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Abstract

In a recent work, Garg, Hajiabadi, Mahmoody, and Rahimi [GHMR18] introduced a new encryption
framework, which they referred to as Registration-Based Encryption (RBE). The central motivation
behind RBE was to provide a novel methodology for solving the well-known key-escrow problem in
Identity-Based Encryption (IBE) systems [Sha85]. Informally, in an RBE system there is no private-key
generator unlike IBE systems, but instead it is replaced with a public key accumulator. Every user in
an RBE system samples its own public-secret key pair, and sends the public key to the accumulator for
registration. The key accumulator has no secret state, and is only responsible for compressing all the
registered user identity-key pairs into a short public commitment. Here the encryptor only requires the
compressed parameters along with the target identity, whereas a decryptor requires supplementary key
material along with the secret key associated with the registered public key.

The initial construction in [GHMR18] based on standard assumptions only provided weak efficiency
properties. In a follow-up work by Garg, Hajiabadi, Mahmoody, Rahimi, and Sekar [GHM+19], they
gave an efficient RBE construction from standard assumptions. However, both these works considered
the key accumulator to be honest which might be too strong an assumption in real-world scenarios. In
this work, we initiate a formal study of RBE systems with malicious key accumulators. To that end,
we introduce a strengthening of the RBE framework which we call Verifiable RBE (VRBE). A VRBE
system additionally gives the users an extra capability to obtain short proofs from the key accumulator
proving correct (and unique) registration for every registered user as well as proving non-registration for
any yet unregistered identity.

We construct VRBE systems which provide succinct proofs of registration and non-registration from
standard assumptions (such as CDH, Factoring, LWE). Our proof systems also naturally allow a much
more efficient audit process which can be perfomed by any non-participating third party as well. A
by-product of our approach is that we provide a more efficient RBE construction than that provided in
the prior work of Garg et al. [GHM+19]. And, lastly we initiate a study on extension of VRBE to a
wider range of access and trust structures.

1 Introduction

Public-key encryption (PKE) [DH76, RSA78, GM84] has remained a cornerstone in modern-day cryptog-
raphy and has been one of the most widely used and studied cryptographic primitive. Traditionally, a
public-key encryption system enables a one-to-one private communication channel between any two users
over a public broadcast network as long as it is possible to disambiguate any user’s public key informa-
tion honestly. Over the last few decades, significant research effort has been made by the cryptographic
community in re-envisioning the original goals of public-key encryption, in turn pushing towards more ex-
pressiveness from such systems. This effort has lead to introduction of encryption systems with better
functionalities such as Identity-Based Encryption (IBE) [Sha85, Coc01, BF01], Attribute-Based Encryption
(ABE) [SW05, GPSW06], and most notably Functional Encryption (FE) [SW08, BSW11] which is meant to
encapsulate both IBE and ABE functionalities.
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Very briefly, in FE systems there is a trusted authority which sets up the system by sampling public
parameters pp along with a master secret key msk. The public parameters pp can be used by any party
to encrypt a message m of its choice, while the master key msk enables the generation of certain private
decryption keys skf for any function f in the associated function class. The most useful aspect of such systems
is that decryption now leads to users either conditionally learning the full message (as in IBE/ABE where
the condition is specified at encryption time) or learning some partial information about the message such
as f(m) (as in general FE). The security of all such systems guarantees that no computationally bounded
adversary should be able to learn anything other than what can be uncovered using the private decryption
keys in its possession.

Notably, in all such highly expressive systems it is crucial that the master key msk is never compromised as
given the master key any adversary can arbitrarily sample private decryption keys to learn desired messages.
Thus, an unfortunate consequence of adding such powerful functionalities to public-key cryptosystems is the
introduction of a central trusted authority (or key generator) which is responsible for sampling the public
parameters, distributing the private decryption keys to authorized users, and most importantly securely
storing the master secret key. Now, this could be very worrisome for many applications, since the authority
must be fully trustworthy, otherwise, it would turn out to be a single point of failure. While it would be
quite reasonable to put some trust in the central authority, it so happens that even an honest-but-curious key
generator can cause great havoc in such an environment. Specifically, any honest-but-curious key generator
can arbitrarily decrypt ciphertexts that are intended for specific recipients since it has the master key. And,
it could perform such an attack in an undetectable way. This problem is widely regarded as the “key-escrow”
problem.

While many previous works ([BF01, CHSS02, ARP03, CCV04, Goy07, PS08, Cho09, KG10] to name a
few) have suggested different approaches to solving the key-escrow problem, none of these solutions were
able to resolve the key-escrow problem completely. Very recently, in a beautiful work by Garg, Hajiabadi,
Mahmoody, and Rahimi [GHMR18], a novel approach for handling key-escrow was proposed. The central
motivation of that work was to remove the requirement of private key generators completely from IBE sys-
tems, and to that end, they introduced the notion of Registration-Based Encryption (RBE). In an RBE
system, each user samples its own public-secret key pair, and the private key generator is replaced with a
public key accumulator. Every user registers their public key and identity information with the key accu-
mulator, and the job of a key accumulator is to compress all these user identity-key pairs into a short public
commitment with efficiently computable openings. Here the commitment is set as the public parameters of
the RBE system, and the user-specific openings are used as supplementary key information during decryp-
tion. Now ideally one would expect the registration process to be time-unrestricted, that is users must be
allowed to register at arbitrary time intervals. However, this would imply that public parameters will get
updated after every registration, which could possibly lead to every registered user requesting fresh supple-
mentary key information after another user registers. Thus, to make the notion more attractive, [GHMR18]
required the following efficiency properties from an RBE system — (1) public parameters must be short,
i.e. |pp| = poly(λ, log n) where λ is the security parameter and n is the number of users registered so far,
(2) the registration process as well as the supplementary key generation process must be efficient, i.e. must
run in time poly(λ, log n), (3) number of times any user needs to request a fresh supplementary key from the
accumulator (over the lifetime of the system) is also poly(λ, log n). In short, an RBE system is meant to be
a public key accumulation service which provides efficient and adaptive user registration while avoiding the
problems associated with a private key generator.

In a sequence of two works [GHMR18, GHM+19], efficient construction of RBE systems were provided
from a wide variety of assumptions (such as CDH, Factoring, LWE, iO). Specifically, [GHMR18] gave an
efficient construction from indistinguishability obfuscation (iO) [BGI+01, GGH+13], and a weakly efficient
construction from hash garbling scheme [GHMR18]. In a follow-up work by Garg et al. [GHM+19], a
fully efficient RBE construction from hash garbling was provided. At first glance, it seems like efficient
constructions for RBE systems fill the gap between regular PKE systems (which do not suffer from key-escrow
but also do not provide any extra functionality) and IBE systems (which permit a simpler identity-based
encryption paradigm but suffers from key-escrow). However, it turns out there is still a significant gap due to
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which even RBE systems potentially could be surprisingly compromised due to a corrupt key accumulator.
To better understand the gap, let us look back at the excerpt from Rogaway’s essay [Rog15] which was one
of the prompts behind the initial work on RBE in [GHMR18]:

“[. . . ] But this convenience is enabled by a radical change in the trust model: Bob’s secret key
is no longer self-selected. It is issued by a trusted authority. That authority knows everyone’s
secret key in the system. IBE embeds key-escrow indeed a form of key-escrow where a single
entity implicitly holds all secret keys even ones that haven’t yet been issued. [. . . ] ”

Now an RBE system solves the problem of self-selection of Bob’s (or any user’s) secret key faced in IBE
systems, that is during honest registration every user samples its own public-secret key pair. However, the
embedding key-escrow problem is still not directly prevented by the RBE abstraction. This is because a
dishonest key accumulator could potentially add either certain trapdoors, or secretly register multiple keys
for already registered users, or register any key for currently unregistered users. There could be many such
scenarios in which malicious behavior of a key accumulator permits decryptability of ciphertexts intended
towards arbitrary users by the key accumulator depending upon its adversarial strategy. Although such
attack scenarios were not explicitly studied in the prior works [GHMR18, GHM+19], an extremely useful
by-product of the approaches taken in those works was that the user registration process (and all the
computations performed by the key accumulator) was completely deterministic. It thus leads to an extremely
simple and elegant methodology for avoiding the embedding key-escrow problem by providing full public
auditability. Basically, any user (or even a non-participating third party) could audit key accumulator and
verify honest behavior by rebuilding the RBE public parameters and comparing that with the accumulated
public parameters. As honestly generated public parameters do not have any trapdoors or faulty keys
embedded by construction, thus public auditability solves the embedding key-escrow problem.

Although the above deterministic reconstructability feature of the RBE systems serves as a possible
solution to embedding key-escrow problem, this is not at all efficient. Concretely, if any new (or even already
registered) user wants to verify that the key accumulation has been done honestly, then that particular user
needs to obtain a O(n) (linear-sized) proof as well as spend O(n) (linear amount of) time for verification,
where n is the number of users registered until that point. In this work, we study the question of whether
we can build RBE systems in which such verifications could be sped up. Specifically, we ask the following:

Do there exist efficient Registration-Based Encryption schemes in which any user can obtain
short proofs of unique registration as well as short proofs of non-registration? Can such proof
mechanisms be useful for speeding up the auditability process? Is it even possible to provide all
such guarantees with only a poly(λ, log n) cost incurred in the size of proof and running time of
provers/verifiers?

We answer the above questions in affirmative by introducing a notion of efficient verifiability for RBE
systems and providing an instantiation from hash garbling schemes [GHMR18] thereby giving constructions
based on standard assumptions (such as CDH, Factoring, LWE). Concretely, our contributions are described
below.

Our results. In this work, we introduce a new notion for key accumulation which we call Verifiable
Registration-Based Encryption (VRBE). Briefly, a VRBE system is simply a standard RBE system in which
the key accumulator can also provide proofs of correct (and unique) registration for every registered user as
well as proofs of non-registration for any yet unregistered identity. We give new constructions for VRBE
from hash garbling schemes which provide succinct proofs of registration and non-registration, where the
key accumulator can efficiently carry out the registration and proof generation processes. Our proof systems
also naturally allow a much more efficient audit process which can be performed by any non-participating
third party as well. A by-product of our approach is that we provide a more efficient RBE construction
than that provided in the most recent work of Garg et al. [GHM+19], wherein the size of ciphertexts in
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our construction is significantly smaller.1 And, lastly we briefly discuss how the notion of VRBE can also
be naturally extended to a wider range of access and trust structures, wherein the keys accumulated are no
more associated with a PKE system, but for even more expressive encryption systems. Such systems might
be practically more interesting in the future.

Next, we provide a detailed overview of our approach and describe the technical ideas. Later on, we
discuss some related works.

1.1 Technical overview

We start by recalling the notion of RBE as it appears in prior works. We then discuss our proposed
notions of efficient verifiability for such systems. Since the starting point of our construction is the RBE
scheme proposed in [GHM+19], thus we first recall the main ideas and high-level structure of their approach.
And, later we describe our construction and show how to provide succinct proofs of registration and non-
registration for any user identity, thereby adding verifiability to the system.

The RBE abstraction. In an RBE system, there is a dedicated party which we call the key accumulator.
A key accumulator runs the registration procedure indefinitely2, where any user could make one of two types
of queries — (1) registration query, where a new user sends in its identity and public key pair (id, pk) for
registration, (2) update query, where an already registered user requests for supplementary key material
u which is used for decryption. (The supplementary key material is usually referred to as the update
information.) The key accumulator maintains the public parameters pp along with some auxiliary information
aux throughout its execution. After each registration query of the form (id, pk), it updates the parameters
to pp′ and aux′ to reflect addition and sends back the associated key material u to the corresponding user.
For each update query made by a user with identity id, the accumulator extracts an update u from the
auxiliary information aux and sends it over to the user. The encryption and decryption procedures are
defined analogous to the IBE counterparts, except during decryption a user needs a piece of appropriate
update information u to complete the operation.

At a high level, the correctness requirement states that any honestly registered user with identity id and
key pair (pk, sk) must be able to decrypt a ciphertext encrypted for identity id under public parameters
pp (which could have been updated after id was registered) using its own secret key sk as long as it also
gets an update information u corresponding to pp from the accumulator. For efficiency, it is important
that the size of public parameters pp, size of update information u, and the number of updates required
by any user throughout its lifetime grow at most poly-logarithmically with the number of registered users
n. Additionally, the registration process and update generation should run in time poly(λ, log n). Lastly,
for security, it is essential that a ciphertext encrypting a message m for identity id under parameters pp
should hide the message as long as either id was not registered by the time pp was computed, or the key pair
registered with identity id was honestly sampled and the corresponding secret key is unknown to an attacker.

Inadequacies of RBE and Workarounds. Now as we discussed before, the above abstraction still suffers
from the embedding key-escrow problem. Specifically, the RBE system does not provide any abstraction for
efficiently verifying whether a dishonest key accumulator — (1) secretly registers a public-secret key pair for
any yet unregistered identity, (2) or while registering any new user (or even at any later point in time), also
introduces a trapdoor (or register multiple keys for the same identity) that enables unauthorized decryption.
For this specific reason, we study the possibility of efficient verifiability for RBE systems. Concretely, we
consider two orthogonal notions of verifiability for an RBE scheme — pre-registration and post-registration
proofs. Intuitively, the goal of pre-registration verifiability is to provide a short proof π validating that a
given id has not yet been registered as per public parameters pp and any ciphertext ct encrypted towards

1Looking ahead, our efficiency gain is due to the fact that our construction takes a one-shot (single-step) approach
whereas [GHM+19] takes a two-step approach. Here the outcome of a two-step approach is that the ciphertext consists of
two layers of cascaded garbled circuits, while our solution consists of a single sequence of garbled circuits.

2It could run it sporadically as well, where it simply records all new registrations made in a certain time window, and later
registers them all at once. For simplicity, here we consider the key accumulator is always online.
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such an identity id will completely hide the plaintext even if all other secret keys are leaked. Similarly, the
intuition behind post-registration verifiability is to provide a short proof π of unique accumulation, where
the proof π guarantees that the key accumulator must not have added a trapdoor (or doubly registered)
during a possibly dishonest registration which allows decryption of ciphertexts intended for that particular
user. (Looking ahead, our formal definitions of pre/post-registration verifiability are stated in a much
stronger way where we allow an adversary to completely control the key accumulator and still require the
soundness/message-hiding property to hold.)

Defining Verifiable RBE. Formally, a verifiable RBE system is just like a regular RBE system with four
additional (deterministic) algorithms — PreProve, PostProve, PreVerify, and PostVerify. The pre-registration
prover takes as input a common reference string crs, public parameters pp, and a target identity id for
which a proof π of pre-registration is provided. The post-registration prover on the other hand also takes
a target public key pk as input. Both these provers are given random-access to the auxiliary information
for time-efficient computation. Informally, the completeness of these proof systems states that the pre/post-
registration verifier should always accept honestly generated proofs. And for soundness, the requirement is
that if the pre-registration verifier accepts a proof π for an identity id w.r.t. parameters pp, then ciphertexts
encrypted towards id must hide the message completely from a malicious key accumulator which computes
the parameters pp and proof π. Similarly, for post-registration soundness, the property states that if the
verifier accepts a proof π for identity-key pair (id, pk) w.r.t. parameters pp, then ciphertexts encrypted
towards id must hide the message completely from a malicious key accumulator as long as the accumulator
does not possess the secret key sk associated with the public key pk.

Stronger correctness guarantees. In addition to above-stated properties, we also define a very strong form
of extractable correctness property for our post-registration proof. Concretely, the extractable correctness
property states that there exists a deterministic update extraction algorithm such that if there exists an
accepting post-registration proof π for identity-key pair (id, pk) w.r.t. parameters pp, then the extraction
algorithm computes update information u from the proof π itself such that using update u, anybody could
decrypt ciphertexts encrypted for identity id. Intuitively, extractable correctness states that completeness
would still hold even for maliciously generated proofs. Our definitions are formally introduced later in Sec-
tion 3.

A simple paradigm for efficient auditability. Looking back at our verifiability properties, one could
interpret them as follows. The pre/post-registration proofs together help in ensuring that a key accumulator
is behaving honestly at least locally. The idea behind a more global verification process is to perform
the pre/post-registration verification on a randomly chosen (small) subset of users similar to what is done
in probabilistically-checkable proof (PCP) literature. Specifically, suppose that a party claims that it has
accumulated public parameters pp with the list of registered users R and non-registered users S. Any
third party can efficiently audit the registration process by proceeding as follows — it samples a random
subset of users in R and S, it requests post-registration and pre-registration proofs for users in those subsets
respectively. If all the proofs are valid, then the auditor approves declaring that registration was done
honestly. Note that depending upon the desired soundness threshold, the auditor can appropriately set the
size of the subsets it samples. Thus, such randomized auditing would be more efficient than rebuilding the
entire registration logs for most parameter regimes.

Reviewing prior RBE systems [GHMR18, GHM+19]. Before outlining our approach, we quickly
recall the high-level structure used in prior works [GHMR18, GHM+19] since our construction uses similar
building blocks. Let us first look at the weakly efficient RBE construction provided in [GHMR18] since it
lays major groundwork for the follow-up works (including ours). At a high level, the ideas behind their
construction can be summarized as follows. The key accumulator stores all the registered identity-key pairs
{(idi, pki)}i∈[n] using a shortlist of Merkle tree Tree1,Tree2, . . . ,Treek, where every tree Treei is at least twice

as large as Treei+1. Here the leaves of each tree encode one of the registered identity-key pairs (id, pk), while
the internal nodes are like standard Merkle tree nodes (which is that they encode the hash of its children)
except each node also stores the largest identity registered in its left sub-tree as well. In words, each tree
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Treei is binary search Merkle tree, with all the leaves are lexicographically sorted as per the identities.
Consequently, the public key of any registered identity can be obtained efficiently via a binary search, and
the root values of each Merkle tree serve as a short commitment to the entire registry tree. To encrypt a
message m to identity id, encryptor needs to search the Merkle trees to obtain id’s public key pk. However,
the public parameters only contain the root node, not the entire tree. To overcome this issue, the [GHMR18]
construction uses the ideas developed in a long line of works [CDG+17, DG17a, DG17b, BLSV17, DGHM18]
of deferring the binary search to the decryption side by sending a set of garbled circuits as part of the
ciphertext. Basically, for decryption, a user needs to obtain an opening (i.e., path of nodes from root to
leaf) in one of the merkle trees to its registered key, and this corresponds to the supplementary key material.
Now, what makes the registration process only weakly efficient is that in order to register an identity-key
pair (id, pk), the key accumulator creates a new tree consisting of only node (id, pk), and then merges all
merkle trees of equal size. This helps in keeping the size of the public parameters short, but since the leaves
of the merkle trees have to be sorted, thus tree merging process is quite inefficient which results in only a
weakly efficient system.

In the follow-up work [GHM+19], the authors observed that the weakly efficient RBE construction de-
scribed above is fully efficient if the identities being registered are already coming in sorted order. They call
RBE schemes with these restrictions as Timed-RBE (T-RBE). Starting with this observation, they suggest
a powerful two-step approach for building an efficient RBE system without this restriction, i.e. they provide
a nice bootstrapping construction from T-RBE to general (non-timed) RBE with full efficiency. In their
construction, the key accumulator associates every identity id with a timestamp tid as well, where tid is an
internal counter incrementally maintained by the accumulator. The idea is that since timestamps tid will
be accumulated in a sorted order, thus for storing the association between the timestamp tid and public
key pkid one could simply use T-RBE scheme. And, for storing the association between identity id and
timestamp tid, the accumulator maintains a balanced merkle tree TimeTree. The leaves of TimeTree encode
the identity-timestamp pairs (id, tid) for all registered users, and are sorted as per the identities. The most
crucial aspect of TimeTree is that it is balanced (for instance, they use a red-black tree). Let us look into
more details about how such an additional balanced merkle tree is useful in improving efficiency.

The key accumulator stores all the registered identity-timestamp pairs {(idi, i)}i∈[n] using a balanced

merkle TimeTree, and stores the timestamp-key association using a short list of (standard) merkle trees
{Treej}j as in [GHMR18]. The public parameters consists of multiple versions of the root node of the
TimeTree along with the root nodes for {Treej}j . (Specifically, the public parameters store the root node
and depth information of TimeTree for all timestamps whenever the underlying T-RBE merkle tree was
updated.) To register an (id, pk) pair, the key accumulator inserts the identity-timestamp pair (id, tid) into
TimeTree, and timestamp-key (tid, pkid) to the sequence of T-RBE trees. The most important aspect of the
construction is that if the T-RBE trees storing timestamp-key associations are merged, then the versions of
root nodes being stored in the public parameters are updated as well. Next, let us look at how encryption
and decryption are performed since the efficiency of registration follows almost immediately.

While encrypting message m for identity id, the encryptor now provides two levels of garbled circuit
sequences, where the first level of garbled circuit sequence is used to find the timestamp tid associated
with id, and in next level one simply uses the T-RBE garbled circuit sequence to encrypt m under the
corresponding public key pk. For building both levels of garbled circuit sequences, they employ the same
approach of deferring binary search to decryption. The supplementary key material (or update) consists of
two distinct paths, where the first path is w.r.t. the TimeTree and the second path is as per the T-RBE
system which is w.r.t. one of the merkle trees in {Treej}j . The most important component of this extended

construction is that in order to tightly bound the number of updates (for any user identity id), the first
portion of key material/update u (required for evaluating the first level of garbled circuits) are only issued
whenever the first T-RBE merkle tree in which identity id was registered gets merged. It turns out that
executing the above idea formally leads to an efficient RBE scheme.

Our Verifiable RBE solution. The starting point of our construction is the [GHM+19] RBE scheme
described above. As a first step, we start by simplifying their construction and present a one-shot (single-
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step) approach to building efficient RBE systems. Later we describe how the simplified system can be made
verifiable, both in pre-registration and post-registration settings, without making any additional assumptions.
Lastly, we provide some comparisons and discuss potential black-box methods for making existing RBE
schemes verifiable.

Although the basic principles behind our simplified construction and the one provided in [GHM+19] are
quite similar, there are significant structural differences in both the approaches. Therefore, we provide a
direct outline of our construction instead of going through the [GHM+19] construction and explaining the
differences. Later on, we briefly compare our construction with theirs. Below we sketch the main ideas
behind our construction. The actual construction is a little more complicated but follows quite naturally
from the following outline. A detailed description appears later in Section 4.

In our construction, the key accumulator maintains a single balanced merkle tree which directly stores
the mapping between identities and their respective public keys. Concretely, the key accumulator stores a
balanced merkle tree which we call EncTree and it consists of two types of nodes — leaf and intermediate.
Similar to existing works, a leaf node stores a identity-key pair (id, pk) for every registered identity, whereas
an intermediate node stores a tuple of the form (hleft, id, hright), where hleft and hright are hash values of its
left and right child (respectively) and id is the largest identity in its left sub-tree. Since EncTree is balanced
and the nodes are ordered as per the registered identities, therefore given an identity id the key accumulator
could both efficiently search its associated public key (if id has been registered) and efficiently insert a new
identity-key pair. The key accumulator stores EncTree as auxiliary information aux, and publishes root
value rt and depth d of the tree as part of public parameters pp. The registration algorithm inserts given
identity-key pair (id, pk) as a leaf in the EncTree, balances the tree, and updates the hash values stored in
all the ancestors of the newly inserted leaf. The registration algorithm then updates the public parameters
pp to store the root value and depth of the updated EncTree.

Encryption and Decryption. The encryption and decryption procedures follow the aforementioned ‘de-
ferred binary search’ approach in which the ciphertext for identity id contains a sequence of d garbled circuits
which work as follows. Given a path (a sequence of nodes from root to a leaf) in EncTree as input, the se-
quence of garbled circuits jointly check that the path is well-formed, and the leaf node encodes the identity id,
and outputs a PKE ciphertext under the public key encoded in the leaf node. Individually, the ith garbled
circuit performs the local well-formedness check on the path and outputs the garbled input for (i + 1)th

garbled circuit. For decryption, the decryptor needs to obtain a valid path u from the accumulator which
can be efficiently generated by the accumulator by performing a binary search on the EncTree. Given a
well-formed path, the decryptor can sequentially evaluate the garbled circuits and eventually obtain a PKE
ciphertext which it decrypts using its secret key.

How to get the desired efficiency? The snapshotting trick. The above scheme is highly inefficient
since updates must be issued each time a new user joins. At a very high level, we visualize our approach to
improve efficiency as that of storing multiple ‘snapshots’ of the registration process, where an older snapshot
is deleted only after new user registration leads to a new snapshot that is used by as many number of users
as those using the older snapshot.3 The intuition is to split the registered user space into disjoint groups
of sizes — 1, 2, 4, . . . , 2λ. For each group size, the public parameters will consist of at most one snapshot
which consists of root node and depth information of (a possibly older version of) the balanced merkle tree
EncTree.

Concretely, the public parameters look like
{

(j1, snapshotj1), . . . , (j`, snapshotj`)
}

where every ji ∈ {1, 2,

. . . , 2λ}, and ji > ji+1, and snapshotji consists of a root node and tree depth. These public parameters are
interpreted as follows:

(1) the first j1 users who registered refer to the EncTree corresponding to snapshotj1 for decryption/obtaining
update information;

3The snapshotting trick was implicitly used in [GHM+19] for similar reasons which is to build an efficient RBE scheme,
but their construction instead highlighted the notion of explicitly mapping identities to corresponding timestamps as the more
important aspect. Here we instead choose to focus mostly on the snapshotting principle since it is the major contributor in
improving efficiency.
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(2) next j2 users who registered refer to the EncTree corresponding to snapshotj2 ;
...

(`) and similarly the last j` users to register refer to the EncTree corresponding to snapshotj` .

Basically, the key accumulator still adds new users to the single balanced merkle tree EncTree defined before,
but now it also stores older snapshots of the EncTree (thereby older snapshots of the registration process).
When a new user is added then a tuple (1, snapshot) is added to list of parameters, where snapshot is the latest
description of EncTree. Now older snapshots get replaced with latest snapshots, after new user registration,
if there exist two different snapshots but for same group size. By careful analysis and non-trivial execution
of the above idea, we were able to show that the resulting RBE scheme is efficient. (Hereby non-trivial
execution we mean that a straightforward implementation/black-box usage of balanced merkle trees lead
to an RBE system which is only efficient in the amortized sense, but if the balanced merkle tree are lazily
created then we obtain a fully efficient RBE scheme as desired. More details are provided in the main body.)

Making RBE Verifiable. It turns out that our simplified RBE construction is already very well suited
for providing succinct proofs of pre/post-registration. This is due to the fact that the underlying technology
being used is a merkle tree for which we know how to provide succinct proofs of membership, and since
the merkle trees we are building are balanced and sorted, thus we also can provide succinct proofs of non-
membership. Looking ahead, the proofs of pre-registration will consist of proofs of non-membership, and
proofs of post-registration would be a combination of proofs of membership and non-membership.

Pre-Registration Proofs. For ease of exposition, consider that the public parameters contain exactly
one root node and depth value (rt, d). The idea behind pre-registration proof readily extends to the general
case when the public parameters contain more than one root node and depth value pairs. Recall that for
soundness of pre-registration verifiability we need to argue that if the adversary produces an accepting pre-
registration proof π for an identity id and parameters pp, then any ciphertext ct encrypted towards id under
parameters pp must hide the plaintext. Now we know that in our construction, in order to decrypt such a
ciphertext ct the adversary must be able to generate a well-formed path in the encryption tree EncTree such
that the leaf node contains the identity id.

Here well-formedness of a path (a sequence of nodes from root to a leaf) is formally defined as follows.
Let the path under consideration be path = (node1, . . . , noded) where nodei = (hi,left, idi, hi,right) for all i. We
say path is well-formed if the following conditions are satisfied:

1. All the adjacent nodes obey the merkle tree hash constraints, i.e. either hi,left = Hash(hk, nodei+1) or
hi,right = Hash(hk, nodei+1) for all i,

(this also tells whether nodei+1 is a left child or a right child of nodei)

2. If nodei+1 is the left child of nodei, then it must be that idj ≤ idi; otherwise idj > idi, (for all j > i)

3. Root rt is same as node1.

Similarly, we define the notion of adjacent paths. For b ∈ {0, 1}, consider two paths path(b) = (node
(b)
1 , . . . , node

(b)
d )

where node
(b)
i = (h

(b)
i,left, id

(b)
i , h

(b)
i,right). For two distinct paths path(0) and path(1), we say they are adjacent if

the following conditions are satisfied:

1. Paths path(0) and path(1) are well-formed,

2. Nodes node
(0)
k+1 and node

(1)
k+1 are left and right child (respectively) of nodes node

(0)
k and node

(1)
k

(where k is the largest index such that first k nodes in paths path(0) and path(1) are identical)

3. For all j > k + 1, nodes node
(0)
j and node

(1)
j are right and left child of their respective parent nodes

(where k is as defined above).
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At this point, the pre-registration proofs follow from a natural observation which is that — if some identity
id has not yet been registered as per the encryption tree EncTree (maintained by the key accumulator),
then there must exist two identities idlwr and idupr such that idlwr < id < idupr and paths from the root
node to leaf nodes containing idlwr and idupr are adjacent. That is, a pre-registration proof consists of two
adjacent paths pathlwr and pathupr with identity relations as described above.4 Now such proofs can be very
efficiently computed by performing an extended binary search for id, where the extension corresponds to
finding the closest registered identities both larger and smaller than id. Note that a verifier can perform the
adjacency-check along with the check that the identities are arranged as idlwr < id < idupr for verifying the
pre-registration proof.

In summary, the idea is that proof of pre-registration for an identity id can be provided using structured
proofs of membership for two identities idlwr and idupr, where the structure is formalized by the concept
of adjacency as described above. The proof of soundness and correctness builds upon the aforementioned
intuition and is provided in detail later in the main body.

Post-Registration Proofs. As in the case for pre-registration proofs, let us focus on the case where
the public parameters contain a single root node and depth pair. Recall that an accepting post-registration
proof π for identity-key pair (id, pk) w.r.t parameters pp must guarantee that a key accumulator uniquely
added the identity-key pair (id, pk) to accumulated list of registered users. The post-registration proofs in
our construction can also be visualized similar to the pre-registration proofs.

Specifically, observe that if some identity id has been registered as per the encryption tree EncTree
(maintained by the key accumulator), then there must exist two identities idlwr and idupr such that idlwr <
id < idupr and paths from the root node to leaf nodes containing idlwr and id, and id and idupr are adjacent. In
other words, if identity id was uniquely registered, then there must exist three disjoint paths pathlwr, pathmid

and pathupr such that pathlwr, pathmid are adjacent as well as pathmid, pathupr with the identities in their
respective leaf nodes are related as described above.5 As for pre-registration proofs, the aforementioned
post-registration proof can be computed analogously in an efficient manner. The verification procedure can
also be naturally extended from pre-registration proof.

There is however one important distinction in the case of post-registration proofs. Note that a pre-
registration proof w.r.t. public parameters that contain multiple root node and depth pairs simply consist
of independently computed pre-registration proofs for each root node and depth pair. This is because each
sub-proof would guarantee that id was not registered as per that corresponding encryption tree snapshot.
Thus, together all these sub-proof would guarantee that id was not registered as per any existing encryption
tree snapshot. On the other hand, a post-registration proof w.r.t. public parameters with multiple root node
and depth pairs will not consist of independently computed post-registration proofs for each root node and
depth pair. This is because it is possible that the identity-key pair (id, pk) is registered as per only one
root node and depth pair (say the latest snapshot), whereas it is not registered as per remaining (older)
snapshots. Therefore, a post-registration proof, in this case, will consist of a mixture of post-registration and
pre-registration proofs depending upon whether (id, pk) was registered as per that encryption tree snapshot.

A black-box approach to verifiability? A natural question a reader might ask is whether it would
be possible to provide proofs of pre/post-registration verifiability generically for any RBE scheme by using
a succinct non-interactive proof system such as SNARGs/SNARKs [Mic94, Gro10, GW11, Lip12, BC12]
for instance. One possible approach along these lines could be to maintain an external sorted hash tree of
registered identities, and for providing a pre/post-registration proof the accumulator would generate (non-
)membership proofs for the hash tree along with a SNARK for proving the consistency of the external tree
w.r.t. the RBE public parameters. Such a black-box approach seems possible, but would require maintaining
additional data structures for consistency checks. More importantly, this approach necessitates making

4In case id is either smaller or larger than all registered identities, then the proof will consist of exactly one path instead of
two. Here we ignore that for simplicity.

5As before, in case id is either the smallest or largest registered identity, then the proof will consist of exactly two paths
instead of three. Here we ignore that for simplicity.
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additional assumptions as for most succinct non-interactive proof systems we either need to make certain
non-falsifiable assumptions [Nao03, GW11], or work in the Random Oracle model [Mic94, BR93]. Our
construction and the proofs of verifiability do not rely on any extra assumptions other than what is already
required in existing RBE systems [GHMR18, GHM+19] themselves, thus our results show that verifiability
comes for free.

Also, note that SNARKs are usually defined for a family of circuits, thus the running time of prover is
always as large as the size of the circuit, whereas in this case our provers already have random-access over the
auxiliary information and we were able to provide highly efficient provers in which the running time of prover
grows only poly-logarithmically with the number of users. Therefore, our non-black-box approach is more
interesting both theoretically as well as practically, since we do not make any non-standard assumptions,
nor do we incur an additional overhead in the efficiency.

1.2 Related Work and Future Directions

The problem of reducing the amount of trust put behind private key generators (PKGs) in an IBE envi-
ronment has been well studied. Initial attempts were made by Boneh and Franklin [BF01] who suggested
the use of multiple PKGs, instead of just one, with the goal of decentralizing the PKG thereby preventing
PKGs from being a single target of corruption. This idea was further explored in many subsequent works
([CHSS02, LBD+04, PS08, KG10] to name a few). Later on, Goyal [Goy07] considered an alternate ap-
proach in which he studied the notion of accountable authority IBE. In such a system, the goal is to make
the PKG accountable by requiring that any malicious activity by the PKG (which could involve distributing
decryption keys to unauthorized users) can be traced back to the cheating authority. Goyal [Goy07] was able
to show that Gentry’s scheme [Gen06] was already an accountable IBE scheme, and additionally provided
a different construction based on DBDH assumption. In follow-up work, [GLSW08] gave a construction of
black-box accountable authority IBE from DBDH Assumption where tracing guarantee was much stronger.

Al-Riyami and Paterson [ARP03] put forward the notion of “Certificateless” Public Key Cryptography
in which the key generation process is split between a central authority and the user. The authority first
generates a key pair, where the private key is now the partial private key of the user. The remainder of the
key is a random value generated by the user and is never revealed to anyone, not even the authority. A very
crucial bottleneck in such systems is that an encryptor needs to obtain additional information about the
user from the authority before encrypting a message. Building on this, [CCV04] proposed a similar setting
and gave a construction based on [BF01] scheme.

Another line of work has been centered around trying to solve the key escrow problem by relying on
anonymous IBE [BCOP04]. This approach was originally studied in [Cho09], where the intuition was that
since in an anonymous IBE system ciphertexts hide the recipient identity, therefore key generation authority’s
ability to decrypt the ciphertext is adversely affected whenever there is some min-entropy in the space of
identities (e.g. biometric identities). A similar approach was later taken in [WQT18] as well.

The most recent approach to solving the key escrow problem is of registration-based encryption (RBE) [GHMR18]
which is the starting point of this work. The initial solutions [GHMR18] for RBE from standard assumptions
could only provide a weak notion of efficiency, where the weakness was quantified using the running time
of the key accumulator (entity responsible for user registration) which in the worst-case grows linearly with
the number of registered users n. In a follow-up work [GHM+19], the authors were able to get around
weak efficiency restriction, thereby giving the first fully efficient RBE scheme from standard assumptions.
In [GHM+19] the authors also studied the anonymous version of RBE problem and were able to show in-
teresting connections between anonymous RBE and secure messaging tasks. They were able to build a
new primitive which they called anonymous board communication (ABC) generically from any anonymous
RBE scheme. The ABC primitive proposed follows in the long line of work on practical scenarios of secure
messaging [RMS18, CF10, CBM15, BSJ+17, AKTZ17, UDB+15, CCD+17, CB95].

In this work, we extend the notion of RBE by introducing the concept of efficient verifiability of registra-
tion. In addition to studying Verifiable RBE, we also propose an extension of RBE to a possibly more natural
and broader setting which we call Universal RBE. We formally define it in Appendix A. At a high level, a
URBE system is meant to extend the notion of registration-based encryption to more expressive encryption
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systems as well. Informally, the idea is that a URBE system allows users to register public keys for more
expressive encryption systems such as IBE, ABE, etc. It turns out that existing (V)RBE constructions very
naturally extend to the setting of (V)URBE as well. We will elaborate more on this in the full version. Also,
unlike the work of [GHM+19], we do not study blindness of our VRBE schemes. Although it seems that
our VRBE construction might already satisfy the blindness properties as defined in [GHM+19], we chose to
mainly focus on studying verifiability.

Lastly, throughout this paper we work in the common reference string (CRS) model, that is we assume
that a hash key is sampled honestly by some trusted party and included as part of the common reference
string crs. Thus, in our setting a malicious key accumulator is allowed to arbitrarily perform corruptions,
except being allowed to choose the hash key (i.e., the crs). It is a very interesting question whether Verifiable
RBE systems are possible in the standard model. At first glance, it might seem like Verifiable RBE in the
standard model might be impossible and it might be possible to extend the impossibility results such as the
impossibility of key-less collision-resistant hash functions, and SNARGS in the standard model [GW11] to
the VRBE setting as well. But this needs more research and we leave it as an interesting open problem.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We denote the set of all positive integers upto
n as [n] := {1, 2, . . . , n}. Throughout this paper, unless specified, all polynomials we consider are positive
polynomials. For any finite set S, x ← S denotes a uniformly random element x from the set S. Similarly,
for any distribution D, x← D denotes an element x drawn from distribution D. The distribution Dn is used
to represent a distribution over vectors of n components, where each component is drawn independently
from the distribution D. Additionally, whenever we define a summation of the form sumi =

∑
j∈[i] f(j) for

some function f , then we always define sum0 = 0. That is, summation over an empty set is denoted with 0.

2.1 Public Key Encryption

A public key encryption (PKE) scheme PKE for message spaces M = {Mλ}λ consists of the following
polynomial-time algorithms.

Setup(1λ)→ (pk, sk). The setup algorithm takes as input the security parameter λ, and outputs a public-
secret key pair (pk, sk).

Enc(pk,m ∈Mλ)→ ct. The encryption algorithm takes as input a public key pk and a message m, and
outputs a ciphertext ct.

Dec(sk, ct)→ m. The decryption algorithm takes as input a secret key sk and a ciphertext ct, and outputs
a message m.

Correctness. A PKE scheme E for message spacesM is said to be correct if for all λ, m ∈Mλ, (pk, sk)←
Setup(1λ), and ct← Enc(pk,m), we have that Dec(sk, ct) = m.

Security. The standard security notion for PKE schemes is IND-CPA security. Formally, it is defined as
follows.

Definition 2.1. A public key encryption scheme PKE = (Setup,Enc,Dec) is IND-CPA secure if for every
stateful PPT adversary A, there exists a negligible function negl(·), such that the following holds

Pr

[
A(ct) = b :

(pk, sk)← Setup(1λ); b← {0, 1}
(m0,m1)← A(pk); ct← Enc(pk,mb)

]
≤ 1

2
+ negl(λ).
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2.2 Hash Garbling

We now review the notion of hash garbling scheme introduced in [GHMR18].

Setup(1λ, 1`)→ hk. The setup algorithm takes as input the security parameter λ, an input length parameter
`, and outputs a hash key hk.

Hash(hk, x)→ y. This is a deterministic algorithm that takes as input a hash key hk and a value x ∈ {0, 1}`
and outputs a value y ∈ {0, 1}λ.

GarbleCkt(hk, C, state)→ C̃. It takes as input hash key hk, a circuit C, a secret state state ∈ {0, 1}λ and
outputs a garbled circuit C̃.

GarbleInp(hk, y, state)→ ỹ. It takes as input hash key hk, a value y ∈ {0, 1}λ, a secret state state ∈ {0, 1}λ
and outputs a garbled value ỹ.

Eval(C̃, ỹ, x)→ z. This takes as input a garbled circuit C̃, a garbled value ỹ, a value x ∈ {0, 1}` and outputs
a value z.

We now state the correctness and security requirements for a hash garbling scheme.

Correctness. A hash garbling scheme is said to be correct if for all λ ∈ N, ` ∈ N, hash key hk ←
Setup(1λ, 1`), circuit C, input x ∈ {0, 1}`, state ∈ {0, 1}λ, garbled circuit C̃ ← GarbleCkt(hk, C, state) and a
garbled value ỹ ← GarbleInp(hk,Hash(hk, x), state), we have Eval(C̃, ỹ, x) = C(x).

Security. We now define the security requirement for hash garbling scheme.

Definition 2.2. A hash garbling scheme is said to be secure if there exists a PPT simulator Sim such that
for every stateful PPT adversary A, there exists a negligible function negl(·) such that for every λ, ` ∈ N, we
have

Pr

A(C̃b, ỹb) = b :

hk← Setup(1λ, 1`); (C, x)← A(hk); state← {0, 1}λ
C̃0 ← GarbleCkt(hk, C, state); ỹ0 ← GarbleInp(hk,Hash(hk, x), state)

(C̃1, ỹ1)← Sim(hk, x, 1|C|, C(x)); b← {0, 1}

 ≤ 1

2
+ negl(λ).

3 Verifiable Registration Based Encryption

In this section, we define the notion of Verifiable Registration Based Encryption (VRBE). First, we recall
the definition of Registration Based Encryption (RBE) as introduced in [GHMR18]. For message space
M = {Mλ}λ and identity space ID = {IDλ}λ, an RBE system consists of the following algorithms —

CRSGen(1λ)→ crs. The CRS generation algorithm takes as input the security parameter λ, and outputs a
common reference string crs.

Gen(1λ)→ (pk, sk). The key generation algorithm takes as input the security parameter 1λ, and outputs
a public-secret key pair (pk, sk). (Note that these are only public and secret keys, not the encryp-
tion/decryption keys.)

Reg[aux](crs, pp, id, pk)→ pp′. The registration algorithm is a deterministic algorithm, that takes as input
the common reference string crs, current public parameter pp, an identity id to be registered, and
a corresponding public key pk. It maintains auxiliary information aux, and outputs the updated
parameters pp′. The registration algorithm is modelled as a RAM program where it can read/write to
arbitrary locations of the auxiliary information aux. (The system is initialized with pp and aux set to
ε.)
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Enc(crs, pp, id,m)→ ct. The encryption algorithm takes as input the common reference string crs, public
parameters pp, a recipient identity id, and a plaintext message m. It outputs a ciphertext ct.

Updaux(pp, id)→ u. The key update algorithm is a deterministic algorithm, that takes as input the public
parameters pp and an identity id. Given the auxiliary information aux, it generates the key update
u ∈ {0, 1}∗. Similar to the registration algorithm, this is also modelled as a RAM program, but it is
only given read access to arbitrary locations of the auxiliary information aux.

Dec(sk, u, ct)→ m/GetUpd/ ⊥ . The decryption algorithm takes as input a secret key sk, a key update u,
and a ciphertext ct, and it outputs either a message m ∈M, or a special symbol in {⊥,GetUpd}. (Here
GetUpd indicates that a key update might be needed for decryption.)

Next, we introduce the notion of verifiability for an RBE system. Here we consider the notions of pre-
registration as well as post-registration verifiability. Intuitively, the goal of pre-registration verifiability is to
provide a short proof validating that a given id has not yet been registered and any ciphertext encrypted
towards such an identity will completely hide the message even if all other secret keys are leaked. Similarly,
the intuition behind post-registration verifiability is to provide a short proof of unique addition, where the
proof guarantees that the key accumulator (i.e., the party responsible for registration) must not have added
a trapdoor during a possibly dishonest registration which allows decryption of ciphertexts intended for that
particular user. Formally, we introduce four new algorithms — PreProve,PreVerify,PostProve,PostVerify with
the following syntax:

PreProveaux(crs, pp, id)→ π. The pre-registration prover algorithm is a deterministic algorithm, that takes
as input the common reference string crs, public parameters pp, and an identity id. Given the auxiliary
information aux, it outputs a pre-registration proof π. Similar to the registration algorithm, this is
also modeled as a RAM program, but it is only given read access to arbitrary locations of the auxiliary
information aux.

PreVerify(crs, pp, id, π)→ 0/1. The pre-registration verifier algorithm takes as input the common reference
string crs, public parameter pp, an identity id, and a proof π. It outputs a single bit 0/1 denoting
whether the proof is accepted or not.

PostProveaux(crs, pp, id, pk)→ π. The post-registration prover algorithm is a deterministic algorithm, that
takes as input the common reference string crs, public parameters pp, an identity id, and a public
key pk. Given the auxiliary information aux, it outputs a post-registration proof π. Similar to the
registration algorithm, this is also modeled as a RAM program, but it is only given read access to
arbitrary locations of the auxiliary information aux.

PostVerify(crs, pp, id, pk, π)→ 0/1. The post-registration verifier algorithm takes as input the common refer-
ence string crs, public parameter pp, an identity id, a public key pk, and a proof π. It outputs a single
bit 0/1 denoting whether the proof is accepted or not.

Note that if one does not impose any succinctness requirements on the pre/post-registration proofs, then
the above algorithms are directly implied by the fact that the registration process is deterministic. This is
because the proofs themselves can set to be the auxiliary information aux, and one could perform verification
by simply rebuilding the public parameters given in aux. This is quite inefficient, thus we impose succinctness
restrictions along with completeness and soundness restrictions on the pre/post-registration.

Remark 3.1. In the above abstraction, we consider deterministic provers both for pre-registration as well
as post-registration proofs. Although one could instead consider randomized proving algorithms, we avoid it
since our construction already achieves deterministic proving and this also leads to simpler correctness and
security definitions. Looking ahead, in all our security and correctness definitions, we do not provide the
adversary any oracle queries to the PreProve and PostProve algorithms since they are deterministic given
access to the auxiliary information aux. Since the adversary can itself maintain auxiliary information, thus
due to proving algorithms being deterministic oracle queries are redundant.
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3.1 Correctness

Below we first recall the definition of completeness, compactness, and efficiency for RBE systems as studied
previously. After that, we introduce the definitions for completeness, compactness, and efficiency of the
pre/post-registration processes.

Definition 3.1 (Completeness, compactness, and efficiency of RBE). For any (stateful) interactive com-
putationally unbounded adversary A that has a poly(λ) round complexity, consider the following game
CompRBE

A (λ).

1. (Initialization) The challenger initializes parameters as (pp, aux, u, SID, id
∗, t) = (ε, ε, ε, ∅,⊥, 0), samples

crs← CRSGen(1λ), and sends the crs to A.

2. (Query Phase) A makes polynomially many queries of the following form, where each query is consid-
ered as a single round of interaction between the challenger and the adversary.

(a) Registering new (non-target) identity. On a query of the form (regnew, id, pk), the chal-
lenger checks that id /∈ SID, and registers (id, pk) by running the registration procedure as pp :=

Reg[aux](crs, pp, id, pk). It adds id to the set as SID := SID ∪{id}. (Note that the challenger updates
the parameters pp, aux, SID after each query. Also, it aborts if the check fails.)

(b) Registering target identity. On a query of the form (regtgt, id), the challenger first checks that
id∗ =⊥. If the check fails, it aborts. Else, it sets id∗ := id, samples challenge key pair (pk∗, sk∗)←
Gen(1λ), updates public parameters as pp := Reg[aux](crs, pp, id∗, pk∗), and sets SID := SID ∪ {id∗}.
Finally, it sends the challenge public key pk∗ to A. (Here the challenger stores the secret key sk∗

in addition to updating all other parameters. Also, note that the adversary here is restricted to
make such a query at most once, since the challenger would abort otherwise.)

(c) Target identity encryptions. On a query of the form (enctgt,m), the challenger checks if
id∗ 6=⊥. It aborts if the check fails. Otherwise, it sets t := t + 1, m̃t := m, and computes
ciphertext ctt ← Enc(crs, pp, id∗, m̃t). It stores the tuple (t, m̃t, ctt), and sends the ciphertext ctt
to A.6

(d) Target identity decryptions. On a query of the form (dectgt, j), the challenger checks if
id∗ 6=⊥ and j ∈ [t]. It aborts if the check fails. Otherwise, it computes yj = Dec(sk∗, u, ctj).
If yj = GetUpd, then it generates the fresh update u := Updaux(pp, id∗) and then re-computes
yj = Dec(sk∗, u, ctj). Finally, the challenger stores the tuple (j, yj).

3. (Output Phase) We say that the adversary A wins the game if there is some j ∈ [t] for which m̃j 6= yj.

Let n = |SID| denote the number of identities registered until any specific round in the above game. We
say that an RBE scheme is complete, compact, and efficient if for every (stateful) interactive computationally
unbounded adversary A that has a poly(λ) round complexity, there exists polynomials p1, p2, p3, p4, p5 and a
negligible function negl(·) such that for every λ ∈ N, the following holds:

Completeness. Pr[A wins in CompRBE
A (λ)] ≤ negl(λ).

Compactness of public parameters and updates. |pp| ≤ p1(λ, log n) and |u| ≤ p2(λ, log n).

Efficiency of registration and update. The running time of each invocation of Reg and Upd algorithms
is at most p3(λ, log n) and p4(λ, log n), respectively. (Note that this implies the above compactness
property.)

Efficiency of the number of updates. The total number of invocations of Upd for identity id∗ during
target identity decryption phase (i.e., Step 2d of game CompRBE

A (λ)) is at most p5(λ, log n) for every
n.

6Here and throughout, whenever we write the challenger stores the tuple, we mean that it appends this to its local state
such that these could be obtained by the challenger when referred to later in the game.
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Next, we introduce the completeness, compactness, and efficiency conditions we require from the pre/post-
registration procedures of a Verifiable RBE system. Briefly, the completeness of (PreProve,PreVerify) algo-
rithms states that for any identity id∗ that has not yet been registered, the key accumulator should be able
to compute a proof π (by running the PreProve algorithm) such that proof π guarantees id∗ has not yet
been registered. Similarly for the post-registration verification, the completeness of (PostProve,PostVerify)
algorithms states that for any identity id∗ that has been (honestly) registered, the key accumulator should
be able to compute a proof π (by running the PostProve algorithm) such that proof π guarantees id∗ has
been registered.

In addition to the above natural completeness definition for the post-registration verification, we also
define a stronger completeness property that provides certain extractability guarantee. Informally, it states
that if there exists a post-registration proof π for identity-key pair (id∗, pk∗) that is accepted by the PostVerify
algorithm, then every honestly generated ciphertext intended towards id∗ can be decrypted by the corre-
sponding secret key sk∗ and some update u. Here the update u is (publicly, efficiently and deterministically)
computable from the proof π itself, instead of the auxiliary information aux.

Definition 3.2 (Completeness, compactness, and efficiency of Pre/Post-Registration Proofs). For any
(stateful) interactive computationally unbounded adversary A that has a poly(λ) round complexity, consider
the following game CompVRBE

A (λ).

1. (Initialization) The challenger initializes parameters as (pp, aux, SID, SID,PK, t) = (ε, ε, ∅, ∅, 0), samples
crs← CRSGen(1λ), and sends the crs to A.

2. (Query Phase) A makes polynomially many queries of the following form, where each query is consid-
ered as a single round of interaction between the challenger and the adversary.

(a) Registering new identity. On a query of the form (regnew, id, pk), the challenger checks that

id /∈ SID, and registers (id, pk) by running the registration procedure as pp := Reg[aux](crs, pp, id, pk).
It adds id and pk to the sets SID, SID,PK as SID := SID ∪ {id} and SID,PK := SID,PK ∪ {(id, pk)}.

(b) Pre-registration proofs. On a query of the form (prereg, id), the challenger checks if id /∈
SID. It aborts if the check fails. Otherwise, it sets t := t + 1, and computes the proof πpre

t =
PreProveaux(crs, pp, id). Next, it verifies the proof πpre

t as βt = PreVerify(crs, pp, id, πpre
t ), and stores

the tuple (prereg, t, βt).

(c) Post-registration proofs. On a query of the form (postreg, id, pk), the challenger checks if
(id, pk) ∈ SID,PK. It aborts if the check fails. Otherwise, it sets t := t+ 1, and computes the proof
πpost
t = PostProveaux(crs, pp, id, pk). Next, it verifies the proof πpost

t as βt = PostVerify(crs, pp, id, pk, πpost
t ),

and stores the tuple (postreg, t, βt).

3. (Output Phase) We say that the adversary A wins the game if for some j ∈ [t] there exists a tuple of
the form (prereg, j, 0) or (postreg, j, 0). (That is, there exists a proof that does not verify.)

Let n = |SID| denote the number of identities registered until any specific round in the above game. We say
that a VRBE scheme achieves pre/post-registration completeness, compactness, and efficiency if for every
(stateful) interactive computationally unbounded adversary A that has a poly(λ) round complexity, there
exists polynomials p1, p2, p3, p4, p5 and a negligible function negl(·) such that for every λ ∈ N, the following
holds:

Completeness. Pr[A wins in CompVRBE
A (λ)] ≤ negl(λ).

Compactness of proofs. |πpre
t | ≤ p1(λ, log n) and |πpost

t | ≤ p2(λ, log n).

Efficiency of provers. The running time of each invocation of PreProve and PostProve algorithms is at
most p3(λ, log n) and p4(λ, log n), respectively. (Note that this implies the above compactness property.)

Next, we define the stronger extractable completeness for post-registration proofs.
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Definition 3.3 (Efficiently Extractable Completeness for Post-Registration). A VRBE scheme satisfies
efficiently extractable completeness property for post-registration if there exists a deterministic polynomial-
time algorithm UpdExt such that for any computationally unbounded admissible adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, we have

Pr

Dec(sk, u, ct) 6= m :
crs← CRSGen(1λ), (pk, sk)← Gen(1λ)

(pp, id, π,m)← A(crs, pk), u← UpdExt(π, id)
ct← Enc(crs, pp, id,m)

 ≤ negl(λ)

where an adversary A is said to be admissible if it always produces a valid post-registration proof π i.e.,
PostVerify(crs, pp, id, pk, π) = 1.

3.2 Security

Below we first recall the definition of security for RBE systems as studied previously. After that, we introduce
the definitions for soundness of the pre/post-registration proofs.

Definition 3.4 (Message Hiding Security). For any (stateful) interactive PPT adversary A, consider the
following game SecRBEA (λ).

1. (Initialization) The challenger initializes parameters as (pp, aux, u, SID, id
∗) = (ε, ε, ε, ∅,⊥), samples

crs← CRSGen(1λ), and sends the crs to A.

2. (Query Phase) A makes polynomially many queries of the following form:

(a) Registering new (non-target) identity. On a query of the form (regnew, id, pk), the chal-
lenger checks that id /∈ SID, and registers (id, pk) by running the registration procedure as pp :=

Reg[aux](crs, pp, id, pk). It adds id to the set as SID := SID ∪ {id}.
(b) Registering target identity. On a query of the form (regtgt, id), the challenger first checks that

id∗ =⊥. If the check fails, it aborts. Else, it sets id∗ := id, samples challenge key pair (pk∗, sk∗)←
Gen(1λ), updates public parameters as pp := Reg[aux](crs, pp, id∗, pk∗), and sets SID := SID ∪ {id∗}.
Finally, it sends the challenge public key pk∗ to A.

3. (Challenge Phase) On a query of the form (chal, id,m0,m1), then the challenger checks if id /∈ SID\{id∗}.
It aborts if the check fails. Otherwise, it samples a bit b ← {0, 1} and computes challenge ciphertext
ct← Enc(crs, pp, id,mb).

4. (Output Phase) The adversary A outputs a bit b′ and wins the game if b′ = b.

We say that an RBE scheme is message-hiding secure if for every (stateful) interactive PPT adversary A,
there exists a negligible function negl(·) such that for every λ ∈ N, Pr[A wins in SecRBEA (λ)] ≤ 1

2 + negl(λ).

Finally, we define the soundness requirements for our pre/post-registration proof systems. Informally, the
pre-registration soundness states that any adversarial key accumulator must not be able to simultaneously
— 1) provide a valid (acceptable) proof of pre-registration for some identity id, 2) able to break semantic
security for (honestly generated) ciphertexts intended towards identity id. Intuitively, this says that even a
corrupt key accumulator must not be able to decrypt ciphertexts intended for unregistered users while being
able to provide an accepting pre-registration proof. Thus, any new user can ask for a pre-registration proof
to verify that the key accumulator has not inserted any trapdoor that enables the accumulator to decrypt
ciphertexts encrypted for that user.

In a similar vein, the post-registration soundness informally states that any adversarial key accumulator
must not be able to simultaneously — 1) provide a valid (acceptable) proof of post-registration for some
identity-key pair (id, pk) (where pk has honestly generated and the associated secret key was not revealed), 2)
able to break semantic security for (honestly generated) ciphertexts intended towards identity id. Intuitively,
this says that even a corrupt key accumulator must not be able to decrypt ciphertexts intended for registered
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users while being able to provide an accepting post-registration proof. Thus, any registered user can ask for
a post-registration proof to verify that the key accumulator has not inserted any trapdoor that enables the
accumulator to decrypt ciphertexts encrypted for that user. Now we give the formal definitions.

Definition 3.5 (Soundness of Pre-Registration Verifiability). A VRBE scheme satisfies soundness of pre-
registration verifiability if for every stateful admissible PPT adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N, the following holds

Pr

A(ct) = b :
crs← CRSGen(1λ)

(pp, id, π,m0,m1)← A(crs)
b← {0, 1}; ct← Enc(crs, pp, id,mb)

 ≤ 1

2
+ negl(λ),

where A is admissible if and only if π is a valid pre-registration proof, i.e. PreVerify(crs, pp, id, π) = 1.

Definition 3.6 (Soundness of Post-Registration Verifiability). A VRBE scheme satisfies soundness of post-
registration verifiability if for every stateful admissible PPT adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N, the following holds

Pr

A(ct) = b :
crs← CRSGen(1λ); (pk, sk)← Gen(1λ)

(pp, id, π,m0,m1)← A(crs, pk)
b← {0, 1}; ct← Enc(crs, pp, id,mb)

 ≤ 1

2
+ negl(λ),

where A is admissible if and only if π is a valid post-registration proof, i.e. PostVerify(crs, pp, id, pk, π) = 1.

4 Verifiable RBE from Standard Assumptions

In this section, we present our VRBE construction. Our construction relies on two primitives — a regular
PKE scheme PKE = (PKE.Setup, PKE.Enc, PKE.Dec), and a hash garbling scheme HG = (HG.Setup, HG.Hash,
HG.GarbleCkt, HG.GarbleInp, HG.Eval). Below we provide a detailed outline of our construction.

4.1 Construction

For ease of exposition, we assume that the length of identities supported, length of public keys generated
by Gen algorithm, the output length of the hash is λ-bits, and the input length of the hash function is
(3λ + 1)-bits. Note that this can be avoided by simply selecting parameters accordingly. Below we define
some useful notation that we will reuse throughout the sequel. Additionally, we describe how to interpret
the auxiliary information and the public parameters in our construction.

Abstractions, Trees, and Notations. In our construction, the key accumulator maintains two types
of balanced binary trees. The first tree which we refer to as the IDTree is a balanced binary tree in which
each node has a label of the form (id, t) ∈ {0, 1}2λ, and the nodes are basically being sorted as per the first
tuple entry which is id. (Concretely, (id1, t1) ≺ (id2, t2) iff id1 < id2, where ≺ denotes the node ordering.)
This tree is simply used as an internal storage object (which provides fast node insertion/lookup) by the
key accumulator. Here id denotes the registered identity and t denotes the timestamp (i.e., number of users
already registered +1).

The second family of trees which we refer to are the encryption trees {EncTreei}i∈[`n] for some `n > 0.

Each such tree consists of two-types of nodes — (1) leaf nodes which store a registered identity-key pair, (2)
non-leaf nodes which store the hash values of its children and largest registered identity in its left sub-tree.
Concretely, each node in the tree has a label of the form (flag||a||id||b) ∈ {0, 1}3λ+1. For a leaf node flag = 1,
a = 0λ, b = pk and (id, pk) is identity-key pair of the corresponding registered user. For a non-leaf node,
flag = 0, and id denotes the largest registered identity in its left sub-tree, a and b are the hash value of
its left and right child’s label (respectively). The leaf nodes are inserted as per their registered identity
(i.e., the nodes are ordered with an increasing ordering amongst the identities). Concretely, a new leaf node
(1||0λ||id||pk) is added as follows —
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1. Perform a binary search, by using the ‘largest registered identity in the left sub-tree’ information stored
in the label of each intermediate node, to find the leaf node with the smallest identity ĩd such that

ĩd > id. (Let p̃k be the key associated with ĩd.)

2. Delete the leaf node associated with ĩd, and replace it with a new intermediate node such that

(1||0λ||id||pk) and (1||0λ||ĩd||p̃k) are its left and right children (respectively).

3. Perform the re-balance operation on the binary tree.7

4. Re-compute the labels for all intermediate nodes which have been re-balanced (i.e., moved around).
This involves updating the largest registered identity in the left sub-tree information as well as re-
computing the corresponding hash values.

Looking ahead, here the first `n−1 encryption trees EncTree1, . . . ,EncTree`n−1 represent the older snapshots
of the registration process, whereas EncTree`n represents the latest encryption tree which contains all the
identities registered so far. Also, the above tree insertion operation is efficient (O(log n) updates and running
time) as long as the underlying tree abstraction provides efficient lookup and insertion. Since we use a
balanced tree as the underlying abstraction, thus efficiency follows.

A very useful piece of notation in our scheme is the notion of ‘paths’ from the root node to a leaf node
in some encryption tree EncTree. Concretely, throughout this section, we will define a path w.r.t. a tree
EncTree (with root rt and depth d) as a sequence of (at most) d nodes where the first node is the root node
of the tree and last node is a leaf node with certain specific properties. Concretely, any path path will look
like path = (node1, . . . , noded−1, noded), where for i < d, nodei = (0||ai||idi||bi) for some hash values ai, bi
and identity idi. Similarly, noded = (1||0λ||idd||pk) for some identity-key pair idd, pk, and the remaining
intermediate nodes are such that for every i, ai = HG.Hash(hk, nodei+1) if nodei+1 is left child of nodei, else
bi = HG.Hash(hk, nodei+1). Also, if nodei+1 is left child of nodei then idi ≥ idi+1, else idi < idi+1. Now
note that such a path can be efficiently computed for every identity id, which has been added to encryption
tree EncTree, by simply performing an extended binary search. We will be re-using this fact many times
throughout the sequel.

Lastly, we define a notion which we refer to as ‘adjacent’ paths. This is extremely useful for verifiability
of our scheme. Note that if during binary search in any balanced search tree, if the node/label that is being
searched does not exist, then one could prove that efficiently by giving two paths to nodes with labels that
are just bigger than and smaller than the label as per the ordering defined in the tree. More formally,
for any two paths path1 and path2 in an encryption tree, we can perform an adjacency check efficiently as
follows. Let pathj = (node1,j , . . . , noded−1,j , noded,j) for j ∈ [2] where nodei,j = (0||ai,j ||idi,j ||bi,j) for j < d

and noded,j = (1||0λ||idd,j ||pkd,j): (1) First, check that both paths are valid. Note that path validity is
checked as that either HG.Hash(hk, nodei+1,j) is equal to ai,j or bi,j .

8 (2) Next, the verifier first computes
the largest common prefix of nodes in paths path1 and path2. That is, let k be the largest index such that
nodei,1 = nodei,2 for all i ≤ k. Now if idd,1 < idd,2, then check that nodek+1,1 and nodek+1,2 are left and
right children of nodek,1 = nodek,2. Next, it must check that, for all i > k + 1, nodei,1 is always the right
child of its parent and nodei,2 is always the left child of its parent. Basically, this is done to make sure that
these two paths are adjacent and there does not exist any intermediate registered identity between these.

Construction. The key accumulator initializes the public parameters pp and auxiliary information aux as
empty strings ε. And, afterwards at any point, the auxiliary information will contain the IDTree and (at most
a λ number of) encryption trees EncTreei along with a number ni.

9 And, the public parameters pp consists

7Note that the tree re-balancing operation has to be carefully performed as in our abstraction (as well as the [GHM+19]
abstraction) the leaf nodes and intermediate nodes are not exchangeable. Thus, the leaf-nodes must always stay the leaf nodes.
Roughly one might consider that the re-balancing operation is only performed on the tree obtained by removing all leaf-nodes.
This is not completely accurate but captures the underlying intuition.

8Note that this also tells whether nodei+1,j is a left child of nodei,j , or right child.
9Looking ahead, the number ni signifies the number of users who will refer to the tree EncTreei for decryption. The

significance of ni will become clear in the construction.
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of root value and depth pairs (rti, di) for each encryption tree EncTreei present in auxiliary information aux.
Here rti is the root node and di is the depth of EncTreei. We now formally describe our construction.

CRSGen(1λ)→ crs. The CRS generation algorithm samples a hash key for the hash garbling scheme as
hk← HG.Setup(1λ, 13λ+1), and outputs crs = hk.

Reg[aux](crs, pp, id, pk)→ pp′. Let pp = {(rti, di)}i∈[`n] and aux =
(

IDTree, {(EncTreei, ni)}i∈[`n]
)

. Also, let

n =
∑
i ni + 1. The key accumulator performs the following operations:

1. It creates a leaf node with the label (1||0λ||id ||pk), and update the current (latest) encryption
tree EncTree`n by inserting the new leaf node. (Note that the insertion is performed as described
above, and it involves balancing the tree and updating the hash values accordingly.)

2. Let NewTree be the new encryption tree. It continues by adding (id, n) to the IDTree, and the tuple
(EncTree`n+1, 1) := (NewTree, 1) to current auxiliary information aux. (This new tuple should be
interpreted as signifying that only one user (which is the current, i.e. nth, user with identity id)
would refer to the latest encryption tree NewTree during decryption.)

3. Next it modifies the list of encryption trees as follows. Let aux =
(

IDTree, {(EncTreei, ni)}i∈[`n+1]

)
,

and
δ = max

(
{0} ∪

{
i ∈ [`n − 1] : ∀ j ∈ [i], n`n+1−j = 2j−1

})
.

It modifes the auxilliary information as aux =
(

IDTree,
{

(EncTree′i, n
′
i)
}
i∈[`n+1−δ]

)
, where

(EncTree′i, n
′
i) :=

{
(EncTreei, ni) if i < `n + 1− δ,
(NewTree, 2 · ni) otherwise.

In words, the accumulator removes all the old versions of the encryption trees as long as it could
replace all of them with the latest tree until the number of users which would then refer to the
latest tree stays a power of 2. To illustrate this operation, we give a detailed running example of
the Reg algorithm in Figure 1.

4. Lastly, the accumulator modifes the public parameters to pp′ = {(rt′i, d
′
i)}i∈[`n+1−δ], where rt′i, d

′
i

are root node and depth of the encryption tree EncTree′i (respectively).

Note. At a high level, the accumulator maintains the invariant that the ith encryption tree
EncTree′i is an accumulation of the identity-key pairs for exactly the first

∑
j≤i n

′
j , and this tree

is intended to be precisely used during decryption by those n′i users who registered just after the
first

∑
j≤i−1 n

′
i users. Additionally, the ni values for the last and the second last encryption trees

are more than a factor of 2 apart. (The last point is quite crucial in ensuring that number of
updates grows only logarithmically.)

Enc(crs, pp, id,m)→ ct. Let pp = {(rti, di)}i∈[`n] and crs = hk. The encryptor proceeds as follows:

1. First, it samples statei,j ← {0, 1}λ and ri,j ← {0, 1}λ for each i ∈ [`n], and j ∈ [di + 1].

2. Next, for each encryption tree EncTreei, it computes a sequence of di hash-garbled circuits as
follows:

For i ∈ [`n]:

— For j ∈ [di] : It constructs a step-circuit Enc-Stepi,j as defined in Fig. 2 with hk, id,m,

statei,j+1, ri,j+1 hardwired. It then garbles the circuit as ˜Enc-Stepi,j ← HG.GarbleCkt(hk,
Enc-Stepi,j , statei,j).

— It computes the hash value of root node as hi = HG.Hash(hk, rti), and computes the input
garbling as ỹi,1 = HG.GarbleInp(hk, hi, statei,1; ri,1).
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Sample Execution of Reg Algorithm

Consider the scenario where 7 users (id1, id2, id3, id4, id5, id6, id7) are registered into the system. The auxilliary
information aux now stores IDTree and 3 versions of EncTree. IDTree consists of all the identites along
with their timestamps. EncTree1,EncTree2 are the versions of EncTree when only 4 users and 6 users were
registered respectively. EncTree3 is the latest version of the EncTree when all 7 users are registered in the
system. More precisely, the list of identities present in each EncTreei is as follows.

aux = {IDTree, (EncTree1, 4) : [id1, . . . , id4], (EncTree2, 2) : [id1, . . . , id6], (EncTree3, 1) : [id1, . . . , id7]}

Let us now look at when we register a new identity id8. The key accumulator sets n = 8, inserts id8 into
IDTree, creates NewTree by inserting id8 into EncTree3, and sets (EncTree4, 1) = (NewTree, 1). To compute
δ, the key accumulator observes that n`n+1−j = n4−j = 2j−1 for all j ∈ [3], and sets δ = 3. The key
accumulator now deletes EncTreei for each i ≥ `n+1−δ = 1, and sets (EncTree′1, n

′
1) = (NewTree, 2 ·n1 = 8).

So, now the updated auxilliary information is aux = {IDTree, (EncTree′1, 8) : [id1, . . . , id8]}.

Figure 1: An example demonstrating aux being updated during registration

Circuit Enc-Stepi,j

Constants: hk, id,m, statei,j+1, ri,j+1.
Input: flag||a||id∗||b ∈ {0, 1}3λ+1.

1. If flag = 1 and id∗ = id, output 1||PKE.Enc(b,m; ri,j+1).

2. If flag = 1 and id∗ 6= id, output 1|| ⊥.

3. If id > id∗, output 0||HG.GarbleInp(hk, b, statei,j+1; ri,j+1)
Else, output 0||HG.GarbleInp(hk, a, statei,j+1; ri,j+1).

Figure 2: Description of the step-circuit Enc-Stepi,j

3. Finally, it outputs the ciphertext ct as ct =

(
{(rti, di)}i ,

{
˜Enc-Stepi,j

}
i,j
, {ỹi,1}i

)
.

Updaux(pp, id)→ u. Let pp = {(rti, di)}i∈[`n] and aux =
(

IDTree, {(EncTreei, ni)}i∈[`n]
)

. The update com-

putation is a two-step approach. In the first step, the algorithm performs a binary search over the
IDTree to obtain the timestamp associated with the identity id. As IDTree is a balanced binary search
tree, thus this can done efficiently. Let t be the timestamp associated with id that the binary search
outputs. (It aborts if no such timestamp exists.) In the second phase, the update generator computes
the index i∗ ∈ [`n] such that

∑
j∈[i∗−1] nj < t ≤

∑
j∈[i∗] nj . Index i∗ corresponds to the smallest index

of the encryption tree in which id has been registered. Now the algorithm performs a binary search for
identity id in the encryption tree EncTreei∗ . It stores the path of nodes traversed from root rti∗ to leaf
node containing identity id. Let path be the searched path in tree EncTreei∗ . Finally, it outputs the
update u as u = path. (Again, it aborts if no such index or a path to a leaf node containing identity
id exists.)

Dec(sk, u, ct)→ m/ ⊥ /GetUpd. The decryption algorithm first parses the inputs as:

ct =

(
{(rti, di)}i ,

{
˜Enc-Stepi,j

}
i,j
, {ỹi,1}i

)
, and u = path = (node1, . . . , noded−1, noded).

It then proceeds as follows:

1. Let i be the smallest index i ∈ [`n] such that node1 = rti. If such an i does not exist, then it
outputs GetUpd. Otherwise, it continues.

2. Now the decryptor iteratively runs the hash garbling evaluation algorithms as follows.

For j ∈ [di]:
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— It evaluates the jth step-circuit as (flag||ỹi,j+1)← HG.Eval( ˜Enc-Stepi,j , ỹi,j , nodei).

— If flag = 1 and ỹi,j+1 =⊥, the algorithm outputs ⊥.

— Otherwise, if flag = 1 and ỹi,j+1 6=⊥, then interpret ỹi,j+1 as a PKE ciphertext, and decrypt
it as ỹi,j+1 using key sk to obtain the message as m ← PKE.Dec(sk, ỹi,j+1). And, it outputs
the message m.

3. If the algorithm did not terminate, then it outputs ⊥.

PreProveaux(pp, id)→ π. Let pp = {(rti, di)}i∈[`n] and aux =
(

IDTree, {(EncTreei, ni)}i∈[`n]
)

. The pre-

registration proof consists of `n sub-proofs πi for i ∈ [`n], where each sub-proof πi consist of two10

adjacent paths in the ith encryption tree EncTreei. Concretely, the algorithm proceeds as follows:

For i ∈ [`n]:

— It runs a binary search on tree EncTreei to find identity id. If id is contained in EncTreei, then it
outputs ⊥. Otherwise, it continues.

— It runs an extended binary search on tree EncTreei to find two adjacent paths pathi,lwr and pathi,upr
for identities idi,lwr and idi,upr, respectively. (Here idi,lwr is the largest identity in EncTreei such
that idi,lwr < id and similarly idi,upr is the smallest identity in EncTreei such that idi,upr > id.)

If idi,lwr is the largest identity registered in the tree EncTreei, that is no such idi,upr exists, then
path pathi,upr is set as pathi,upr = ε. Similarly, if idi,upr is the smallest identity, that is no such
idi,lwr exists, then path pathi,lwr is set as pathi,lwr = ε.

— It sets sub-proof πi as πi = (pathi,lwr, pathi,upr).

Finally, it outputs the pre-registration proof as π = (π1, . . . , π`n).

PreVerify(crs, pp, id, π)→ 0/1. Let crs = hk, pp = {(rti, di)}i∈[`n], π = (πi)i∈[`n].
11 Also, let each sub-proof

be πi = (pathi,lwr, pathi,upr) for i ∈ [`n].

The pre-registration proof verification procedure proceeds as follows. For every i ∈ [`n], it runs the
pre-registration sub-proof verification procedure which is described in Fig. 3.

If the pre-registration sub-proof verification procedure rejects for any index i ∈ [`n], then the main
verification algorithm also rejects and outputs 0. Otherwise, if all sub-proof verification routines accept,
then the main verification algorithm also accepts and outputs 1.

PostProveaux(pp, id, pk)→ π. Let pp = {(rti, di)}i∈[`n] and aux =
(

IDTree, {(EncTreei, ni)}i∈[`n]
)

. The post-

registration proof consists of `n sub-proofs πi for i ∈ [`n], where each sub-proof πi consist of either two
or three adjacent paths in the ith encryption tree EncTreei.

12 (Very briefly, having 3 adjacent paths
w.r.t. an encryption tree will correspond to the proof of uniqueness of decryptability by the registered
user’s secret key; whereas 2 adjacent paths will mostly correspond to a proof of non-decryptability.)
Concretely, the algorithm proceeds as follows:

Initialize ` = ⊥, where ` will eventually denote the index of the first encryption tree EncTree` in which
identity id was registered. For i ∈ [`n]:

— It runs a binary search on tree EncTreei to find identity id. If the tree contains a leaf node of
the form 1||0λ||id||pk′ for some key pk′ 6= pk, then the algorithm simply outputs ⊥. Otherwise, it
continues as follows.

10Sometimes one of the paths might just be an empty path.
11If the number of sub-proofs and number of encryption trees are distinct, then the verifier rejects. Here we simply consider

that while parsing the inputs, the verifier verifies that the crs and pp are consistent which simply corresponds to checking that
the number of trees and their depths are consistent.

12Sometimes one of the paths might just be an empty path.
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Verification procedure for pre-registration sub-proof

For simplicity of exposition, suppose that none of paths pathi,lwr, pathi,upr are empty. Towards the end, we
explain how the verification handles the case if either of these paths is ε.

Non-empty paths. It interprets every path pathi,tag as (nodei,1,tag, . . . , nodei,di,tag) for i ∈ [`n] and tag ∈
{lwr, upr}. And every node nodei,j,tag, is interpreted as (flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag).

1. First, it checks that both paths pathi,lwr and pathi,upr are well-formed. That is, nodei,1,tag = rti
for both tag ∈ {lwr, upr}. Also, it checks that nodei,j+1,tag is either left child of nodei,j,tag (i.e.,
ai,j,tag = HG.Hash(hk, nodei,j+1,tag) and idi,j,tag ≥ idi,j+1,tag), or right child of nodei,j,tag (i.e., bi,j,tag =
HG.Hash(hk, nodei,j+1,tag) and idi,j,tag < idi,j+1,tag). If nodei,j+1,tag is left child of nodei,j,tag, then it
checks that idi,k,tag ≤ idi,j,tag for each k > j. Similarly, If nodei,j+1,tag is right child of nodei,j,tag, then
it checks that idi,k,tag > idi,j,tag for each k > j. And, it checks that flagi,j,tag = 0 for j < di, and

flagi,di,tag = 1, ai,di,tag = 0λ. (Note that during this validity check, the verifier also stores whether
that node is left child or right child.).

2. Next, it checks that idi,di,lwr < id < idi,di,upr, that is the identity in the lower path is less than that
in the upper path, and the identity id whose non-registration is being proven lies between both these
identities.

3. It then computes the largest common prefix of nodes in paths pathi,lwr and pathi,upr. That is, let k be
the largest index such that nodei,j,lwr = nodei,j,upr for all j ≤ k. It checks that idi,k,lwr = idi,di,lwr. Also,
it checks:

(a) It checks that nodei,k+1,lwr and nodei,k+1,upr are left and right children of nodei,k,lwr = nodei,k,upr.
That is, ai,k,lwr = HG.Hash(hk, nodei,k+1,lwr) and bi,k,upr = HG.Hash(hk, nodei,k+1,upr).

(b) For every index j > k, nodei,j+1,lwr and nodei,j+1,upr are right and left children of nodei,j,lwr
and nodei,j,upr, respectively. That is, bi,j,lwr = HG.Hash(hk, nodei,j+1,lwr) and ai,j,upr =
HG.Hash(hk, nodei,j+1,upr).

It rejects, i.e. outputs 0, if any of these checks fails. Otherwise, it accepts and outputs 1.

One empty path. Suppose pathi,lwr = ε. The verifier checks first well-formedness of pathi,upr as in Step 1
(above). Next, it checks that id < idi,di,upr, and lastly verifies that idi,di,upr is the smallest registered node
in EncTreei. For the last check, the verifier check that for every index j, nodei,j+1,upr is the left child of
nodei,j,upr. It rejects, i.e. outputs 0, if any of these checks fails. Otherwise, it accepts and outputs 1.

Similarly, if pathi,upr = ε, then it proceeds as above, except it checks that idi,di,lwr is the largest identity in
EncTreei instead.

Figure 3: Conditions for verifying a proof πi = (pathi,lwr, pathi,upr) that id is NOT registered as per EncTreei

— If id is not contained in EncTreei, then it first checks that ` = ⊥. If the check fails, it aborts.
Otherwise, it proceeds as for the pre-registration sub-proof which is to run an extended binary
search on tree EncTreei to find two adjacent paths pathi,lwr, pathi,upr for identities idi,lwr, idi,upr
(respectively). Here idi,lwr is the largest identity in EncTreei such that idi,lwr < id and similarly
idi,upr is the smallest identity in EncTreei such that idi,upr > id. And, it sets sub-proof πi as
πi = (pathi,lwr, pathi,upr). (Recall that one of these paths might be empty.)

— If id is contained in EncTreei, then it proceeds as follows:

— If ` = ⊥, then it sets ` = i (i.e., sets ` as the first tree where id was found).

— It runs an extended binary search on tree EncTreei to find three adjacent paths pathi,lwr,
pathi,mid, pathi,upr for identities idi,lwr, id, idi,upr (respectively). Here idi,lwr is the largest identity
in EncTreei such that idi,lwr < id and similarly idi,upr is the smallest identity in EncTreei such
that idi,upr > id.
If id is the largest identity registered in the tree EncTreei, that is no such idi,upr exists, then
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path pathi,upr is set as pathi,upr = ε. Similarly, if id is the smallest identity, that is no such
idi,lwr exists, then path pathi,lwr is set as pathi,lwr = ε.

— It sets sub-proof πi as πi = (pathi,lwr, pathi,mid, pathi,upr).

Finally, it outputs the post-registration proof as π = (π1, . . . , π`n , `). (Note that the cut-off index ` in
included as part of the proof.)

PostVerify(crs, pp, id, pk, π)→ 0/1. Let crs = hk, pp = {(rti, di)}i∈[`n], π = (π1, . . . , π`n , `).
13 Now each sub-

proof either is interpreted as 3 adjacent paths πi = (pathi,lwr, pathi,mid, pathi,upr), or as 2 adjacent paths
πi = (pathi,lwr, pathi,upr) for every i.

The post-registration proof verification procedure proceeds as follows. For every i ∈ [`], it runs
the pre-registration sub-proof verification procedure which is described in Fig. 3. Now, for every
i ∈ {`, `+ 1, . . . , `n}, it runs the post-registration sub-proof verification procedure which is described
in Fig. 4.

If any of the pre-registration or post-registration sub-proof verification procedure rejects for any index
i ∈ [`n], then the main verification algorithm also rejects and outputs 0. Otherwise, if all sub-proof
verification routines accept, then the main verification algorithm also accepts and outputs 1.

Remark 4.1. In the above construction, we make the key accumulator maintain a special balanced tree
IDTree privately. It turns out this is not necessary, and one could easily remove it from our construction,
thereby only leaving the list of encryption trees {EncTreei}i as part of the auxiliary information. However,
for ease of exposition, we include IDTree explicitly as part of the description.

4.2 Efficiency

In this section, we prove that our scheme satisfies compactness and efficiency requirements of Definitions 3.1
and 3.2. The analysis of Reg and Upd algorithms is similar to the analysis presented in [GHM+19].

Time Complexity of Reg Algorithm. Given an identity-key pair (id, pk), the registration algorithm first
updates its timestep counter n := n+ 1, and inserts (id, n) tuple into the balanced binary tree IDTree, which
is sorted as per identities. This insertion takes O(log n) time.

The algorithm then inserts (id, pk) tuple into a balanced binary tree EncTree`n . This involves performing
binary search on id in EncTree`n to identify the leaf at which 1||0λ||id||pk is to be inserted. As the tree
is balanced, the binary search takes O(log n) time. The registration algorithm then inserts the leaf and
balances the tree as per the rules of the underlying data structure. This step also takes O(log n) time. As
inserting leaf and balancing the tree takes O(log n) time, at most O(log n) node labels can change during the
process. For all such modified nodes, the hash values stored in their ancestors are updated. As the depth of
the tree is O(log n), this involves updating labels of O(log2 n) nodes. 14

The registration algorithm then computes δ and deletes some old versions of encryption trees. In the
construction, the key accumulator maintains an invariant that the number of identities ni associated with
various trees EncTreei in auxiliary information is a different power of 2. As there are n registered identities,
there can be at most log n trees in auxiliary information. Therefore, computing δ and merging trees takes
only O(log n) time. Overall, the registration process takes O(log2 n) time.

Size of Public Parameters. The public parameters consists of root and depth of each tree in auxiliary
information. As described earlier, there can be at most log n trees in auxiliary information. Therefore, this
size of public parameters is at most O(log n).

13If the number of sub-proofs and number of encryption trees are distinct, then the verifier rejects. Here we simply consider
that while parsing the inputs, the verifier verifies that the crs and pp are consistent which simply corresponds to checking that
the number of trees and their depths are consistent.

14Note that the registration algorithm needs to first make a copy of EncTree`n , then insert the leaf 1||0λ||id||pk into the copied
tree to create NewTree. Copying a tree naively takes O(n) time. However, this overhead can be easily avoided by not storing
the entire NewTree. Basically, NewTree only stores values of the O(log2 n) nodes that are different from EncTree`n .
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Verification procedure for post-registration sub-proof

For simplicity of exposition, suppose that none of paths pathi,lwr, pathi,upr are empty. Towards the end, we
explain how the verification handles the case if either of these paths are ε.

Non-empty paths. It interprets every path pathi,tag as (nodei,1tag, . . . , nodei,ditag) for i ∈ [`n] and tag ∈
{lwr,mid, upr}. And every node nodei,j,tag, is interpreted as (flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag).

1. First, it checks that both paths pathi,lwr, pathi,mid and pathi,upr are well-formed. That is, nodei,1,tag = rti
for both tag ∈ {lwr,mid, upr}. Also, it checks that nodei,j+1,tag is either a left child of nodei,j,tag (i.e.,
ai,j,tag = HG.Hash(hk, nodei,j+1,tag) and idi,j,tag ≥ idi,j+1,tag), or is a right child of nodei,j,tag (i.e.,
bi,j,tag = HG.Hash(hk, nodei,j+1,tag) and idi,j,tag < idi,j+1,tag). If nodei,j+1,tag is left child of nodei,j,tag,
then it checks that idi,k,tag ≤ idi,j,tag for each k > j. Similarly, If nodei,j+1,tag is right child of nodei,j,tag,
then it checks that idi,k,tag > idi,j,tag for each k > j. And, it checks that flagi,j,tag = 0 for j < di, and

flagi,di,tag = 1, ai,di,tag = 0λ. (Note that during this validity check, the verifier also stores whether
that node is left child or right child.)

2. Next, it checks that idi,di,lwr < id = idi,di,mid < idi,di,upr, that is the identity in the lower path is less
than that in the upper path, and the identity id whose non-registration is being proven is equal to the
identity in the middle path and lies between the other two identities. It also checks that bi,di,mid = pk.

3. For both tag pairs (tag1, tag2) ∈ {(lwr,mid), (mid, upr)}, it proceeds as follows:

It computes the largest common prefix of nodes in paths pathi,tag1 and pathi,tag2 . That is, let k be
the largest index such that nodei,j,tag1 = nodei,j,tag2 for all j ≤ k. It checks that idi,k,tag1 = idi,di,tag1 .
Also, it checks:

(a) It checks that nodei,k+1,tag1 and nodei,k+1,tag2 are left and right children of
nodei,k,tag1 = nodei,k,tag2 . That is, ai,k,tag1 = HG.Hash(hk, nodei,k+1,tag1) and
bi,k,tag2 = HG.Hash(hk, nodei,k+1,tag2).

(b) For every index j > k, nodei,j+1,tag1 and nodei,j+1,tag2 are right and left children of nodei,j,tag1
and nodei,j,tag2 , respectively. That is, bi,j,tag1 = HG.Hash(hk, nodei,j+1,tag1) and ai,j,tag2 =
HG.Hash(hk, nodei,j+1,tag2).

It rejects, i.e. outputs 0, if any of these checks fails. Otherwise, it accepts and outputs 1.

One empty path. Suppose pathi,lwr = ε. The verifier checks first well-formedness of pathi,mid, pathi,upr
as in Step 1 (above). Next, it checks that id = idi,di,mid < idi,di,upr as in Step 2 (above). And lastly, it
performs the Step 3 verification checks as described above only for the tag pair (tag1, tag2) = (mid, upr).
Lastly verifies that nodei,di,mid is the smallest registered node in EncTreei i.e., the verifier checks that for
every index j, nodei,j+1,mid is the left child of nodei,j,mid. It rejects, i.e. outputs 0, if any of these checks fail.
Otherwise, it accepts and outputs 1.

Similarly, if pathi,upr = ε, then it proceeds complementarily to above which is to check well-formedness of
pathi,lwr, pathi,mid, range check idi,di,lwr < id = idi,di,mid, and lastly it performs the Step 3 verification checks
only for the tag pair (tag1, tag2) = (lwr,mid). Lastly verifies that nodei,di,mid is the largest registered node
in EncTreei i.e., the verifier checks that for every index j, nodei,j+1,mid is the right child of nodei,j,mid. It
rejects, i.e. outputs 0, if any of these checks fail. Otherwise, it accepts and outputs 1.

Figure 4: Conditions for verifying a proof πi = (pathi,lwr, pathi,mid, pathi,upr) that id is registered as per
EncTreei

Time Complexity of Upd Algorithm. During the update process, the Upd algorithm first computes
the timestep tid at which the given identity id is registered by performing a binary search through balanced
binary tree IDTree. As IDTree is balanced, the binary search requires only O(log n) time. After computing
tid, the Upd algorithm identifies the balanced binary tree EncTreei that is associated with timestep tid. As
described earlier, there can be at most log n trees, and therefore this operation takes O(log n) time. The key
accumulator then performs a binary search on id in the associated tree EncTreei and outputs the sequence
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of nodes traversed during the binary search. As EncTreei is balanced, this step also requires O(log n) time.
Overall, the update algorithm runs in O(log n) time.

Size of an Update. The Upd algorithm performs a binary search on given identity id in a balanced binary
tree EncTreei which contains registered identity-key pairs. The algorithm then outputs the sequence of nodes
traversed during the binary search. As the tree is balanced and as there are at most n identities in the tree,
the depth of the tree is O(log n). Therefore, the size of an update output by Upd algorithm is O(log n).

Number of Updates. In our construction, we say that a registered identity id with timestamp t is
associated with EncTreej if

∑
k<j nk < t ≤

∑
k≤j nk. A registered identity id needs to invoke Upd algorithm

only when the tree EncTreej associated with id gets deleted during Reg algorithm. By our construction, any
pair (EncTreei, ni) gets deleted only when ni new identites are registered after (EncTreei, ni) is added to aux.
Therefore for any identity id, its ith update happens when 2i new identities are registered after its (i− 1)th

update. As there are at most n registrations, the number of updates received by any identity is at most
log n.

Time Complexity of PreProve/PostProve Algorithms. Given an identity id, the PreProve/PostProve
algorithms perform binary search on at most 3 identities in each balanced binary tree EncTreei present in
the aux. As each tree in aux is balanced, contains at most n leaves and is ordered as per identities, a binary
search on each tree takes O(log n) time. In the construction, the key accumulator maintains an invariant
that the number of identities ni associated with various trees EncTreei in auxiliary information is a different
power of 2. As there are n registered identities, there can be at most log n trees in auxiliary information.
Therefore, the time complexity of PreProve and PostProve algorithms is at most O(log2 n).

Size of Pre/Post-Registration Proofs. The pre/post-registration sub-proofs consist of at most 3 paths
(sequence of nodes from root to a leaf) for each tree in auxiliary information. As each tree in aux is balanced
and contains at most n leaves, the depth of each tree is O(log n). In the construction, the key accumulator
maintains an invariant that the number of identities ni associated with various trees EncTreei in auxiliary
information is a different power of 2. As there are n registered identities, there can be at most log n trees in
auxiliary information. Therefore, the size of pre/post-registration proofs is O(log2 n).

4.3 Completeness

We now show that the above scheme satisfies completenesss requirements described in Definitions 3.1 to 3.3.

4.3.1 Completeness of VRBE

Lemma 4.1. Assuming HG and PKE are perfectly correct, the above construction satisfies completeness
property ( Definition 3.1)15.

Proof. Consider any computationally unbounded adversaryA. The challenger first initializes (pp, aux, u, SID, id
∗) =

(ε, ε, ε, ∅,⊥), samples crs = hk and sends it to A. The adversary requests for polynomially many registration
queries of the form (regnew, id, pk) or (regtgt, id∗). For each (regnew, id, pk) query, the challenger regis-
ters (id, pk). For (regtgt, id∗) query, the challenger samples PKE pair (pk∗, sk∗), registers (id∗, pk∗) and
sends back pk∗ to the adversary. The adversary then makes an encryption query (enctgt,m) and obtains

ct = (pp, { ˜Enc-Stepi,j}i,j , {ỹ}i,1) ← Enc(pp, id∗,m), where id∗ is the challenge identity and pp = {(rti, di)}i
is public parameters at the time of encryption query. The adversary then makes few more registration

15For the sake of simplicity, we consider the completeness game in which the adversary makes only one encryption and
decryption query. Note that if an adversary can break completeness property with access to polynomially many encryption and
decryption queries (as in Definition 3.1), it can also break the completeness property with access to a single encryption and
decryption query.
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queries and then requests to decrypt the ciphertext ct. The challenger then runs the decryption al-
gorithm x = Dec(sk∗, u, ct). We know that x is either GetUpd or ⊥ or a message. If x = GetUpd,
the challenger runs the update algorithm u ← Updaux(pp, id∗) and then again runs decryption algorithm
x = Dec(sk∗, u, ct). Assuming x 6= GetUpd, we now prove that x is always equals to m. Let u be
(node1, node2, · · · noded) and nodei = flagi||ai||idi||bi for each i. We first make the following observa-
tions. (1) flagi = 1 iff i = d, (2) idd = id∗, bd = pk∗, (3) node1 = rtκ for some κ ∈ [`n], and (4)

for each i < d, HG.Hash(hk, nodei+1) =

{
ai if id∗ ≤ idi

bi Otherwise
. The last observation is due to the fact that

u is obtained by performing binary search on id∗ in an EncTree. Based on the above observations, the

decryption algorithm runs HEval( ˜Enc-Stepκ,1, ỹκ,1, node1). By the perfect correctness of hash garbling
scheme, it obtains 0||ỹκ,2 = 0||HG.GarbleInp(hk,HG.Hash(hk, node2), stateκ,2; rκ,2). The algorithm then runs

HEval( ˜Enc-Stepκ,2, ỹκ,2, node2) and obtains 0||HG.GarbleInp(hk,HG.Hash(hk, node3), stateκ,3; rκ,3) by perfect
correctness of hash garbling scheme. On continuing the process, the final circuit outputs 1||Enc(pk∗,m). The
decryption algorithm then decrypts the PKE ciphertext Enc(pk∗,m) and obtains m by perfect correctness
of PKE scheme.

Remark 4.2 (Handling missing updates). Note that the above completeness proof relies on the fact that
the user has the update u associated w.r.t. the public parameters pp used during encryption. However, this
does not capture the scenario when the challenger registers many identities after ct is created, and due to
delete operations in Reg algorithm, the EncTree associated with identity id is changed. That is, in this case,
it might have happened that even after Upd algorithm is executed, the root value of the update u may not
match with any root value rti used while creating the ciphertext. Thus, the decryption algorithm outputs
GetUpd again and therefore it is not possible to decrypt such a well-formed ciphertext. Intuitively, the issue
is that the updates could get lost during the registration process. Identical issues were observed in the prior
works [GHMR18, GHM+19] as well. Here we sketch a simple and efficient mechanism to resolve the issue.
For ease of exposition, we ignore this detail in the formal description of our scheme.

The idea is to simply store a list of ‘old’ updates for every user in the IDTree that we already maintain.
In order to preserve efficiency, an update is added to the list if it is not already present, that is only after an
existing encryption tree is removed. More formally, the tree IDTree now stores tuples of the form (id, (t, L)),
where t denotes the timestamp as before and L denotes the list of all the past updates (path from the root of
an encryption tree to the leaf containing the identity id). Now during the registration, when an encryption
tree EncTree associated with an identity id changes (i.e., is removed), then the key accumulator for every
such identity id appends the update information (i.e., path from the root to leaf containing id) to the tuple
(id, (t, L)) in the tree IDTree. Note that this can be efficiently done by performing a binary search on IDTree,
and does not blow up the size of public parameters. For generating updates, the algorithm searches for the
given identity id in IDTree to obtain the tuple (id, (t, L)) and sends the list L containing all the past updates
in addition to the current update information. The decryption algorithm on receiving the list of all the past
updates, decrypts the ciphertext with each of the updates and then outputs the message if any update works.

Lastly, such a scenario could be more easily handled in real-world applications by issuing out updates after
every deletion instead of storing them. That is, when the key accumulator possibly deletes existing encryption
trees (Step (3) in Reg algorithm), then it runs the update algorithm Upd(pp, id) and sends the update for
each identity id with timestamp greater than

∑
i<`n+1−δ ni.

4.3.2 Completeness of Pre/Post-Registration Verifiability

Lemma 4.2. The above construction satisfies completeness of pre/post-Registration Verifiability property
(Definition 3.2)16.

16For the sake of simplicity, we consider the completeness game in which the adversary makes only one prereg or postreg
query. Note that if an adversary can break completeness property with access to polynomially many prereg and postreg queries
(as in Definition 3.2), it can also break the completeness property with access to single prereg or postreg query.
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Proof. Consider any computationally unbounded adversaryA. The challenger first initializes (pp, aux, u, SID, id
∗) =

(ε, ε, ε, ∅,⊥), samples crs = hk and sends it to A. The adversary requests for polynomially many registra-
tion queries of the form (regnew, id, pk). For each (regnew, id, pk) query, the challenger registers (id, pk) as

pp← Reg[aux](crs, pp, id, pk). The adversary then either queries (prereg, id∗) on any unregistered identity id∗

or (postreg, id∗, pk∗) on any registered key-pair (id∗, pk∗).
Suppose A makes query (prereg, id∗) on any unregistered identity id∗. The challenger computes π =

PreProveaux(crs, pp, id∗). We argue that PreVerify(crs, pp, id∗, π) = 1 with probability 1. Let pp = {(rti, di)}i∈[`n]
and π = (π1, · · · , π`n), where πi = (pathi,lwr, pathi,upr) for each i. For each i and tag ∈ {lwr, upr}, let
pathi,tag = (nodei,1,tag, · · · , nodei,di,tag), where nodei,j,tag = flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag. As pathi,lwr and
pathi,upr are obtained by performing binary search in EncTreei, they satisfy well-formedness conditions (Point
1 in Fig. 3). As id∗ is an unregistered user, the extended binary search on id∗ in EncTreei leads to identities
idi,di,lwr and idi,di,upr s.t. idi,di,lwr < id∗ < idi,di,upr. As EncTreei is ordered as per identites and as there are
no registered identities between idi,di,lwr between idi,di,upr, the paths pathi,lwr and pathi,upr are ‘adjacent’ and
therefore satisfies condition 3 in Fig. 3.

On the other hand, supposeAmakes query (postreg, id∗, pk∗) on any registered identity-key pair (id∗, pk∗).
The challenger computes π = PostProveaux(crs, pp, id∗, pk∗). We argue that PostVerify(crs, pp, id∗, pk∗, π) =
1 with probability 1. Let pp = {(rti, di)}i∈[`n] and π = (π1, · · · , π`n , α). For any i < α, let πi =
(pathi,lwr, pathi,upr). For any i ≥ α, let πi = (pathi,lwr, pathi,mid, pathi,upr). For each i and tag ∈ {lwr,mid, upr},
let pathi,tag = (nodei,1,tag, · · · , nodei,di,tag), where nodei,j,tag = flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag. As the paths
are obtained by performing binary search in EncTreei, they satisfy well-formedness conditions (Point 1
in Figs. 3 and 4). For each i < α, we know that id∗ is unregistered in EncTreei, and therefore extended
binary search on id∗ in EncTreei leads to identities idi,di,lwr and idi,di,upr s.t. idi,di,lwr < id∗ < idi,di,upr.
Moreover, as EncTreei is ordered as per identites and as there are no registered identities between idi,di,lwr
between idi,di,upr, the paths pathi,lwr and pathi,upr are ‘adjacent’ and therefore satisfies condition 3 in Fig. 3.
For each i ≥ α, we know that (id∗, pk∗) is registered in EncTreei, and therefore extended binary search on id∗

in EncTreei leads to identities idi,di,lwr, idi,di,mid, idi,di,upr s.t. idi,di,lwr < idi,di,mid = id∗ < idi,di,upr. Moreover,
as EncTreei is ordered as per identites and as there are no registered identities between idi,di,lwr, idi,di,mid,
the paths pathi,lwr, pathi,mid are ‘adjacent’ and therefore satisfy condition 3 in Fig. 4. Similarly, the paths
idi,di,mid, idi,di,upr, are ‘adjacent’ and satisfy condition 3 in Fig. 4.

4.3.3 Efficiently Extractable Completeness for Post-Registration

We now prove a lemma that is useful for proving soundness of pre/post-registration properties. Consider
any crs = hk ← HG.Setup(1λ, 13λ+1), public parameters pp = {(rti, di)}i, identity id∗ and a sub-proof
πi = (pathi,lwr, pathi,upr). Suppose, (crs, pp, id∗, πi) satisfies the verification conditions described in Fig. 3.
We prove that if pathi,upr 6= ε, then pathi,upr resembles a sequence of nodes obtained by performing binary
search on id∗ in some tree EncTree with root value rti. If pathi,upr = ε, we prove that pathi,lwr resembles
a sequence of nodes obtained by performing binary search on id∗ in some tree EncTree with root value rti.
Concretely, we prove the following lemma.

Lemma 4.3. Consider any hash key hk, public parameters pp = {(rti, di)}i, identity id∗ and a sub pre-
registration proof πi = (pathi,lwr, pathi,upr). For any tag ∈ {lwr, upr}, let pathi,tag = (nodei,1,tag, · · · , nodei,di,tag),
where nodei,j,tag = flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag. If (hk, pp, id∗, πi) satisfies the pre-registration sub-proof
verification procedure of Fig. 3, then πi satisfies the following conditions.

• nodei,1,t̃ag = rti, idi,di,t̃ag 6= id∗, flagi,j,t̃ag = 1 iff j = di and

• For each j < di, HG.Hash(hk, nodei,j+1,t̃ag) =

{
ai,j,t̃ag if id∗ ≤ idi,j,t̃ag
bi,j,t̃ag if id∗ > idi,j,t̃ag

where t̃ag = upr and pathi,upr 6= ε, or t̃ag = lwr and pathi,upr = ε.
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Proof. The fact that subproof πi satisfies the first condition directly from the checks performed by PreVerify
algorithm. We now prove that πi satisfies the second condition. Let us first consider the case where
pathi,upr 6= ε and t̃ag = upr. We prove that if the above condition is violated for any j, then the sub-proof πi
violates one of the conditions in Fig. 3.

1. Case 1 (There exists j s.t. id∗ > idi,j,upr and HG.Hash(hk, nodei,j+1,upr) 6= bi,j,upr): As πi satisfies the
well-formedness condition, we know that nodei,j+1,upr is left child of nodei,j,upr (i.e., HG.Hash(hk, nodei,j+1,upr) =
ai,j,upr and idi,j+1,upr ≤ idi,j,upr). Consequently, for every k > j, we have idi,k,upr ≤ idi,j,upr. Therefore,
idi,di,upr ≤ idi,j,upr < id∗ and the sub-proof πi violates condition 2 in Fig. 3.

2. Case 2 (There exists j s.t. id∗ ≤ idi,j,upr and HG.Hash(hk, nodei,j+1,upr) 6= ai,j,upr): As πi satisfies the
well-formedness condition, we know that nodei,j+1,upr is right child of nodei,j,upr (i.e., HG.Hash(hk, nodei,j+1,upr) =
bi,j,upr and idi,j+1,upr > idi,j,upr). Let k be the largest index such that for all ` ≤ k, nodei,`,upr =
nodei,`,lwr. We now consider 3 subcases.

• Case 2a (j < k): We know that nodei,j+1,lwr is the right child of nodei,j,lwr. Consequently, by
the well-formedness condition, idi,di,lwr > idi,j,lwr ≥ id∗ and the sub-proof πi violates condition 2
in Fig. 3.

• Case 2b (j > k): As nodei,j+1,upr is right child of nodei,j,upr, the sub-proof πi violates the condition
(3b) in Fig. 3.

• Case 2c (j = k): As πi satisfies conditions 2 and 3 of Fig. 3, we know that idi,k,lwr = idi,di,lwr < id∗.
This violates our assumption that id∗ ≤ idi,j,upr = idi,j,lwr.

Let us now consider the case where pathi,upr = ε and t̃ag = lwr. In this case, we know that for each j < di,
nodei,j+1,lwr is right child of nodei,j,lwr and id∗ > idi,di,lwr. This implies, for each j < di, id∗ > idi,j,lwr and
bi,j,lwr = HG.Hash(hk, nodei,j+1,lwr).

We now state a similar lemma that is useful for proving efficiently extractable completeness for post-
registration property and soundness of post-registration property. Consider any crs = hk← HG.Setup(1λ, 13λ+1),
public parameters pp = {(rti, di)}i, identity id∗, public key pk∗ and a sub-proof πi = (pathi,lwr, pathi,mid, pathi,upr).
Suppose, (crs, pp, id∗, pk∗, πi) satisfies the verification conditions described in Fig. 4. We prove that pathi,mid

resembles a sequence of nodes obtained by performing binary search on id∗ in some tree EncTree with root
value rti. Concretely, we prove the following lemma.

Lemma 4.4. Consider any hash key hk, public parameters pp = {(rti, di)}i, identity id∗, public key pk∗

and a sub-proof πi = (pathi,lwr, pathi,mid, pathi,upr). For any tag ∈ {lwr,mid, upr}, let pathi,tag = (nodei,1,tag,
· · · , nodei,di,tag), where nodei,j,tag = flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag. If (hk, pp, id∗, pk∗, πi) satisfies the post-
registration sub-proof verification procedure of Fig. 4, then πi satisfies the following conditions.

• nodei,1,mid = rti, idi,di,mid = id∗, bi,di,mid = pk∗, flagi,j,mid = 1 iff j = di and

• For each j < di, we have HG.Hash(hk, nodei,j+1,mid) =

{
ai,j,mid if id∗ ≤ idi,j,mid

bi,j,mid if id∗ > idi,j,mid

.

Proof. This proof is similar to the proof of Lemma 4.3.

Lemma 4.5. Assuming HG and PKE are perfectly correct, the above construction satisfies efficiently ex-
tractable completeness for post-registration property (Definition 3.3).

Proof. We first present an UpdExt algorithm which takes a post-registration proof π and an identity id as
input and outputs an update u. We then prove the construction satisfies efficiently extractable completeness
for post-registration property w.r.t the UpdExt algorithm.
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UpdExt(π, id) → {u/ ⊥} : Let the proof π be (π1, · · · , π`n , α), where α ∈ [`n]. For each index i < α, let
πi = (pathi,lwr, pathi,upr). For each i ≥ α, let πi = (pathi,lwr, pathi,mid, pathi,upr). Output ⊥ if the proof
is not in this format. Otherwise, output update u = pathα,mid.

Consider any computationally unbounded admissible adversary A. The challenger first samples crs = hk←
CRSGen(1λ), a PKE key pair (pk∗, sk∗) ← Gen(1λ) and sends (crs, pk∗) to the adversary. The adversary
then outputs public parameters pp, identity id∗, proof π and a message m. Let pp = {(rti, di)}i∈[`n]
and π = (π1, · · · , π`n , α). As A is admissible, we know that π is a valid post-registration proof i.e.,

PostVerify(crs, pp, id∗, pk∗, π) = 1. The challenger first computes ct = (pp, { ˜Enc-Stepi,j}i,j , {ỹi,1}i,1) ←
Enc(crs, pp, id∗,m), extracts u = UpdExt(π, id) and then runs x = Dec(sk, u, ct). Let u = (node1, · · · , noded),
where nodei = flagi||ai||idi||bi for each i. As PostVerify(crs, pp, id∗, pk∗, π) = 1, by Lemma 4.4, we know (1)
flagi = 1 iff i = d, (2) idd = id∗, bd = pk∗, (3) node1 = rtα, and (4) for each i < d, HG.Hash(hk, nodei+1) ={
ai if id∗ ≤ idi

bi Otherwise
. Based on the above observations, we now show that x = m. As node1 = rtα, the de-

cryption algorithm runs HEval( ˜Enc-Stepα,1, ỹα,1, node1). By the perfect correctness of hash garbling scheme,

this results in 0||ỹα,2 =

{
0||HG.GarbleInp(hk, a2, statei,2; ri,2) if id∗ ≤ id1

0||HG.GarbleInp(hk, b2, statei,2; ri,2) Otherwise
. By our observation, 0||ỹα,2 =

0||HG.GarbleInp(hk,HG.Hash(hk, nodei,2), statei,2; ri,2). The decryption algorithm then runs HEval( ˜Enc-Stepi,2, ỹα,2, node2)
and obtains 0||ỹα,3 = 0||HG.GarbleInp(hk, nodei,3, statei,3; ri,3). This continues until the final the final eval-

uation HEval( ˜Enc-Stepi,d, ỹα,d, noded). As idd = id∗ and bd = pk∗, the final circuit outputs 1||Enc(pk∗,m).
The decryption algorithm then decrypts Enc(pk∗,m) using PKE secret key sk∗. By the perfect correctness
of PKE scheme, the decryption algorithm outputs m.

Remark 4.3. We now describe the need of flag in every node of EncTrees present in auxilliary information.
This flag indicates whether a node is a leaf or an internal node. We could consider an alternate construction
where the node values are of the form a||id||b ∈ {0, 1}3λ (without the flag), and the step circuits detect any
node a||id||b as a leaf by checking whether a = 0λ. We notice that the construction of [GHM+19] uses
this approach and does not satisfy completeness property against computationally unbounded adversaries. A
computationally unbounded adversary A can break the completeness property of this alternate approach as
follows. A picks an arbitrary target identity id∗ and makes (regtgt, id∗) query. The challenger samples PKE
pair (pk∗, sk∗), registers (id∗, pk∗) and sends pk∗ back to A. At the point, the tree storing (identity, public
key) pairs in aux consists of only a root node rt and a leaf node 0λ||id∗||pk∗. A then picks an arbitrary
identity id < id∗ and computes pk such that Hash(hk, 0λ||id||pk) = 0λ. A now makes (regnew, id, pk) query.
The challenger registers (id, pk) pair. Now, the tree consists of root node 0λ||id||h, a left child 0λ||id||pk and
right child 0λ||id∗||pk∗. If a message is now encrypted to id∗ and the ciphertext is decypted using update of
id∗, then the ouput is ⊥.

4.4 Security

In this section, we prove that the above scheme satisfies soundness of pre/post-Registration Verifiability and
Message Hiding properties as defined in Definitions 3.4 to 3.6. We now provide a brief overview of the proofs.

Recall that soundness of pre-registration verifiability property ensures that if a PPT adversary A can
create valid public parameters pp along with a pre-registration proof π that an identity id is not registered,
then he will not be able to decrypt any ciphertext ct encrypted for id with non-negligible probability. To
provide the proof’s intuition, consider the scenario where a cheating accumulator/adversary creates public
parameters by inserting (id, pk) at a wrong leaf location by violating property that the EncTree is to be
sorted as per identities. Such an adversary could provide a valid pre-registration proof that the identity
is not registered. However, it cannot decrypt the ciphertexts encrypted for the identity. For example, the
EncTree generated by adversary has 3 registered identities id1 < id2 < id3, has root value rt = h1||id3||h2 with
left subtree containing id1, id3 and right subtree containing id2. Clearly, the paths to the leaves containing
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id1, id3 form a valid pre-registration proof. A ciphertext contains 3 garbled circuits { ˜Enc-Stepi}i and garbling

of Hash(rt). When the garbled circuit ˜Enc-Step1 is run with input as the root value rt, it identifies that id2

is in left subtree (as id2 < id3) and outputs garbling of h1. Now, ˜Enc-Step2 can only be run on the left child
value of the root node. The garbing values output the garbled circuits would follow the path that is present
as part of pre-registration proof, and as a result the final garbled circuit outputs ⊥ and the adversary cannot
decrypt the ciphertext. We formally prove that the scheme satisfies the property, by arguing that when the
adversary is forced to generate public parameters along with a pre-registration proof, it cannot distinguish
between a real ciphertext and a simulated ciphertext that is generated without using the message.

Soundness of post-registration verifiability property guarantees that if an adversary can create valid
public parameters pp along with a post-registration proof π that an identity-key pair (id, pk) is registered
(for an honestly generated pk such that corresponding secret key sk is not revealed to the adversary), then
he will not be able decrypt any ciphertext ct encrypted for id. The proof is similar to the proof of pre-
registration verifiability, except that the simulated ciphertext is now generated using only PKE encryptions
of the message with the identity’s public key (the corresponding secret key is unknown to the adversary).

Message Hiding properties guarantees that if the public parameters pp are honestly generated, then
a PPT adversary cannot decrypt ciphertexts of unregistered identities, and cannot decrypt ciphertexts of
registered identities without the knowledge of their secret keys. We argue that if any RBE scheme satisfies
soundness of pre/post-registration verifiability properties along with completeness property, it also satisfies
message hiding property. If an (id, pk) pair is registered as part of pp, then one could also create a valid
post-registration proof as per the completeness property. Therefore, as per soundness of post-registration
verifiability the ciphertexts meant for id cannot be decrypted with non-negligible probability when secret
key corresponding to pk is unknown. If an id is not registered as part of pp, then one could create a valid
pre-registration proof as per the completeness property. Therefore, as per soundness of pre-registration
verifiability, the ciphertexts meant for id cannot be decrypted with non-negligible probability.

4.4.1 Soundness of Pre-Registration Verifiability

Theorem 4.1. Assuming HG is a secure hash garbling scheme, the above construction satisfies soundness
of pre-registration verifiability property (Definition 3.5).

Proof. We prove the above theorem via a hybrid argument. The first hybrid Hreal is same as the soundness
game for pre-registration verifiability. In this hybrid, the challenger samples a crs = hk← HG.Setup(1λ, 13λ+1)
and sends it to the adversary. The adversary then sends public parameters pp = {(rti, di)}i∈[`n], identity id∗,
pre-registration proof π, and challenge messages m0,m1 to the challenger. The challenger aborts if π is in-
valid i.e., PreVerify(crs, pp, id∗, π) = 0. Otherwise, the challenger samples a bit b← {0, 1}, encrypts message

mb and sends the ciphertext ct = ({(rti, di)}i, { ˜Enc-Stepi,j}i,j , {ỹi,1}i) to the adversary. Concretely, given

crs, public parameters pp, identity id∗ and message mb, the challenger first samples statei,j , ri,j ← {0, 1}λ for
i ∈ [`n], j ∈ [di + 1]. The challenger then constructs circuits Enc-Stepi,j for each i ∈ [`n], j ∈ [di] as in Fig. 2.
It then garbles the circuits {Enc-Stepi,j}i,j along with their inputs {rti}i using a hash garbling scheme to

obtain { ˜Enc-Stepi,j}i,j and {ỹi,1}i respectively. The adversary outputs a bit b′, and wins if b′ = b. We prove
that the advantage of any PPT adversary in winning against Hreal challenger is negligible via a sequence of
hybrids.

In each subsequent hybrid, the challenger switches a garbled circuit in the ciphertext with a simulated

one. Concretely, in Hybrid Hκ.τ , the challenger obtains ˜Enc-Stepi,j for each (i, j) � (κ, τ) and ỹi,1 for each

(i, 1) � (κ, τ) using a simulator HG.Sim, whereas the challenger computes ˜Enc-Stepi,j for each (i, j) � (κ, τ)
and ỹi,1 for each (i, 1) � (κ, τ) using hash garbling scheme as earlier. Here, we say that (i, j) ≺ (k, `) if
(i < k) ∨ (i = k ∧ j < `). Similarly, we say that (i, j) � (k, `) iff (i, j) = (k, `) ∨ (i, j) ≺ (k, `). Also,

(i, j) � (k, `) iff (k, `) ≺ (i, j). We now describe how the challenger obtains ˜Enc-Stepi,j for each (i, j) � (κ, τ)
using a simulator.

First, we introduce some notations and make some observations. Let the proof π sent by the adversary
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be π = (π1, · · · , π`n), where πi = (pathi,lwr, pathi,upr) for each i ∈ [`n]. Both pathi,lwr, pathi,upr consists of

either an empty string ε or a sequence of values in {0, 1}3λ+1. For any i ∈ [`n], tag ∈ {lwr, upr}, let pathi,tag =

(nodei,1,tag, nodei,2,tag, · · · , nodei,di,tag)
17, where each nodei,j,tag = flagi,j,tag||ai,j,tag||idi,j,tag||bi,j,tag ∈ {0, 1}3λ+1.

Let use define tagi = upr if pathi,upr 6= ε. Otherwise, let tagi = lwr. If π is a valid pre-registration proof for
id∗, then intuitively pathi,tagi resembles like a sequence of nodes obtained by performing binary search on

id∗. Concretely, by Lemma 4.3, we know that for any index i the following holds. (1) nodei,1,tagi = rti, (2)
flagi,j,tagi = 1 iff j = di, (3) idi,di,tagi 6= id∗ and (4) for all j < di, we have

HG.Hash(hk, nodei,j+1,tagi) =

{
ai,j,tagi if id∗ ≤ idi,j,tagi
bi,j,tagi if id∗ > idi,j+1,tagi

.

Consider any index i ∈ [`n]. When the circuit Enc-Stepi,1 (with identity id∗ embedded in it) is fed with the
root value rti = nodei,1,tagi as input, the circuit outputs flagi,1,tagi ||ỹi,2 = flagi,1,tagi ||HG.GarbleInp(hk, ai,1,tagi ,

statei,2; ri,2) if id∗ ≤ idi,1,tagi . Otherwise, the circuit outputs flagi,1,tagi ||ỹi,2 = flagi,1,tagi ||HG.GarbleInp(hk, bi,1,tagi ,
statei,2; ri,2). By the above equation, we know that ỹi,2 = HG.GarbleInp(hk, hi,2, statei,2; ri,2), where hi,2 =
HG.Hash(hk, nodei,2,tagi). Similarly, when the circuit Enc-Stepi,2 is fed with input nodei,2,tagi , it outputs
flagi,2,tagi ||ỹi,3 = flagi,2,tagi ||HG.GarbleInp(hk, hi,3, statei,3; ri,3), where hi,3 = HG.Hash(hk, nodei,3,tagi). On
repeating this process, for each j < di, the circuit Enc-Stepi,j outputs flagi,j,tagi ||ỹi,j+1 = flagi,j,tagi ||
HG.GarbleInp(hk, hi,j+1, statei,j+1; ri,j+1), where hi,j+1 = HG.Hash(hk, nodei,j+1,tagi). The output of the
final circuit Enc-Stepi,di is 1|| ⊥ as idi,ditagi 6= id∗.

Based on the above observations, we now describe how the challenger obtains ˜Enc-Stepi,j for each

(i, j) � (κ, τ) using a simulator. In order to simulate circuit ˜Enc-Stepκ,τ , the challenger first samples

stateκ,τ+1, rκ,τ+1 ← {0, 1}λ and computes flagκ,τ ||ỹκ,τ+1 as follows.

flagκ,τ ||ỹκ,τ+1 =

{
0||HG.GarbleInp(hk, hκ,τ+1, stateκ,τ+1; rκ,τ+1) if τ 6= dκ

1|| ⊥ if τ = dκ

where hκ,τ+1 = HG.Hash(hk, nodeκ,τ+1,tagκ). The challenger then runs the simulator using ỹκ,τ+1 as output

and obtains ( ˜Enc-Stepκ,τ , ỹκ,τ )← HG.Sim(hk, nodeκ,τ,tagκ , 1
L, flagκ,τ ||ỹκ,τ+1). Here L is the length of the step

circuit described in Fig. 2. The challenger then runs the simulator again using ỹκ,τ as output and obtains

( ˜Enc-Stepκ,τ−1, ỹκ,τ−1) ← HG.Sim(hk, nodeκ,τ−1,tagκ , 1
L, 0||ỹκ,τ ). The challenger continues the process and

obtains ˜Enc-Stepκ,j , ỹκ,j for each j ≤ τ .

For any i < κ, the challenger first sets ỹi,di+1 =⊥. It then runs the simulator ( ˜Enc-Stepi,j , ỹi,j) ←
HG.Sim(hk, nodei,j,tagi , 1

L, flagi,j+1||ỹi,j+1) for each j ≤ di. Here, L is the length of the step circuit described

in Fig. 2 and flagi,j+1 = 1 iff j = di. The challenger obtains ˜Enc-Stepi,j for each (i, j) � (κ, τ) and ỹi,1 for
each (i, 1) � (κ, τ) by running simulator in this way. Using the security of hash garbling scheme, we prove
that every 2 adjacent hybrids are computationally indistinguishable.

In the final hybrid H`n.d`n
, the challenger produces the entire ciphertext using a simulator without even

sampling b. Clearly, the advantage of any adversary in this hybrid is 0. By the above indistinguishability
argument, the advantage of any PPT adversary in the original game Hreal is negligible.

We now provide a formal description of the hybrids. Note that the numbering of hybrids depends on the
size of public parameters sent by the adversary. Let us define the set S to be {(i, j) : i ∈ [`n], j ∈ [di]}, when
pp sent by the adversary is {(rti, di)}i∈[`n].

Hybrid Hreal: This is same as original soundness game for pre-registration verifiability property.

1. The challenger first samples a hash key hk ← HG.Setup(1λ, 13λ+1), sets crs = hk and sends it to
the adversary.

17For the sake of simplicity, we assume the paths output by the adversary are of length di. The proof still works even if the
adversary outputs paths of different lengths.
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2. The adversary sends an identity id∗, public parameters pp, a proof π and a pair of messages m0,m1

to the challenger. The challenger aborts and the adversary looses if PreVerify(crs, pp, id∗, π) = 0.

3. Let public parameters pp be {(rti, di)}i∈[`n] and proof π be (π1, · · · , π`n). For any i ∈ [`n], let
πi = (pathi,lwr, pathi,upr). For any i ∈ [`n] and tag ∈ {lwr, upr}, let pathi,tag be sequence of values
(nodei,1,tag, nodei,2,tag, · · · , nodei,di,tag).

18

4. Let S = {(i, j) : i ∈ [`n], j ∈ [di]} and S′ = {(i, j) : i ∈ [`n], j ∈ [di + 1]}. The challenger samples
a bit b← {0, 1}.

5. It then samples statei,j ← {0, 1}λ, ri,j ← {0, 1}λ for each (i, j) ∈ S′.
6. For each (i, j) ∈ S, the challenger defines the circuit Enc-Stepi,j as in Fig. 2 with hash key hk,

state statei,j+1, randomness ri,j+1, identity id∗, message mb hardwired in it. It then garbles the

circuit Enc-Stepi,j i.e., ˜Enc-Stepi,j ← HG.GarbleCkt(hk,Enc-Stepi,j , statei,j).

For each i ∈ [`n], the challenger computes ỹi,1 = HG.GarbleInp(hk, hi,1, statei,1; ri,1), where hi,1 =
HG.Hash(hk, rti).

7. Finally, the challenger sends ciphertext ct = ({(rti, di)}i∈[`n], { ˜Enc-Stepi,j}(i,j)∈S , {ỹi,1}i∈[`n]) to
the adversary.

8. The adversary outputs a bit b′. The adversary wins if b′ = b.

Hybrid Hκ.τ ((κ, τ) ∈ S): In this hybrid, for every (i, j) � (κ, τ), the challenger computes ˜Enc-Stepi,j using
a simulator. The changes from the previous hybrid are highlighted in red.

5. It then samples statei,j ← {0, 1}λ, ri,j ← {0, 1}λ for each (i, j) ∈ S′ s.t. (i, j) � (κ, τ).

6. For each (i, j) ∈ S s.t. (i, j) � (κ, τ), the challenger defines the circuit Enc-Stepi,j as in Fig. 2
with hash key hk, state statei,j+1, randomness ri,j+1, identity id∗, message mb hardwired in it. It

then garbles the circuit Enc-Stepi,j i.e., ˜Enc-Stepi,j ← HG.GarbleCkt(hk,Enc-Stepi,j , statei,j).

For each i s.t (i, 1) � (κ, τ), the challenger computes ỹi,1 = HG.GarbleInp(hk, hi,1, statei,1; ri,1),
where hi,1 = HG.Hash(hk, rti).

For any i, let use define tagi = upr if pathi,upr 6= ε. Otherwise, let tagi = lwr. For each i
s.t. (i, di) � (κ, τ), the challenger sets ỹi,di+1 =⊥. If τ 6= dκ, the challenger computes x =
HG.Hash(hk, nodeκ,τ+1,tagi) and sets ỹκ,τ+1 = HG.GarbleInp(hk, x, stateκ,τ+1; rκ,τ+1).

For each (i, j) ∈ S s.t (i, j) � (κ, τ), the challenger simulates the garbling of Enc-Stepi,j as

( ˜Enc-Stepi,j , ỹi,j) ← HG.Sim(hk, nodei,j,tagi , 1
L, flagi,j+1||ỹi,j+1). Here L is the length of circuit

Enc-Stepi,j defined in Fig. 2 and flagi,j+1 = 1 iff j = di.
19

For the sake of simplicity, we define Hybrid H1.0 same as Hybrid Hreal. Note that hybrid Hreal (H1.0) is
same as the soundness game for pre-registration verifiability. In this hybrid, the challenger generates the
ciphertext by garbing circuits Enc-Stepi,j and their inputs rti using hash garbling scheme. In the final hybrid
H`n.d`n

, the challenger generates the ciphertext using simulator given only public parameters and length
of the step circuits. The ciphertext in this final hybrid is independent of b. Consequently, the advantage
of any adversary in Hybrid H`n.d`n

is 0. We prove that hybrids Hreal and H`n.d`n
are computationally

indstinguishable via a sequence of intermediate hybrids Hκ.τ . For any PPT adversary A, let the advantage
of A in Hybrid Hs be AdvAs = Pr[b′ = b] − 1/2. For any κ ∈ [`n], τ ∈ [dκ], let (κ̃, τ̃) be its preceding tuple

i.e., (κ̃, τ̃) =


(κ, τ − 1) if τ > 1

(κ− 1, dκ−1) if κ > 1 ∧ τ = 1

(1, 0) if (κ, τ) = (1, 1)

.

18To simplify the notations, we assume that the paths pathi,lwr and pathi,upr output by the adversary have length di. With
appropriate changes, the proof works even if length of the paths is smaller than di.

19Note that simulating ỹi,j requires ỹi,j+1. As a result, for each i, the challenger runs the simulator in the decreasing order
of j.
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Lemma 4.6. Assuming HG is a secure hash garbling scheme, for every admissible20 PPT adversary A, there
exists a negligible function negl(·) such that for any λ ∈ N and any (κ, τ) ∈ S, we have |AdvAκ.τ − AdvAκ̃.τ̃ | ≤
negl(λ).

Proof. Suppose there exists an admissible PPT adversary A, indices (κ, τ) ∈ S such that |AdvAκ.τ − AdvAκ̃.τ̃ |
is a non-negligible value ε. We construct a non-uniform reduction algorithm B that breaks the security of
hash garbling scheme.

The hash garbling game challenger C first sends a hash key hk to the reduction algorithm B. B sets
crs = hk and sends it to the adversary A. The adversary sends an identity id∗, public parameters pp, a
proof π and a pair of messages m0,m1 to B. If PreVerify(crs, pp, id∗, π) = 0, B aborts and outputs a ran-
dom bit in hash garbling game. Otherwise let pp = {(rti, di)}i∈[`n], π = (π1, · · · , π`n). For any i ∈ [`n],
let πi = (pathi,lwr, pathi,upr). For any i ∈ [`n] and tag ∈ {lwr, upr}, let pathi,tag be sequence of values
(nodei,1,tag, nodei,2,tag, · · · , nodei,di,tag)

18. Let S = {(i, j) : i ∈ [`n], j ∈ [di]} and S′ = {(i, j) : i ∈ [`n], j ∈
[di + 1]}. For any i, let use define tagi = upr if pathi,upr 6= ε. Otherwise, let tagi = lwr. B then samples

a bit b ← {0, 1}. For each (i, j) ∈ S′ s.t. (i, j) � (κ, τ), B samples statei,j ← {0, 1}λ, ri,j ← {0, 1}λ.
For each (i, j) ∈ S s.t. (i, j) � (κ, τ), B creates the circuit Enc-Stepi,j as in Fig. 2 with identity id∗,
message mb hardwired in it. B then sends Enc-Stepκ,τ , nodeκ,τ,tagκ to the challenger C. C samples a

bit γ ← {0, 1}. If γ = 0, C samples state ← {0, 1}λ and computes h = HG.Hash(hk, nodeκ,τ,tagκ),

˜Enc-Stepκ,τ ← HG.GarbleCkt(hk,Enc-Stepκ,τ , state), ỹκ,τ ← HG.GarbleInp(hk, h, state). Otherwise C computes

x = Enc-Stepκ,τ (nodeκ,τ,tagκ) and runs simulator ( ˜Enc-Stepκ,τ , ỹκ,τ )← HG.Sim(hk, nodeκ,τ,tagκ , 1
|Enc-Stepκ,τ |, x).

C sends ˜Enc-Stepκ,τ , ỹκ,τ to B. For each (i, j) ∈ S s.t. (i, j) � (κ, τ), B garbles the circuit Enc-Stepi,j to

obtain ˜Enc-Stepi,j ← HG.GarbleCkt(hk,Enc-Stepi,j , statei,j). For each i s.t (i, 1) � (κ, τ), B garbles the
input rti and obtains ỹi,1 = HG.GarbleInp(hk, rti, statei,1; ri,1). For each (i, j) ∈ S s.t. (i, j) ≺ (κ, τ),

B runs the simulator and computes ˜Enc-Stepi,j , ỹi,j as in Hybrid Hκ.τ . Finally, B sends the ciphertext

ct = ({(rti, di)}i, { ˜Enc-Stepi,j}i,j , {ỹi,1}i) to A. A outputs a bit b′. If b = b′, B outputs 1 in the hash
garbling game. Otherwise B outputs 0 in the hash garbling game.

We now analyze the advantage of B in hash garbling game. As the adversaryA is admissible, PreVerify(crs,
pp, id∗, π) = 1 and B does not abort. By Lemma 4.3, when PreVerify(crs, pp, id∗, π) = 1, the path pathκ,tagκ
resembles a sequence of nodes obtain by performing binary search on id∗ in a tree with root rtκ. Consequently,
when the challenger runs step circuit Enc-Stepκ,τ on input nodeκ,τ,tagκ , the result is 0||nodeκ,τ+1,tagκ if τ < dκ,
and 1|| ⊥ if τ = dκ. As a result, if γ = 0, then B emulates Hybrid Hκ̃.τ̃ challenger to A, and if γ = 1, then
B emulates Hybrid Hκ.τ challenger to A. By our assumption, |AdvAκ.τ −AdvAκ̃.τ̃ | is non-negligible. Therefore,
B has a non-negligible advantage in predicting γ.

By the above lemma and triangle inequality, the advantage of any PPT adversary in Hybrid Hreal is
negligible. Therefore, our construction satisfies soundness for pre-registration verifiability property.

4.4.2 Soundness of Post-Registration Verifiability

Theorem 4.2. Assuming HG is a secure hash garbling scheme and PKE is a secure public key encryption
scheme, the above construction satisfies soundness of post-registration verifiability property (Definition 3.5).

We prove the above theorem via a hybrid argument. In the first hybrid Hb (b ∈ {0, 1}), the challenger
samples a crs, a PKE pair (pk, sk) and sends a (crs, pk) to the adversary. The adversary then sends public
parameters pp = {(rti, di)}i∈[`n], identity id∗, post-registration proof π, and challenge messages m0,m1 to
the challenger. The challenger aborts if π is invalid i.e., PostVerify(crs, pp, id∗, pk, π) = 0. Otherwise, the

challenger encrypts message mb and sends the ciphertext ct = ({(rti, di)}i, { ˜Enc-Stepi,j}i,j , {ỹi,1}i) to the

20A PPT adversary in the soundness game is said to be admissible if it always produces valid proof π.
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adversary. Concretely, given crs, public parameters pp, identity id∗ and message mb, the challenger first
samples statei,j , ri,j ← {0, 1}λ for each i ∈ [`n], j ∈ [di + 1]. It then constructs circuits Enc-Stepi,j for each
i ∈ [`n], j ∈ [di] as in Fig. 2. The challenger then garbles the circuits {Enc-Stepi,j}i,j along with their inputs

{rti}i using a hash garbling scheme to obtain { ˜Enc-Stepi,j}i,j and {ỹi,1}i respectively. Finally, the adversary
outputs bit b′. We prove that for any PPT adversary, Pr[b′ = 1] in Hybrids H0 and H1 are negligibly close
via a sequence of hybrids.

In each subsequent hybrid, the challenger switches a garbled circuit in the ciphertext with a simulated

one. Concretely, in Hybrid Hκ.τ , the challenger obtains ˜Enc-Stepi,j for each (i, j) � (κ, τ) and ỹi,1 for each

(i, 1) � (κ, τ) using a simulator. The challenger computes ˜Enc-Stepi,j for each (i, j) � (κ, τ) and ỹi,1 for each
(i, 1) � (κ, τ) using hash garbling scheme as earlier. Here, we say that (i, j) ≺ (k, `) if (i < k)∨(i = k∧j < `).
Similarly, we say that (i, j) � (k, `) iff (i, j) = (k, `)∨ (i, j) ≺ (k, `). Also, (i, j) � (k, `) iff (k, `) ≺ (i, j). We

now describe how the challenger obtains ˜Enc-Stepi,j for each (i, j) � (κ, τ) using a simulator.
First, we introduce some notations and make some observations. Let the proof π output by the ad-

versary be π = (π1, · · · , π`n , α). For any i < α, let πi = (pathi,lwr, pathi,upr). For any i ≥ α, let πi =
(pathi,lwr, pathi,mid, pathi,upr). For any i ∈ [`n], tag ∈ {lwr,mid, upr}, let pathi,tag = (nodei,1,tag, nodei,2,tag, · · · ,
nodei,di,tag)

21, where each nodei,j,tag = flag||ai,j,tag||idi,j,tag||bi,j,tag ∈ {0, 1}3λ+1. For any i ∈ [`n], let us define

tagi =


upr if i < α ∧ pathi,upr 6= ε

lwr if i < α ∧ pathi,upr = ε

mid Otherwise

.

Suppose π is a valid post-registration proof for id∗. We know that for any i, pathi,tagi looks like a sequence

of nodes obtained by performing binary search on id∗. Concretely, by Lemmas 4.3 and 4.4, we know that
for any index i, the following holds. (1) nodei,1,tagi = rti, (2) flagi,j,tagi = 1 iff j = di, (3) idi,di,tagi 6= id∗ if

i < α, (4) idi,di,tagi = id∗, bi,di,tagi = pk∗ if i ≥ α, and (5) for all j < di,

HG.Hash(hk, nodei,j+1,tagi) =

{
ai,j,tagi if id∗ ≤ idi,j,tagi
bi,j,tagi if id∗ > idi,j,tagi

.

Consider any index i ∈ [`n]. When the circuit Enc-Stepi,1 (with identity id∗ embedded in it) is fed with
the root value rti = nodei,1,tagi as input, the circuit outputs

flagi,1,tagi ||ỹi,2 =

{
flagi,1,tagi ||HG.GarbleInp(hk, ai,1,tagi , statei,2; ri,2) if id∗ ≤ idi,1,tagi
flagi,1,tagi ||HG.GarbleInp(hk, bi,1,tagi , statei,2; ri,2) Otherwise

= flagi,1,tagi |||HG.GarbleInp(hk, hi,2, statei,2; ri,2)

where hi,2 = HG.Hash(hk, nodei,2,tagi). Similarly, when the circuit Enc-Stepi,2 is fed with input nodei,2,tagi , it
outputs flagi,2,tagi ||ỹi,3 = flagi,2,tagi ||HG.GarbleInp(hk, hi,3, statei,3; ri,3), where hi,3 = HG.Hash(hk, nodei,3,tagi).
On repeating this process, for each j < di, the circuit Enc-Stepi,j outputs flagi,j,tagi ||ỹi,j+1 = flagi,j,tagi ||
HG.GarbleInp(hk, hi,j+1, statei,j+1; ri,j+1), where hi,j+1 = HG.Hash(hk, nodei,j+1,tagi). The output of the fi-
nal circuit Enc-Stepi,di is 1|| ⊥ if i < α, and 1||Enc(pk,m) if i ≥ α.

Based on the above observations, we now describe how the challenger obtains ˜Enc-Stepi,j for each

(i, j) � (κ, τ) using a simulator. In order to simulate circuit ˜Enc-Stepκ,τ , the challenger first samples

stateκ,τ+1, rκ,τ+1 ← {0, 1}λ and computes flagκ,τ ||ỹκ,τ+1 as follows.

flagκ,τ ||ỹκ,τ+1 =


0||HG.GarbleInp(hk, hκ,τ+1, stateκ,τ+1; rκ,τ+1) if τ 6= dκ

1|| ⊥ if τ = dκ ∧ κ < α

1||Enc(pk,mb) if τ = dκ ∧ κ ≥ α
21To simplify the notations, we assume that the paths pathi,lwr, pathi,mid and pathi,upr output by the adversary have length

di. With appropriate changes, the proof works even if length of the paths is smaller than di.
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where hκ,τ+1 = HG.Hash(hk, nodeκ,τ+1,tagi). The challenger then runs the simulator using ỹκ,τ+1 as output

and obtains ( ˜Enc-Stepκ,τ , ỹκ,τ )← HG.Sim(hk, nodeκ,τ,tagi , 1
L, flagκ,τ ||ỹκ,τ+1). Here L is the length of the step

circuit described in Fig. 2. The challenger then runs the simulator again using ỹκ,τ as output and obtains

( ˜Enc-Stepκ,τ−1, ỹκ,τ−1) ← HG.Sim(hk, nodeκ,τ−1,tagi , 1
L, 0||ỹκ,τ ). Similarly, for each j < τ , the challenger

samples ( ˜Enc-Stepκ,j , ỹκ,j)← HG.Sim(hk, nodeκ,j,tagi , 1
L, 0||ỹκ,j+1).

For any i < κ, the challenger first sets ỹi,di+1 =

{
⊥ if i < α

Enc(pk,mb) Otherwise
. It then runs the simulator

( ˜Enc-Stepi,j , ỹi,j) ← HG.Sim(hk, nodei,j,tagi , 1
L, flagi,j ||ỹi,j+1) for each j ≤ dκ. Here, L is the length of the

step circuit described in Fig. 2 and flagi,j+1 = 1 iff j = di. The challenger obtains ˜Enc-Stepi,j for each
(i, j) � (κ, τ) and ỹi,1 for each (i, 1) � (κ, τ) by running simulator in this way. Using the security of hash
garbling scheme, we prove that every 2 adjacent hybrids are computationally indistinguishable.

In the final hybrid Hb.`n.d`n
, the challenger produces the entire ciphertext using a simulator given PKE

encryptions of message mb. By semantic security of the underlying PKE system, we know that PKE en-
cryptions of m0 are computationally indistinguishable from PKE encryptions of m1. Using this, we prove
that hybrids H0.`n.d`n

and H1.`n.d`n
are computationally indistinguishable. By combining the above indis-

tinguishability arguments, we prove that Hybrids H0 and H1 are computationally indistinguishable.
We now provide a formal description of the hybrids. Note that the numbering of hybrids depends on the

size of public parameters sent by the adversary. Let us define the set S to be {(i, j) : i ∈ [`n], j ∈ [di]}, when
pp sent by the adversary is {(rti, di)}i∈[`n].

Proof. We prove the above scheme using a sequence of following hybrids.

Hybrid Hb (b ∈ {0, 1}): This hybrid is same as the original soundness game in which the challenger always
encrypts message mb.

1. The challenger first samples a hash key hk ← HG.Setup(1λ, 13λ+1), a PKE key pair (pk∗, sk∗) ←
PKE.Setup(1λ), sets crs = hk and sends (crs, pk∗) to the adversary.

2. The adversary sends an identity id∗, public parameters pp, a proof π and a pair of messages m0,m1

to the challenger. The challenger aborts and the adversary looses if PostVerify(crs, pp, id∗, pk∗, π) =
0.

3. Let public parameters pp = {(rti, di)}i∈[`n] and proof π = (π1, · · · , π`n , α). Let S = {(i, j) : i ∈
[`n], j ∈ [di]} and S′ = {(i, j) : i ∈ [`n], j ∈ [di + 1]}.

4. For each i < α, let πi = (pathi,lwr, pathi,upr). Similarly, for each i ≥ α, let πi = (pathi,lwr, pathi,mid, pathi,upr).
For any i ∈ [`n] and tag ∈ {lwr,mid, upr}, let pathi,tag be a sequence of values (nodei,1,tag, nodei,2,tag, · · · ,

nodei,di,tag).
21. For any i ∈ [`n], let tagi =

{
upr if i < α

mid Otherwise
.

5. The challenger samples statei,j ← {0, 1}λ, ri,j ← {0, 1}λ for each (i, j) ∈ S′.
6. For each (i, j) ∈ S, the challenger defines the circuit Enc-Stepi,j as in Fig. 2 with hash key hk,

state statei,j+1, randomness ri,j+1, identity id∗, message mb hardwired in it. It then garbles the

circuit Enc-Stepi,j i.e., ˜Enc-Stepi,j ← HG.GarbleCkt(hk,Enc-Stepi,j , statei,j).

For each i ∈ [`n], the challenger computes ỹi,1 = HG.GarbleInp(hk,HG.Hash(hk, rti), statei,1; ri,1).

7. Finally, the challenger sends ciphertext ct = ({(rti, di)}i∈[`n], { ˜Enc-Stepi,j}(i,j)∈S , {ỹi,1}i∈[`n]) to
A. The adversary outputs a bit b′.

Hybrid Hb.κ.τ (b ∈ {0, 1}, (κ, τ) ∈ S): In this hybrid, for every (i, j) � (κ, τ), the challenger computes
Enc-Stepi, j using a simulator. The differences from the previous hybrid are highlighted in red color.

5. The challenger samples statei,j ← {0, 1}λ, ri,j ← {0, 1}λ for each (i, j) ∈ S′ s.t. (i, j) � (κ, τ).
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6. For each (i, j) ∈ S s.t. (i, j) � (κ, τ), the challenger defines the circuit Enc-Stepi,j as in Fig. 2
with hash key hk, state statei,j+1, randomness ri,j+1, identity id∗, message mb hardwired in it. It

then garbles the circuit Enc-Stepi,j i.e., ˜Enc-Stepi,j ← HG.GarbleCkt(hk,Enc-Stepi,j , statei,j).

For each i ∈ [`n] s.t (i, 1) � (κ, τ), the challenger computes ỹi,1 = HG.GarbleInp(hk,HG.Hash(hk, rti),
statei,1; ri,1).

For each i s.t. (i, di) � (κ, τ),

• The challenger sets ỹi,di+1 = 1|| ⊥ if i < α.

• The challenger samples ciphertext ct∗i ← PKE.Enc(pk∗,mb) and sets ỹi,di+1 = 1||ct∗i if i ≥ α.

For any i, Let us define tagi = upr if i < α ∧ pathi,upr 6= ε. tagi = lwr if i < α ∧ pathi,upr = ε, and
tagi = mid if i ≥ α.

If τ 6= dκ, the challenger computes x = HG.Hash(hk, nodeκ,τ+1,tagκ) and sets ỹκ,τ+1 = HG.GarbleInp(hk, x,
stateκ,τ+1; rκ,τ+1).

For each (i, j) ∈ S s.t (i, j) � (κ, τ), the challenger simulates the garbling of Enc-Stepi,j as

( ˜Enc-Stepi,j , ỹi,j)← HG.Sim(hk, nodei,j,tagi , 1
L, flagi,j+1||ỹi,j+1)22, where L is the length of circuit

Enc-Stepi,j defined in Fig. 2 and flagi,j+1 = 1 iff j = di.

For the sake of simplicity, we hereby define Hybrid Hb.1.0 same as Hybrid Hb for any bit b. We now prove
that Hybrid H0 is computationally indistinguishable from Hybrid H1 via a sequence of intermediate hybrids.
For any PPT adversary A and any Hybrid Hs, let the probability that A outputs 1 in Hybrid Hs be pAs .

For any κ ∈ [`n], τ ∈ [dκ], let (κ̃, τ̃) be its preceding tuple i.e., (κ̃, τ̃) =


(κ, τ − 1) if τ > 1

(κ− 1, dκ−1) if κ > 1 ∧ τ = 1

(1, 0) if (κ, τ) = (1, 1)

.

Lemma 4.7. Assuming HG is a secure hash garbling scheme, for every admissible20 PPT adversary A,
there exists a negligible function negl(·) such that for any λ ∈ N, bit b ∈ {0, 1}, any (κ, τ) ∈ S, we have
|pAb.κ.τ − pAb.κ̃.τ̃ | ≤ negl(λ).

Proof. Suppose there exists an admissible PPT adversary A and indices (κ, τ) ∈ S s.t. |pAb.κ.τ − pAb.κ̃.τ̃ | is a
non-negligible value ε. We construct a non-uniform reduction algorithm B which knows the indices (κ, τ)
and breaks the security of hash garbling scheme.

The hash garbling game challenger C first sends a hash key hk to the reduction algorithm B. B sam-
ples a PKE key pair (pk∗, sk∗) ← PKE.Setup(1λ), sets crs = hk and sends (crs, pk∗) to the adversary A.
The adversary sends an identity id∗, public parameters pp, a proof π and a pair of messages m0,m1 to
the challenger. If PostVerify(crs, pp, id∗, pk∗, π) = 0, B aborts and outputs a random bit in hash garbling
game. Let public parameters pp be {(rti, di)}i∈[`n] and proof π be (π1, · · · , π`n , α). For each i < α, let
πi = (pathi,lwr, pathi,mid). Similarly, for each i ≥ α, let πi = (pathi,lwr, pathi,mid, pathi,upr). For any i ∈ [`n]
and tag ∈ {lwr,mid, upr}, let pathi,tag be a sequence of values (nodei,1,tag, nodei,2,tag, · · · , nodei,di,tag)

21.
Let us define set S = {(i, j) : i ∈ [`n], j ∈ [di]} and set S′ = {(i, j) : i ∈ [`n], j ∈ [di + 1]}. For
any i, Let us define tagi = upr if i < α ∧ pathi,upr 6= ε. tagi = lwr if i < α ∧ pathi,upr = ε, and

tagi = mid if i ≥ α. For each (i, j) ∈ S′ s.t. (i, j) � (κ, τ), B samples statei,j ← {0, 1}λ, ri,j ←
{0, 1}λ. For each (i, j) ∈ S s.t. (i, j) � (κ, τ), B creates the circuit Enc-Stepi,j as in Fig. 2 with
message mb and identity id∗ hardwired in it. B then sends circuit Enc-Stepκ,τ and input nodeκ,τ,tagκ
to the hash garbling game challenger C. C samples a bit γ ← {0, 1}. If γ = 0, C samples state ←
{0, 1}λ and computes h = HG.Hash(hk, nodeκ,τ,tagκ), ˜Enc-Stepκ,τ ← HG.GarbleCkt(hk,Enc-Stepκ,τ , state) and
ỹκ,τ ← HG.GarbleInp(hk, h, state). Otherwise C computes x = Enc-Stepκ,τ (nodeκ,τ,tagκ) and runs simulator

( ˜Enc-Stepκ,τ , ỹκ,τ )← HG.Sim(hk, nodeκ,τ,tagκ , 1
|Enc-Stepκ,τ |, x). C sends ˜Enc-Stepκ,τ , ỹκ,τ to B. For each i < α

s.t. (i, di) ≺ (κ, τ), the challenger sets ỹi,di+1 = 1|| ⊥. For each i ≥ α s.t. (i, di) ≺ (κ, τ), B samples a

22Note that simulating ỹi,j requires ỹi,j+1. As a result, for each i, the challenger runs the simulator in the decreasing order
of j.
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ciphertext ct∗i ← PKE.Enc(pk∗,mb) and sets ỹi,j+1 = 1||ct∗i . For each (i, j) ∈ S s.t (i, j) ≺ (κ, τ), B sim-

ulates the garbling of Enc-Stepi,j as ( ˜Enc-Stepi,j , ỹi,j) ← HG.Sim(hk, nodei,j , 1
L, flagi,j+1||ỹi,j+1)19, where L

is the length of circuit Enc-Stepi,j defined in Fig. 2 and flagi,j+1 = 1 iff j = di. Finally, B sends ciphertext

ct = ({(rti, di)}i∈[`n], { ˜Enc-Stepi,j}(i,j)∈S , {ỹi,1}i∈[`n]) to A. The adversary outputs a bit b′. B outputs b′ as
its guess in hash garbling game.

We now analyze the advantage of B in hash garbling game. As the adversary A is admissible, PostVerify
(crs, pp, id∗, pk∗, π) = 1 and B does not abort. By Lemmas 4.3 and 4.4, when PostVerify(crs, pp, id∗, π) = 1,
the path pathκ,tagκ resembles a sequence of nodes obtain by performing binary search on id∗ in a tree with
root rtκ. Consequently, when the challenger runs step circuit Enc-Stepκ,τ on input nodeκ,τ,tagκ , the result
is 0||nodeκ,τ+1,tagκ if τ < dκ, and 1|| ⊥ if τ = dκ ∧ κ < α, and 1||Enc(pk∗,mb) if τ = dκ ∧ κ ≥ α. As a
resut, if γ = 0, then B emulates Hybrid Hb.κ̃.τ̃ challenger to A and if γ = 1, then B emulates Hybrid Hb.κ.τ

challenger to A. By our assumption, |pAκ.τ − pAκ̃.τ̃ | is non-negligible. Therefore, the advantage of B in hash
garbling game given by |Pr[b′ = 1|γ = 0]− Pr[b′ = 1|γ = 1]| is non-negligible.

Lemma 4.8. Assuming PKE is a secure public key encryption scheme, for every admissible20 PPT adversary
A, there exists a negligible function negl(·) such that for any λ ∈ N, we have |pA0.`n.d`n − p

A
1.`n.d`n

| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |pA0.`n.d`n − p
A
1.`n.d`n

| is non-negligible value ε. We

construct a reduction algorithm B that breaks semantic security of the PKE scheme.23

The challenger first sends a public key pk∗ to the reduction algorithm B. B samples a hash key hk ←
HG.Setup(1λ, 13λ+1), sets crs = hk and sends (crs, pk∗) to the adversary. The adversary then sends an identity
id∗, public parameters pp, a proof π and a pair of messages m0,m1 to B. If PostVerify(crs, pp, id∗, pk∗, π) = 0,
B aborts and outputs a random bit in PKE game. Let public parameters pp be {(rti, di)}i∈[`n] and
proof π be (π1, · · · , π`n , α). For each i < α, let πi = (pathi,lwr, pathi,mid). Similarly, for each i ≥ α,
let πi = (pathi,lwr, pathi,mid, pathi,upr). For any i ∈ [`n] and tag ∈ {lwr,mid, upr}, let pathi,tag be a se-
quence of values (nodei,1,tag, nodei,2,tag, · · · , nodei,di,tag)

21. B makes `n − α + 1 challenge encryption queries
on (m0,m1) to the PKE challenger and obtains ciphertexts ct∗α, ct∗α+1, · · · , ct∗`n . For each i < α, B sets
ỹi,di+1 = 1|| ⊥. For each i ≥ α, B sets ỹi,di+1 = 1||ct∗i . For each (i, j) ∈ S, B simulates the gar-

bling of Enc-Stepi,j as ( ˜Enc-Stepi,j , ỹi,j) ← HG.Sim(hk, nodei,j , 1
L, flagi,j+1||ỹi,j+1)19, where L is the length

of circuit Enc-Stepi,j defined in Fig. 2 and flagi,j+1 = 1 iff j = di. Finally, B sends ciphertext ct =

({(rti, di)}i∈[`n], { ˜Enc-Stepi,j}i∈[`n],j∈[di], {ỹi,1}i∈[`n]) to A. The adversary outputs a bit b′. B outputs b′ as
its guess in PKE game.

We now analyze the advantage of B in breaking semantic security of PKE. We note that if PKE challenger
encrypts message m0, then B emulates Hybrid H0.`n.d`n

challenger to A. Whereas if the PKE challenger
encrypts message m1, then B emulates Hybrid H1.`n.d`n

challenger to A. As A can distinguish between the
hybrids with non-negligible probability, B can break PKE semantic security with non-negligible probability.

By the above sequence of lemmas and triangle inequality, Hybrid H0 is computationally indistinguishable
from Hybrid H1. Therefore, our construction satisfies soundness for pre-registration verifiability property.

4.4.3 Message Hiding Security

We now prove that any VRBE construction that satisfies completeness and soundeness requirements of Def-
initions 3.2, 3.5 and 3.6 also satisfies message hiding property.

23For the ease of exposition, we consider the semantic security game where the adversary is allowed to make polynomially
many challenge queries of the form (m0,m1). The challenger samples a bit b and responds to each challenge query (m0,m1)
with Enc(pk,mb). By a standard hybrid argument, this definition of semantic security is equivalent to the Definition 2.1.
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Theorem 4.3. Assuming a VRBE satisfies completeness property ( Definition 3.2) soundness of pre-
registration and post-registration properties (Definitions 3.5 and 3.6), then the scheme also satisfies message
hiding property (Definition 3.4).

Proof. Consider the message hiding game described in Definition 3.4. We first divide the adversary into 2
types.

• Type 1 Adversary: Restricted to make challenge encryption query (chal, id,m0,m1) s.t. id = id∗, where
id∗ is the registered target identity.

• Type 2 Adversary: Restricted to make challenge encryption query (chal, id,m0,m1) s.t. id /∈ SID, where
SID is the set of all registered identities.

For any adversary A, let the advantage of A in message hiding game be AdvA. We now prove Lemmas 4.9
and 4.10 which together imply Theorem 4.3.

Lemma 4.9. Assuming any VRBE satisfies completeness property as per Definition 3.2 and soundness
of post-registration property as per Definition 3.6, then for every Type 1 PPT adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, AdvA ≤ negl(λ)

Proof. Suppose there exists a VRBE scheme VRBE satisfying completeness property as per Definition 3.2,
a type 1 PPT adversary A such that the advantage AdvA is non-negligible. We now construct a PPT
reduction algorithm B which breaks soundness of post-registration property of VRBE scheme with non-
negligible probability.

The soundness game challenger C sends a (crs, pk∗) to the reduction algorithm B, which initializes pa-
rameters (pp, aux, u, SID, id

∗) = (ε, ε, ε, ∅,⊥) and forwards crs to the adversary A. The adversary then adap-
tively makes registration queries of the form (regnew, id, pk). For each such query, B aborts if id ∈ SID.
Otherwise, B registers (id, pk) as pp ← Regaux(crs, pp, id, pk) and sets SID = SID ∪ {id}. If the adversary
makes a target registeration query (regtgt, id∗), B aborts if id∗ ∈ SID. Otherwise, B registers (id∗, pk∗)

as pp ← Reg[aux](crs, pp, id∗, pk∗), sets SID = SID ∪ {id∗} and sends pk∗ to A. Finally, the adversary
makes a challenge query (chal, id,m0,m1). If id 6= id∗, B aborts. Otherwise, B computes proof π∗ ←
PostProveaux(crs, pp, id∗, pk∗) and sends (pp, id∗, π∗,m0,m1) to the challenger. If PostVerify(crs, pp, id∗, pk∗, π∗) =
0, the challenger aborts. Otherwise, it samples a bit b ← {0, 1} and sends ct∗ ← Enc(crs, pp, id∗,mb) to B,
which forwards ct∗ to A. The adversary A outputs a bit b′. B outputs b′ as its guess in soundness game.

We now analyze the advantage of B in the soundness game. As A is a valid type 1 adversary, it only makes
challenge queries (chal, id,m0,m1) s.t. id = id∗. As VRBE satisfies completeness property and (id∗, pk∗) is
registered by B, we know that PostVerify(crs, pp, id∗, pk∗, π∗) = 1 with overwhelming probability. Therefore,
B does not abort and acts as a valid soundness game adversary and a valid message hiding game challenger
with all but negligible probability. As A has a non-negligible advantage in winning the message hiding game,
B has a non-negligible advantage in winning the soundness game.

Lemma 4.10. Assuming any VRBE satisfies completeness property as per Definition 3.2 and soundness
of pre-registration property as per Definition 3.5, then for every Type 2 PPT adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, AdvA ≤ negl(λ)

Proof. This proof is similar to the proof Lemma 4.9. Suppose there exists a VRBE scheme VRBE satisfying
completeness property as per Definition 3.2, a type 2 PPT adversary A such that the advantage AdvA is
non-negligible. We now construct a PPT reduction algorithm B which breaks soundness of pre-registration
property of VRBE scheme with non-negligible probability.

The soundness game challenger C sends a crs to the reduction algorithm B, which initializes parameters
(pp, aux, u, SID, id

∗) = (ε, ε, ε, ∅,⊥) and forwards crs to the adversary A. The adversary then adaptively
makes registration queries of the form (regnew, id, pk). For each such query, B aborts if id ∈ SID. Otherwise,
B registers (id, pk) as pp ← Regaux(crs, pp, id, pk) and sets SID = SID ∪ {id}. If the adversary makes a
target registeration query (regtgt, id∗), B aborts if id∗ ∈ SID. Otherwise, B samples PKE pair (pk∗, sk∗),
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registers (id∗, pk∗) as pp← Reg[aux](crs, pp, id∗, pk∗), sets SID = SID ∪ {id∗} and sends pk∗ to A. Finally, the
adversary makes a challenge query (chal, id,m0,m1). If id ∈ SID, B aborts. Otherwise, B computes proof
π ← PreProveaux(crs, pp, id) and sends (pp, id, π,m0,m1) to the challenger. If PreVerify(crs, pp, id, π) = 0, the
challenger aborts. Otherwise, it samples a bit b ← {0, 1} and sends ct∗ ← Enc(crs, pp, id,mb) to B, which
forwards ct∗ to A. The adversary A outputs a bit b′. B outputs b′ as its guess in soundness game.

We now analyze the advantage of B in the soundness game. As A is a valid type 2 adversary, it only
makes challenge queries (chal, id,m0,m1) s.t. id /∈ SID. As VRBE satisfies completeness property and id is
unregistered by B, we know that PreVerify(crs, pp, id, π) = 1 with overwhelming probability. Therefore, B
does not abort and acts as a valid soundness game adversary and a valid message hiding game challenger
with all but negligible probability. As A has a non-negligible advantage in winning the message hiding game,
B has a non-negligible advantage in winning the soundness game.
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A Universal Registration Based Encryption

In Registration Based Encryption, various identities locally sample (public key, secret key) pair of an apriori
fixed public key encryption scheme, and a key accumulator accumulates identity-public key pairs of various
users and publishes a short commitment. This commitment can be later used to encrypt a message to any
registered identity. In this section, we extend the definition of Registration Based Encryption to more general
access structures. Concretely, we define the notion of Universal Registration Based Encryption where the
users have the flexibility to choose a functional encryption scheme they would like to use from an apriori fixed
class of schemes. Any user can choose a functional encryption scheme and locally sample (master public key,
master secret key) pair for the scheme. The users then encode the public key in a universal format, which
includes both the public key and name of the scheme selected by the user. We call a public key encoded in
such a format as a universal public key. The key accumulator then registers (identity, universal public key)
pairs of all the users and publishes a short commitment as earlier. For the ease of exposition, we define the
notion of universal RBE for FE schemes. However, one could also support regular PKE, IBE, HIBE and
ABE systems in a similar way. To simplify our notations, we define a universal FE system as follows.

UnivSetup(1λ,Sch) → (upk, usk): The universal setup algorithm takes a security parameter λ and name
of an FE scheme Sch as input. It samples master public key and master secret key (mpk,msk) ←
Sch.Setup(1λ) of the scheme. It then outputs a universal master public key upk = (Sch,mpk) and a
universal master secret key usk = (Sch,msk).

UnivKeygen(usk, f) → uskf : The universal keygen algorithm takes a universal secret key usk = (Sch,msk)
and a description of a function f as input. It computes secret key skf ← Sch.Keygen(msk, f) and
outputs a universal function-specific secret key uskf = (Sch, skf ).

UnivEnc(upk,m) → ct: The universal encryption algorithm takes as input a universal public key upk =
(Sch,mpk) and a message m. It computes and outputs a ciphertext ct← Sch.Enc(mpk,m).

UnivDec(uskf , ct) → y: The universal decryption algorithm takes as input a universal secret key uskf =
(Sch, skf ) and a ciphertext ct. It then decrypts the ciphertext as y = Sch.Dec(skf , ct) and outputs y.

We now formally define the notion of universal RBE for message space M = {Mλ}λ, identity space
ID = {IDλ}λ, and a class of FE schemes FE = {FEλ}λ. The system consists of (CRSGen,Gen,Reg,Enc,
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Upd,Dec,PreProve,PreVerify, PostProve,PostVerify) algorithms. The syntax of all the algorithms remains
same as VRBE except for few changes. The Gen algorithm now additionally takes name of an FE scheme
as input and behaves similar to the universal setup algorithm described above. The Reg,PostProve and
PostVerify algorithms now deal with universal public keys, instead of PKE public keys. The Dec algorithm
uses a universal function-specific secret key as input. We highlight the changes from the definition of VRBE
in red.

Reg[aux](crs, pp, id, upk)→ pp′. The registration algorithm is a deterministic algorithm, that takes as input
the common reference string crs, current public parameter pp, an identity id to be registered, and
a corresponding universal public key upk. It maintains auxiliary information aux, and outputs the
updated parameters pp′. The registration algorithm is modelled as a RAM program where it can
read/write to arbitrary locations of the auxiliary information aux. (The system is initialized with pp
and aux set to ε.)

Dec(uskf , u, ct)→ m/GetUpd/ ⊥ . The decryption algorithm takes as input a universal function-specific se-
cret key uskf , a key update u, auxilliary information f and a ciphertext ct, and it outputs either a
message m ∈M, or a special symbol in {⊥,GetUpd}. (Here GetUpd indicates that a key update might
be needed for decryption.)

PostProveaux(crs, pp, id, upk)→ π. The post-registration prover algorithm is a deterministic algorithm, that
takes as input the common reference string crs, public parameters pp, an identity id, and a universal
public key upk. Given the auxiliary information aux, it outputs a post-registration proof π. Similar to
the registration algorithm, this is also modelled as a RAM program, but it is only given read access to
arbitrary locations of the auxiliary information aux.

PostVerify(crs, pp, id, upk, π)→ 0/1. The post-registration verifier algorithm takes as input the common ref-
erence string crs, public parameter pp, an identity id, a universal public key upk, and a proof π. It
outputs a single bit 0/1 denoting whether the proof is accepted or not.

We need a unviersal RBE to satisfy all the completeness, efficiency, completeness of pre/post-registration,
efficiently extractable completeness of post-registration, soundness of pre/post-registration verifiability and
message hiding requirements as presented in Section 3 with few changes.

Definition A.1 (Completeness, compactness, and efficiency of Universal RBE). For any (stateful) inter-
active computationally unbounded adversary A that has a poly(λ) round complexity, consider the following
game CompRBE

A (λ).

1. (Initialization) The challenger initializes parameters as (pp, aux, u, SID, id
∗, t) = (ε, ε, ε, ∅,⊥, 0), samples

crs← CRSGen(1λ), and sends the crs to A.

2. (Query Phase) A makes polynomially many queries of the following form, where each query is consid-
ered as a single round of interaction between the challenger and the adversary.

(a) Registering new (non-target) identity. On a query of the form (regnew, id, upk), the chal-
lenger checks that id /∈ SID, and registers (id, upk) by running the registration procedure as pp :=

Reg[aux](crs, pp, id, upk). It adds id to the set as SID := SID∪{id}. (Note that the challenger updates
the parameters pp, aux, SID after each query. Also, it aborts if the check fails.)

(b) Registering target identity. On a query of the form (regtgt, id,Sch), the challenger first checks
that id∗ =⊥. If the check fails, it aborts. Else, it sets id∗ := id, samples challenge key pair
(upk∗, usk∗) ← UnivSetup(1λ,Sch), updates public parameters as pp := Reg[aux](crs, pp, id∗, upk∗),
and sets SID := SID ∪ {id∗}. Finally, it sends the challenge universal public key upk∗ to A. (Here
the challenger stores the universal secret key usk∗ in addition to updating all other parameters.
Also, note that the adversary here is restricted to make such a query at most once, since the
challenger would abort otherwise.)
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(c) Keygen Query. On a query of the form (keygentgt, f), the challenger first checks and aborts
if id∗ =⊥. Otherwise, the challenger samples usk∗f ← UnivKeygen(usk∗, f) and sends it to the
adversary.

(d) Target identity encryptions. On a query of the form (enctgt,m), the challenger checks if
id∗ 6=⊥. It aborts if the check fails. Otherwise, it sets t := t + 1, m̃t := m, and computes
ciphertext ctt ← Enc(crs, pp, id∗, m̃t). It stores the tuple (t, m̃t, ctt), and sends the ciphertext ctt
to A.24

(e) Target identity decryptions. On a query of the form (dectgt, f, j), the challenger checks if
id∗ 6=⊥ and j ∈ [t]. It aborts if the check fails. Otherwise, it samples usk∗f ← UnivKeygen(usk, f),
computes yj = Dec(usk∗f , u, ctj). If yj = GetUpd, then it generates the fresh update u :=
Updaux(pp, id∗) and then re-computes yj = Dec(usk∗f , u, ctj). Finally, the challenger stores the
tuple (j, f, yj).

3. (Output Phase) We say that the adversary A wins the game if there is some tuple of the form (j, f, yj),
for which f(m̃j) 6= yj.

Let n = |SID| denote the number of identities registered until any specific round in the above game. We
say that an RBE scheme is complete, compact, and efficient if for every (stateful) interactive computationally
unbounded adversary A that has a poly(λ) round complexity, there exists polynomials p1, p2, p3, p4, p5 and a
negligible function negl(·) such that for every λ ∈ N, the following holds:

Completeness. Pr[A wins in CompRBE
A (λ)] ≤ negl(λ).

Compactness of public parameters and updates. |pp| ≤ p1(λ, log n) and |u| ≤ p2(λ, log n).

Efficiency of registration and update. The running time of each invocation of Reg and Upd algorithms
is at most p3(λ, log n) and p4(λ, log n), respectively. (Note that this implies the above compactness
property.)

Efficiency of the number of updates. The total number of invocations of Upd for identity id∗ during
target identity decryption phase (i.e., Step 2d of game CompRBE

A (λ)) is at most p5(λ, log n) for every
n.

Definition A.2 (Completeness and Efficiency of Pre/Post-Registration). The Completeness and Efficiency
of pre/post-Registration property of universal RBE is same as that of regular RBE presented in Definition 3.2.

Definition A.3 (Efficiently Extractable Completeness of Post-Registration). A universal RBE scheme satis-
fies efficiently extractable completeness property for post-registration if there exists a deterministic polynomial-
time algorithm UpdExt such that for any computationally unbounded admissible adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, we have

Pr

Dec(uskf , u, ct) 6= f(m) :
crs← CRSGen(1λ),Sch← A(crs), (upk, usk)← UnivSetup(1λ,Sch)

(pp, id, π, f,m)← AUnivKeygen(usk,·)(crs, upk), u← UpdExt(π, id)
ct← Enc(crs, pp, id,m), uskf ← UnivKeygen(usk, f)

 ≤ negl(λ)

where an adversary A is said to be admissible if it always produces a valid post-registration proof π i.e.,
PostVerify(crs, pp, id, upk, π) = 1.

Definition A.4 (Soundness of Pre-Registration Verifiability). A universal RBE scheme satisfies soundness
of pre-registration verifiability if for every stateful admissible PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds

Pr

A(ct) = b :
crs← CRSGen(1λ)

(pp, id, π,m0,m1)← A(crs)
b← {0, 1}; ct← Enc(crs, pp, id,mb)

 ≤ 1

2
+ negl(λ),

24Here and throughout, whenever we write the challenger stores the tuple, we mean that it appends this to its local state
such that these could be obtained by the challenger when referred to later in the game.
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where A is admissible if and only if π is a valid pre-registration proof, i.e. PreVerify(crs, pp, id, π) = 1.

Definition A.5 (Soundness of Post-Registration Verifiability). A universal RBE scheme satisfies soundness
of post-registration verifiability if for every stateful admissible PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds

Pr

AUnivKeygen(usk,·)(ct) = b :
crs← CRSGen(1λ); Sch← A(crs); (upk, usk)← UnivSetup(1λ,Sch)

(pp, id, π,m0,m1)← AUnivKeygen(usk,·)(crs, upk)
b← {0, 1}; ct← Enc(crs, pp, id,mb)

 ≤ 1

2
+negl(λ),

where A is admissible if and only if π is a valid post-registration proof, i.e. PostVerify(crs, pp, id, upk, π) = 1,
and for each UnivKeygen(usk, f) query made by the A, it should satisfy f(m0) = f(m1).

Definition A.6 (Message Hiding Security). For any (stateful) interactive PPT adversary A, consider the
following game SecRBEA (λ).

1. (Initialization) The challenger initializes parameters as (pp, aux, u, SID, id
∗,F) = (ε, ε, ε, ∅,⊥, ∅), sam-

ples crs← CRSGen(1λ), and sends the crs to A.

2. (Query Phase) A makes polynomially many queries of the following form:

(a) Registering new (non-target) identity. On a query of the form (regnew, id, upk), the chal-
lenger checks that id /∈ SID, and registers (id, upk) by running the registration procedure as pp :=

Reg[aux](crs, pp, id, upk). It adds id to the set as SID := SID ∪ {id}.
(b) Registering target identity. On a query of the form (regtgt, id,Sch), the challenger first checks

that id∗ =⊥. If the check fails, it aborts. Else, it sets id∗ := id, samples challenge universal key pair
(upk∗, usk∗) ← UnivSetup(1λ,Sch), updates public parameters as pp := Reg[aux](crs, pp, id∗, upk∗),
and sets SID := SID ∪ {id∗}. Finally, it sends the challenge universal public key upk∗ to A.

(c) Keygen Query. On a query of the form (keygentgt, f), the challenger first checks and aborts
if id∗ =⊥. Otherwise, the challenger sets F : F ∪ {f}, samples usk∗f ← UnivKeygen(usk∗, f) and
sends it to the adversary.

3. (Challenge Phase) On a query of the form (chal, id,m0,m1), then the challenger aborts if id ∈ SID\{id∗}.
The challenger also aborts if f(m0) 6= f(m1) for any function f ∈ F . Otherwise, the challenger samples
a bit b← {0, 1} and computes challenge ciphertext ct← Enc(crs, pp, id,mb).

4. (Output Phase) The adversary A outputs a bit b′ and wins the game if b′ = b.

We say that a universal RBE scheme is message-hiding secure if for every (stateful) interactive PPT ad-
versary A, there exists a negligible function negl(·) such that for every λ ∈ N, Pr[A wins in SecRBEA (λ)] ≤
1
2 + negl(λ).
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