b′. The experiment outputs 1 if and only if (1) b = b′, (2) the
access policy A∗ is not satisfied by attributes controlled by corrupt authorities, and
(3) for no user identifier uid , the set of attributes queried for uid together with
the set of attributes controlled by corrupt authorities and the set of attributes for
authorities for which a customized key for uid was queried satisfies A∗. Otherwise,
the experiment outputs 0.

Definition 8. An MA-CP-ABE scheme Π with authority key customization is called cpa-
akc-secure if, for every probabilistic polynomial time adversary A,

|Pr[Expcpa
Π,A(Λ) = 1]− 1/2|

is negligible in the security parameter Λ, where the probabilities are over the random bits
of the adversary and the experiment.

We are presently unaware of any scheme that satisfies the above cpa-akc notion for MA-
CP-ABE with authority key customization while simultaneously featuring fully indepen-
dent authorities, a property implicit in our MA-CP-ABE definition. Typical MA-CP-ABE
schemes in the literature often require coordination between authorities or feature other
inconvenient restrictions, i.e. authorities are not fully independent, e.g. Chase’s scheme
[8], or the universe of attributes must be fixed at setup time (small universe), e.g. Lewko
et al.’s scheme [12]. MA-CP-ABE schemes (even without authority key customization)
that have fully independent authorities and support a dynamic attribute universe (large
universe) presently only satisfy a rather weak notion of security in which the adversary
has to make all its KeyGen queries at once, i.e. when sending sets N and C in the above
game, the adversary also sends its oracle queries from Phases I and II, and the challenge
messages msg0,msg1; the adversary then obtains all the respective responses from the
challenger; finally, the adversary outputs its guess b without making any additional query
to the challenger. This weak notion of security for MA-CP-ABE schemes was introduced
by Rouselakis and Waters [14], whose scheme satisfies the security notion. Löken has also
shown that the scheme by Rouselakis and Waters can be extended to provide authority
key customization [13].

15

3.2.4 SEAC

As mentioned in Section 2, our construction relies on Löken’s SEAC scheme [13], which
we extend, using the other building blocks mentioned above, in order to achieve dynamic
searchable encryption with access control. We now briefly review the SEAC scheme. Note
that SEAC only achieves searchable encryption with access control on static document
collections.

Definition 9. SEAC provides six probabilistic polynomial time algorithms (Setup,KeyGen,
BuildIndex,Trpdr,Search,Dec).

Setup takes security parameter 1Λ. It outputs public parameters pp, master secret msk
and owner key ok.

KeyGen takes pp, msk, user identifier uid and attribute set Uuid . It outputs user key
uskuid .

BuildIndex takes pp, ok, and document collection B. It outputs index Index and cipher-
text set CT .

Trpdr takes pp, uskuid and keyword kw. It outputs a search query (“trapdoor”) tuid ,kw .

Search takes pp, Index , CT and tuid ,kw . It outputs set X ⊆ CT .

Dec takes pp, uskuid and ciphertext ct. It outputs a document doc.

SEAC guarantees in every properly set up system, that for X ← Search(pp, Index , tuid ,kw)
and for each doc ∈ B, we have (1) kw /∈ doc, or (2) Uuid does not satisfy doc’s access
policy, or (3) there is ct ∈ X such that Dec(pp, uskuid , ct) = doc.

Correctness of SEAC is conceptually similar to, but simpler than, correctness of dy-
namic searchable encryption with access control: the result to a search request for keyword
kw can be decrypted to the subset of documents from B that contains kw and is accessible
to the user.

Security-wise, SEAC provides semantic security against malicious servers that collude
with corrupt users. However, due to substantial modifications that we make to SEAC in
the upcoming section, security properties of SEAC do not translate to security properties
of our construction. Hence, we see no need to further discuss SEAC’s security.

SEAC’s index structure. SEAC employs access control such that only a user who can
access a certain document may find that document in a search result presented to her.
SEAC’s core idea is to use a dictionary that enables fast access to pre-computed search
results while also ensuring access control; this is similar to the data structures (albeit
with access control) from the work of Curtmola et al. [9]. In SEAC, there is one pre-
computed search result for each combination of keyword kw and access policy A that
occurs in the document collection. Access control to pre-computed results is established
by MA-CP-ABE.

As stated, SEAC uses a dictionary to provide quick access to pre-computed search
results relevant for a searched keyword. The dictionary is the first component of SEAC’s
index structure that allows for efficient search. Figure 1 shows an example index structure
computed from our example document collection from Section 2.1.

The dictionary HT holds a single label for each keyword present in the (plaintext)
document collection. The associated values are the sets of pre-computed search results for
the respective keyword. These sets are implemented as encrypted linked lists.

16

HT A D

fK(w1)⊕fL(w1)

fK(w2)⊕fL(w2)

fK(w3)⊕fL(w3)

nil Enc(A(d1:1)&“Sys:search”&“Srch:fB(w1)”,)Enc

Enc(A(d1:2)&“Sys:search”&“Srch:fB(w1)”,)Enc

nil Enc(A(d1:1)&“Sys:search”&“Srch:fB(w2)”,)Enc

nil Enc(A(d1:2)&“Sys:search”&“Srch:fB(w3)”,)Enc

nil d1:2Enc

nil d2:1Enc

d1:1Enc

nil d1:1Enc

nil d1:2Enc

Figure 1: An example of the data structures used in SEAC, using our (post-update)
example document collection from Section 2.1 (p. 3), ignoring for now that SEAC does not
allow for updates. The left-most blocks represent HT entries, the blocks in the center
represent A entries, and the right-most blocks represent D entries. We denote the (read)
access policy of a document d as A(d); note that documents present in the same D list have
the same read access policy. The figure does not show dummy entries, as to not clutter
the presentation.

In order to prevent the server from gaining information about a keyword from a label,
the label is derived from the keyword by applying a pseudorandom function fL. The
pointers to sets of pre-computed search results stored in HT are (symmetrically) encrypted
under keys that depend on the relevant keyword; the keys are derived from keywords using
pseudorandom function fK .

Following a pointer from an HT entry, a cell in some array A is reached. The cell is
an encrypted node from an encrypted linked list, that can be decrypted using a key that
is part of the pointer to the list node. The nodes in A provide access control to the actual
pre-computed search results, i.e. sets of (pointers to) documents that share an access
policy and contain the relevant keyword. These sets of document pointers are stored in
an array D in encrypted linked lists. As a means of access control to D lists, pointers to
D lists are encrypted using MA-CP-ABE; the policies used depend on the access policies
of documents pointed to in the respective D lists; the policies also feature a binder term
derived from the relevant keyword using a pseudorandom function fB.

The actual document ciphertexts that D lists nodes point to are stored in a separate
ciphertext set CT not shown in Figure 1. Keys to pseudorandom functions fL, fK , fB are
part of users’ keys as well as the key of the document collection’s owner.

SEAC’s inner workings. The trapdoor/search query generated by a user contains a
keyword-specific label for the dictionary. In order for the server to decrypt, i.e. access,
precomputed search results, the trapdoor also contains some cryptographic keys in addition
to the keyword-specific label. Concerning the cryptographic keys, SEAC ensures that the
server cannot use attribute-specific keys from a query to decrypt pre-computed search
results for keywords other than the searched one; this is what the binder term (from
function fB) is used for. Users also retain some attribute-specific keys that would otherwise
allow the server to decrypt document ciphertexts.

As a result, SEAC features three types of attributes: general attributes that are used
for all access control purposes (e.g. attributes describing roles that a user may have),
special attributes for accessing pre-computed search results that depend on the searched
keywords, and attributes that prevent the server from using attribute-specific keys from

17

search queries to decrypt document ciphertexts. SEAC uses three attribute authorities
Usr ,Srch,Sys that correspond to the three types of attributes. Authority Usr manages
the general purpose attributes of users. Authority Srch manages attributes that depend
on the searched keyword and prevent the server from using keys from a query for some
keyword to decrypt pre-computed search result for another keyword. Hence, Srch manages
keyword-dependent attributes. Authority key customization for MA-CP-ABE is used so
that users can generate keyword-specific attributes themselves. Finally, authority Sys
manages two attributes, “Sys:search” and “Sys:read”, which are used during search and
document decryption, respectively; users retain attribute “Sys:read” to prevent the server
from decrypting document ciphertexts.

In order to realize the above functionality, when encrypting data, whether it may be
documents or pre-computed search results, SEAC takes into account attributes managed
by multiple authorities, while the (plaintext) document collection only considers general
purpose attributes in its access policies. So, when encrypting data, SEAC extends access
policies from the document collection by some additional attributes, depending on the
type of data. We denote the extension of an access policy A by attribute u as A&u;
the extension results in a new access policy that is satisfied by all attribute sets that
satisfy policy A and contain the attribute u. The functionalities described above require a
document d from the plaintext document collection with access policy Ad to be encrypted
under policy Ad&“Sys:read”; a pre-computed search result that contains d for keyword
kw from d need to be encrypted under policy Ad&“Sys:search”&“Srch:fB(kw)”.

4 Construction

In this section, we present our dSEAC scheme for dynamic searchable encryption with
access control. dSEAC implements the idea laid out in Section 2. That is, the dynamic
aspect is achieved by computing static searchable SEAC collections, one collection per
update. In dSEAC, for the purpose of verifiability, users need to share a consistent view on
the number of updates that have been performed. We use this number of updates as a time
stamp throughout the system. Users maintain a consistent view on the number of updates,
and thus, have synchronized discrete clocks, due to dSEAC’s reliance on authenticated data
structures.

4.1 Extending SEAC

We extend the basic SEAC construction from the previous section in four dimensions,
namely verifiability, time awareness and dependence, document and version management,
and conflict resolution. We present these extensions in the upcoming subsections. Each
extension provides progress towards one of our goals with dSEAC.

The verifiability extension enables (static) verifiability of per-SEAC-instance search
results. Time awareness and dependence considers creation times of SEAC instances,
which is necessary for achieving forward privacy. Document and version management
is necessary because it enables documents to be updated over time. Simultaneously, it
enables fine grained access control to data, particularly write access to data. Conflict
resolution allows dSEAC to recover from malicious user’s actions, and thus, enables dSEAC
to be used in the multi-user setting, especially allowing for multiple (and even malicious)
writers.

For our extensions to work, we need to introduce a couple of cryptographic keys in
addition to the keys used in SEAC. As a result, a user’s secret key in dSEAC consists of

18

keys for pseudorandom functions, attribute-specific keys and customized authority secrets
(from SEAC), signing keys (for verification purposes). Users’ signature verification keys
are made public.

4.1.1 Verifiability

For verifiability of SEAC search results, we rely on signatures with delayed verifiability and
authenticated dictionaries. We retain the search structures from SEAC (c.f. Figure 1), and
enhance them by list authenticators, as shown in Figure 2.

HT A D

fK(w1)⊕ 〈dw1
, 〉σw1fL(w1)

nil A(d1:1) σw1,A(d1:1) Enc(. . . , 〈dw1,A(d1:2), 〉)Enc

A(d1:1) σw1,A(d1:1) Enc(. . . , 〈dw1,A(d1:1), 〉)Enc nil d1:2Enc

nil d2:1Enc

d1:1Enc

Figure 2: Changes in SEAC data structures due to verifiability. The entries for keyword w1

have been adapted from Figure 1. Signature σw1 (marked light gray) is a list authenticator
on w1’s A list. The signature authenticates all data from the A list marked light gray, i.e.
the access policies of D lists, and the D list authenticators. Signatures σw1,A· (marked dark
gray) are list authenticators on the data from D lists marked dark gray, e.g. {d1:1, d2:1} for
the D list with access policy A(d1:1). Note that documents from the same D list have the
same (read) access policy. We store the open values that correspond to list authenticators
in an encrypted form alongside the pointers to the respective authenticated lists.

List authenticators are (hiding) signatures on the (useful) data stored in the lists,
but ignore administrative data required to maintain the list structure. Therefore, a list
authenticators of a D list is a signature on the (ordered) set of document pointers from
the list. The list authenticator of a D list is stored in an A list node alongside a pointer
to the D list. The list authenticator is not MA-CP-ABE-encrypted, but its corresponding
open value is. Alongside a D list authenticator, A list nodes store the access policy used to
encrypt the pointer to the D list and the D list authenticator’s open value. The signature
that results from signing the (ordered) set of access policies and D list authenticators from
an A list is used as that A list’s authenticator. A list authenticators are stored alongside
a pointer to the respective A lists in HT ; the open value that corresponds to an A list
authenticator is encrypted together with the pointer the respective A list. In contrast
to before, the dictionary HT now admits authenticated and unauthenticated data, c.f.
Section 3.2.2 (p. 13): (encrypted) list pointers and open values are stored unauthenticated,
while the corresponding list authenticators are stored in an authenticated fashion.

Authenticating the contents of A lists and, indirectly, D lists, results in verifiability of
search results. When performing search, the server simply includes a membership proof
from the authenticated dictionary, list authenticators, open values, and access policies
encountered during search, and document pointers in the search result. The membership
proof prevents the server from tampering with any directly or indirectly authenticated
data, even if the server colludes with malicious users. Users, when obtaining an search
result, can use the membership proof to verify that the server has provided the correct A

list authenticator. The A list authenticator is used to verify the completeness of provided
D list authenticators and access policies. For that, the user applies verification algorithm
VSig from the signature scheme with delayed verifiability on the list authenticator, the

19

corresponding open value, and the sets of access policies and (D) list authenticators. Using
the provided access policies, the user checks what policies are satisfied by her attribute
set: for policies satisfied by her attribute set, a D list, in the form of a set of document
pointers and an open value for the list’s authenticator, should be present in the search
result. The D list authenticators are used to verify the completeness of provided document
pointers via algorithm VSig. For access policies not satisfied by the user’s attribute set,
the user uses algorithm VOrig to verify the origins of list authenticators that correspond
to reported non-satisfied access policies. All list authenticators are verified relative to the
same signature verification key, i.e. all signatures have the same origin.

4.1.2 Time awareness and dependence

For time dependence, we apply two techniques; one is applied to the dictionary HT , the
other is applied to A lists. See Figure 3 for changes to the SEAC search structure due to
time dependence.

f
(t)
K (w2)⊕f

(t)
L (w2) nil Enc(A(d1:2)&“Time:≥ t”&“Sys:search”&“Srch:fA(w1)”,)Enc nil d1:2Enc

Figure 3: Changes in SEAC data structures due to creation time dependence. The entry
for keyword w2 has been adapted from Figure 1. Note that the label and the decryption
key of the HT entry have been modified, so they depend not only on the keyword, but
also on the creation time t. The access policy from the A list node has been modified to
depend on the creation time as well. D list nodes remain unchanged.

In order to achieve forward privacy when combining multiple SEAC instances, labels
and decryption keys for the same keyword must be different in different SEAC instances;
otherwise, it is easy to determine that two instances share a keyword. That is why we
need to make labels and keys for HT entries creation time dependent.

We achieve time dependence of HT entries by applying a technique due to Bost [5].
Essentially, without going into details, Bost’s technique derives the labels and keys for HT
entries from a keyword and the current time in a way that allows the server to recompute
labels and keys for previous time steps, while preventing the server from predicting labels
and keys for the same keyword and future time steps. Technically, this is achieved by
applying a trapdoor function to a keyword-specific seed multiple times, the number of
applications depends on the number of occurrences of the keyword in the document col-
lection. However, we need to introduce a small twist to Bost’s technique due to differences
in settings; while we are in the multi-user setting and allow users to be malicious, Bost
only considers a single user. In our multi-user setting, users may be malicious, therefore
we do not want to rely on user’s claims on occurrence counts of keywords in the document
collection. Instead, we simply assume every keyword to occur in every time step, so in
dSEAC the number of applications of the trapdoor function is the number of time steps.

In addition to time dependence of labels and keys in HT entries, we need access
policies in A list nodes to be time dependent. Otherwise, the server can combine the time
dependent bits from a new search query (say, at time t′) with the time independent bits
from an old search query (say, at time t < t′) for the same keyword. Then the server can
use the time dependent bits to access an A list from a SEAC instance created at time t∗

with t < t∗ ≤ t′, but can use the time independent bits, i.e. access rights, to access D lists
created at time t∗. Particularly, the server is allowed to access D lists created at time t∗

with access rights from the time t′ query, but not with access rights from the time t query.

20

So, having access policies in A list nodes unaware of creation times enables the server to
access data that it is not allowed to access.

In order to implement time dependent access policies, we introduce a MA-CP-ABE
authority Time. Every user receives a customized master secret of this authority. When
computing a query at time t, a user includes attributes managed by Time representing t
in their query. Conversely, when creating a searchable document collection at time t′, a
user includes t′ in the extended access structure used to encrypt the D list pointer inside
A list nodes. This inclusion happens such that only search queries that include attributes
for some time ≥ t′ satisfy the policy. In Appendix A, we give an overview of how this
comparison can be achieved efficiently.

4.1.3 Document management and versioning

SEAC uses a simple data structure for storing document ciphertexts. We replace that
simple data structure with a more elaborate data structure that allows for fine-grained
control over write access and ownership, while also keeping track of updates to documents.
It must be noted that, while applicable to individual SEAC instances, the changes presented
here only really make sense when multiple SEAC instance are combined.

Using our notation from Section 2.1, a (plaintext) document is a 5-tuple (d:v, r:Aread,
w:Awrite, o:Aown,KW) consisting of (the v-th version of) a document d, read policy Aread,
write policy Awrite, ownership policy Aown and a set KW of keywords contained in the
document. For our data structure, we split the information provided in these tuples into
three parts: (1) information for read access, (2) information for write access and (3)
information on keywords. Information on keywords are not relevant to this part of our
discussion. For the other two types of information, we introduce new tuples that store the
relevant information in a way that allows for fine-grained access control to be enforced.

We introduce data tuples for storing information for read access. That includes the
document itself. Information for write access and ownership is stored in a separate tuple
that we call management tuple. Data tuples are stored in an authenticated dictionary Dat ,
while management tuples are stored in an authenticated dictionary Man. Management and
data tuples enforce access policies through combinations of MA-CP-ABE and signatures.
Every document version is represented by one data and one management tuple. However,
either type of tuple can be shared among multiple document versions, i.e. changing a
document’s write policy results in a new version of the document’s management tuple,
but leaves the data tuple unchanged. Similarly, changing a document’s contents or read
policy only results in a new version of the data tuple, but does not affect the management
tuple.

Management and data tuples for the same document (version) have three components
in common: a tuple identifier tid , a management tuple version number vmt , and a data
tuple version number vdt . tid is also shared among all versions of the same document.
vmt and vdt allow for cross references between tuples. Management and data tuples also
each contain two (standard, i.e. non-hiding) signatures: one signature created under the
signing key of the user that created the tuple, and one signature under a signing key that
allows everyone to verify that the creator of the respective tuple holds certain (write or
ownership) access rights.

(tid , vmt , vdt ,ABE.Enc(Aread, d:v), uvkuid , σwrite, σuid)

Figure 4: The structure of a data tuple.

21

Figure 4 shows a data tuple. As stated above, a data tuple contains tuple identifier
tid , the version number vmt of the management tuple that corresponds to this data tuple,
and the data tuple’s own version number vdt . The document itself is encrypted under the
document’s read policy Aread using MA-CP-ABE.5 The data tuple contains the signature
verification key uvkuid of the user that created the data tuple. The tuple also contains
two (standard) signatures σwrite and σuid . These are signatures on the data tuple under a
key dskwrite and the user’s signing key that corresponds to uvkuid , respectively. The key
dskwrite is encrypted and contained in the management tuple that corresponds to the data
tuple.

(tid , vmt , vdt ,ABE.Enc(Aown, dskown),ABE.Enc(Awrite, dskwrite), dvkown, dvkwrite, uvkuid , σown, σuid)

Figure 5: The structure of a management tuple.

Figure 5 shows a management tuple. As stated before, management tuple contains
a tuple identifier tid , its own version number vmt , and the version number vdt of the
oldest data tuple to which this management tuple corresponds. The management tuple
also contains document owner’s (dskown) and writer’s (dskwrite) signing keys that are
encrypted under the document’s ownership and write policy (Aown,Awrite), respectively,
using MA-CP-ABE. The corresponding signature verification keys are dvkown and dvkwrite.
As with data tuples, management tuples contain the signature verification key of the user
that computed the management tuple, and two signatures σown, σuid on the management
tuple under dskown and the signing key that corresponds to uvkuid , respectively.

In both types of tuples, the σuid components ensure that the user responsible for
creating the tuple can be identified, e.g. in case of wrongdoing, at least if the server
abides by its protocols. MA-CP-ABE is employed to make sure that users have certain
access rights (attributes) that are needed to get access to a document plaintext or a signing
key. The signing keys, in combination with the access rights necessary to access these keys,
certify to others that the user who created a tuple (of version number ≥ 2) actually has
the necessary rights to do so. When checking a user’s rights to create a new version of
an existing tuple, the latest existing management tuple with the same identifier tid has
to be consulted, and the new tuple’s signatures have to be verified relative to the old
management tuple’s writer’s or owner’s signature verification key, depending on the tuple
that is to be verified.

When storing the tuples in authenticated dictionaries, we use the tid fields of the tuples
as labels for the dictionary. As with HT entries, the signatures are authenticated, while
the remainder of the management and data tuples do not need to be authenticated by
the authenticated dictionary itself. Their authentication is indirect due to their signatures
being authenticated.

Our use of combinations of encryption and signatures for achieving fine-grained access
control is inspired by the Sharoes system [16]. Attribute-based signatures may be used
as an alternative to our approach for enforcing fine-grained write access, see [26] for an
example; however, we opt to enforce fine-grained write access as described above, in order
to keep our construction simpler, i.e. not requiring even more primitives.

5In practice, we would use hybrid encryption for storing document ciphertexts.

22

4.1.4 Conflict resolution

Conflict resolution counters malicious users creating a SEAC instance that does not adhere
to the prescribed structure. The deviation may result in the server, during search, to get
stuck or deliver wrong search results. For example, an A list node’s pointer to a D list
may be nil, or a list authenticator may be computed on wrong data. In such cases, an
honest server needs a mechanism to blame the malicious user’s action on the user. Conflict
resolution provides that mechanism.

Whenever the server sees a need for conflict resolution, the server submits the poten-
tially flawed SEAC instance in question to a judge for the judge to review the instance. In
addition, the server sends a description of how the flaw was discovered. Typically, this is
a search query.

The judge then outputs a temporary notification that the instance is under investiga-
tion. Using the notification, the server can then proceed to serve search requests, while
the judge investigates the SEAC instance, replacing search results from the instance un-
der investigation by the judge’s notification. Similarly, once the judge has concluded an
investigation and found that the SEAC instance was indeed flawed, the judge issues a
permanent notification that, again, replaces search results from the flawed SEAC instance.

(type, tissue, taffected, σ)

Figure 6: The structure of a notification.

In order for notifications to serve their purpose, they must state their validity period,
state their purpose, i.e. what SEAC instance is under investigation or has been found to
be flawed, and be verifiable. Hence, notifications are as shown in Figure 6, i.e. consist
of a type (temporary or permanent), the issuance time, the affected time (SEAC instance
affected), and a signature on the tuple under the judge’s signing key.

Since notifications come in two flavors, temporary and permanent, we need a mech-
anism for temporary notifications to be invalidated. We define temporary notifications
to be valid only for the time step in which the notification has been issued. While a
temporary notification is valid, the server must reject all updates, presenting the tempo-
rary notification to users who attempt to perform the update. This is because, in our
construction, an update advances time, and thus, invalidates the temporary notification.

4.2 Combining the extensions: dSEAC

We now present dSEAC, our dynamic searchable encryption scheme with access control.
The scheme implements the ideas laid out in Section 2, and combines the changes and
extensions to SEAC proposed in Section 4.1.

Specifically, we show how to integrate the previously proposed modifications to SEAC
into dSEAC, present the additional data structures needed, and how the parties in dSEAC
operate on the data structures. Note that the above proposals are somewhat imprecise as
to not obscure the underlying mechanisms by complicated details. This especially holds for
the details of changes to the internals of the search structure, as presented in Sections 4.1.1
and 4.1.2. We give these details in Appendix B, but our construction can be understood
without knowledge of these details.

Syntactic changes to SEAC. The changes to SEAC make it necessary to alter the
signatures of functions provided by SEAC. Due to time dependence, SEAC’s BuildIndex

23

function needs to take the time stamp of the SEAC instance that is to be constructed into
account. The time stamp is therefore taken as an additional parameter. We change the
output of the BuildIndex function to only output the index itself. In our construction, we
make the computation of management and data tuples explicit, rather than computing
these tuples implicitly as part of BuildIndex as SEAC does. The current time stamps also
need to be considered when formulating search queries, so we adapt the signature of SEAC’s
Trpdr function accordingly.

H
T

M
a
n

D
a
t

...

SEAC1

SEAC2

SEACn

A1

A2

An

D1

D2

Dn

Ntf

UL

Figure 7: Data structures when combining multiple SEAC instances into a dSEAC instance
by applying modifications discussed in Section 4.1.

Integration of SEAC instances. We now turn our attention towards the integration
of multiple SEAC instances into dSEAC. Figure 7 displays the integration of instances on
the data structure level. Every SEAC instance retains its separate A and D data structures.
However, a single dictionary HT is shared among SEAC instances. Similarly, management
and data tuples originating from the various SEAC instances are stored in shared dictio-
naries Man and Dat . While the dictionaries could be static for single SEAC instances
before, they now need to allow for additions of data, because new data is added whenever
a new SEAC instance is created. Since data is only ever added to these dictionaries, we
implement them as authenticated append-only dictionaries.

Additionally, dSEAC uses two more data structures, an update log UL and a notifica-
tion set Ntf . The update log is a set that contains, for each update that has ever been
performed, a summary of the post-update system state, called “last completed operation”
(variable lco in our scheme). The number of elements in the update log serves as a time
stamp for our system, i.e. UL is a discrete clock. The notification set simply stores all
notifications issued by the judge. We do not have any particular requirements on the data
structures used to implement UL and Ntf .

(t, dig , ch, vk , σ)

Figure 8: The tuple representing the last completed operation.

The aforementioned last completed operation is stored at the server and replicated at
users. The concept of the last completed operation has been adopted from Cachin and

24

Geisler [6]. Specifically, the last complete operation, lco, is a tuple as shown in Figure 8.
As mentioned, lco is to represent a post-update system state. For that purpose, lco consists
of a time stamp t, digests dig of the authenticated append-only dictionaries, a summary
ch of the changes made by the update, a signature verification key vk , and a (standard)
signature σ. The signature verification key belongs to the party that performed the update,
and the signature σ is a signature on the other components of the tuple. The summary
ch depends on the update. Server initialization leaves ch empty, in conflict resolution,
ch is the judge’s signature from the permanent notification that resulted from conflict
resolution, and for other updates, ch is a signature on the SEAC instance computed as
part of the update.

The server stores lco as part of its state st server. Users’ states contain the lco tuple of the
latest update they have performed or verified. Particularly, when performing an update
or search, users first contact the server to request the server’s lco, verify the signature
on the server’s lco, and then ask the server to provide append–only proofs for the digests
contained in the users’ and the server’s lco tuples. If the server’s append–only proofs can
be verified successfully, users adopt the server’s lco as their own. When performing an
update, a user computes her new lco from the information obtained during the update
operation.

Protocols of dSEAC. We now present the protocols of dSEAC. As said before, we do
not go into too many details here. The details can be found in Appendix B.

Our use of SEAC in the following description always refers to the version of SEAC
that results from incorporating the modifications and extensions outlined above! While
MA-CP-ABE is part of SEAC, it remains implicit. We denote signature schemes by Σ,
and assume standard signatures and hiding signatures with delayed verifiability to use
the same signing and verification keys (due to the relations between these primitives);
we note that hiding signatures are only used as part of our augmented SEAC scheme,
so in the following presentation, we do not use hiding signatures explicitly. We denote
authenticated append-only dictionary schemes with unauthenticated data by AAD.

Since our presentation is quite heavy on notation, we provide a list of variables used
in our construction of dSEAC. The list features brief descriptions of every (non-local)
variable’s purpose. The variables can be found in Table 1.

Setup (1Λ)

• (ppSEAC,mskSEAC)← SEAC.Setup(1Λ)

• (ppHT ,VKHT)← AAD.Setup(1Λ, β(Λ))

• (ppMan ,VKMan)← AAD.Setup(1Λ, β(Λ))

• (ppDat ,VKDat)← AAD.Setup(1Λ, β(Λ))

• (ppAAD,VKAAD)← ((ppHT , ppMan , ppDat), (VKHT ,VKMan ,VKDat))

• (ISK , IVK)← Σ.KeyGen(1Λ)

• (JSK , JVK)← Σ.KeyGen(1Λ)

• PK ← (ppSEAC, ppAAD,VKAAD, IVK , JVK)

• MSK ← (mskSEAC, ISK)

• output PK publicly, MSK to the key issuer and JSK to the judge

UserJoin (PK , U ; PK ,MSK ,CL)

25

Table 1: The main (non-local) variables used in our construction of dSEAC.

Variable Description

ASet data structure for storing SEAC’s access control data (data structures
A) for precomputed search results

DSet data structure for storing SEAC’s precomputed partial search results
(data structures D)

CL list of user certificates

Dat ,Dat AAD for storing document tuples and corresponding digest

HT ,HT AAD used by SEAC and corresponding digest
ISK key issuer’s signing key
IVK verification key corresponding to ISK
JSK judge’s signing key
JVK verification key corresponding to JSK
lco last completed operation

Man,Man AAD for storing management tuples and corresponding digest
MSK master secret of dSEAC
mskSEAC master secret of SEAC
Ntf data structure for storing notifications
ppAAD public parameters of the AADs
ppSEAC public parameters of SEAC
PK public parameters of dSEAC
st server the server’s state, consists of all data stored at the server
stuid state of user uid , consists of the last operation completed at the server

and verified by the user
VKAAD verification key of the AADs
uakuid SEAC key of user uid
ukuid signing key of user uid
UL update log; stores all completed operations
uskuid secret key of user uid , shorthand for (uid , ukuid , uakuid)
uvkuid signature verification key corresponding to ukuid

U: (uk , uvk)← Σ.KeyGen(1Λ)

U: σ ← Σ.Sign(uk , U)

U: send (U, uvk , σ) to key issuer

KI: pick user identifier uid

KI: σ′ ← Σ.Sign(ISK , 〈uid , uvk〉)
KI: CL′ ← CL ∪ {〈uid , uvkuid = uvk , σ′〉}
KI: uakuid ← SEAC.KeyGen(ppSEAC,mskSEAC, uid , U)

KI: publish CL′ and send (uid , uakuid) to user (add it to CL)

U: uskuid ← (uid , ukuid = uk , uakuid)

U: stuid ← ∅

Init (PK ,CL, uskuid , stuid ; PK ,CL, st server)

U: send “init” to the server

S: if st server 6= ⊥: send “already initialized” to user and abort protocol.

26

S: initialize three empty append-only authenticated dictionaries with unauthenti-
cated data (HT ,Man,Dat) that correspond to ppAAD and create initial digests
for them, resulting in dictionaries HT ,Man,Dat with digests HT ,Man,Dat ,
respectively

S: create empty sets UL,Ntf

S: create empty sets ASet , DSet for storing data structures A and D, respectively,
from SEAC instances

S: send dig = (HT ,Man,Dat) to user

U: if received “already initialized:” abort the protocol

U: σ ← Σ.Sign(ukuid , (0, dig , ∅, uvkuid))

U: stuid ← (0, dig , ∅, uvkuid , σ)

U: send stuid to server

S: verify the signature in stuid and that uvkuid occurs in CL

S: if verification fails: abort the protocol

S: add lco = stuid to UL

S: st ′server ← (HT ,Man,Dat ,UL,Ntf ,ASet ,DSet , lco)

S: send “init complete” to user

Update (PK ,CL, uskuid , stuid , B; PK ,CL, st server)

U: send “update” to server

S: if another Update operation is being processed: send “concurrent operation” to
user and abort protocol

S: if a temporary notification n is valid: send n to user

S: send lco from st server to user

U: if received “concurrent operation:” abort protocol

U: if received notification n: verify n; if verification fails: abort protocol and raise
alarm

U: verify the signature in lco

U: if verification fails: abort protocol and raise alarm

U: request append-only proofs for digests from stuid and lco; let t be the first
component from lco

S: send requested proofs (AAD.ProveAppend) to user

U: verify proofs (AAD.VrfyAppend)

U: if verification fails: abort protocol and raise alarm

U: stuid ← lco

U: for all documents from B in random order compute (new versions of) manage-
ment and data tuples as needed; check Man and Dat for old versions of the
tuples, if applicable

U: compute I ← SEAC.BuildIndex(ppSEAC, uakuid , t+ 1, B)

U: σI ← Σ.Sign(ukuid , I)

U: send I and management and data tuples to server

27

S: AAD.Append computed management and data tuples and HT -entries from I
to Man, Dat and HT , respectively; use the Man and Dat tuples’ tid fields as
their labels; obtain updated digests Man,Dat , HT

S: send dig = (Man,Dat , HT) to user

U: σ ← Σ.Sign(ukuid , (t+ 1, dig , σI , uvkuid))

U: send lco = (t+ 1, dig , σI , uvkuid , σ) to server

S: verify lco, make sure the data from lco matches the expected data, and check
that uvkuid occurs in CL

S: if verification fails: send “invalid operation,” roll back all changes made to
Man,Dat ,HT and their digests during this Update operation, and abort the
protocol

S: add A and D from I to ASet and DSet , respectively

S: add lco to UL

S: st ′server consists of the (potentially updated) data from st server

S: send “update complete” to user

U: if received “update complete:” st ′uid ← lco

U: otherwise: abort the protocol

Search (PK ,CL, uskuid , kw ; PK ,CL, st server)

U: send “search” to server

S: if an Update operation is being processed: send “concurrent operation” to user
and abort protocol

S: send lco form st server to user

U: if received “concurrent operation:” abort protocol

U: verify the signature in lco and that lco’s uvkuid occurs in CL

U: if verification fails: abort protocol and raise alarm

U: request append-only proofs for digests from stuid and lco; let t be the first
component from lco

S: send requested proofs (AAD.ProveAppend) to user

U: verify proofs (AAD.VrfyAppend)

U: if verification fails: abort protocol and raise alarm

U: st ′uid ← lco

U: query ← SEAC.Trpdr(ppSEAC, uakuid , t, kw)

U: σ ← Σ.Sign(ukuid , query)

U: send (query , σ, uvkuid) to server

S: verify the signature on query and that uvkuid occurs in CL

S: if verification fails: send “operation disallowed” to user and abort the protocol

S: if query is malformed: send “query malformed” to user and abort the protocol

S: rslt ← ∅
S: to each searchable SEAC collection I, apply SEAC.Search(ppSEAC, I, query); add

each result to rslt , including a proof that all collections have been considered
(AAD.ProveMemb)

28

S: if a SEAC collection is malformed, engage in conflict resolution; a temporary or
permanent notification for SEAC collection from time step t replaces the search
result from the corresponding collection in rslt

S: send rslt to user

U: if received “operation disallowed” or “query malformed:” abort the protocol

U: verify the correctness and completeness of the search result (AAD.VrfyMemb,
signature verification)

U: if verification fails: abort protocol and raise alarm

U: decrypt document ciphertexts from rslt and output resulting plaintexts

Resolve (PK ,CL, st server; PK ,CL, JSK)

S: let t be the time stamp of the flawed collection

S: send the flawed SEAC collection, the signed query that led to the detection of
the flaw, the UL entry for time stamp t, lco and append-only proofs of the
digests in the UL entry and lco to the judge

J: let t′ be the time stamp from lco

J: verify the signature in lco and that lco’s uvkuid occurs in CL

J: if verification fails: abort protocol and raise alarm

J: compute temporary notification for time stamp t with validity t′

J: send temporary notification to server

J: verify the signatures and the append-only proofs (AAD.VrfyAppend) from the
received data and that the potentially flawed collection is from time step t

J: if verification fails: abort protocol and raise alarm

J: apply SEAC.Search to the potentially flawed collection

J: if the collection is malformed: compute a permanent notification n for time
stamp t; let σn be the signature from n

J: otherwise: abort the protocol and raise alarm

J: let dig be the digests from lco

J: σ ← Σ.Sign(JSK , (t′ + 1, dig , σn, JVK))

J: send lco = (t′ + 1, dig , σn, JVK , σ) and n to server

S: add n to Ntf

S: add lco to UL

S: st ′server consists of the (potentially updated) data from st server

Correctness and efficiency. Our correctness notion for dynamic searchable encryption
with access control requires search results to contain all documents that are accessible to
the user on whose behalf search is performed and that contain the keyword, with the
exception of documents introduced via broken updates, in which case a notification — a
certificate of an update’s brokenness — replaces the document.

In dSEAC, these requirements are met. The correctness of the underlying SEAC scheme
makes sure that correctness holds for each SEAC collection individually. dSEAC makes sure
that every SEAC collection is considered. dSEAC also replaces broken SEAC collections

29

by notifications, if a collection’s brokenness is known in advance or discovered during the
search process. Hence, dSEAC is correct.

The efficiency of dSEAC is heavily dependent on the performance of the underlying
append-only authenticated dictionary and the efficiency of SEAC, while the efficiency of
SEAC is heavily dependent on the number of keyword–(read) policy pairs, both in terms
of storage and computation. Generally, if the number of keyword–policy pairs is high,
the number of MA-CP-ABE decryptions during search is high on the server’s side, and
both, users and the server, need to perform a high number of signature verifications (for
list authenticators). Likewise, during updates, the number of keyword–read policy pairs
is linked to the number of MA-CP-ABE ciphertexts and signatures that a user needs to
compute.

All in all, the size of the data structure A in SEAC linearly depends on the number of
keyword–read policy pairs. In dSEAC, the equivalent of that data structure, ASet , has a
size that is the sum of the sizes of the corresponding data structure in SEAC collections.
This relation between the sizes of SEAC and corresponding dSEAC data structures also
applies to DSet and HT . However, in each SEAC collection, the size of D linearly depends
on the number of document–keyword pairs, and the size of the dictionary linearly depends
on the number of keywords. The sizes of data structures Man and Dat linearly depend
on the number of documents.

Security. Our dSEAC scheme as presented above satisfies our four security notions for
dynamic searchable encryption schemes with access control.

Theorem 10 (informal). dSEAC provides data confidentiality, and is fork consistent,
verifiable, and forward private.

The properties follow from Lemmas 11–14, which can be found in Appendix D. Note
that the proofs rely on details of our schemes presented in Appendix B, and the leakage
functions presented in Appendix C.

The proofs can be briefly summarized as follows:

• Due to our simulation-based definition of data confidentiality, the simulator must
be able to compute data structures, ciphertexts, and (hiding) signatures on data it
does not know at the time these things need to be computed, so the only option for
the simulator is to compute dummy data; however, at a later time, the original data
becomes known. Therefore, the simulator must be able to patch the data structures,
ciphertexts and hiding signatures so the dummy data matches the real data. Such
patching can be achieved in the random oracle model. The ability to patch the
random oracle is the core property to achieve indistinguishability of a simulated
system from a real system, and thus data confidentiality.

• Fork consistency and verifiability are inherited from authenticated append-only dic-
tionaries.

• As mentioned before, forward privacy is due to creation time dependence.

5 Discussion

Searchable encryption schemes often distinguish several types of users, e.g. data users
and data owners [21, 22, 23]. Explicitly distinguishing users from owners makes their
respective roles clearer and is a first step in the direction of fine-grained access control

30

with respect to write access. However, in practice, these types are often merely roles of
the same user. Therefore it seems unnatural to have separate enrollment processes for
the roles. Nevertheless, dSEAC allows for making different user roles explicit by means of
attribute-based encryption: simply introduce role-specific attributes. For example, a user
serving in the role of data owner might get attributes for document ownership and write
access, whereas the user that is restricted to the role of data user might only get attributes
for read access to documents and access to search results.

Many schemes that address fine-grained access control to remotely stored data via
attribute-based encryption provide explicit means of user revocation [19, 21, 22, 23, 24].
A standard approach to user revocation requires re-encryption of all ciphertexts that a
revoked user has access to. Thus, revoking users is very costly. In dSEAC, user revocation
can be achieved by revoking user certificates. As a result, the revoked user’s certificate is
removed from the certificate list CL. Since users are required to include a signature under
their signing key in every query they make to the server, the server can check whether a
user’s verification key is included in CL. If the user’s verification key is not included in
CL, the server does not process the user’s request. For this to work properly, the server
needs to fully cooperate. However, re-encryption of ciphertexts, and thus, not distributing
old ciphertexts, requires the same degree of cooperation.

With our dSEAC construction, we address an open question of Löken [13], who asked
whether searchable encryption with access control can be made verifiable, particularly in
case of dynamic document collections, and, by extension, what price needs to be paid for
dynamics and verifiability in terms of leakage. Our answer to Löken’s question is that
there is no significant leakage difference for dynamic and static document collections.

We note here that we have opted for a rather strong formalization of MA-CP-ABE
and its security, and, as discussed, no scheme presently satisfies the notion. We have
made our choice as to limit the scope of our discussion of MA-CP-ABE and provide a
single concise definition of security. Technically, dSEAC can be realized and proven secure
under a notion of MA-CP-ABE that is weaker than ours in terms of features and security.
Particularly, in dSEAC there is no need for attribute authorities to be fully independent
(c.f. Section 3.2.3), because master keys of all attribute authorities are held by the same
entity, namely the key issuer. However, it must be possible for users, during search, to
derive keyword-specific keys for search queries from customized authority secrets without
coordinating with the key issuer. It is also sufficient to consider the cpa-security of MA-
CP-ABE and security of authority key customization separately, as is done in the original
work on authority key customization by Löken [13].

Acknowledgements

This work was supported by the Ministry of Culture and Science of the German State of
North Rhine-Westphalia within the research program “Digital Future.”

References

[1] Alderman, J., Martin, K.M., Renwick, S.L.: Multi-level access in searchable sym-
metric encryption. In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan,
P.Y.A., Teague, V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Fi-
nancial Cryptography and Data Security - FC 2017 International Workshops, WAHC,
BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected

31

Papers. Lecture Notes in Computer Science, vol. 10323, pp. 35–52. Springer (2017),
https://doi.org/10.1007/978-3-319-70278-0_3

[2] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption.
In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May 2007,
Oakland, California, USA. pp. 321–334. IEEE Computer Society (2007), https://
doi.org/10.1109/SP.2007.11

[3] Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2004, International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceed-
ings. Lecture Notes in Computer Science, vol. 3027, pp. 506–522. Springer (2004),
https://doi.org/10.1007/978-3-540-24676-3_30

[4] Bösch, C., Hartel, P.H., Jonker, W., Peter, A.: A survey of provably secure searchable
encryption. ACM Comput. Surv. 47(2), 18:1–18:51 (2014), http://doi.acm.org/10.
1145/2636328

[5] Bost, R.: Σoφoς: Forward secure searchable encryption. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016. pp. 1143–1154. ACM (2016), http://doi.acm.org/10.1145/
2976749.2978303

[6] Cachin, C., Geisler, M.: Integrity protection for revision control. In: Abdalla, M.,
Pointcheval, D., Fouque, P., Vergnaud, D. (eds.) Applied Cryptography and Network
Security, 7th International Conference, ACNS 2009, Paris-Rocquencourt, France,
June 2-5, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5536, pp. 382–
399 (2009), https://doi.org/10.1007/978-3-642-01957-9_24

[7] Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against search-
able encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver, CO,
USA, October 12-16, 2015. pp. 668–679. ACM (2015), https://doi.org/10.1145/
2810103.2813700

[8] Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) The-
ory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amster-
dam, The Netherlands, February 21-24, 2007, Proceedings. Lecture Notes in Com-
puter Science, vol. 4392, pp. 515–534. Springer (2007), https://doi.org/10.1007/
978-3-540-70936-7_28

[9] Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: Improved definitions and efficient constructions. Journal of Computer Security
19(5), 895–934 (2011), https://doi.org/10.3233/JCS-2011-0426

[10] Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable
encryption with forward privacy. PoPETs 2018(1), 5–20 (2018), https://doi.org/
10.1515/popets-2018-0002

[11] Kaci, A., Bouabana-Tebibel, T.: Access control reinforcement over searchable encryp-
tion. In: Joshi, J., Bertino, E., Thuraisingham, B.M., Liu, L. (eds.) Proceedings of

32

https://doi.org/10.1007/978-3-319-70278-0_3
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1007/978-3-540-24676-3_30
http://doi.acm.org/10.1145/2636328
http://doi.acm.org/10.1145/2636328
http://doi.acm.org/10.1145/2976749.2978303
http://doi.acm.org/10.1145/2976749.2978303
https://doi.org/10.1007/978-3-642-01957-9_24
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.3233/JCS-2011-0426
https://doi.org/10.1515/popets-2018-0002
https://doi.org/10.1515/popets-2018-0002

the 15th IEEE International Conference on Information Reuse and Integration, IRI
2014, Redwood City, CA, USA, August 13-15, 2014. pp. 130–137. IEEE Computer
Society (2014), https://doi.org/10.1109/IRI.2014.7051882

[12] Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn,
Estonia, May 15-19, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6632,
pp. 568–588. Springer (2011), https://doi.org/10.1007/978-3-642-20465-4_31

[13] Löken, N.: Searchable encryption with access control. In: Proceedings of the 12th
International Conference on Availability, Reliability and Security, Reggio Calabria,
Italy, August 29 - September 01, 2017. pp. 24:1–24:6. ACM (2017), http://doi.acm.
org/10.1145/3098954.3098987

[14] Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority
attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) Financial Cryp-
tography and Data Security - 19th International Conference, FC 2015, San Juan,
Puerto Rico, January 26-30, 2015, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 8975, pp. 315–332. Springer (2015), https://doi.org/10.1007/
978-3-662-47854-7_19

[15] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) Ad-
vances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May
22-26, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3494, pp. 457–473.
Springer (2005), https://doi.org/10.1007/11426639_27

[16] Singh, A., Liu, L.: Sharoes: A data sharing platform for outsourced enterprise storage
environments. In: Alonso, G., Blakeley, J.A., Chen, A.L.P. (eds.) Proceedings of the
24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008,
Cancún, México. pp. 993–1002. IEEE Computer Society (2008), https://doi.org/
10.1109/ICDE.2008.4497508

[17] Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley, California, USA,
May 14-17, 2000. pp. 44–55. IEEE Computer Society (2000), https://doi.org/10.
1109/SECPRI.2000.848445

[18] Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable en-
cryption with small leakage. In: 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, February 23-
26, 2014. The Internet Society (2014), http://www.internetsociety.org/doc/

practical-dynamic-searchable-encryption-small-leakage

[19] Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: Verifiable
attribute-based keyword search with fine-grained owner-enforced search authorization
in the cloud. IEEE Trans. Parallel Distrib. Syst. 27(4), 1187–1198 (2016), https:

//doi.org/10.1109/TPDS.2014.2355202

[20] Tomescu, A., Bhupatiraju, V., Papadopoulos, D., Papamanthou, C., Triandopoulos,
N., Devadas, S.: Transparency logs via append-only authenticated dictionaries. IACR
Cryptology ePrint Archive 2018, 721 (2018)

33

https://doi.org/10.1109/IRI.2014.7051882
https://doi.org/10.1007/978-3-642-20465-4_31
http://doi.acm.org/10.1145/3098954.3098987
http://doi.acm.org/10.1145/3098954.3098987
https://doi.org/10.1007/978-3-662-47854-7_19
https://doi.org/10.1007/978-3-662-47854-7_19
https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/ICDE.2008.4497508
https://doi.org/10.1109/ICDE.2008.4497508
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/SECPRI.2000.848445
http://www.internetsociety.org/doc/practical-dynamic-searchable-encryption-small-leakage
http://www.internetsociety.org/doc/practical-dynamic-searchable-encryption-small-leakage
https://doi.org/10.1109/TPDS.2014.2355202
https://doi.org/10.1109/TPDS.2014.2355202

[21] Yang, K., Jia, X.: Attributed-based access control for multi-authority systems in
cloud storage. In: 2012 IEEE 32nd International Conference on Distributed Comput-
ing Systems, Macau, China, June 18-21, 2012. pp. 536–545. IEEE Computer Society
(2012), https://doi.org/10.1109/ICDCS.2012.42

[22] Yang, K., Jia, X., Ren, K.: Attribute-based fine-grained access control with efficient
revocation in cloud storage systems. In: Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng,
W. (eds.) 8th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS ’13, Hangzhou, China - May 08 - 10, 2013. pp. 523–528. ACM
(2013), http://doi.acm.org/10.1145/2484313.2484383

[23] Yang, K., Jia, X., Ren, K., Zhang, B., Xie, R.: DAC-MACS: effective data access con-
trol for multiauthority cloud storage systems. IEEE Trans. Information Forensics and
Security 8(11), 1790–1801 (2013), https://doi.org/10.1109/TIFS.2013.2279531

[24] Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data
access control in cloud computing. In: INFOCOM 2010. 29th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer
and Communications Societies, 15-19 March 2010, San Diego, CA, USA. pp. 534–542.
IEEE (2010), https://doi.org/10.1109/INFCOM.2010.5462174

[25] Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The
power of file-injection attacks on searchable encryption. In: Holz, T., Savage, S. (eds.)
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016. pp. 707–720. USENIX Association (2016), https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/zhang

[26] Zhao, F., Nishide, T., Sakurai, K.: Realizing fine-grained and flexible access con-
trol to outsourced data with attribute-based cryptosystems. In: Bao, F., Weng,
J. (eds.) Information Security Practice and Experience - 7th International Confer-
ence, ISPEC 2011, Guangzhou, China, May 30 - June 1, 2011. Proceedings. Lec-
ture Notes in Computer Science, vol. 6672, pp. 83–97. Springer (2011), https:

//doi.org/10.1007/978-3-642-21031-0_7

[27] Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword search
over outsourced encrypted data. In: 2014 IEEE Conference on Computer Commu-
nications, INFOCOM 2014, Toronto, Canada, April 27 - May 2, 2014. pp. 522–530.
IEEE (2014), https://doi.org/10.1109/INFOCOM.2014.6847976

A Comparisons in ABE policies

The policies used in attribute-based encryption (ABE), including MA-CP-ABE, typically
do not allow comparisons of numeric values of attributes to be expresses directly. In
particular, this is true for ABE schemes that use monotone span programs to express
policies. For example, if there are attributes age16, age18, and age21, a property like
age ≥ 18 cannot be expressed as a single statement; it must be decomposed into the
policy age18 ∨ age21. While this is feasible if the number of options is low, it becomes
impractical if the range of options is huge.

For example, in our dSEAC scheme, we would like to have a comparison now ≥
creation time, where both, now and creation time are discrete time stamps. In this case,
the above idea is still somewhat applicable, albeit, we must change our view on the matter:

34

https://doi.org/10.1109/ICDCS.2012.42
http://doi.acm.org/10.1145/2484313.2484383
https://doi.org/10.1109/TIFS.2013.2279531
https://doi.org/10.1109/INFCOM.2010.5462174
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://doi.org/10.1007/978-3-642-21031-0_7
https://doi.org/10.1007/978-3-642-21031-0_7
https://doi.org/10.1109/INFOCOM.2014.6847976

if we see now and creation time as bitstrings, we can apply the above idea in a bit by bit
fashion, starting with the most significant bits. We find the first bit position in which the
strings differ, and use the respective bits to determine which of the numbers represented
by the bitstrings is the greater one. Upon reaching a conclusion, no further comparison is
required.

For us to be able to express this idea in terms of an ABE policy, we represent the
bitstrings as sets of attributes, one attribute for each bit position in the bitstring. This
technique is straightforward to implement as a policy, and achieves an exponential speedup
in comparison to the original idea of enumerating all potential values that may be com-
pared.

B Instantiating dSEAC

We now provide a more detailed description of the dSEAC scheme. Due to dSEAC’s reliance
on and non-blackbox use of SEAC [13], we need to discuss encrypted linked lists first, and
in more detail than in Section 3.2.4, as (encrypted) lists are an integral building block for
SEAC. Particularly, we discuss the lists as used in dSEAC, i.e. we also consider our own
extensions upon SEAC, c.f. Sections 4.1.1–4.1.4.

SEAC and dSEAC use encrypted linked lists to store precomputed search results, as is
done by Curtmola et al. in their SSE-1 scheme [9]. An encrypted linked list is a linked list
that is symmetrically encrypted in a node by node fashion. With each list node, a pointer
to the successor node and the successor node’s decryption key is stored. This approach
requires special treatment of pointers to and keys of list heads. Such pointers and keys
are stored in a separate location.

Particularly, in dSEAC, we have two types of encrypted linked lists, called A and D

lists. The D lists store — for each keyword, creation time, and (read) policy — pointers
to documents that are associated to the given policy and contain the given keyword. See
Figure 9 for a concise overview of a D list node in dSEAC.

Sym.Enc (knode, 〈psuccessor, ksuccessor, tid , vmt , vdt〉)

Figure 9: The internals of a D list node. The entry is symmetrically encrypted under
key knode. The plaintext consists of a pointer and decryption key for the node’s successor
(psuccessor, ksuccessor) and a pointer to a document. Particularly, the document pointer
consist of the tuple identifier tid and version numbers vmt and vdt of the document version’s
management and data tuples, respectively.

Pointers to and keys of D lists’ heads are stored in A lists for the relevant keywords
and creation times. There is one A list for each keyword and creation time. Pointers
and keys to D list heads are encrypted using attribute-based encryption. Since A lists are
encrypted linked lists, their general structure is similar to the structure of D lists, as can
be seen in Figure 10, especially Figure 10a. The list node also stores the policy A and

a list authenticator of the D list it points to. The list authenticator σ
(D list)
kw ,t,A is a hiding

signature on the set of document pointers from the D list under the signature verification
key of the list’s creator. Particularly, the list node displayed in the figure points to a D

list created at time t that is induced by some keyword kw and read policy A. As shown in
Figure 10c, dSEAC stores the pointer to and key of the D list head together with the open

value d
(D list)
kw ,t,A of the D list’s authenticator.

35

Sym.Enc
(
knode,

〈
psuccessor, ksuccessor,A, σ(D list)

kw ,t,A ,ABE.Enc (pp,A+, plaintext)
〉)

(a) General structure of an A list node. The node stores a successor pointer and key

(psuccessor, ksuccessor), a policy A, a list authenticator σ
(D list)
kw ,t,A , and an ABE ciphertext.

A+ = A &“Time:≥ t”

&“Sys:search”

&“Srch:fB (kB , kw)”

(b) The extended policy for A list nodes’ inter-
nal ABE ciphertext.

plaintext =
〈
p
(D list)
kw ,t,A , k

(D list)
kw ,t,A , d

(D list)
kw ,t,A

〉

(c) The plaintext that corresponds to A list
nodes’ internal ABE ciphertext. It consists of
a pointer to a D list, the list head’s decryption
key, and the list authenticator’s open value.

Figure 10: The internals of an A list node, particularly for keyword kw and creation time
t.

Figure 10b shows the access policy used for encrypting information on the D list. The
policy is an extension of the access policy A of documents referred to in the D list; it is
extended by a policy based on the current time (so only future search queries can access
the D list), the search attribute (c.f. Section 3.2.4), and an attribute derived from the
keyword (that serves as a binder term).

Pointers to and keys of A lists’ heads are stored in an authenticated dictionary with
unauthenticated data HT in an encrypted form. Figure 11a shows the structure of an HT
entry, which consist of a label, an authenticated tuple comprised of a signature verification

key uvkuid of the tuple’s creator and a list authenticator σ
(A list)
kw ,t , and an unauthenticated

encrypted value. The list authenticator stored in the HT entry is a hiding signature on
the access policies and list authenticators contained in the A list that the HT entry points
to; the signature is under the signature verification key of the HT entry’s creator.

As can be seen from Figures 11b and 11c, respectively, the label and key depend on the
keyword in two ways. The actual label and key are derived via two keyed functions F, F ′,
respectively. Bost defines F and F ′ to be hash functions [5]. The functions’ keys are derived
from the keyword (so only enrolled users can form these tuples and make search queries),
while the arguments are derived from a keyword-specific seed by repeatedly applying the
inverse of a trapdoor permutation π (so old search queries do not yield results from the
update that introduced the entry into HT). In accordance with Bost, c.f. Section 5.5 of
[5], we suggest the seeds to be derived deterministically from the keyword via some keyed
function fS , i.e. seedkw = fS(kS , kw).

The plaintext pointer to an A list is shown in Figure 11d. As can be seen, alongside

the pointer to and key of the list head (p
(A list)
kw ,t , k

A list)
kw ,t), the HT entry stores its creation

time t, and an open value d
(A list)
kw ,t for the list authenticator σ

(A list)
kw ,t .

For security, nodes of A and D lists are stored at random locations in two memory
arrays of sufficient size; one array for each type of list. Free memory cells in the arrays
are filled with dummy entries that are indistinguishable from not yet decrypted list nodes.
We further discuss the effect of dummy entries on the sizes of data structures A and D

below.

36

〈
label ,

〈
uvkuid , σ

(A list)
kw ,t

〉
, key ⊕ plaintext

〉

(a) General structure of HT entries: a label and
an encrypted value.

label = F (fL (kL, kw) , π−t (SK π, seedkw))

(b) Structure of HT entries’ label component: a
keyed function F applied to a keyword depen-
dent key and a keyword and time dependent
argument.

key = F ′ (fK (kK , kw) , π−t (SK π, seedkw))

(c) Structure of HT entries’ key component: a
keyed public function F ′ applied to a keyword
dependent key and a keyword and time depen-
dent argument.

plaintext =
〈
t, p

(A list)
kw ,t , k

(A list)
kw ,t , d

(A list)
kw ,t

〉

(d) Structure of HT entries’ plaintext compo-
nent: the creation time of the entry, a pointer
to the head of some A list, the decryption key
for that list head, and the open value for the A

list’s authenticator.

Figure 11: The internals of a dictionary entry in HT , particularly for keyword kw and
creation time t.

(
π−t(SK π, seedkw),fL(kL, kw), fK(kK , kw),

R(uid) ∪ {uskuid,“Time:= t”, uskuid,“Sys:search”, uskuid,“Srch:fB(kB , kw)”}

)

Figure 12: A dSEAC search query for keyword kw at time t by user uid with access rights
R(uid), i.e. attributes of the users uid managed by authority Usr .

How to search. With the lists nodes and HT entries as above, a search query is as
shown in Figure 12. Using the value of the trapdoor permutation π−1 and the values of
fL and fK , respectively, the server can recompute all labels and decryption keys for HT
entries, even for previous time steps, while the attributes provided as part of the query
allow for the decryption of ABE ciphertexts from A list nodes if uid ’s access rights satisfy
the nodes’ access policies. Since t is the number of updates that have occurred, the server
knows t, and thus, how many labels to reconstruct.

For each of the computed labels, the server includes a proof of (non-)membership of
the label in HT in the search result. If there is an HT entry for some label, the server also
includes the authenticated data that HT associates to the label and the corresponding
unauthenticated open value in the search result, while the other unauthenticated data is
used to access some A list. From the A list, the server includes all plaintext access policies
and list authenticators in the search result, and attempts to decrypt the ABE ciphertexts
from the A list using the attributes from the search query. If decryption succeeds, the
server accesses the respective D lists, and includes the D lists’ document pointers, as well
as the management and data tuples being pointed to, in the search result.

When receiving such a search result, the user can use the (non-)membership proofs to
check that the server has considered all updates, and what updates contain the searched
keyword. If an update contains the keyword, then the search result also contains an A list
authenticator and all the signed data required to verify the signature. That additional
data can also be used to determine that the server has considered all access policies from
the respective A list, that the server has included all document pointers from all D lists
that the server was supposed to access, as well as the respective documents’ management
and data tuples.

37

If for some update there is a temporary or permanent notification, the server includes
the notification instead of any data from the update in the search result, and the user
verifies the notification rather than the (missing) (non-)membership proof.

Motivation for tuple structure. It may seem odd that dSEAC uses two protection
mechanisms that are time dependent, namely time dependent access policies in A list nodes
and time dependent HT labels and keys in HT entries. One may ask whether one of these
is sufficient, or could be adapted to the other data structure, without loss of efficiency or
security.

In order for dSEAC to be forward private, two HT entries for the same keyword must
have different labels and decryption keys. It is not clear how different labels for the
same keyword can be achieved using access policies. It must also be noted that the
label derivation process must be deterministic as to avoid synchronization between users
and owners. A lack of such synchronization is particularly desirable because some users
and owners may be dishonest. Decryption for HT entries could be based on policies (so
HT entries would contain an ABE ciphertext rather than a symmetric ciphertext), but
achieving time dependence from trapdoor permutations is more efficient than achieving it
from ABE, particularly if ABE is not used for any other purpose. Additionally, the policy
would still need to consider the keyword, which may in turn be a threat to forward privacy.

On the other hand, achieving time dependence in A list entries from trapdoor permu-
tations does not work, because it either detaches the ABE policy from time constraints
completely, or there is an attribute in the policy that is computed using the trapdoor
permutation. In the latter case, the search query must contain such attributes for all
previous time steps, or the server needs to be able to compute such attributes. Neither
option is attractive: the first option is inefficient and does not use the advantage that
the trapdoor permutation provides (enabling the server to compute labels and keys), the
second option is outright insecure (not forward private) — the server can use the value
of the trapdoor permutation from one search query and user’s attributes from an earlier
query for the same keyword to perform search for the new time step, but with access rights
from the earlier query. This type of attack also arises if the ABE policy is detached from
time constraints completely.

A second question is why we use hiding signatures for our list authenticator. This
is due to bandwidth efficiency and security. With our data structures, verifying a list
authenticator requires no knowledge about internal details of the data structure, e.g.
the concrete values of successor pointers and list keys. This is the advantage of hiding
signatures when compared to applying the encrypt–then–sign principle, which would result
in similar security guarantees.

On the other hand, all relevant data is authenticated. Every verifier can verify all
signatures she receives, without necessarily knowing the underlying messages. This is
important, because, despite having incomplete information, a verifier, during search, can
still check that the server has provided the correct and complete search result. Particularly,
even a verifier whose access rights do not satisfy any access policy from an A list can still
check that the server has considered all access policies from the A list when computing the
search result. This even holds in a setting in which the server can corrupt users and, thus,
may try to omit some results and replace the original signatures with signatures created
using the corrupt user’s singing key.

Data structure sizes and padding. In the main body of our text, we have explained
that the number of (useful) entries of data structures HT , A and D of a SEAC instance

38

computed from a document batch B depends on certain properties of B. Particularly, the
number of useful entries in HT linearly depends on the number of distinct keywords in
B, the number of useful entries in A linearly depends on the number of keyword–access
policy pairs in B, and the number of useful D entries linearly depends on the number of
keyword–document pairs in B.

Both, Curtmola et al. [9] and Bost [5], use data structures similar to those we use.
Particularly, the concept of a dictionary for fast access is present in both works, while
encrypted linked lists are only present in Curtmola et al.’s work. While Curtmola et al.
suggest to pad all data structures with dummy entries that are indistinguishable from
useful entries, Bost does not pad the data structures. Since our implementation of the
dictionary HT is closer to Bost’s, we choose to apply no padding to HT , but follow
Curtmola et al.’s suggestions for padding A and D.

Let δ(B) be the number of distinct keywords in B, let α(B) be the number of distinct
read access policies in B, let m be a lower bound on the length of keywords,6 and let #(B)
be the total length of B. Applying the padding suggestions, an update for B computes
δ(B) entries for dictionary HT , δ(B) · α(B) entries for A, and #(B)/m entries for D.

Note that this is only the padding of the data structures themselves; within each data
structure, there is some need for additional padding, so for each data structure, each entry
has the same length. However, the lengths only need to be the same for each data structure
and SEAC instance individually, so A entries computed from different document batches
may differ in length. Size differences may be caused by read access policies (complicated
policies have larger representations than simple policies), as well as the sizes of data
structures entries point to (i.e. the lengths of pointers may vary).

C Leakage in dSEAC

In this section we describe and discuss the leakage incurred in dSEAC. Towards the end of
this section, we interpret dSEAC’s leakage in the leakage classification framework of Cash
et al..

C.1 dSEAC’s leakage functions

As stated in Section 3.1, dSEAC has seven leakage functions that are related to oracle calls
of an adversary in the data confidentiality security experiments for dynamic searchable
encryption with access control. Particularly, we have leakage functions for enrolling hon-
est users, enrolling corrupt users, corrupting honest users, having honest users perform
server initialization, perform an update of the searchable document collection, and perform
search, as well as for the adversary interacting with the judge during conflict resolution.

Joining and corrupting users. Whenever a honest user joins the system, the only
thing an adversary can observe is the user’s certificate, as published by the key issuer.
Hence, LHJ(U) = uid , where U is a set of access rights, and uid is a user identifier.

For dSEAC, in terms of leakage, it does not matter whether the adversary corrupts a
once-honest user or enrolls as a dishonest user. In either case, the adversary learns the
user’s identifier uid and her attributes Uuid from the user’s secret key. Due to learning
the user’s key, the adversary learns all plaintext documents doc that can be accessed
by the user. The adversary also learns relations between the document and its internal

6As an example, for English language documents, such a lower bound would be 4 bytes/characters;
shorter words are too common.

39

identifiers, denoted id(doc). An example of such an identifier is the tuple identifier tid
of the management and data tuples that actually store the document. Additionally, the
adversary learns all pairs of keywords kw and read policies Aread(doc) that occur in any
document batch Bi (with doc ∈ Bi). Learning the keywords includes learning their internal
identifiers, denoted id(kw), such as the images of the keywords under pseudorandom
functions (used extensively for HT labels, keys, and seeds, as well as for including keywords
in access policies). Therefore,

LUC(uid) =

LCJ() =(uid , Uuid),

{doc, id(doc) : doc ∈ Bi ∧ Uuid satisfies Aread(doc)} ,
{kw , id(kw),Aread(doc) : doc ∈ Bi ∧ kw ∈ doc}

 .

Users interacting with the server During server initialization, the adversary learns
nothing but which user performs the initialization. Therefore, LIni(uid) = uid .

When performing search, the adversary learns which user performs search, what at-
tributes that user has, and what keyword that user searches for. That information can be
extracted directly from the user’s search query. However, the keyword kw is not learned
directly. Instead, the query contains the keyword’s identifiers id(kw). From performing
the search procedure itself, the adversary learns the read policies of documents that con-
tain the searched keywords, as well as the times at which documents with the given read
policies have been added to the document collection. That information is stored in the
A data structure. Additionally, the adversary learns the identifiers id(doc) of documents
that contain the searched keyword and that are accessible to the user, as the management
and data tuples for that identifiers make up a substantial part of the search result. Thus,

LSea(uid , kw) =(uid , Uuid), id(kw),

{(Aread(doc), t) : doc ∈ Bt ∧ kw ∈ doc},
{id(doc) : doc ∈ Bt ∧ Uuid satisfies Aread(doc) ∧ kw ∈ doc}

 .

During updates, the adversary learns which user performs the update, e.g. from signa-
tures, and what attributes that user has (from the management and data tuples the user
updates). From the size of the data structures received during the update process, the
adversary can determine upper bounds on the number of keywords (HT) the cumulated
size of pre-computed search results (D). For every document doc from the batch B of doc-
uments that the user performs the update on, the adversary learns the bit-length #doc of
the document, its internal identifiers and its read, write and ownership policies Aread(doc),
Awrite(doc) and Aown(doc), respectively. This information is stored in the management and
data tuple representing the document. If the adversary has corrupted a user, the adversary
leans plaintexts of added documents that any corrupted user has access to. Additionally,
if the adversary has corrupted any user, it learns all keywords, their identifiers and the
read policies of documents that are associated with a given keyword, i.e. the information
that the adversary obtains on SEAC collections stored at the server at the time a user is

40

corrupted is also learnt for every SEAC collection created in any future update. Hence,

LUpd(uid , B) =

(uid , Uuid),

number of distinct keywords in B,

upper bound on cumulative size of precomputed search results,

{id(doc),#doc,Aread(doc),Awrite(doc),Aown(doc) : doc ∈ B} ,{
doc, id(doc) : doc ∈ B ∧ ∃uid ′ corrupt ∧ Uuid ′ satisfies Aread(doc)

}
,{

kw , id(kw),Aread(doc) : doc ∈ B ∧ kw ∈ doc ∧ ∃uid ′ corrupt
}

,

where “∃uid ′ corrupt” denotes the condition of a corrupt user with identifier uid ′.

Resolution of conflicts. When engaging in conflict resolution, the adversary does not
learn anything new. Therefore, LRes() = ∅.

C.2 Leakage classification

Cash et al. have established a framework to compare the leakage that occurs in searchable
encryption systems [7]. Their framework categorizes searchable encryption schemes into
four hierarchically ordered leakage classes L1–L4.

• L1 schemes initially only leak some size information, e.g. ciphertext lengths, upper
bounds on keyword numbers, and trivial upper bounds on pre-computed results.
Only when a search query is being processed, the searched keyword’s access pattern,
i.e. the identifiers of documents containing the keyword, is leaked.

• L2 schemes leak essentially the same information as L1 schemes, but the adver-
sary learns all keywords’ access patterns immediately, not only when a keyword is
searched.

• L3 schemes, in addition to what is leaked by L2 schemes, also leak the order in which
keywords occur in documents.

• L4 schemes deterministically substitute keywords in the plaintext documents, so
adversaries learn keywords’ order and occurrence counts immediately.

It is clear that L1 schemes leak the least information, while L4 schemes leak essentially
all information, except for keyword plaintexts. Unfortunately, the leakage classification of
Cash et al. does not consider access control and user corruption. Still, we sort our dSEAC
scheme into Cash et al.’s s leakage hierarchy, but ignore dSEAC’s access control for the
moment.

Given our discussion of leakage above, and our padding of data structures, it is clear
that, as long as no user is corrupt, dSEAC’s leakage can be classified as L1. This property is
inherited from the use of encrypted linked lists, as observed by Cash et al., c.f. Section 2.1
of [7]. As soon as a user gets corrupted, the leakage increases to level L2. This is because
the corrupted user’s key allows the adversary to recover information on keyword’s access
patterns from A lists and, depending on the corrupted user’s access rights, from D lists.

One may criticize the leakage of access policies that are not satisfied by the attributes
from a search query. This is a particular problem if there is essentially a one-to-one
relation between documents and access policies. However, for rather general classes of
access policies, e.g. monotone policies, such leakage may be unavoidable if users are

41

supposed to be able to verify the correctness of search results, which includes checking
that some potential search results have legitimately excluded from the reported result.
On the other hand, for more restricted classes of access policies, e.g. a totally ordered set
of access policies, leakage of access policies not satisfied by access rights may be avoided.
For example, the technique of Alderman et al. [1] may be adapted to the verifiable setting
while avoiding leakage of access policies not satisfied by the access rights of the user on
whose behalf search is performed.

D Security proofs

In this section, we give proofs of dSEAC’s security, as claimed in Section 4.2.

D.1 Data confidentiality

Lemma 11. If dSEAC is instantiated with a cpa-akc-secure MA-CP-ABE scheme with
authority key customization, a cpa-secure symmetric encryption scheme, a euf-cma secure
(hiding) signature scheme (with delayed verifiability), and a secure authenticated append-
only dictionary, in the random oracle model, dSEAC provides data confidentiality relative
to leakage functions LHJ, LCJ, LUC, LIni, LUpd, LSea and LRes as presented in Appendix C.

Proof. We first discuss the use of random oracles within our simulation, before we turn to
the simulation itself.

Hiding signatures in the random oracle model. As mentioned in Section 3.2.1,
signatures satisfying the hiding property can be constructed from digital signature schemes
and commitment schemes employing a commit–then–sign paradigm. Let H be a random
oracle. Then, we model the commitment scheme as follows:

Commit (m): sample r ←$ {0, 1}Λ, compute c ← H(〈r,m〉) and d = (r,m), and output
(c, d).

Verify (c, d): if c = H(〈r,m) output valid , otherwise output invalid .

The value c is a commitment on the message m, while d is the corresponding decommit
value. Randomness r is used so an adversary cannot guess the input to the random oracle,
and thus assures that the hiding property holds, even if the adversary can guess m.

dSEAC uses hiding signatures as list authenticators. A list is singed by committing to
the list, singing the commitment, and storing value r in an encrypted form together with
the pointers to the list, i.e. the variable rnd from HT entries and A list nodes takes the
value r. The list authenticators consists of the commitment and its signature. As a result,
the decommit value can be reconstructed upon decryption of the signed list.

The purpose of hiding signatures from random oracles. Hiding signatures in
the above sense are actually not committing. The use of the random oracle allows the
simulator to output list authenticators on lists not known to the simulator during signature
creation. If the list becomes know to the simulator at a later point in time, the simulator
can patch the random oracle so the list authenticator is valid for the given list.

In the data confidentiality experiment, the adversary chooses document batches that
are to be added to the searchable document collection. Since the simulator, at creation
time, only obtains leakage from these document batches, the adversary has much more

42

knowledge about the batches than the simulator. The non-committing nature of our hiding
signatures guarantee that the adversary cannot leverage its superior knowledge, and force
the simulator to commit to data it does not know. Such a possibility would enable the
adversary to distinguish between the real and simulated setups of dSEAC. Consider, for
example, our example document collection, c.f. Figure 1. While the data structures
produced in the real setup would look (more or less) as shown in the figure, the simulator
does not even know the lengths of the D lists to produce.

Non-committing encryption. Asymmetric encryption is naturally committing, be-
cause otherwise correctness of the encryption scheme does not hold. However, combining
asymmetric and symmetric encryption in a hybrid approach, and modelling the symmetric
part as a random oracle, allows for non-committing encryption.

Non-committing asymmetric encryption is required for our simulator to successfully
simulate document ciphertexts. Non-committing symmetric encryption is required for our
simulator to successfully simulate encrypted linked lists. These requirements are due to
the asymmetry in knowledge between the simulator and the adversary, as explained above
in the case of hiding signatures.

More random oracles. In addition to the random oracles used for achieving hiding
signatures and non-committing encryption, we also model other functions as random or-
acles. Specifically, the functions fL, fK , fB, and fS , as well as the trapdoor permutation
π, c.f. Appendix B, are modelled as random oracles.

The functions are keyed, and the (secret) keys are given only to users. As a result,
fL, fK , fB, fS , and π−1 can only be evaluated by users. In terms of our simulation, this
means that the adversary can only make meaningful queries to these oracles after it has
corrupted some user.

Simulation. We now turn to the simulator itself. Upon startup, the simulator runs
dSEAC.Setup(1Λ), but keeps all secret keys (MSK , ISK , JSK) to itself. The simulator
reacts to leakage given to it as follows.

Upon receiving LHJ(U), the simulator picks a signing–signature verification key pair
for the user, and then computes a certificate for that verification key. The simulator then
publishes the certificate, and stores the user’s singing key for future use.

Upon receiving LCJ(), the simulator executes protocol UserJoin, with the adversary
playing the corrupt user’s part of the protocol. The simulator also patches its random
oracles used for non-committing encryption, so data tuples point to correct document
plaintexts. All oracles are patched to create D lists grouping together documents that the
corrupt user has access to, to create all A lists, and for HT entries to point to these A lists,
if there is an A list for the given keyword and time stamp.

Upon receiving LUC(uid), the simulator computes the part of the user’s key and state
that have not been computed before.7 Oracles are patched as in the case of joining a
corrupt user. Finally, the user’s key and state are given to the adversary.

Upon receiving LIni(uid), the simulator runs protocol Init, with the adversary play-
ing the server’s part. Note that knowledge of the user’s signing key is sufficient for the
simulator to run the protocol. The user’s state is stored by the simulator for future use.

7 The signing key has already been computed, other parts of the key may have been computed if the
user has performed an update or search operation. Also, depending on previous operations of the user,
the user’s state may or may not be empty.

43

Upon receiving LSea(uid , kw), the simulator computes the part of the user’s key and
state that have not been computed before, c.f. Footnote 7. The simulator follows protocol
Search, and patches its oracles so HT entries exist for the searched keyword and all relevant
time stamps, and these HT entries point to A lists on access policies from the leakage.
Oracles are also patched for these A lists to point to D lists, if applicable, that point
to documents, i.e. management and data tuples, from the leakage. The user’s key and
(post–update) state are kept for future use.

Upon receiving LUpd(uid , B), the simulator computes the part of the user’s key and
state that have not been computed before, c.f. Footnote 7. Then, the simulator interacts
with the adversary as prescribed by protocol Update. However, the simulator creates
dummy entries for HT , A and D, as well as dummy data tuples (using non-committing
encryption, resulting in data tuples of correct length); management tuples can be computed
as in the protocol. If there are corrupt users, the simulator uses the resulting additional
leakage to immediately patch its oracles as it does upon user corruption.

Upon receiving LRes(), the simulator executes the judge’s part of protocol Resolve,
with the adversary playing the server’s part.

Indistinguishability. The use of cpa-akc-secure MA-CP-ABE and symmetric encryp-
tion schemes implies that the adversary cannot distinguish the simulator’s dummy ci-
phertexts (in A lists, D lists, HT entries, and data tuples) from ciphertexts that would
be produced in the real setting RealdSEAC,A(Λ) as long as the adversary A is unable to
decrypt these dummy ciphertexts. However, as soon as the adversary becomes able to
decrypt, the simulator obtains leakage that it uses to patch its oracles, and as a result, the
adversary can, again, not distinguish between the real setting and the simulated setting.
This is possible due to non-committing encryption. Regarding list authenticators, the
hiding notion supports ciphertext indistinguishability, because we can sign an unknown
plaintext, publish the signature alongside the corresponding (dummy) ciphertext, and, as
soon as the plaintext becomes known, patch our random oracles so the signature is a valid
signature on the plaintext.

In either case, patching an oracle may fail if patching the oracle requires redefining a
function value of the random oracle. However, such events happen only with probabilities
negligible in the security parameter Λ.

D.2 Fork consistency and verifiability

We note that our dSEAC scheme allows the server to withhold the latest updates that
have occurred from user that have not seen these updates yet. Such behavior cannot be
prevented, because the server can simply refuse to work. Therefore, such behavior cannot
be seen as a breach of verifiability. However, if the server withholds the latest updates
from a user during an update operation, but accepts the user’s update, then a fork occurs.

Lemma 12. If dSEAC is instantiated with a euf-cma secure signature scheme and a fork
consistent authenticated append-only dictionary, then dSEAC is fork consistent.

Proof. In order for an adversary to break dSEAC’s fork consistency, the adversary needs
to compute three last completed operations lcoi, lco′i, lcoj such that one (honest) user has
successfully verified (or performed) lcoi, another (honest) user has successfully verified (or
performed) lco′i, and afterwards, both users have successfully verified lcoj , where lcoi and
lco′i contain the same timestamp.

The last completed operations take the following forms.

44

• lcoi = (i, dig i, chi, vk i, σi),

• lco′i = (i, dig ′i, ch ′i, vk ′i, σ
′
i), and

• lcoi = (j, digj , chj , vk j , σj),

where (HT i,Mani,Dat i) = dig i 6= dig ′i = (HT ′i,Man ′i,Dat ′i). Hence, we have HT 6= HT ′,

or Man 6= Man ′, or Dat 6= Dat ′.
In order for the individual operations to be verifiable, they must at least satisfy that the

σ component of a tuple is a valid signature on the first four components of the respective
tuple, using the tuple’s vk component as signature verification key. Assuming neither
signature has been successfully forged, in order for lcoj to be successfully verified, the
adversary has to produce proofs πi = (πi,HT , πi,Man , πi,Dat) and π′i = (π′i,HT , π

′
i,Man , π

′
i,Dat)

such that the following statements are true:

• AAD.VrfyAppend(VK ,HT i,HT j , i, j, πi,HT) = valid ,

• AAD.VrfyAppend(VK ,HT ′i,HT j , i, j, π
′
i,HT) = valid ,

• AAD.VrfyAppend(VK ,Mani,Manj , i, j, πi,Man) = valid ,

• AAD.VrfyAppend(VK ,Man ′i,Manj , i, j, π
′
i,Man) = valid ,

• AAD.VrfyAppend(VK ,Dat i,Dat j , i, j, πi,Dat) = valid , and

• AAD.VrfyAppend(VK ,Dat ′i,Dat j , i, j, π
′
i,Dat) = valid ,

where VK is the AAD verification key shared between the various dictionaries. However,
if the adversary has computed proofs that make all of the above statements true, then
the adversary has broken fork consistency for at least one of the dictionaries HT , Man,
or Dat , c.f. Definition 6.

Lemma 13. If dSEAC is instantiated with a euf-cma secure signature scheme and a mem-
bership and append-only-secure authenticated append-only dictionary, the dSEAC is verifi-
able.

Proof. Assume the server to provide user with a false search result, i.e. at least one SEAC
instance was skipped entirely during search (without being replaced by a notification), or
not all D lists from a SEAC instance accessible using the user’s access rights were accessed,
or not all document ciphertext pointed to in these D lists are present in the search result.

• A server capable of skipping SEAC instances must be able to break append-only-
security of the authenticated dictionaries used in dSEAC.

• A server that does not access all D list in a SEAC instance accessible using the user’s
access rights is capable of forging list authenticators (for the A list that pointes to
the D list).

• A server that does not include all documents an accessed D list points to in a search
result can forge list authenticators (for that D list).

• As an alternatively to forging list authenticators, the server may exploit maliciously
created SEAC instances that contain list authenticators on partial lists. However,
exploiting such behavior is acceptable for verifiability, although a maliciously created
SEAC instance should be reported to the judge.

45

It must be noted that an adversarial server that colludes with corrupt users cannot
exploit the exception from the last item of the above list. This is because A list authenti-
cators authenticate D list authenticators, so retroactively changing a D list authenticators
would require retroactive changes to an A list authenticators. Changing A list authenti-
cators retroactively is not possible because A list authenticators are authenticated by the
authenticated dictionaries. Therefore changing an A list authenticators requires breaking
the authenticated dictionaries’ membership security.

D.3 Forward privacy

Lemma 14. dSEAC is forward private.

Proof. dSEAC’s forward privacy follows from the update leakage LUpd(uid , B) for the case
that no user is corrupt.8 In this case, the leakage does not contain any information on
keywords contained in B, except for the total number of keywords in B. Hence, dSEAC is
forward private.

8The concept of forward privacy does not make any sense if the adversary controls a corrupt user,
because then, the adversary can use the corrupt user’s knowledge to ask whether a specific keyword is
contained in the document collection.

46

	Introduction
	Our approach to searchable encryption
	Our scenario
	Our techniques

	Formalism and building blocks
	Dynamic searchable encryption with access control
	Building blocks
	Signatures
	Append-only authenticated dictionaries
	Multi-authority attribute-based encryption
	SEAC

	Construction
	Extending SEAC
	Verifiability
	Time awareness and dependence
	Document management and versioning
	Conflict resolution

	Combining the extensions: dSEAC

	Discussion
	Comparisons in ABE policies
	Instantiating dSEAC
	Leakage in dSEAC
	dSEAC's leakage functions
	Leakage classification

	Security proofs
	Data confidentiality
	Fork consistency and verifiability
	Forward privacy

